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Abstract

In this paper, we study the following question: For a public good economy where the provision
of public goods is to be financed by property taxes collected from individuals, what is the optimal
feasible tax mechanism when a social planner is relatively uninformed of the properties of the
individuals? Using a Bayesian model, we provide the full characterization of the optimal feasible
tax mechanism with two agents and its properties. We find that (i) when the expected total
endowment of the economy is relatively low enough or high enough, the incentive compatibility
constraint does not bind so that first best taxation can be obtained; (ii) the second best feasible
tax mechanism requires a poor agent to pay relatively more than a rich agent, that is, it is
regressive; and (iii) the optimal feasible tax mechanism is increasing in the sense that the
agent’s tax payment increases with his endowment. For the case of more than two agents, under
certain mild assumptions we give some partial results similar to (i) and (ii) above. In addition,
we find the optimal feasible tax mechanism for the corresponding infinitely large economy.

Keywords: optimal taxation, feasibility, incentive compatibility, informational rent, second best
JEL classification: H21, D71, D82

1 Introduction

This paper is motivated by a practical property or income taxation problem: For a public good

economy where the provision of public goods is to be financed by property taxes collected from indi-

viduals, what is the optimal feasible tax mechanism when a social planner is relatively uninformed

of the properties of the individuals?1 In this case, the problem is that the social planner has to

take into account not only the individuals’ incentive to report their wealth truthfully, but also the

individual feasibility of the designed tax schedule in the sense that each individual’s tax payment

∗ I thank Professor Tomas Sjöström, my advisor, for his invaluable guidance and comments. I also thank
Professors Kalyan Chatterjee, Steven Huddart, James Jordan, and Neil Wallace for their helpful comments. Of
course, all remaining errors are mine. Contact Information: 608 Kern Graduate Building, University Park, PA 16802.
E-mail: brhee@psu.edu
1 Some authors use the term interim efficient instead of optimal to emphasize the informational structure of their
model. In this paper, we choose optimal and use second best if necessary to distinguish such a situation where the
optimal tax mechanism is not first best. Also, throughout the paper, we will use the terms wealth, endowment,
property or income of an agent interchangeably since they have the same meaning, the amount of resources the agent
has initially.
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should be consistent with their ability to pay. In particular, this kind of problem, optimal private

provision of public goods, is frequently observed in a small economy such as a club or village.2

Consider the following example. Two thieves, Ali and Baba, want to build a door for their treasure

cave. The quality of the door depends on the total contributions they make. Suppose that Ali is

relatively rich and has $200, and Baba is relatively poor and has $100, but that none of them knows

how much the other has. A social planner, who does not know how much Ali and Baba have, asks

them to report their wealth in order to determine their contributions (taxes). What is the optimal

feasible tax mechanism that maximizes the expected sum of utilities? If the social planner wants

to collect $300 for the door-building, she cannot impose $150 to each of the two thieves because it

is not (individually) feasible to Baba.

The theory of optimal taxation has a long history. Since the seminal work by Mirrlees [1971],

the optimal taxation literature has studied the incentive aspect of a tax mechanism and established

many characterization results under a variety of economic situations.3 Mirrlees [1971] considers

a labor income taxation problem for an infinitely large economy and studies the optimality of

redistributive taxation when each individual has private information about his own productivity.

He shows that the redistributive tax mechanism is subject to suboptimality due to the informational

asymmetry between the public policy authority and the individuals. This situation is now well

understood as a second best taxation. Following Mirrlees [1971], many authors have analyzed a

trade-off between efficiency and equity of optimal income taxation. Other authors have studied

the optimal taxation problem from the implementation perspective (Guesnerie [1995] and Piketty

[1993] among others). However, most of these works have assumed that there is a continuum of

individuals and the tax schedule depends on an observable variable such as labor income so that

there are no individual feasibility or bankruptcy problems.

Implementation (or mechanism design) theory, pioneered by Hurwicz [1972] and Maskin [1999],

studies the implementability of various social choice rules and the characterization of the imple-

menting mechanisms under different environments and informational assumptions.4 Most of results

in this literature, however, assume that the set of feasible outcomes is fixed and common knowl-

edge so that this set does not depend on the realization of the economic environment. This is

a quite restrictive assumption, in particular, when agents have private information about their

own endowments or production technologies. If a social planner is relatively uninformed of the

realization of agents’ endowments, she has to consider the feasibility problem when designing an

implementing mechanism. The first study to explicitly tackle this type of feasibility problem is

Hurwicz, Maskin and Postlewaite [1995].5 They considered the feasible implementation problem

under complete information in which a social planner does not know the realization of agents’ en-

dowments or production sets. Following them, there have been some extensions of their model to

incomplete information cases.6 However, those results have mainly focused on the implementability

2 Fund-rasing is another example of this problem. See, for example, Andreoni [1998].
3 For a survey of modern optimal taxation theory, see Stiglitz [1985].
4 For some recent surveys, see, e.g., Jackson [2000a, b], Palfrey [2002] and Maskin and Sjöström [2002].
5 The earlier version of this paper has been circulated since 1979.
6 See for example Hong [1996, 1998] and Tian [1999]. See also Dagan, Serreno, and Volij [1999], in which they study
the feasible implementation of a given taxation method which embodies the socially optimal tax level. However, their
work considers the taxation problem from the equity point of view so that the total amount of taxes to be collected is
exogenously given. In contrast, our model deals with the efficiency of a tax mechanism which endogenously determines
the each agent’s tax payment as well as the total amount of taxes.
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of a general social choice rule, but not on the efficiency of the implementing mechanism. Such an

efficiency problem has been a major subject in optimal taxation theory.

In this paper, we employ the so-called “endowment game” created by Hurwicz, Maskin and

Postlewaite [1995] to model the optimal feasible taxation problem of a public good economy with

a finite number of agents. That is, using a Bayesian model, we set up the maximization problem

of a utilitarian social planner who is relatively uninformed of the agents’ endowments. Since the

number of agents in the economy is finite, each agent’s tax payment will be affected not only by

his own endowment not also by the others’ endowments.

We first consider the case of two agents and two potential types, and fully characterize its

solution. Also, we can illustrate this solution graphically due to the low dimensionality of the

problem. The four main results of this paper are as follows. First, if the expected total endowment

of the economy is relatively low enough or high enough, then first best feasible taxation can be

obtained. This result is due to the fact that the incentive compatibility constraint does not bind

at the corresponding first best feasible tax schedules when the economy is relatively poor or rich.

Second, for the cases in which the incentive compatibility constraint does bind, the optimal feasible

tax mechanism imposes a high tax rate on a poor agent when his neighbor is rich. The intuition

behind this regressive taxation is that levying a tax on the poor agent does not cause an incentive

problem so that the social planner, who does not mind which agent pays how much proportion

of the total taxes, prefers to impose as much tax as possible on the poor agent rather than his

rich neighbor who may request an informational rent as a reward for the revelation of his type.

Third, the optimal feasible tax schedule is increasing in the sense that the tax payment of an

agent is increasing in his endowment. Fourth, we conduct a comparative statics analysis on how

the optimal feasible tax mechanism responds to a change in the initial parameter values. We first

study the responses to a change in the probability distribution of endowment analytically, and then

to a change in endowment parameters by means of simulation. In essence, these analyses show how

each agent’s tax payment depends on the incentive compatibility constraint and the relative size of

low endowment.

As a natural extension, we consider the case of more than two agents. Although it is impossible

to fully describe the optimal feasible tax mechanism for this case due to its high dimensionality

and abundance of corner solutions, we obtain some partial results similar to those of the two-agent

case under certain mild assumptions. In addition, we find the optimal feasible tax mechanism for

the corresponding infinitely large economy, where the tax payment of an agent is always equal to

the amount of the low endowment.

