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Abstract 

This paper analyzes the application of the Markov-switching ARCH 

model (Hamilton and Susmel, 1994) in improving value-at-risk (VaR) 

forecast. By considering a mixture of normal distributions with varying 

variances over different time and regimes, we find that the “spurious high 

persistence” found in the GARCH model is adjusted. Under relative 

performance and hypothesis-testing evaluations, the VaR forecasts 

derived from the Markov-switching ARCH model are preferred to 

alternative parametric and nonparametric VaR models that only consider 

time-varying volatility.  
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1. Introduction 

With the increasing fluctuations in assets prices and severe financial turmoil 

occurred recently, the issue of risk management has received considerable attentions 

recently. Since its adoption by the Basel Committee (Basel Committee on Banking 

Supervision of Bank for International Settlements, 1996), value-at-risk (VaR) has 

become one of the most widely used tools for measuring the market risk by major 

trading institutions. VaR is used to quantify the exposure of a portfolio to future 

market fluctuations.  

The purpose of this paper is twofold. First, we consider approaches that allow for 

the leptokurtosis in the distribution of the portfolio return. Since assuming normality 

in calculating VaR will result in a systematic under-estimation of the riskiness of the 

portfolio, especially when returns are heavily fat-tailed. To capture the leptokurtosis 

many researchers use the GARCH model of Bollerslev (1986) to generate volatility 

forecast (Duffie and Pan, 1997).1 However, GARCH forecasts are too high in volatile 

periods. Hamilton and Susmel (1994) argue that the problem of spurious persistence 

can be solved after considering regime switches in the volatility. Using the 

Markov-switching ARCH (SWARCH) model proposed by Hamilton and Susmel 

(1994), we forecast VaR allowing for regime switches in time-varying conditional 

variance of returns.2 Second, we evaluate VaR forecasts systematically through 

relative performance comparison and hypothesis tests on forecast accuracy. While the 

concept of VaR is simple and attractive, there is no unique approach with VaR 

implementations adopt. Because a wide variety of alternative models are used in VaR 

                                                 
1 It can be seen that a mixture of normal distributions with different variances will lead to an overall 

series that is leptokurtic (Duffie and Pan, 1998). 
2 Cai (1994) also proposed a Markov-ARCH model to incorporate the features of both Hamilton’s 

(1989) switching-regime model and Engle’s (1982) ARCH model. Since both models of Cai (1994) 
and Hamilton and Susmel (1994) aim to integrate Markov Switching model and ARCH model, and 
the two Markov-switching ARCH models are related in paramaterization (see Cai (1994)), we only 
estimate the model of Hamilton and Susmel (1994) in this paper without loss of generality.   
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implementations, it is essential to use systematic evaluation criteria in selecting a 

preferred VaR model. 

This paper undertakes four case studies in model evaluation, including the S&P 

500 index, Nikkei 225 index, FTSE 100 index and CAC 40 index, at the 95% and 

99% levels significance. The empirical results show that the SWARCH model can 

solve the problem of “spurious high perisitence” found in the GARCH model and 

yield a better forecast of VaR.3 The evaluation results indicate that SWARCH-based 

VaR forecasts are generally more accurate than those generated by models that only 

consider time-variation in the conditional volatility, including the EWMA 

(exponential weighted smoothing average), threshold GARCH (TGARCH) methods 

and the historical simulation adjusted for time-varying variance.  

This paper is organized as follows. Section 2 introduces the evaluation 

framework for VaR forecasts. Section 3 describes the different models used to derive 

VaR forecasts. Section 4 compares the results of the empirical investigation of 

competing models on S&P 500, FTSE100, Nikkei225 and CAC40 indices returns. 

Section 5 concludes. 

     

2. Evaluation of VaR Forecasts 
2.1  Definition of VaR 

The concept of VaR is to summarize the worst loss over a target horizon with a 

given level of confidence. VaR is defined as the maximum loss on a portfolio that can 

be expected with a certain level of confidence (1-α) over a certain interval of time (T), 

and can be expressed as: 

                                                 
3 Besides the SWARCH model, there are alternative methods to incorporate both structural change and 

time-varying stochastic volatility to solve the problem of the excessive GARCH forecasts in volatile 
periods. For example, Gray (1996) and Ang and Bekaert (2002) extend the specification of 
SWARCH to the Markov switching GARCH model. However, for the regime-switching GARCH 
specification one is unable to compute the multi-period ahead volatility forecasts.  
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( ) α=−< ++ TttTtt VaRr ,,Pr                             (1) 

where Tttr +,  represents the portfolio returns over the T periods in the future, that is,  

t

tTt
Ttt P

PPr −
= +

+, , where tP  is the value of portfolio at time t.  

2.2  Evaluation Methods of VaR Forecasts 

VaR models are only useful when they predict risk reasonably well. To compare 

various VaR forecasts, we must check systematically the validity of the evaluation of 

VaR models through the comparison of predicted and actual loss levels. When a VaR 

model is perfectly calibrated, the number of realized observations falling outside VaR 

prediction should be in line with the confidence level. With too many exceptions that 

exceed the estimated VaR, it means that the model underestimates the risk. This is a 

major problem because too little capital maybe allocated to risk-taking units. With too 

few exceptions is also a problem because it leads to excess or inefficient allocation of 

capital. 

Recently, there is a rapidly growing literature on the evaluation of VaR models. 

One type of methods judges the better VaR forecasts based on the relative 

performance derived from some loss functions. The other offers a testing framework 

based on certain theoretical properties of the VaR measures. A key issue about 

evaluation based on the hypothesis-testing framework is the power of test. If the 

hypothesis tests exhibit low power, the probability of classifying an inaccurate VaR 

model as “acceptably accurate” will be high.  

2.2.1 Relative Performance   

The central concept of these methods is to compare among VaR models and 

select the most accurate one. Hendricks (1996) proposed several criteria to examine 

different VaR measures. He emphasized that these considered performance criteria do 

not have straightforward standard error that it is not possible to discriminate between 
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methods using formal statistical hypothesis. Nevertheless, these criteria provide a 

relatively complete picture of the performance of selected VaR estimates.  

Lopez (1998) proposed a measure of relative performance that can be used to 

monitor the performance of VaR estimates. The general form of a loss function is  
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where tTiC |,  represents the numerical scores generated for individual VaR model i, 

and Tttr +,  represents the portfolio returns over the T days in the future. The score for 

the complete regulatory sample of size h is ∑
+

+=

=
hs

st
tTii CC

1
|, . Once a loss function is 

defined and iC  is calculated, a benchmark can be constructed and used to evaluate 

the performance of a set of VaR forecasts. In this paper, we apply the following five 

criteria to evaluate the relative performance of various VaR forecasts. 

 (1)  Mean Relative Bias (MRB) 

MRB examines whether different VaR models produce similar forecasts. We first 

calculate VaR under each VaR models on each sample date, and then compute the 

average VaR over the forecast sample. Given h forecasting periods and N VaR models, 

the MRB of model i is computed as: 
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(2)  Root Mean Square Relative Bias (RMSRB) 

RMSRB examines the degree to which certain VaR measure varies from the average 

risk measure for a given date. It captures two effects: the extent to which the average 

risk estimate provided by a given model systematically differs from the average risk 

measure, and the variability of each model’s risk estimate. The RMSRB is computed 

as: 
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(3)  Correlation between Risk Measure and Absolute Value of Outcome 

A simple efficiency test is to measure the correlation between calculated VaR and the 

absolute value of realized return. It assesses how well the risk measures adjust over 

time to underlying changes in risk. This correlation statistic has two advantages. First, 

it is not affected by the scale of the portfolio. Second, the correlations are relatively 

easy to interpret. 

(4)  Binary Loss Function 

The loss function implied by the binomial method is  
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If a loss exceeding the VaR is observed, this is termed an “exception.” Here, we 

are simply concerned with the number of exceptions rather than the magnitude of 

these exceptions. If a VaR model is truly providing the level of coverage defined by 

its confidence level, the score for the complete regulatory sample ∑
+

+=

=
hs

st
tTii CC

1
|,  will 

equal h×05.0  and h×01.0  for the 95th percentile VaR and the 99th percentile VaR, 

respectively. 

(5)  Quadratic Loss Function 

Quadratic loss function takes account of the magnitude of the exceptions. Comparing 

with a binary loss function, an additional quadratic term is imposed when an 

exception occurs. Lopez (1998) found that the use of the additional information 

embodied in the size of the exception provides a more powerful measure of model 

accuracy than the binary loss function. The loss function is defined by: 
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In the same manner, we compute the score of the quadratic loss function as 

∑
+

+=

=
hs

st
tTii CC

1
|, . When the score of the binary loss function is similar under different 

models, the quadratic loss function goes in depth to examine the magnitude of these 

exceptions. 

2.2.2 Hypothesis-Testing Framework 

Evaluation methods based on a hypothesis-testing framework allow us to test the 

null hypothesis that VaR forecasts are “acceptably accurate.” The null hypothesis is 

that VaR forecasts in question exhibit a specified property or characteristic of accurate 

VaR forecasts (Lopez, 1998). If the null hypothesis is rejected, the VaR forecasts do 

not exhibit the specified property, and the underlying VaR model can be said to be 

“inaccurate.” If the null hypothesis cannot be rejected, the model is said to be 

“acceptably accurate.” 

Kupiec (1995) is the first one to develop the performance-based verification 

techniques to test the accuracy of VaR forecasts. He constructed VaR verification tests 

from the series of Bernoulli trial outcomes generated by a daily performance 

comparison. That is, treat the loss on trading activities less than the VaR estimated as 

a success, and beyond the VaR as a failure. According to this assumption, he derived 

the TUFF (Time Until First Failure) and PF (Proportion of Failures) tests. 

In a performance-based verification scheme, the initial monitoring statistic of 

interest is the number of observations until a failure is observed. Kupiec (1995) 

defined T~  as a random variable that denotes the number of days until the first failure 

is recorded. If p is the probability of a failure on any given day, the probability of 

observing the first failure in period V is given by: 
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1)1()~Pr( −−== VppVT                                          (7) 

where T~  has a geometric distribution with an expected value of (1/p). For example, 

when 01.0p = , the average time until the first failure is 100. Given a realization for 

T~ , the likelihood ratio (LR) statistic for testing the null hypothesis *pp =  is given : 

{ } { }1V1V*** )V/11)(V/1(Log2)p1(pLog2)p,V(LR −− −+−−=         (8) 

Under the null hypothesis, )p,V(LR *  has a chi-square distribution with 1 degree 

of freedom. According to Kupiec (1995), when testing 01.0p* = , the TUFF(0.05) 

critical values for V are 6 and 439. That is, if the first failure occurs before the seventh 

trading day, it can be concluded that 01.0p > . If the first failure occurs after the 438th 

trading day, it can be concluded that 01.0p < . Yet it has been suggested that the 

TUFF statistics has poor ability to distinguish reliably between alternative underlying 

values for the tail probability associated with a VaR forecast. 

The PF test is used to compare the total number of failures observed to the total 

accumulated sample size. The PF test is based on the proportion of failures in the 

sample. When the TUFF test cannot reject the null hypothesis, continued monitoring 

beyond an observed failure will clearly add information that can be used to verify 

potential loss estimates. The probability of observing x failures in the sample of size h 

is: 

),(~)1(),Pr( xhbinomialppxh xxh−−=                              (9) 

where p is the probability of a failure on any one of the independent trails. 

The LR statistic is given by: 

{ } [ ]{ }xxhxxh hxhxpp )/()/1(log2*)(*)1(log2 −− −⋅+−⋅−                 (10) 

Under the null hypothesis, *pp = , the PF test has a chi-square distribution with 

1 degree of freedom. In a daily monitoring scheme, the PF test is used to compare the 

total number of failures observed to the total accumulated sample size. Like the TUFF 
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test, the PF test has poor power in small samples. Kupiec (1995) concluded that 

sample performance-based VaR verification tests require large samples to produce a 

reliable accuracy assessment. 

The Basel rules for backtesting the internal models approach are derived directly 

from this failure rate test. The Basel Committee has decided that up to four exceptions 

are acceptable, which defines a “green” zone for the bank. If the number of exceptions 

is more, the bank falls into a “yellow” or “red” zone and incurs a progressive penalty. 