Finally, we would like to mention the two features of our model that distinguish it from the

previous literature on public goods. Our model considers the continuous provision of public goods

under incomplete information. There is a huge literature on mechanism design and public economics

which analyzes public good economies. However, most of the models in this literature have dealt

with the discrete (in fact, binary) provision of public goods.7 Although this discreteness makes

the models mathematically simple and tractable,8 it is a restrictive assumption. In our model,

the provision of public goods is continuous because it is determined directly by the total amount

7 See, for example, D’Aspremont and Gérard-Varet [1979], Laffont and Maskin [1979], and Gradstein [1994]. See
also Groves and Ledyard [1987].
8 One of many advantages that the discreteness assumption brings about is to make the individual utility depend
linearly on the provision of public goods.
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of taxes according to a constant returns to scale technology.9 Another feature of our model is

the direct linkage between taxes and level of provision of public goods. For standard models in

the implementation literature, for example D’Aspremont and Gérard-Varet [1979] and Laffont and

Maskin [1979], there are little such a linkage, but mainly redistributive transfers among the agents,

which are used to resolve incentive problems. To this point, our model is closely related the theory

of private provision of public goods where collected taxes and level of provision of public goods are

explicitly related.

The remainder of this paper is organized as follows. In Section 2, we present the model for a

public good economy. In Section 3, we fully characterize the optimal feasible tax schedule for the

economy with two agents and two possible types. Using the characterization results, in Section 4,

we discuss the properties of the optimal mechanism and provide some comparative statics analyses.

As an extension, we consider the case of more than two agents in Section 5. In Section 6, we give

concluding remarks and future research agenda.

2 The Model

2.1 The Economy

Consider a public good economy with n agents, 2 ≦ n < ∞.10 Let N = {1, . . . , n} denote the set

of agents. There is one private good x ∈ R+ and one pure public good y ∈ R+, where the private

good can be used to produce the public good according to a constant returns to scale technology.

Without loss of generality, we normalize the production technology such that one unit of private

good can be transformed into one unit of public good. Each agent i ∈ N has the same quasilinear

von Neumann-Morgenstern utility function u on R
2
+,

u(xi, y) = log y + xi,

where xi is the consumption of private good by agent i. Initially, each agent i is endowed with

private good ωi ∈ {ωL, ωH} only, where 0 ≦ ωL < ωH < ∞.11 Agent i is called poor when ωi = ωL

and rich when ωi = ωH . Let

Ω = {(ωL, ωH) ∈ R
2
+ : ωL < ωH}

denote the set of all possible pairs of initial endowments.

The information structure of this economy follows a standard incomplete information (Bayesian)

model. The primitives of the economy are common knowledge, whereas each agent has private

information about his own endowment. That is, agent i knows the realization of his own endowment

ωi and the initial probability distribution of the other agents’ endowments, but does not know

9 Ledyard and Palfrey [1999] employ a model that allows continuous public goods provision. However, under their
assumptions of linear production and risk-neural preferences, it is equivalent to a discrete one. Also, Bergstrom,
Blume, and Varian [1986] study a continuous model, but their model assumes complete information.
10 The case where there is only one agent in the economy is trivial. The case where n = ∞ will be discussed in
Section 5.3.
11 In this paper, each agent’s initial endowment may be interpreted as a portion of his total wealth above the
subsistence level. Thus, it can be called the agent’s taxable wealth for the provision of public goods. This interpretation
will be made clear in Section 4.1.
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the realizations of the other agents’ endowments ω−i.
12 Agents’ endowments are independently

distributed according to

Pr(ωi = ωL) = p ∈ (0, 1) ∀ i ∈ N.

Thus, an economic environment is equivalent to the realization of ω = (ω1, . . . , ωn).

2.2 The Tax Mechanism

A tax mechanism consists of message spaces Mi for each agent i ∈ N , and an outcome func-

tion f which maps each message profile m ∈ M ≡
∏n

i=1 Mi into agents’ tax burdens t(m) =

(t1(m), . . . , tn(m)) ∈ R
n
+ and public good production y; f : m 7→ (t(m), y(m)). The constant

returns to scale technology implies that y(m) ≦
∑n

i=1 ti(m) for all m ∈ M , but without loss of

generality, we can assume that the equality always holds since no taxes will be wasted.13 Hence,

we have the following simple definition.

Definition 2.1 (Tax Mechanism and Schedule) A tax mechanism Γ is defined as Γ = 〈M, t〉,

where t : M → R
n
+ is called a tax schedule.

Given a tax mechanism Γ = 〈M, t〉, let si : {ωL, ωH} → Mi denote the strategy (report) of

agent i. By the Revelation Principle (see Myerson [1979]), we are able to restrict our attention to a

direct incentive compatible tax mechanism. Thus, we assume that Mi = {ωL, ωH} for each i ∈ N .

The expected utility of agent i when his endowment is ωi and he reports si, assuming the other

agents are truthful, is

Ui(si|ωi, t) = Eω−i


ui

(
ωi − ti(si, ω−i),

n∑

j=1

tj(si, ω−i)
)∣∣∣ωi




= Eω−i


log




n∑

j=1

tj(si, ω−i)


 +

(
ωi − ti(si, ω−i)

)∣∣∣ωi


 .

In this paper, we make two assumptions which a tax mechanism should satisfy. First, following

Hurwicz, Maskin, and Postlewaite [1995], we employ the no exaggeration assumption.

Assumption 2.2 (No Exaggeration) For each i ∈ N , si(ωi) ≦ ωi.

That is, no agent is allowed to overstate his endowment when reporting.14 This assumption partially

relieves the informational disadvantage of the social planner. Another assumption is the anonymity

of a tax mechanism: A tax schedule should not be affected by the change of agents’ names.15 More

specifically, this includes two conditions. First, an agent’s tax payment should not be affected by

12 Notational convention applies here, that is, given a vector a = (a1, . . . , an) ∈ A =
∏n

i=1 Ai,

a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i =
∏

j 6=i

Aj , and a = (ai, a−i).

13 This property may be viewed as a budget-balancedness. Compare with the Clarke-Groves mechanism where
budget-balancedness is usually not satisfied, see Clarke [1971] and Groves [1973].
14 It may be assumed that each agent is asked to put his report on the table.
15 This assumption must hold for every society where taxation is based on a democratic process.
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the change of order in the other agents’ reports as long as the distribution of their reports remains

the same. Second, any two agents’ tax payments should be the same if they report the same

endowment with other things being equal. Formally,

Assumption 2.3 (Anonymity) For all i, j ∈ N ,

i. ti(si, s−i) = ti(si, σ(s−i)),

ii. si = sj =⇒ ti(si, s
′) = tj(sj , s

′) ∀ s′ ∈ {ωL, ωH}n−1,

where σ(s−i) is a permutation of s−i.

Under the anonymity assumption, let tL,(n−k)L,(k−1)H denote an agent’s tax payment when he and

(n − k) of the other agents report ωL and the remaining (k − 1) agents report ωH , k = 1, . . . , n.

Define tH,(n−k)L,(k−1)H similarly. Then, we can express a tax schedule as

t =
(
(tL,(n−k)L,(k−1)H)n

k=1, (tH,(n−k)L,(k−1)H)n
k=1

)
.

Since we are considering a direct mechanism, we simply identify a (direct) tax mechanism Γ = 〈M, t〉

with a tax schedule t in this paper.

To state the social planner’s problem, we need to look at three properties that a tax mechanism

should satisfy: Feasibility, Incentive Compatibility, and Individual Rationality. First, feasibility,

one of the most important concepts in this paper, implies that no tax mechanism should impose

more than the announced endowment.16 That is,

Definition 2.4 (Feasibility) A tax mechanism t is feasible if for all k = 1, . . . , n,

0 ≦ tL,(n−k)L,(k−1)H ≦ ωL and 0 ≦ tH,(n−k)L,(k−1)H ≦ ωH .

Throughout this paper, we require all tax mechanisms considered to be feasible. Second, by the

Revelation Principle, we consider an incentive compatible tax mechanism only.

Definition 2.5 (Incentive Compatibility: IC) A tax mechanism t is (Bayesian) incentive com-

patible if for all i ∈ N ,

Ui(ωH |ωH , t) ≧ Ui(ωL|ωH , t). (1)

Note that due to the no exaggeration assumption, the incentive compatibility of a tax mechanism

for this economy is just one-directional; the inequality Ui(ωL|ωL, t) ≧ Ui(ωH |ωL, t) is meaningless.

Third, to make the agents participate in this public good economy, we need to make assumptions

as to what will happen if an agent does not participate. Notice that we have to distinguish between

the situations in which an agent does not want to report his endowment and in which an agent

wants to leave the economy or denies to pay the imposed tax. In the former case, we assume that

the social planner can impose a tax on the agent as if he were to report that his endowment is

ωL.17 Under this assumption, the expected utility of agent i who did not report is Ui(ωL|ωH , t)

if his endowment is ωH , or Ui(ωL|ωL, t) if his endowment is ωL. Since only incentive compatible

16 In this sense, the feasibility can also be called no-bankruptcy.
17 This kind of tax enforcement scheme seems well established in reality. Implicit or explicit membership fee in a
club is one of the examples.
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tax mechanisms are considered, agent i who reports his endowment will obtain Ui(ωH |ωH , t) if his

endowment is ωH , or Ui(ωL|ωL, t) if his endowment is ωL. Thus, by inequality (1), every agent will

report his endowment, which makes the individual rationality condition redundant in this model.

In the latter case, we assume that the social planner can prevent the agent from enjoying public

good by, for example, expulsion from the economy.18 Under this assumption, the expected utility

of the agent is u(xi, 0) = −∞, ∀xi ∈ R+. Thus, the individual rationality constraint becomes

redundant, too. As a result, we can ignore individual rationality by the above two assumptions.

Finally, we add one more definition for a tax mechanism.

Definition 2.6 (Increasingness) A tax mechanism t is increasing if for all k = 1, . . . , n,

tL,(n−k)L,(k−1)H ≦ tH,(n−k)L,(k−1)H .

That is, a tax mechanism is increasing if an agent’s tax payment is increasing with his endowment.

2.3 The Social Planner’s Problem

The social planner (or tax authority) who does not know the true realization of the economic envi-

ronment, but knows the probability distribution, wants to find an incentive compatible and feasible

tax schedule t∗ =
(
(t∗

L,(n−k)L,(k−1)H)n
k=1, (t

∗
H,(n−k)L,(k−1)H)n

k=1

)
which maximizes the expected sum

of agents’ utilities. Formally, given (ωL, ωH) ∈ Ω and p ∈ (0, 1), the social planner’s problem is19

(Pn)

max
t

W (t; p) = E

[
n∑

i=1

Ui(ωi|ωi, t)

]

subject to

(IC) Ui(ωH |ωH , t) ≧ Ui(ωL|ωH , t) ∀ i ∈ N,

(Feasibility) t ∈ B(ωL, ωH) ≡ [0, ωL]n × [0, ωH ]n.

18 Cancellation of club membership may be an example.
19 Explicitly,

(Pn)

max
t

W (t; p)

=
n∑

j=0

nCjp
j(1 − p)n−j

[
n log

(
jtL,(j−1)L,(n−j)H + (n − j)tH,(j−1)L,(n−j)H

)

−

(
jtL,(j−1)L,(n−j)H + (n − j)tH,(j−1)L,(n−j)H

)]
+ n

(
pωL + (1 − p)ωH

)

subject to

(IC)

n−1∑

j=0

n−1Cjp
j(1 − p)n−1−j

[
log

(
jtL,(j−1)L,(n−j)H

+(n − j)tH,jL,(n−1−j)H

)
− tH,jL,(n−1−j)H

]

≧
n−1∑

j=0

n−1Cjp
j(1 − p)n−1−j

[
log

(
(j + 1)tL,jL,(n−1−j)H

+(n − 1 − j)tH,(j+1)L,(n−2−j)H

)
− tL,jL,(n−1−j)H

]
,

(Feasibility)
0 ≦ tL,(n−k)L,(k−1)H ≦ ωL,

0 ≦ tH,(n−k)L,(k−1)H ≦ ωH ,
∀ k = 1, . . . , n,

where nCj is the number of ways of choosing j unordered outcomes from n possibilities. That is, nCj =
(

n

j

)
= n!

(n−j)!j!
.
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Notice that only one (IC) constraint is binding. For notational simplicity, given p ∈ (0, 1), define a

function ∆ : R
2n
+ → R ≡ R ∪ {−∞, +∞} by

∆(t; p) = Ui(ωH |ωH , t) − Ui(ωL|ωH , t).

Then, a tax schedule t satisfies (IC) if ∆(t; p) ≧ 0.

3 Optimal Feasible Tax Mechanism for n = 2

In this section, we study the optimal feasible tax mechanism for the case of two agents. For n = 2,

a tax mechanism t can be written as

t = (tLL, tLH , tHL, tHH),

where, for example, tLH is the tax payment of an agent when he reports ωL and the other agent

reports ωH . The social planner’s problem now becomes: Given (ωL, ωH) ∈ Ω and p ∈ (0, 1),

(P2)

max
t

W (t; p)

= p2[2 log(2tLL) − 2tLL] + 2p(1 − p)[2 log(tLH + tHL) − (tLH + tHL)]

+ (1 − p)2[2 log(2tHH) − 2tHH ] + 2(pωL + (1 − p)ωH)

subject to

(IC)
p[log(tLH + tHL) − tHL] + (1 − p)[log(2tHH) − tHH ]

≧ p[log(2tLL) − tLL] + (1 − p)[log(tLH + tHL) − tLH ],

(Feasibility)
0 ≦ tLL ≦ ωL, 0 ≦ tLH ≦ ωL,

0 ≦ tHL ≦ ωH , 0 ≦ tHH ≦ ωH .

Note that for n = 2,

∆(t; p) = p

[
log

(tLH + tHL)2

(2tLL)(2tHH)
− (tLH + tHL) + (tLL + tHH)

]
−

[
log

tLH + tHL

2tHH

+ (tHH − tLH)

]
.

3.1 Possibility of First Best Taxation

To begin with, we examine the possibility of the first best tax schedule which is the solution to

(P2) without (IC) constraint. If the social planner were to know the realization of each agent’s

endowment, she could easily find the first best tax schedule. However, she does not have such an

information, so the question is when the (IC) constraint is not binding. First of all, to rule out the

uninteresting cases, partition Ω (see Figure 1) into

Ω1 = {(ωL, ωH) ∈ Ω : ωL ∈ [0, 1)}, and

Ω2 = {(ωL, ωH) ∈ Ω : ωL ∈ [1,∞)}.

When (ωL, ωH) ∈ Ω2, the social planner can easily solve (P2) by imposing a first best feasible tax

schedule

t∗ ∈ {t ∈ B(ωL, ωH) : tLL = tHH = 1, tLH + tHL = 2, and 1 ≦ tLH ≦ ωL},
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since t∗ satisfies the (IC) constraint; ∆(t∗; p) = −(1 − t∗LH) ≧ 0. If the social planner insists that

the tax schedule be increasing, then the unique solution to (P2) is t∗ = (1, 1, 1, 1). Therefore, in

the following we just focus on the case of (ωL, ωH) ∈ Ω1. According to the welfare function W (·),

it is easy to see that for (ωL, ωH) ∈ Ω1 the first best feasible tax schedule is

tF =
(
tFLL, tFLH , tFHL, tFHH

)
=

(
ωL, ωL, min{ωL + ωH , 2} − ωL, min{ωH , 1}

)
.20

To find the conditions under which tF is the solution to (P2), consider the (IC) constraint at tF :

∆(tF ; p) = p

[
log

min{ωL + ωH , 2}2

(2ωL)(2 min{ωH , 1})
− min{ωL + ωH , 2} +

(
ωL + min{ωH , 1}

)]

−

[
log

min{ωL + ωH , 2}

2 min{ωH , 1}
+

(
min{ωH , 1} − ωL

)]
.

Lemma 3.1 For (ωL, ωH) ∈ Ω1, ∆(tF ; p) is strictly increasing in p.

Proof : Consider the two cases: (i) (ωL, ωH) ∈ [0, 1) × (0, 1], and (ii) (ωL, ωH) ∈ [0, 1) × (1,∞].

Case (i) (ωL, ωH) ∈ [0, 1) × (0, 1]: In this case, it is clear that

∂∆(tF ; p)

∂p
= log

(ωL + ωH)2

(2ωL)(2ωH)
> 0.