 

3.  Calculation of VaR Forecasts 

To calculate VaR, we need further information regarding the distribution of 

future return Tttr +, . Since VaR is equal to the appropriate quantile of the distribution 

of future portfolio returns, the task of VaR calculation is to estimate the quantile. By 

focusing on the quantile or extreme value directly, several approaches have employed 

the quantile regression or the extreme value analysis to calculate VaR directly, 

including Engle and Manganelli (1999), and Longin (2000) among others.4 On the 

other hand, several approaches estimate the full distribution of portfolio returns and 

then calculate the corresponding quantile as VaR. Depending on the parameterization, 

approaches to calculating VaR via the whole distribution can be characterized as 

parametric and nonparametric methods. The parametric, or namely the 

variance-covariance or factor approach, involves specifying a parametric distribution 

and estimating the parameters with historical data. Based on the estimated distribution, 

often assuming normality, one can calculate the appropriate quantile either 
                                                 
4 For example, Engle and Manganelli (1999) proposed the CAViaR (Conditional Autoregressive 

Value-at-Risk) model to study the evolution of the quantile over time. They specified a special type 
of autoregressive process for the conditional quantile. One disadvantage of this model is that it 
requires the specification of a dynamic equation for the conditional quantile and its validness is 
subject to misspecification errors. Instead of undertaking the approach of quantile regression or 
extreme value analysis, we consider an appropriate model to model the conditional volatility of 
returns, allowing for jumps or regime changes and time-varying volatility at the same time. 
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analytically or numerically. On the other hand, the nonparametric or portfolio 

approach involves constructing or simulating the distribution of portfolio returns that 

mimic the past performance of the portfolio.  

3.1  Parametric Models 

Parametric models are the most popular models for calculating VaR, and the 

normality of returns is usually assumed. Under the assumption of normality of daily 

portfolio returns, ))(,)((~ 2
, ppNr tp σµ , where )( pµ and )(2 pσ  are the mean and 

variance of tpr ,  respectively, the value of VaR can be calculated by a multiple of the 

standard deviation of the portfolio returns. That is,  

TttTtt pCVaR ++ ⋅= ,, )(σα                                          (11)        

where αC  is the constant that gives the appropriate one-tailed confidence interval, at 

the ( α−1 ) confidence level, for the standard normal distribution, while Tttp +,)(σ  is 

the standard deviation of portfolio returns over the chosen time horizon, T. 

3.1.1 Time-Varying Volatility 

When implementing the parametric methods to obtain VaR forecasts, we need to 

forecast Tttp +,)(σ  at first. While the assumption of normality simplifies the 

calculation of VaR, it may lead to an inaccurate VaR. If portfolio returns are 

leptokurtic,5 the normal distribution will significantly underestimate the likelihood of 

extreme returns, and so the estimated VaR of the portfolio will generally be too low.  

One cause of leptokurtosis in the unconditional distribution of returns is 

volatility clustering or time-varying volatility. Duffie and Pan (1997) identified the 

                                                 
5 The daily changes in many variables exhibit significant amounts of positive excess kurtosis (Hull and  

White, 1998). Duffie and Pan (1997) found that S&P 500 daily returns for 1986 to 1996 have an 
extremely high sample kurtosis of 111, while the kurtosis of a normal distributed shock is 3. These 
“fat tails” are particularly worrisome precisely because VaR attempts to capture the behavior of the 
portfolio return in the left tail. In this situation, a model based on a normal distribution would 
underestimate the proportion of outliers and the true VaR. 



  10

empirical volatility of historical data is changing over time in some persistent manner. 

As Engle (1982) suggested, if returns are normally distributed with time-varying 

conditional variance, then the unconditional distribution of returns will have tails that 

are fatter than those of the normal distribution. To allow for time-varying volatility, 

the parametric approach is typically modified with a model for the conditional 

variance of returns6, such as an exponentially weighted moving average (EWMA) or 

generalized conditional heteroskedastic (GARCH) model (Bollerslev, 1986). Both 

models specify the current variance of returns as a function of the lagged variance and 

lagged squared returns.  

The RiskMetrics model (J.P. Morgan/Reuters (1996)) proposes the exponentially 

weighted moving average (EWMA) model to estimate Tttp +,)(σ :  

2
1t

2
1t

2
t r)1( −− λσ+λ−=σ                                             (12) 

where λ  is the decay factor which is chosen arbitrary by used and is usually taken 

the value of 0.94 for daily data.  

The development of volatility models for measuring and forecasting volatility 

dynamics began with the ARCH model proposed by Engle (1982). The ARCH model 

is useful to estimate the variance of tr  conditional on 1t−Ω , the information set 

available at time t-1. The ARCH (q) model is written as: 

∑
=

−+=
q

i
itit w

1

22 εασ                                               (13) 

where )r(Er 1tttt −Ω−=ε , ),0(~| 2
1 ttt N σε −Ω , and )|( 1−ΩttrE  is the conditional 

mean of tr . 

                                                 
6 An alternative approach to obtaining volatility forecasts is the implied volatility approach. The 

implied volatility is derived from matching trading prices of options and an option pricing formula, 
for example, Black and Scholes (1976). The implied volatility reflects the market opinion on the 
volatility of asset returns. However, this approach requires more inputs than the history of returns. 
Therefore, we only discuss volatility models that only require past return.  
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Bollerslev (1986) extended the ARCH model to the GARCH model. The 

GARCH model assumes that the conditional variance depends on the latest innovation 

but also on previous conditional variance. A GARCH model is the more general form 

for estimating volatility. The representation of the GARCH (p,q) model is: 

∑∑
=

−
=

− ++=
p

i
iti

q

i
itit w

1

2

1

22 σβεασ                                      (14) 

where )r(Er 1tttt −Ω−=ε , ),0(~| 2
1 ttt N σε −Ω . The conditional variance equation is 

a function of three terms: the mean c , news about the volatility from the previous 

period, measured as lagged squared residual from the mean equation 2
it−ε , and past 

conditional variance 2
it−σ . To ensure the positive variance and stationarity, it requires 

that 0>w , piqi ii ,...,2,1,0,,,2,1,0 =≥=≥ βα K , and 1
1 1

<+∑ ∑
= =

q

i

p

i
ii βα . For the 

model specification, )r(E 1tt −Ω  is the conditional mean and could be modeled as an 

AR or MA process when returns are autocorrelated.   