Case (ii) (ωL, ωH) ∈ [0, 1) × (1,∞]: If ωL + ωH < 2,

∂∆(tF ; p)

∂p
= log

(ωL + ωH)2

4ωL

− (ωH − 1).

Since ∂
∂ωH

(
∂∆(tF ;p)

∂p

)
= 2

ωL+ωH
− 1 > 0, it follows that

∂∆(tF ; p)

∂p
> lim

ωH→1

∂∆(tF ; p)

∂p
= log

(1 + ωL)2

4ωL

> 0.

If ωL + ωH ≧ 2, then
∂∆(tF ; p)

∂p
= ωL − log ωL − 1 > 0.

Therefore, we have the result.

For (ωL, ωH) ∈ Ω1, define ρ ∈ R by ∆(tF ; ρ) = 0, or equivalently,

ρ =
log min{ωL+ωH ,2}

2min{ωH ,1} +
(
min{ωH , 1} − ωL

)

log min{ωL+ωH ,2}2

(2ωL)(2min{ωH ,1}) − min{ωL + ωH , 2} +
(
ωL + min{ωH , 1}

) ,

and let ρ̂ = min{1, ρ}. Define also

ΩF = {(ωL, ωH) ∈ Ω1 : lim
p→0

∆(tF ; p) ≧ 0}.

20 In fact, there is a continuum of first best feasible tax schedules if ωL + ωH > 2. However, given p, tF is the
solution to (P2) while making (IC) satisfied maximally, so we can assume without loss of generality that tF is the
unique first best tax schedule. This point will be made clear in the following.
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Figure 1: Possibility of First Best Taxation

Proposition 3.2 If p ≧ ρ̂, then the first best feasible tax schedule tF is the unique solution to (P2).

In particular, if (ωL, ωH) ∈ ΩF , then tF is the unique solution to (P2) for all p ∈ (0, 1).

Proof : By the definition of ρ̂ and Lemma 3.1, if p ≧ ρ̂, then ∆(tF ; p) ≧ 0, which implies that tF

satisfies (IC). Since tF is feasible, the fact that tF is the unique first best feasible tax schedule

proves the first result. It is obvious that limp→0 ∆(tF ; p) ≧ 0 guarantees that ∆(tF ; p) ≧ 0 for all

p ∈ (0, 1).

Figure 1 depicts the possibility of first best feasible taxation.

3.2 Second Best Tax Schedule

Assume that p < ρ̂. To characterize the second best feasible tax schedule, we begin with three

lemmas. The main purpose of these lemmas is to lower the dimension of the social planner’s

problem.

Lemma 3.3 Suppose t∗ is a solution to (P2). Then,

t∗HH = min{ωH , 1}.

Proof : There are two cases: (i) ωH ≦ 1, and (ii) ωH > 1.

Case (i) ωH ≦ 1: Suppose by way of contradiction that t∗HH < ωH . Choose ε such that 0 < ε ≦
ωH − t∗HH . Consider a new tax schedule t′ = (t∗LL, t∗LH , t∗HL, t∗HH + ε). Since log(2tHH) − tHH is

strictly increasing in tHH ∈ (0, 1), it follows that

Ui(ωH |ωH , t′) > Ui(ωH |ωH , t∗) ≧ Ui(ωL|ωH , t∗) = Ui(ωL|ωH , t′).

Hence, t′ satisfies (IC). Also, t′ satisfies (Feasibility) by the construction of ε. However, we have

W (t′; p) > W (t∗; p), a contradiction to the hypothesis that t∗ is a solution.

Case (ii) ωH > 1: Suppose by way of contradiction that t∗HH 6= 1. If t∗HH < 1, choose ε such that

0 < ε ≦ 1− t∗HH . Then the same argument in Case (i) induces a contradiction. If t∗HH > 1, choose

10



ε such that 0 < ε ≦ t∗HH − 1, and consider a new tax schedule t′ = (t∗LL, t∗LH , t∗HL, t∗HH − ε). Then,

the same argument in Case (i) also gives a contradiction.

Lemma 3.4 Suppose t∗ is a solution to (P2). Then,

t∗LH + t∗HL ≦ 2.

Proof : Suppose by way of contradiction that t∗LH + t∗HL > 2. Note that this case is possible only

when ωL + ωH > 2. Choose ε such that 0 < log(t∗LH + t∗HL)− log(t∗LH + t∗HL − ε) < ε
2 . Such an ε is

well defined since d
dy

(log y) < 1
2 for y > 2. Consider a new tax schedule t′ = (t∗LL, t∗LH , t∗HL−ε, t∗HH).

Then,

Ui(ωH |ωH , t′) = p [log(t∗LH + t∗HL − ε) − t∗HL + ε] + (1 − p) [log(2t∗HH) − t∗HH ]

> p
[
log(t∗LH + t∗HL) − t∗HL +

ε

2

]
+ (1 − p) [log(2t∗HH) − t∗HH ]

> p [log(t∗LH + t∗HL) − t∗HL] + (1 − p) [log(2t∗HH) − t∗HH ]

≧ p [log(2t∗LL) − t∗LL] + (1 − p) [log(t∗LH + t∗HL) − t∗LH ]

> p [log(2t∗LL) − t∗LL] + (1 − p) [log(t∗LH + t∗HL − ε) − t∗LH ]

= Ui(ωL|ωH , t′),

which implies that t′ satisfies (IC). Also, t′ satisfies (Feasibility) by construction. However, since

2 log(t′LH + t′HL) − (t′LH + t′HL) = 2 log(t∗LH + t∗HL − ε) − (t∗LH + t∗HL − ε)

> 2 log(t∗LH + t∗HL) − (t∗LH + t∗HL),

we have W (t′; p) > W (t∗; p), a contradiction to the hypothesis that t∗ is a solution.

Lemma 3.5 Suppose t∗ is a solution to (P2). Then,

t∗LH = ωL, and t∗HL ≧ ωL.

Proof : If ωL = 0, then the claim is trivial. Hence, consider the case of ωL > 0. Suppose by way of

contradiction that (i) t∗HL < ωL; or (ii) t∗LH < ωL and t∗HL ≧ ωL.

Case (i) t∗HL < ωL: Consider a new tax schedule t′ = (ωL, ωL, ωL, min{ωH , 1}). Then,

∆(t′; p) = −(1 − p)

[
log

ωL

min{ωH , 1}
− ωL + min{ωH , 1}

]
> 0, (2)

which implies that t′ satisfies (IC). Also, t′ satisfies (Feasibility). However, we have W (t′; p) >

W (t∗; p), a contradiction to the hypothesis that t∗ is a solution.

Case (ii) t∗LH < ωL and t∗HL ≧ ωL: According to Lemma 3.4, we have two subcases: (a) t∗LH +t∗HL <

2; or (b) t∗LH + t∗HL = 2.

Subcase (a) t∗LH + t∗HL < 2: Choose ε such that 0 < ε ≦ min{ωL − t∗LH , 2− (t∗LH + t∗HL)}. Consider

a new tax schedule t′ = (t∗LL, t∗LH + ε, t∗HL − ε, t∗HH). Then,

Ui(ωH |ωH , t′) = Ui(ωH |ωH , t∗) + pε

> Ui(ωL|ωH , t∗)

= Ui(ωL|ωH , t′) + (1 − p)ε

> Ui(ωL|ωH , t′),

(3)
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which implies that ∆(t′; p) > 0, that is, the (IC) constraint is not tightly binding. Since ∆(t; p)

is continuous in tHL, we can choose δ ∈ (0, ε) such that t′′ = t′ + (0, 0, δ, 0) still satisfies (IC) and

(Feasibility). Notice that t∗LH +t∗HL = t′LH +t′HL < t′′LH +t′′HL < 2, and t′′LL = t∗LL, and t′′HH = t∗HH .

Hence, we have W (t′′; p) > W (t∗; p), a contradiction to the hypothesis that t∗ is a solution.

Subcase (b) t∗LH +t∗HL = 2: Notice that in this case ωH > 1 since t∗HL = 2−t∗LH > 2−ωL > 1. First,

we want to show that t∗LL < ωL. Suppose not, that is, t∗LL = ωL. Since t∗HH = 1 by Lemma 3.3, it

turns out that

∆(t∗; p) = p(ωL − log ωL − 1) − (1 − ωL) < 0,

since p < ρ̂ = 1−ωL

ωL−log ωL−1 . This is a contradiction to the hypothesis that t∗ satisfies (IC). So,

t∗LL < ωL.

Consider a new tax schedule t′ = (t∗LL, t∗LH + ε, t∗HL − ε, t∗HH) where ε is chosen such that

0 < ε ≦ ωL − t∗LH . Then, by (3), we have ∆(t′; p) > 0, that is, the (IC) constraint is not tightly

binding. Since ∆(t; p) is continuous in tLL and t∗LL < ωL, we can choose δ ∈ (0, ωL − t∗LL) such that

t′′ = t′+(δ, 0, 0, 0) still satisfies (IC) and (Feasibility). Since 2 log(2t′′LL)−2t′′LL > 2 log(2t∗LL)−2t∗LL,

we have W (t′′; p) > W (t∗; p), a contradiction to the hypothesis that t∗ is a solution.

Therefore, we conclude that t∗LH = ωL and t∗HL ≧ ωL.

By Lemmas 3.3–3.5, we can reduce the dimension of (P2) from four to two. Let T = tLH + tHL.

Lemmas 3.3–3.5 implies that we can restrict our attention to (T, tLL) ∈ [2ωL, min{ωL + ωH , 2}] ×

[0, ωL], which now can be called a tax schedule. Define (IC)-function z(·, ·; p) : [2ωL, min{ωL +

ωH , 2}] × [0, ωL] → R, by

z(T, tLL; p) = ∆(tLL, tLH , tHL, tHH ; p)|tLH=ωL,tHH=min{ωH ,1}

= p

[
log

T 2

(2tLL)(2 min{ωH , 1})
− T +

(
tLL + min{ωH , 1}

)]

−

[
log

T

2 min{ωH , 1}
+ (min{ωH , 1} − ωL)

]
.

Thus, a tax schedule (T, tLL) satisfies (IC) if z(T, tLL; p) ≧ 0.

Now, the social planner’s problem (P2) can be written as an equivalent but simplified version

(P′
2): Given (ωL, ωH) ∈ Ω1 and p ∈ (0, 1),

(P′
2)

max
(T,tLL)

W̃ (T, tLL; p)

= p2[2 log(2tLL) − 2tLL] + 2p(1 − p)[2 log T − T ]

subject to

(IC) z(T, tLL; p) ≧ 0

(Feasibility) (T, tLL) ∈ [2ωL, min{ωL + ωH , 2}] × [0, ωL].

To find the second best tax schedule, first consider the shape of the (IC)-curve z(T, tLL; p) = 0.

In fact, we can find a point that satisfies z(T, tLL; p) = 0 for all p ∈ (0, 1). For (ωL, ωH) ∈ Ω \ ΩF ,

let

T̃ = 2 min{ωH , 1}e−(min{ωH ,1}−ωL), and

t̃LL = −W0

(
− exp

{
log

T̃

2
− T̃ + ωL

})
,
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where W0 is the principal branch of Lambert W function.21 By the definition of T̃ , we can rewrite

the (IC)-curve as

z(T, tLL; p) = p

[
log

T 2

(2tLL)(T̃ )
− T +

(
tLL + ωL

)
]
−

[
log

T

T̃

]
,

so, it is clear that z(T̃ , t̃LL; p) = 0 for all p ∈ (0, ρ̂). That is, the (IC)-curve z(T, tLL; p) = 0 always

goes through the pivotal point (T̃ , t̃LL). Furthermore,

Lemma 3.6 i. (T̃ , t̃LL) ∈ (2ωL, min{ωL + ωH , 2}) × [0, 1).

ii. If T̃ ≦ 1, then t̃LL > ωL.

Proof : i. Since log(min{ωH , 1}) − min{ωH , 1} > log(ωL) − ωL, it is clear that T̃ > 2ωL. For

(ωL, ωH) ∈ Ω1 \ ΩF , log min{ωL+ωH ,2}
2 min{ωH ,1} + (min{ωH , 1} − ωL) = − limp→0 ∆(tF ; p) > 0, so T̃ <

min{ωL + ωH , 2}. To see that t̃LL ∈ [0, 1), by Lambert W function, it suffices to show that

ϕ(ωL, ωH) ≡ log T̃
2 − T̃ + ωL < −1. Note that since T̃ > 2ωL,

ϕ(ωL, ωH) = log(min{ωH , 1}) − min{ωH , 1} − T̃ + 2ωL

< log(min{ωH , 1}) − min{ωH , 1}

≦ − 1.

ii. Since 0 ≦ t̃LL < 1, the result is equivalent to t̃LL−log t̃LL ≦ ωL−log ωL, or log T̃
2ωL

−T̃ +2ωL ≧ 0.

By 2ωL < T̃ ≦ 1, we have the result.

This lemma tells that if T̃ ≦ 1, the pivotal point (T̃ , t̃LL) is above the feasible set [2ωL, min{ωL +

ωH , 2}] × [0, ωL]. Another property of the (IC)-curve is that it turns around the pivotal point

(T̃ , t̃LL) counterclockwise as p increases.

Lemma 3.7 For all p, p′ ∈ (0, 1) such that p < p′, if z(T, tLL; p) = 0, then

z(T, tLL; p′) =

{
< 0 if T < T̃

≧ 0 if T ≧ T̃
.

Proof : Since

z(T, tLL; p′) =

(
p′

p

)
z(T, tLL; p) +

(
p′

p
− 1

) [
log

T

T̃

]
=

(
p′

p
− 1

) [
log

T

T̃

]
,

we have the result easily.

Figure 2 depicts the subsets of Ω that satisfy t̃LL ≧ ωL and T̃ > 1.

21 The Lambert W function is defined to be the function satisfying W (x)eW (x) = x. This function is defined on
[−e−1,∞), and has a single real value on [0,∞) and two real values on [−e−1, 0). W0, called the principal branch,
is the increasing part of W and W−1, called the (−1)th branch, is the decreasing part of W . The solution of the
equation xbx = a is x = 1

log b
W (a log b). For more properties on the Lambert W function, see Corless, et. al. [1996].

(We reluctantly employ the notational abuse, W , previously used for the welfare function. Hopefully, it may not
cause any confusion in the following.)
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Figure 2: Relative size of (T̃ , t̃LL) on Ω

Now, consider the slope of (IC)-curve z(T, tLL; p) = 0. Without loss of generality, we can

restrict our attention to the domain of [0, 2] × [0, 1), which includes all of the possible (T, tLL).22

Using the Implicit Function Theorem,

dtLL

dT

∣∣∣∣
z(T,tLL;p)=0

= −
2p−1

T
− p

p
(
1 − 1

tLL

)

∣∣∣∣∣∣
z(T,tLL;p)=0

. (4)

Since we restrict tLL on [0, 1), the denominator is negative. If p ≦ 1
2 , then the numerator is negative

for all T ∈ [0, 2]. If p ∈
(

1
2 , 1

)
, then the numerator is positive for T ∈

(
0, 2p−1

p

)
and negative for

T ∈
(

2p−1
p

, 2
)
. As a result, for (T, tLL) ∈ [0, 2] × [0, 1),

dtLL

dT

∣∣∣∣
z(T,tLL;p)=0





> 0 if p ∈
(

1
2 , 1

)
and T ∈

(
0, 2p−1

p

)

= 0 if p ∈
(

1
2 , 1

)
and T = 2p−1

p

< 0 otherwise

.

Remark 3.8 According to the inequality (2), it turns out that for (ωL, ωH) ∈ Ω1, the curve defined

by z(T, tLL; p) = 0 on (T, tLL) ∈ [2ωL, min{ωL + ωH , 2}] × [0, ωL] has a negative slope because the

point (T, tLL) that has zero slope cannot be in [2ωL, min{ωL + ωH , 2}] × [0, ωL].