Alexander and Leigh (1997) examined the performance of three volatility models: 

the equally weighted moving average of squared returns, the exponentially weighted 

moving average, and GARCH models. They concluded that GARCH models give 

more conservative risk capital estimates, which can more accurately reflect a 1% 

value at risk measurement.  

However, for equities, it is often observed that downward movements in the 

market are followed by higher volatilities than upward movements of the same 

magnitude. To account for this phenomenon, the TGARCH (threshold GARCH) 

models allows for asymmetric impacts of shocks on current volatility. The 

specification of the TGARCH(1,1) model, suggested by Glosten, Jagannathan, and 

Runkle (1993), is written as: 
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−−−− ⋅⋅+++= ttttt dw εδσβαεσ                             (15)  

where )r(Er 1tttt −Ω−=ε , ),0(~| 2
1 ttt N σε −Ω , 11 =−td  if 01t <ε − , and 01 =−td  

otherwise. In this model, good news (when )01 ≥−tε  and bad news (when 01t <ε − ) 

have different effects on current conditional variance. By the definition, the impact of 

good news is α , while the impact of bad news is ( δα + ). If 0>δ , we say that a 

leverage effect exists in that bad news increases volatility. The relation 0=δ  

implies that the news impact on the current conditional variance is symmetric. 

On the other hand, as noted in Duffie and Pan (1997), one possible source of fat 

tails is jumps, or significant unexpected discontinuous changes in prices. The jump 

diffusion model has been treated as a recipe for fat-tailed distributions. The major 

implication of the jump diffusion model for extreme loss shows up much farther out 

in the tail. To consider both the time-varying volatility and possibility of jumps in the 

volatility process, we estimate the class of Markov-switching models for the 

time-varying volatility, namely Markov-switching ARCH (SWARCH) model, 

proposed by Hamilton and Susmel  (1994), to allow for both time-variation and 

regime switches in the conditional volatility. 

3.1.2 Time-Varying Volatility and Regime Switches 

GARCH forecasts are usually too high, especially in periods of high volatility. 

This is due to the high degree of persistence implied from the GARCH model. The 

problem of “spuriously high persistence” results in the weak forecasting performance, 

since the impacts of shocks usually do not last for such a long period. As pointed by 

Hamilton and Susmel (1994), the spuriously high persistence might be related to 

structural changes in the variance process. The volatility forecast will be less 

persistent if we model changes in parameters through a Markov-switching process, as 

shown in Hamilton and Susmel (1994) and Cai (1994) among others.  
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The SWARCH models proposed by Hamilton and Susmel (1994) allow the 

volatility dynamics to change under different states or regimes. That is, parameters in 

the ARCH(q) process are allowed to be changed in different states. State variable ts  

indicates the state that the process is in at time t and it is assumed to follow a Markov 

chain. That means the probability of state jst =  will be affected by only the realized 

state in the last period:  

ijtttt pisjsjs ====Ω= −− )Pr()Pr( 11  

We denote )q,K(SWARCH~2
tσ  if and only if 2

tσ  follows a K states, q-th 

order Markov-switching ARCH process. The model can be written as  

2
ts

2
t

~g
t
σ×=σ                                                  (16)   

∑
=

−+=
q

i
itit w

1

22~ εασ                                              (17) 

where )r(Er 1tttt −Ω−=ε , ),0(~| 2
1 ttt N σε −Ω  as before. That is, )q(ARCH~~2

tσ . 

tsg  is the multiplicative factor that depends on the state ts . Under this model, 2
t

~σ  is 

multiplied by the constant 1g  when the process is in the state 1 or 1st = , multiplied 

by 2g  when 2st = , and so on. 

   An extension of the SWARCH model is the SWARCH-L model that captures the 

leverage effect as the specification of a threshold ARCH model. The process of 

conditional volatility becomes   

2
ts

2
t

~g
t
σ×=σ ,   

2
11

1

22~
−−

=
− ⋅⋅++= ∑ tt

q

i
itit dw εδεασ                                   (18) 

where )r(Er 1tttt −Ω−=ε , ),0(~| 2
1 ttt N σε −Ω , 11 =−td  if 01t <ε − , and 

01 =−td  otherwise. For parameters estimation and forecasts calculation, please refer to 



  14

Hamilton and Susmel (1994) for more details. 

3.2  Nonparametric Models 

Nonparametric models are independent from the parameterized distribution of 

assets returns or market factors returns. One of which is the historical simulation 

method.7 The method was proposed initially by Efron (1979) as a nonparametric 

randomization technique that constructs the empirical distribution by drawing from 

the observed distribution of the data. It simply requires relatively few assumptions 

about the statistical distributions of the underlying market factors because it assumes 

that market prices innovations in the future are drawn from the same empirical 

distribution as those market price innovations generated historically. 

Instead of estimating parameters, such as the standard deviation, the method of 

historical simulation simply uses the actual percentiles of the observation period as 

VaR measures. This method involves creating a database consisting of the daily 

movements in all market variables over a period of time. If we assume that the returns 

in the next day are simply associated with the period of historical observations, we 

could directly rank the observed historical returns, and apply these ranked historical 

returns to construct the distribution of return in the next period.8 

The method of historical simulation requires no parameter in estimating the 

empirical distribution. However, if the future distribution of market factors differs 

                                                 
7 Stress testing is another kind of nonparametric models. The goal of stress testing is to identify 

unusual scenarios that would not occur under standard VaR models. In some sense, stress testing can 
be viewed as an extension of the historical simulation method at increasingly higher confidence level. 
(Jorion, 2000) On the other hand, the Monte Carlo simulation method is an alternative approach of 
parametric models. The method is used to simulate a variety of different scenarios for the portfolio 
value on the target date by generating random draws for the risk factors from a predetermined 
distribution. In a Monte Carlo simulation, one chooses a statistical distribution that is believed to 
adequately approximate the possible changes in the market factors. Then, a pseudo-random number 
generator is used to generate thousands (or perhaps tens of thousands) of hypothetical changes in the 
market factors. These hypothetical changes are used to construct thousands of hypothetical portfolio 
returns on the current portfolio and the distribution of returns. Finally, the VaR is computed from 
this distribution. 

8 For example, suppose that 1,000 days of data are used and the 1 percentile of the distribution is 
required. VaR would be estimated as the tenth worst change in the portfolio value. 