The slope of welfare-curve W̃ (T, tLL; p) = w, where w is a constant, is

dtLL

dT

∣∣∣∣
W̃ (T,tLL;p)=w

= −
p(1 − p)

(
2
T
− 1

)

p2
(

1
tLL

− 1
)

∣∣∣∣∣∣
W̃ (T,tLL;p)=w

< 0, (5)

22 Note that z(T, tLL; p) = 0 defines multiple curves on R
2 while it defines a single curve on [0, 2] × [0, 1).
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for (T, tLL) ∈ [0, 2] × [0, 1). That is, the welfare-curve W̃ (T, tLL; p) = w has a negative slope on

[0, 2] × [0, 1).

To describe the second best feasible tax schedule, we need some definitions. First, for (ωL, ωH) ∈

Ω1 such that ωL + ωH ≦ 1 and p ∈ (0, ρ̂), define tLL ∈ (0, ωL) by z(ωL + ωH , 2, tLL; p) = 0. Second,

for p ∈ (0, ρ̂), define T ∈ (2ωL, min{ωL + ωH , 2}) by z(T , ωL; p) = 0. Third, define simply T o = 1.

Finally, for T̃ < 1 and T < 1, define toLL ∈ (0, ωL) by z(1, toLL; p) = 0.23

Now, we can state the main result of this paper.

Proposition 3.9 For p < ρ̂, the solution to (P2) is

t∗ =





(tLL, ωL, ωH , ωH) if ωL + ωH ≦ T o

(toLL, ωL, T o − ωL, min{ωH , 1}) if T ≦ T o

(ωL, ωL, T − ωL, min{ωH , 1}) if T > T o

.

Proof : Notice from (4) and (5) that the (IC)-curve z(T, tLL; p) = 0 is tangent to the welfare-curve

W̃ (T, tLL; p) = w at (T, tLL) = (T o, toLL).

For the interior solution (the third case), we need to show that the tangent point (T o, toLL) is

maximizing the welfare function W̃ (·) rather than minimizing. This can be done by showing that

d2tLL

dT 2

∣∣∣∣
W̃ (T o,to

LL
;p)=w

>
d2tLL

dT 2

∣∣∣∣
z(T o,to

LL
;p)=0

.

Differentiating (4) and (5), it follows that

d2tLL

dT 2

∣∣∣∣
W̃ (T o,to

LL
;p)=w

−
d2tLL

dT 2

∣∣∣∣
z(T o,to

LL
;p)=0

=
1

pT (1 − tLL)

[
tLL

T
−

(
1 − T

1 − tLL

)
dtLL

dT

]∣∣∣∣
T=T o,tLL=to

LL

=
toLL

p(1 − toLL)

> 0.

For the corner solutions (the firs and second cases), we need to show that

T ≶ 1 =⇒
dtLL

dT

∣∣∣∣
W̃ (T,tLL;p)=w

≶ dtLL

dT

∣∣∣∣
z(T,tLL;p)=0

,

respectively. From (4) and (5), we have

dtLL

dT

∣∣∣∣
W̃ (T,tLL;p)=w

−
dtLL

dT

∣∣∣∣
z(T,tLL;p)=0

=
1

p2

(
tLL

1 − tLL

) (
T − 1

T

)
≶ 0 for T ≶ 1,

respectively, since tLL ∈ [0, 1). Therefore, we have t∗ as stated.

Table 1 summarize the optimal feasible tax schedules and their relative size for each possible case.

23 Using Lambert W function, we can express tLL, T , and to
LL explicitly as

tLL = −W0

(
− exp

{
log (ωL+ωH )2

2T̃
− ωH −

(
1
p

)
log ωL+ωH

T̃

})
;

T = −

(
2p−1

p

)
W

(
−

(
p

2p−1

)
exp

{(
p

2p−1

) [
log

(
(2ωL)(T̃ )

)
− 2ωL

]
−

(
1

2p−1

)
log(T̃ )

})
;

to
LL = −W0

(
− exp

{
log 1

2T̃
− 1 + ωL −

(
1
p

)
log 1

T̃

})
.

For T , W should be W−1 if p > 1
2

and W0 if p ≦ 1
2
.
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Cases t∗LL t∗LH t∗HL t∗HH

p ≧ ρ̂ (including ΩF ) ωL = ωL < min{ωL + ωH , 2} − ωL ≧ min{ωH , 1}

p < ρ̂ ωL + ωH ≦ 1 tLL ≦ ωL < ωH = ωH

ωL + ωH > 1 T ≦ 1 toLL ≦ ωL < T o − ωL < min{ωH , 1}

T > 1 ωL = ωL < T − ωL S min{ωH , 1}

Table 1: Optimal feasible tax schedules for n = 2.

3.3 Simulated Examples

In this section, we illustrate some examples that show the specific optimal feasible tax schedules

for different parameter values. Due to the low dimensionality of the social planner’s problem, we

can draw the results graphically.

Example 3.10

i. Suppose first that (ωL, ωH) = (0.2, 0.5). In this case, ρ̂ ≈ −0.28, so p ≧ ρ̂ for all p ∈ (0, 1).

In particular, this is the example of (ωL, ωH) ∈ ΩF . Thus, the first best feasible tax schedule

(t∗LL, t∗LH , t∗HL, t∗HH) = (0.2, 0.2, 0.5, 0.5) is obtained.

ii. Suppose that (ωL, ωH) = (0.1, 0.8). In this case, ρ̂ ≈ 0.13.

(a) If p ≧ ρ̂, the first best tax schedule (t∗LL, t∗LH , t∗HL, t∗HH) = (0.1, 0.1, 0.8, 0.8) is obtained. Fig-

ure 3(a) illustrates the case of p = 0.3.

(b) If p < ρ̂, by Proposition 3.9, the second best tax schedule t∗ = (tLL, ωL, ωH , ωH) is obtained.

Figure 3(b) illustrates the case of p = 0.1 in which the optimal tax schedule is (t∗LL, t∗LH , t∗HL, t∗HH) =

(0.07, 0.1, 0.8, 0.8).

iii. Suppose that (ωL, ωH) = (0.25, 0.8). In this case, ρ̂ ≈ 0.4.

(c) If p = 0.35 as illustrated in Figure 3(c), then T ≈ 1.02 > 1, so the second best tax schedule

t∗ = (ωL, ωL, T − ωL, ωH) = (0.25, 0.25, 0.77, 0.8) is obtained.

(d) If p = 0.2 illustrated in Figure 3(d), then T ≈ 0.97 < 1, so the second best tax schedule

t∗ = (toLL, ωL, T o − ωL, ωH) = (0.21, 0.25, 0.75, 0.8) is obtained.

iv. Figure 3(e)–(h) show some other cases that have the second best tax schedule for different

parameter values. ¤

4 Properties and Comparative Statics

4.1 Properties of Optimal Feasible Tax Schedules

First, consider the possibility of first best feasible taxation. For a first best feasible tax schedule

to be a solution to the social planner’s problem, it should not give any incentive for an agent to

misreport his endowment. Since the incentive compatibility constraint is unilateral in our model,
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Figure 3: An example of second best taxation
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this requirement says that a rich agent should have no incentive to lie. According to the character-

ization results in the previous section, when (i) p ≧ ρ̂, or (ii) (ωL, ωH) ∈ Ω2, the corresponding first

best feasible tax schedules can be a solution to the social planner’s problem (P2). For the case of

(ii), the endowment of a poor agent is large enough that the first best feasible tax schedule could

impose the same amount of tax on each agent for any case.24 Thus, a rich agent has no incentive to

misreport his type. On the other hand, for the case of (i), since the overall endowment level of the

economy is small enough (the case of ΩF ) or the probability of low endowment is high enough, a

rich agent worries mainly about that too low amount of public good would be provided if he misre-

ports. Thus, he will not lie. Therefore, when the total endowment of the economy is relatively low

enough or high enough, first best feasible taxation satisfies the incentive compatibility constraint

so that it can be the solution to (P2).

Second, the optimal feasible tax schedule always imposes 100% tax rate on a poor agent when

his neighbor is rich.25 That is, t∗LH = ωL for all (ωL, ωH) ∈ Ω1 and all p ∈ (0, 1). This result reflects

the effect of informational rent on the economy which pursues efficiency rather than equity as its

objective. Due to the no exaggeration assumption, the incentive compatibility constraint in this

model is unilateral so that levying a tax on a poor agent does not create any incentive problem

as long as it is feasible. Thus, the social planner, who does not mind which agent pays how much

proportion of the total taxes, prefers to impose as much tax as possible on the poor agent rather

than his rich neighbor who may request informational rent. Of course, the absolute amount of tax

payment of rich agent is strictly higher than that of poor agent. However, since there do exist some

cases in which the tax rate imposed on the rich agent is strictly less than 100%, we can say that

the optimal feasible tax mechanism is regressive.

Third, the optimal feasible tax schedule is increasing.

Proposition 4.1 For all (ωL, ωH) ∈ Ω1,

t∗LL ≦ t∗HL and t∗LH ≦ t∗HH .

Proof : The first inequality is clear since Lemma 3.5 implies that t∗LL ≦ ωL ≦ t∗HL. The second

inequality is also clear since t∗LH = ωL < min{ωH , 1}.

Thus, under the optimal feasible tax mechanism each agent’s tax payment is increasing with his

endowment. Note, however, that this increasingness does not imply that marginal tax rate is

increasing.

Finally, we note the property that for all (ωL, ωH) ∈ Ω, t∗LL ≦ t∗LH with strict inequality for

some cases as can be seen in Table 1. That is, a poor agent may say, “If my neighbor is rich, then

I have to pay more!” This can be interpreted in a quite similar way used in the second property

above; a poor agent should take some extra burden caused by his rich neighbor, which would not

have been incurred had his neighbor been poor. In Rhee [2004b], we tackle this problem in detail

by comparing the immigration incentives of an agent to the communities with different expected

endowments.

24 Note that it is assumed that an increasing tax schedule is used on Ω2.
25 As mentioned in Section 2.1, each agent’s initial endowment is considered as his taxable wealth. Thus, the 100%
tax rate is acceptable in this sense.
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4.2 Comparative Statics

One of the interesting questions about the optimal feasible tax schedule is how the optimal feasible

tax schedule t∗ will respond to the change in the probability of low endowment p. We are also

interested in how t∗ will change as ωL or ωH varies. In the following, we exclude the trivial case

Ω2 in which first best taxation is always possible.

4.2.1 Responses of t∗ to p

Since both t∗LH and t∗HH are independent of p, it suffices to analyze the responses of t∗LL and t∗HL.

Given (ωL, ωH) ∈ Ω1, if p ≧ ρ̂, then t∗ is independent of p. Thus, suppose p < ρ̂. By Lemma 3.7,

we have the following subcases.

(1) ωL + ωH ≦ 1

In this case, only t∗LL = tLL depends on p. Since the principal branch W0 of the Lambert W

function is strictly increasing, it follows that
dtLL

dp
> 0, that is, t∗LL is strictly increasing.

(2) ωL + ωH > 1

Case (i) t̃LL ≧ ωL: If T ≦ 1, then only t∗LL = toLL depends on p. By the definition of toLL, it turns

out that

dtLL

dp

∣∣∣∣
z(T o,to

LL
;p)=0

= −

(
1
p

)
log T

T̃

p
(
1 − 1

tLL

)

∣∣∣∣∣∣
z(T o,to

LL
;p)=0

> 0

since the nominator is negative by toLL < 1 and the denominator is negative by T̃ < T ≦ 1 = T o.

Hence, t∗LL is strictly increasing. If T > 1, then only t∗HL = T −ωL depends on p. Since T̃ ≦ T and

T > 2p−1
p

by Remark 3.8, it follows that

dT

dp

∣∣∣∣
z(T ,ωL;p)=0

= −

(
1
p

)
log T

T̃

2p−1
T

− p

∣∣∣∣∣∣
z(T ,ωL;p)=0

≧ 0, (6)

which implies that t∗HL is increasing.26

Case (ii) t̃LL < ωL: In this case, we claim that 1 < T ≦ T̃ . By Remark 3.8, T ≦ T̃ is clear. To see

that 1 < T , note that

z(1, ωL; p) = p

[
log

1

(2ωL)(T̃ )
− 1 + 2ωL

]
+ log T̃ = p

[
log

1

2ωL

− 1 + 2ωL

]
+ (1 − p) log T̃ > 0.

That is, the (IC)-curve is always above the point (1, ωL), which implies 1 < T . Thus, only t∗HL =

T − ωL depends on p. By (6), dT
dp

< 0, so t∗HL is strictly decreasing.

(3) Interpretation

Table 2 summarizes the responses of t∗ to p for each possible case. Figure 4 shows the examples for

some different endowments values.27 Roughly speaking, t∗LL is (weakly) increasing for p increases.

26 The equality holds only if t̃LL = ωL.
27 In Figure 4, β ∈ (0, 1) is defined such that z(1, ωL; β) = 0.
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Cases
dt∗

LL

dp

dt∗
LH

dp

dt∗
HL

dp

dt∗
HH

dp

p ≧ ρ̂ (including ΩF ) 0 0 0 0

p < ρ̂ ωL + ωH ≦ 1 + 0 0 0

ωL + ωH > 1 t̃LL ≧ ωL T ≦ 1 + 0 0 0

T > 1 0 0 + 0

t̃LL < ωL 0 0 − 0

Table 2: A summary of the responses of t∗ to p.

However, t∗HL is (weakly) increasing for relatively low ωL, but decreasing for large ωL. In fact, these

results show how the (IC) constraint will change as the probability of low endowment p increases.

Suppose first that the initial low endowment is small enough such that t̃LL ≧ ωL (the areas of

1© and 2© in Figure 2). In this case, the increase in p makes the (IC) constraint less tight for both

t∗LL and t∗HL in the sense that the set of incentive compatible and feasible tax schedules becomes

larger.28 Thus, the social planner can increase t∗LL or t∗HL as long as the feasibility constraint is

binding. That is, for T ≦ 1 (the interior solution case), t∗LL increases but t∗HL stays the same since

the solution always occurs at T o = 1, and for T > 1 (the corner solution case), t∗HL increases but

t∗LL is fixed at its feasible maximum ωL. The economic intuition behind this result is as follows:

The social planner has to take into account the informational rent incurred by a rich agent. When

ωL is relatively small such that t̃LL ≧ ωL, the social planner can design an incentive compatible

tax mechanism without much worrying about such an informational rent because the rich agent is

reluctant to lie to avoid too small provision of public good. Thus, as p increases, the rich agent

(IC) constraint becomes less tight. (Figure 4(a)(b)(e)(f)).

On the other hand, suppose that the initial low endowment ωL is relatively large such that

t̃LL < ωL (the area of 3© in Figure 2).29 In this case, the increase in p makes the (IC) constraint

less tight for t∗LL but tighter for t∗HL in the sense that the set of incentive compatible and feasible

tax schedules becomes larger with respect to t∗LL, but smaller with respect to t∗HL. Thus, the social

planner would like to decrease t∗HL and increase t∗LL as long as the feasibility constraint is binding.

Since in this case t∗LL is already set at its maximum ωL (the corner solution case), only t∗HL should

be decreased. This result can be interpreted as follows: If ωL is relatively large, then too small

public good provision is no longer a big problem. Thus, as p increases, the rich agent is more willing

to lie, which implies that the social planner should decrease the rich agent’s tax payment thl∗ to

make him honest (Figure 4(c)(d)(g)(h)).