  15

substantially from the historical distribution, computed results can be misleading. Hull 

and White (1998) modified the method of historical simulation using an adjustment 

on the variance. Instead of using the actual historical percentage changes in market 

variables to calculate VaR, they used historical changes that have been adjusted to 

reflect the ratio of the current daily volatility to the daily volatility at the time of the 

observation. 

Let tr  be the historical percentage change in the price on day t, a period 

covered by the historical sample N (that is, Nt < ); 2
tσ  be the historical estimate of 

the variance of return for day t. Then the most recent estimate of the daily variance is 

2
Nσ , the variance estimate made at the end of day N-1. Assuming the process of 

tr / 2
tσ  is stationary, then the adjusted tr , *

tr , is given by: 
t

t
N

*
t

rr
σ

σ= , where 

tσ can be the estimated volatility from the historical data. In this paper, we use the 

TGARCH (threshold GARCH) model to estimate the volatility for adjusting the 

historical observations.  

 

4.  Empirical Results 

The data studied in this paper are returns to major stock indices, including S&P 

500, FTSE 100, NIKKEI 225, and CAC 40 indices. The daily data are collected from 

the Datastream and cover the period from January 1990 through December 2002.  

We calculate daily log returns by taking the difference of log prices for each 

index. Table 1 reports the descriptive statistics of these stock index returns. It shows 

that values of sample mean are close to 0. Values of sample kurtosis lie between 5.945 

and 8.764. The kurtosis is higher than 3, the kurtosis of a normal distribution, which 

shows that distributions of index returns exhibit fat tails. By the Jarque-Bera statistic, 
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the null hypothesis of normal distributions is also rejected for all four returns. We also 

detect weak first-order autocorrelation in returns to four indices. Values of the 

Ljung-Box Q statistic suggest the existence of significant serial correlation in returns 

and squared returns from the four indices. By the phenomenon of autocorrelated 

squared returns, we see that the data exhibit the characteristic of volatility clustering.  

The number of observations for each index return in this study is 3391. We use 

the last 500 observations for out-of-sample forecasting. The estimation procedure that 

we apply is as follows. For each model, 2891 observations of daily data are used in 

estimation, and used to form a VaR forecast for day 2892. After this, data from day 2 

until 2892 is used in estimation to obtain a VaR forecast for day 2893. For each of the 

VaR models competing in this paper, 500 out-of-sample forecasts are generated 

recursively by moving the estimation-window forward through time.  

Assuming that the conditional distribution of returns is normal, we can obtain 

VaR via the formula: TrrTtt CVaR ++ ⋅= ,, σα , where αC  is a multiplicative factor that 

depends on the confidence level ( α−1 ) of a normal distribution, and Ttt +,σ  is the 

standard deviation of returns over T periods. For the simplest case, we set T=1. Since 

11,1, +++ ⋅=⋅= ttttt CCVaR σσ αα , we calculate VaR with tttt CaRV |11, ˆˆ
++ ⋅= σα , where 

2
|1|1 ˆˆ tttt ++ = σσ  and 2

|1ˆ tt+σ  is the forecast of Var ( 1+tr ) conditional on information 

available at date t.  

In the EWMA model, 222
|1 )1(ˆ tttt r λσλσ +−=+ , we set λ  to 0.94 as J.P. Morgan 

suggests. After forecasting the variance, daily VaR is computed as tt |1ˆ645.1 +×σ  for 

the 95%, and tt |1ˆ96.1 +×σ  for the 99% VaR. However, the Ljung-Box Q statistics for 

the squared standardized returns show that the squared standardized returns are still 
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autocorrelated when we use the EWMA to estimate the time-varying volatility. This 

indicates that the EWMA does not capture the time-varying volatility well enough.  

On the contrary, we find GARCH (1,1) is sufficient to capture the volatility 

clustering, and the leverage effect is significant. To capture the leverage effect in 

index return volatility, we use the TGARCH (1,1) model to forecast the volatility. 

Table 2 reports the estimation results of the TGARCH(1,1) models for observations 1 

to 2891. It indicates that, in the TGARCH (1,1) model, the persistence that can be 

measured by the sum of ARCH and GARCH parameters, i.e., ( δβα
2
1

11 ++ ), is close 

to unity for each series. This may indicate spurious high volatility persistence. 

Furthermore, we use the statistic of CUSUM of squares to roughly examine if there 

might be structural changes in the variance process. If the hypothesis of no structural 

change fails to accept, it implies that structural changes may exist and that 

regime-switching models are appropriate for estimating the volatility process. In this 

paper, we use the CUSUM of squares test as a simple diagnostic for the stability of 

the variance process. As with the CUSUM of squares test, movement outside the 

critical lines is suggestive of parameter or variance instability. According to Figure 1, 

the results of CUSUM-squares statistic suggest that, for each index return, there exists 

variance instability.9 It implies that the “spuriously high persistence” might be related 

to structural changes. Therefore, we further set a two-regime SWARCH model to 

estimate and forecast the volatility.10 

Table 3 reports the estimation results of the SWARCH-L model using 

                                                 
9 A formal statistical test for the null hypothesis of no-regime switching has been proposed in Hansen 

(1992). In this paper, we are focused on the problem of the excessive GARCH forecasts in volatile 
periods and thus consider the SWARCH model to allow for regimes with different volatility levels. 
We use the CUSUM-squares statistic as a simple diagnosis for the possibility of different volatility 
regimes.  

10 We use two regimes and do no consider models with more regimes, because we want to explore 
whether the introduction of regimes help solve the “spurious high persistence” problem with the 
GARCH forecasts and it turns out that two regimes are sufficient for that.  

 



  18

observations 1 to 2891. It shows that the staying probability in each SWARCH-L 

model is not high (0.4~0.6), especially for the high-volatility regimes. This implies 

that the duration of high-volatility is not long. That is, the effects of shocks don’t 

always last persistently.   