28 Recall by Lemma 3.7 that the (IC)-curve z(T, tLL; p) = 0 turns counterclockwise around the pivotal point (T̃ , t̃LL)
as p increases.
29 Note that in this case, T̃ > 1 by Lemma 3.6.
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t∗

0
p

ωL
= 0.25

ωH
= 0.8

T o−ωL
= 0.75

ρ̂
≈ 0.40

β
≈ 0.29

1

t∗LL

t∗HL

(a) (ωL, ωH) = (0.25, 0.8)

t∗

0
p

ωL
= 0.35

ωH
= 0.8

0.67

ρ̂
≈ 0.72

1

t∗LL

t∗HL

(b) (ωL, ωH) = (0.35, 0.8)

t∗

0
p

ωL
= 0.45

ωH
= 0.8

0.68

1

t∗LL

t∗HL

(c) (ωL, ωH) = (0.45, 0.8)

t∗

0
p

ωL
= 0.6

ωH
= 0.8

0.71

1

t∗LL

t∗HL

(d) (ωL, ωH) = (0.6, 0.8)

t∗

0
p

ωL
= 0.25

ωH
= 1.3

T o−ωL
= 0.75

ρ̂
≈ 0.86

β
≈ 0.23

1

1

t∗LL

t∗HL

(e) (ωL, ωH) = (0.25, 1.3)

t∗

0
p

ωL
= 0.35

ωH
= 1.3

0.69

1

1

t∗LL

t∗HL

(f) (ωL, ωH) = (0.35, 1.3)

t∗

0
p

ωL
= 0.45

ωH
= 1.3

0.70

1

1

t∗LL

t∗HL

(g) (ωL, ωH) = (0.45, 1.3)

t∗

0
p

ωL
= 0.6

ωH
= 1.3

0.74

1

1

t∗LL

t∗HL

(h) (ωL, ωH) = (0.6, 1.3)

Figure 4: Responses of t∗LL and t∗HL to p
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t∗

0
ωL

ωH
= 0.8

ωH
= 0.8

t∗LL

t∗HL

(a) ωH = 0.8, p = 0.15

t∗

0
ωL

ωH
= 0.8

ωH
= 0.8

t∗LL

t∗HL

(b) ωH = 0.8, p = 0.5

t∗

0
ωL

ωH
= 1.3

1

1

t∗LL

t∗HL

(c) ωH = 1.3, p = 0.15

t∗

0
ωL

ωH
= 1.3

1

1

t∗LL

t∗HL

(d) ωH = 1.3, p = 0.5

t∗

0
ωH

1−ωL
= 0.85

1−ωL
= 0.85

ωL
= 0.15

ωL
= 0.15

1

t∗LL

t∗HL

(e) ωL = 0.15, p = 0.15

t∗

0
ωH

1.20

1.20

ωL
= 0.15

ωL
= 0.15

1

1

t∗LL

t∗HL

(f) ωL = 0.15, p = 0.5

t∗

0
ωH

ωL
= 0.45

ωL
= 0.45

1

0.70

t∗LL

t∗HL

(g) ωL = 0.45, p = 0.15

t∗

0
ωH

ωL
= 0.45

ωL
= 0.45

1

0.70

t∗LL

t∗HL

(h) ωL = 0.45, p = 0.5

Figure 5: Responses of t∗LL and t∗HL to ωL and ωH
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E(y)

0
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2ωH
= 1.6

2ωL
= 0.7

1ρ̂
= 0.72

(a) (ωL, ωH) = (0.35, 0.8)

E(y)

0
p

2ωH
= 1.6

2ωL
= 1.2

1

(b) (ωL, ωH) = (0.6, 0.8)

E(y)

0
ωL

2ωH
= 1.6

ωH
= 0.8

ωH
= 0.8

(c) ωH = 0.8, p = 0.5

E(y)

0
ωL

2 min{ωH ,1}
= 2

ωH
= 1.3

1

(d) ωH = 1.3, p = 0.5

E(y)

0
ωH

2ωL
= 0.7

1

1.23

ωL
= 0.35

1−ωL
= 0.65

1

(e) ωL = 0.35, p = 0.5

E(y)

0
ωH

2ωL
= 1.2

1

1.46

ωL
= 0.6

1

(f) ωL = 0.6, p = 0.5

Figure 6: Expected Total Provision of Public Good: E(y)

4.2.2 Responses of t∗ to ωL or ωH

We have already studied rough responses of t∗ to ωL or ωH by its characterization for different cases

on Ω. Now, we provide some simulated examples for better understanding the optimal feasible tax

mechanism. Figure 5(a)–(d) show the responses of t∗ to ωL and Figure 5(e)–(h) to ωH when

p = 0.15 or 0.5.

Consider first the responses to a change in ωL. As ωL increases, we can see that t∗LL is increasing,

but t∗HL is (weakly) decreasing for lower values of ωL and then increasing for larger values. These

results can be interpreted as follows. For lower ωL, a first best solution like Figure 3(a) is possible so

that t∗LL and t∗HL are set their maximum. As ωL increases more, a corner solution like Figure 3(b)

could occur depending on the values of ωH and p. In this case, t∗HL stays the same at its maximal but

tLL would be less than ωL. As ωL increases furthermore, then an interior solution like Figure 3(d)

will happen. In this case, t∗LL will increase but t∗HL will decrease. As ωL increases even further, a

corner solution like Figure 3(e) or (f) is obtained. In this case, t∗HL is decreasing initially and then
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increasing, and t∗LL is increasing with ωL. One of the interesting implications from these results is

that an increase in ωL can decrease the tax burden of a rich agent if ωL is relatively small.

We can apply a similar interpretation to the change of ωH . That is, for lower ωH , a first best

solution like Figure 3(a) is obtained, and then a corner solution like Figure 3(b) and/or an interior

solution like Figure 3(d) is obtained depending on the values of ωL and p. Eventually, the optimal

solution ends up an interior one like Figure 3(d) or a corner solution like Figure 3(e) or (f). Notice

also that an increase in ωH can decrease the tax burden of a poor agent if ωL is relatively small

and ωH is relatively large (see Figure 3(e)).

4.2.3 Expected Total Provision of Public Good

Finally, we show how much public goods will be provided as p, ωL, or ωH varies. The expected

total provision of public good is expressed as

E(y) = p2(2t∗LL) + 2p(1 − p)(t∗LH + t∗HL) + (1 − p)∗(2t∗HH).

The Figure 6 illustrates some examples of those responses. Roughly speaking, E(y) increases as ωL

or ωH increase, and as p decreases.30 In particular, for large ωH , the increase in ωL may reduce

E(y) (Figure 6(d)). This fact reflects the observation that the increase of ωL may decrease t∗HL so

much. Thus, even if t∗LL and t∗LH increase with ωL, the decrease of t∗HL is still dominating, which

results in the smaller E(y).

5 Optimal Feasible Tax Mechanism for n > 2

As the extension of the case n = 2, we now study the optimal feasible tax schedule for 2 < n < ∞,

t∗ =
(
(t∗

L,(n−k)L,(k−1)H)n
k=1, (t

∗
H,(n−k)L,(k−1)H)n

k=1

)
, which is the solution to (Pn). To begin with,

consider the case of (ωL, ωH) ∈ Ω2. The social planner can easily solve (Pn) by imposing a first

best feasible tax schedule

t∗ ∈
{

t ∈ [0, ωL]n × [0, ωH ]n : tL,(n−1)L,0H = 1, tH,0L,(n−1)H = 1;

(n − k)tL,(n−1−k)L,kH + ktH,(n−k)L,(k−1)H = n, and

1 ≦ tL,(n−1−k)L,kH ≦ ωL, for k = 1, . . . , n − 1
}

.

since t∗ satisfies the (IC) constraint;31

∆(tF ; p) =
n−1∑

j=1

n−1Cj−1p
j−1(1 − p)n−1−j

(
tFL,(j−1)L,(n−j)H − 1

)
≧ 0. (7)

If the social planner insists that the tax schedule be increasing, then the unique solution to (Pn) is

t∗ = (1, . . . , 1; 1, . . . , 1). Therefore, in the following we just assume that (ωL, ωH) ∈ Ω1.

30 Although not provided here, the case in which ωL is quite small, say 0.05, shows the possibility that E(y) increases

as p increases. This is due to that fact that for a quite small ωL the increase of t∗LL or t∗HL as a small p increases (see
Figure 4(a)(b)(e) or (f)) could increase E(y).
31 See Appendix A for derivation.
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5.1 Possibility of First Best Taxation

First of all, partition Ω1 into

Ω1A = {(ωL, ωH) ∈ Ω1 : ωH ≦ 1},

Ω1Bi
= {(