To compare with VaR calculations calculated from parametric volatility models, 

we implement two alternative nonparametric approaches, including the historical 

simulation (hereafter, HS) and TGARCH-adjusted historical simulation (adjusted 

HS).11 The critical parameter in the HS models is the window width that is used in 

estimation. We report results for two cases: 500 and 1000 days. The results show that 

VaR forecasts from the traditional HS approach are fixed for a long period. These 

forecasts would not change until a great loss occurs or the losses deviate away from 

the mean of the moving windows. For the case of 500-day window, we use the prior 

500 observations to estimate the TGARCH model, and then use the variance forecast 

for day 2892, the first out-of-forecast observation, to adjust the variance for 

implementing the adjusted HS. Similarly, we move forward through time, generating 

out-of-sample adjusted-HS. Table 4 reports the statistical summary of VaR forecasts 

from competing VaR models In average, except for the FTSE 100, VaR forecasts from 

the SWARCH-L model are higher than any other measures.  

Relative performances of models compared are given in Table 5. For the 95% 

VaR, SWARCH-L model produces the highest MRB, meaning its VaR forecasts are 

much higher than the average over all models compared. MRB of the other models 

are between -0.16 and 0.16, showing that the differences across these models are 

relatively small. For the 99% VaR, MRB are higher in each model, between -0.20 and 

0.29, which shows that the forecasts from these VaR models are not similar.  

                                                 
11 Following Hull and White’s (1998) procedure we implement the HS adjusted by the TGARCH 

volatility. 
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While MRB measure the average deviation of a model from the average VaR 

across models, RMSRB measures the dispersion of a specific VaR model deviating 

from the average VaR across models. According to Table 4, the results of RMSRB 

indicate that the SWARCH model produces higher VaR estimations at a given date for 

both the 95% and 99% VaRs.  

The results of correlation between the VaR forecast and the realized return 

suggest the superior performance of the SWARCH-L model. The SWARCH-L model 

exhibits the highest correlation among all models for the four index returns examined. 

Besides, VaR calculated from the TGARCH and TGARCH-adjusted HS models 

performs relatively better than that from the EWMA and historical simulation models. 

Unsurprisingly, the HS models have the lowest correlation. This shows that the 

historical-simulated VaR is unable to well track changes in risk over time. 

The benchmark of score based on the binary loss function is 25 for the 95% VaR 

and 5 for the 99% VaR. For the 95% VaR, We found the score of the SWARCH-L 

model is lower than 25, and the score of the adjusted HS model is most close to 25. 

The scores of the EWMA, TGARCH, and HS models are much higher, indicating 

there are much more exceptions exceeding VaR. For the 99% VaR, the results are 

similar, but the SWARCH-L and HS (1000 days) models performs the best for the 

Nikkei 225 returns. 

The score based on the quadratic loss function measures the magnitude of 

exceptions. For the 95% VaR, the score of the SWARCH-L model is the lowest. We 

believe that it is resulted by its fewer exceptions. We also found that the HS achieves 

the highest score although it exhibits the same number of exceptions with the EWMA 

model (for NIKKEI 225) or even fewer exceptions than the TGARCH model (for 

FTSE 100). As for the 99% VaR, the score of adjusted HS model is relatively lower 

than the other models.    
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For the HS models, we use observation periods of 500 and 1,000 days moving 

window. The performance under different observation periods is not greatly dissimilar. 

Adjusted-HS model consistently performs better than the historical model across each 

criterion. The HS model tends to produce higher scores of loss function, implying it 

underestimates risk. Besides, its estimations have the lowest correlation between 

actual outcomes among all models. That is, it has poor ability to adjust risk measures 

over time. 

  According to the number of actual loss exceeding VaR, we calculate each 

model’s LR statistics for PF test. For the 95% VaR, only historical simulation models 

for CAC 40 series reject the hypothesis of ( ) %5Pr ,, =−< ++ TttTtt VaRr  at the 99% 

confidence level. However, for the 99% VaR, the LR statistics of both the EWMA and 

TGARCH methods extremely exceed the 1% critical value of 63.6)1(2 =χ . 

Exceptionally, the SWARCH-L and HS models do not perform well for the FTSE 100 

series. For the S&P 500, NIKKEI 225, and CAC 40, the PF test cannot reject the 

hypothesis of ( ) %1Pr ,, =−< ++ TttTtt VaRr  under the SWARCH-L, HS, and adjusted 

HS models. This is probably because the PF tests generally indicate the coverage 

probability is correct for most models, especially for the 95% VaR. In summary, the 

SWRCH-L model tends to produce too few exceptions, although the PF test does not 

reject its accuracy. The strength of the SWARCH-L model is its efficiency to track the 

evolution of risk in terms of its highest correlation. 

 

5. Conclusion 

This paper evaluates the forecasting performance of the SWARCH model based 

on a systematic evaluation for the corresponding VaR forecasts. VaR has been widely 

used to quantify and control the market risk, and the better forecast of volatility help 
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improving the VaR forecasts. The estimation results show that the high degree of 

persistence estimated from the widely used GARCH models can be adjusted by 

allowing regime switches in the time-varying volatility.  

By evaluating out-of-sample VaR forecasts via relative performances based on 

certain loss functions and the hypothesis testing based on the LR statistic, we 

conclude that the SWARCH-L model outperforms alternative competing models, 

including the RiskMetric or EWMA model, TGARCH model, HS model, and adjusted 

HS model. 

In this paper we are focused on the problem of the excessive GARCH forecasts 

in volatile periods and thus consider the SWARCH model to allow for regimes with 

different volatility levels. It is left to the future research to examine if a SWARCH 

model with more regimes, or a Markov switching GARCH model can explain the 

dynamics of time-varying volatility better. Besides, we only examine the performance 

of daily VaR forecasts. Furthermore, Certain institutions, however, care their trading 

risk under longer holding periods. It is also commendable to evaluate VaR forecasts of 

each model under different horizons.   
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Table 1   

Descriptive Statistics of Index Returns (%) 

 

Statistics S&P 500 NIKKEI 225 FTSE 100 CAC 40 

Mean 0.027 -0.046 0.014 0.012 

Median 0.004 0.000 0.000 0.000 

Maximum 5.573 12.430 5.440 10.251 

Minimum -7.113 -7.234 -5.885 -13.378 

Std. Dev. 1.034 1.507 1.045 1.463 

Skewness -0.116 0.263 -0.127 -0.298 

Kurtosis 7.038 6.473 5.945 8.764 

Jarque-Bera 2311.832* 1743.389* 1234.501* 4744.620* 

)1(ρ  0.010 -0.015 0.062* -0.057* 

Q(15) 43.571* 31.692* 46.688* 31.927* 

Q2(15) 478.73* 361.27* 740.47* 486.47* 

Jarque-Bera is the Jarque-Bera statistic for normality. )1(ρ indicates the first  

order autocorrelation in returns. Q(15) and Q2(15)  report values of the  

Ljung-Box Q statistic for up to 15th-order autocorrelation in return and squared  

returns, respectively. *: Significant at the 1% level of significance.  
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Table 2  Estimation Results of the TGARCH(1,1) Model  
(Observations 1 to 2891)  

ttt rcr εφ ++= −10 , where 1−−= ttt rr φε , ),0(~| 2
1 ttt N σε −Ω  

2
11

2
1

2
1

2
−−−− ⋅⋅+++= ttttt dw εδβσαεσ , 11 =−td  if 01t <ε − , and 01 =−td  otherwise. 

Parameter S&P 500 NIKKEI 225 FTSE 100 CAC 40 

0c  
0.034* 
(0.014) 

-0.040* 
(0.022) 

0.028* 
(0.016) 

0.018 
(0.022) 

φ  
0.054** 
(0.019) 

-0.011 
(0.020) 

0.053** 
(0.019) 

-0.003 
(0.022) 

w  
0.011** 
(0.003) 

0.053** 
(0.016) 

0.006** 
(0.002) 

0.064** 
(0.018) 

α  
0.010 

(0.010) 
0.017** 
(0.002) 

0.013* 
(0.006) 

0.027** 
(0.002) 

β  
0.926** 
(0.012) 

0.898** 
(0.015) 

0.955** 
(0.009) 

0.890** 
(0.022) 

δ  
0.106** 
(0.021) 

0.125** 
(0.023) 

0.050** 
(0.014) 

0.092** 
(0.028) 

Q(15)  22.777 8.349 16.692 16.763 
Q2(15)  11.122 12.633 14.403 15.128 

Q(15) and Q2(15) indicate the Ljung-Box statistics for upto 15-th order autocorrelation  

in standardized residuals and squared standardized residuals, respectively.  

Bollerslev-Wooldridge robust standard errors are reported in parentheses.  

**: Significant at the 1% level of significance.  

*: Significant at the 5% level of significance.
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Table 3  Estimation Results of the SWARCH-L (2,2) Model 
(Observations 1 to 2891)  

ttt rcr εφ ++= −10 , where )|( 1−Ω−= tttt rErε , ),0(~| 2
1 ttt N σε −Ω  

22 ~
tst t

g σσ ×= , st = 1 for state 1, st = 2 for state 2; 1g  is set to equal to 1, and the 

transitional probability is ijtttt pisjsjs ====Ω= −− )Pr()Pr( 11 , i, j = 1, 2 

2
11

2
22

2
11

2~
−−−− ⋅⋅+++= ttttt dw εδεαεασ , 11 =−td  if 01t <ε − , and 01 =−td  otherwise. 

Parameter S&P 500 NIKKEI 225 FTSE 100 CAC 40 

0c  
0.052** 
(0.015) 

-0.024 
(0.034) 

0.037* 
(0.015) 

0.059** 
(0.023) 

φ  
-0.005 
(0.020) 

-0.036** 
(0.019) 

0.054** 
(0.020) 

-0.037* 
(0.021) 

w  
0.128** 
(0.026) 

0.333** 
(0.088) 

0.329** 
(0.034) 

0.413** 
(0.077) 

1α  
0.135** 
(0.043) 

0.068* 
(0.031) 

0.149** 
(0.039) 

0.160** 
(0.044) 

2α  
0.239** 
(0.042) 

0.275** 
(0.042) 

0.171** 
(0.033) 

0.133** 
(0.031) 

δ  
0.236** 
(0.072) 

0.257** 
(0.064) 

0.263** 
(0.052) 

0.148** 
(0.059) 

2g  
5.926** 
(0.711) 

5.606** 
(0.913) 

3.176** 
(0.254) 

4.283** 
(0.466) 

11p̂  
0.406** 
(0.081) 

0.414** 
(0.108) 

0.614** 
(0.104) 

0.414** 
(0.113) 

22p̂  
0.420** 
(0.088) 

0.434** 
(0.111) 

0.352** 
(0.103) 

0.443** 
(0.089) 

Standard errors are reported in parentheses. 

**: Significant at the 1% level of significance.  

*: Significant at the 5% level of significance. 
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Table 4 VaR Calculations 
IIndex Return S&P 500 NIKKEI 225 FTSE 100 CAC 40 

95% VaR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

EWMA 2.2986 0.8640 2.8028 0.5433 2.3292 1.0043 3.0303 1.2726

TGARCH 2.2828 0.6778 2.7433 0.5820 2.3407 0.8836 2.8668 1.0617

SWARCH-L 3.1660 1.7361 3.7666 1.6717 2.1873 0.9002 3.4026 1.8343

HS (500 days) 2.1658 0.1570 2.4447 0.1661 2.1129 0.2223 2.6315 0.2347

HS (1000 days) 2.0984 0.0809 2.4674 0.0248 2.1058 0.0494 2.6240 0.0940

Adjusted HS (500 days) 2.4007 0.7263 2.7801 0.5799 2.6730 1.1174 3.1861 1.2217

Adjusted HS (1000 days) 2.4527 0.7140 2.7747 0.6008 2.5764 1.0089 3.0352 0.0425

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.95% VaR 

EWMA 2.7388 0.7252 3.3395 0.6473 2.7753 1.1966 3.6106 1.5163

TGARCH 2.7200 0.8075 3.2686 0.6934 2.7890 1.0528 3.4176 1.2650

SWARCH-L 3.7723 2.0685 4.4878 1.9919 2.6062 1.1798 4.0542 2.1856

HS (500 days) 3.1454 0.2095 3.7829 0.2399 3.4358 0.6623 4.1549 0.6629

HS (1000 days) 3.1622 0.0903 3.8677 0.2740 3.3580 0.3227 4.8048 0.1553

Adjusted HS (500 days) 3.2521 1.0229 4.0981 0.9328 3.6012 1.4407 4.4393 1.5864

Adjusted HS (1000 days) 3.8724 1.0302 4.2664 0.9062 3.8024 1.4292 4.8096 1.7147
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Table 5  Performances of VaR Forecasts 

Panel A. S&P 500  

  
MRB RMSRB Correlation

Binary Loss 

Function 

Quadratic Loss 

Function 
LR(PF Test) 

95%VaR   
EWMA -0.05243 0.14451 0.32005 34 63.52930 3.08057 

TGARCH -0.05987 0.10086 0.40228 30 53.33674 0.99211 

SWARCH-L 0.25397 0.48060 0.48388 17 42.96565 3.02146 

HS (500 days) -0.05835 0.19094 0.20683 32 64.66957 1.90271 

HS (1000 days) -0.08262 0.20841 0.12225 38 75.96927 6.18107 

Adjusted HS (500 days) -0.01217 0.09018 0.40246 23 43.26180 0.17286 

Adjusted HS (1000 dsays) 0.01146 0.08605 0.39950 20 39.08240 1.12671 

99%VaR     
EWMA -0.16240 0.20325 0.32005 17 35.63731 17.90165 

TGARCH -0.16908 0.18484 0.40228 15 28.76313 13.16176 

SWARCH-L 0.11222 0.39247 0.48388 10 29.40874 3.91362 

HS (500 days) 0.01387 0.19378 0.13795 8 16.28288 1.53828 

HS (1000 days) 0.02336 0.20562 0.09656 9 17.00353 2.61257 

Adjusted HS (500 days) -0.01024 0.10735 0.39160 8 16.76973 1.53828 

Adjusted HS (1000 days) 0.19226 0.22097 0.37877 3 6.18547 0.94312 

Panel B. FTSE 100   

  
MRB RMSRB Correlation

Binary Loss 

Function 

Quadratic Loss 

Function 
LR(PF Test)

95%VaR     

EWMA -0.00516 0.12781 0.10486 33 61.69232 2.45919 

TGARCH -0.03233 0.09861 0.15279 31 56.20068 1.41302 

SWARCH-L 0.29622 0.48677 0.30609 14 20.21085 6.01788 

Historical (500 days) -0.11300 0.18373 -0.02644 33 90.52959 2.45919 

Historical (1000 days) -0.10488 0.17154 -0.03438 34 85.72846 3.08057 

Adjusted HS (500 days) -0.01927 0.09841 0.14356 30 55.84852 0.99211 

Adjusted HS (1000 days) -0.02159 0.10058 0.15046 30 53.99998 0.99211 

99%VaR     
EWMA -0.13646 0.17165 0.10486 15 29.25933 13.16176 

TGARCH -0.15983 0.17644 0.15279 15 25.13434 13.16176 

SWARCH-L 0.12976 0.37219 0.30609 5 6.21305 0.00000 

HS (500 days) -0.00096 0.15097 0.00462 8 23.72890 1.53828 

HS (1000 days) 0.01961 0.15103 0.02438 5 16.93498 0.00000 

Adjusted HS (500 days) 0.05134 0.11558 0.15039 3 5.33538 0.94312 

Adjusted HS (1000 days) 0.09654 0.13694 0.15415 3 4.41733 0.94312 
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Table 5 (Continued) 
Performances of VaR Forecasts

Panel C. NIKKEI 225 

  

  MRB RMSRB Correlation Binary Loss Quadratic Loss LR(PF Test)

95%VaR
EWMA -0.03688 0.14662 0.41677 40 81.06682 8.07904 

TGARCH -0.01768 0.09052 0.43412 38 78.26163 6.18107 

SWARCH-L -0.07148 0.24108 0.60511 21 46.19797 0.71075 

HS (500 days) -0.03565 0.21197 0.15457 35 131.13609 3.76508 

HS (1000 days) -0.02495 0.25211 0.07962 34 131.01747 3.08057 

Adjusted HS (500 dsays) 0.10939 0.17969 0.43507 24 49.70562 0.04265 

Adjusted HS (1000 days) 0.07725 0.13432 0.42963 28 57.73407 0.36539 

99%VaR  
EWMA -0.16239 0.20479 0.41677 24 47.36448 38.03237
TGARCH -0.14580 0.16563 0.43412 21 42.84130 28.79639
SWARCH-L -0.19103 0.28283 0.60511 12 24.31538 7.11071
HS (500 days) 0.11855 0.22221 0.25452 15 35.06016 13.16176
HS (1000 days) 0.11884 0.27441 0.20142 14 37.48319 10.99398
Adjusted HS (500 days) 0.09617 0.15559 0.43255 6 15.68104 0.18988
Adjusted HS (1000 days) 0.16566 0.19829 0.43404 5 11.96878 0.00000
Panel D. CAC40  

 
  Binary Loss Quadratic  LR(PF Test)

  
MRB RMSRB Correlation

 Function Loss Function  

95%VaR
EWMA -0.01311 0.20403 0.34466 31 170.19216 1.41302 

TGARCH -0.05779 0.14269 0.37861 35 170.20397 3.76508 

SWARCH-L 0.10484 0.33380 0.50413 16 124.33678 3.88827 

HS (500 days) -0.07911 0.17243 0.19004 43 250.01854 7.29855 

HS (1000 days) -0.07409 0.19250 0.10000 43 258.49763 11.33078 

Adjusted HS (500 days) 0.04358 0.16129 0.37681 25 142.37146 0.00000 

Adjusted HS (1000 days) 0.07567 0.23685 -0.21931 26 142.61332 0.04158 

99%VaR
EWMA -0.16419 0.21753 0.34466 18 133.62785 20.45806 

TGARCH -0.20039 0.21643 0.37861 22 127.63642 31.78124 

SWARCH-L -0.05862 0.27293 0.50413 9 93.00723 2.61257 

HS (500 days) 0.03070 0.17173 0.22891 11 119.68928 5.41909 

HS (1000 days) 0.22108 0.34960 0.11190 8 96.87624 1.53828 

Adjusted HS (500 days) 0.04195 0.11072 0.36937 3 83.68646 0.94312 

Adjusted HS (1000 days) 0.12947 0.16603 0.37775 1 73.11995 4.81336 
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Figure 1 CUSUM of Squares Test  
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Note: The statistic of CUSUM of squares is used to test for the stability of the variance process. As 

with the CUSUM of squares test, movement outside the critical lines is suggestive of parameter or 

variance instability.  


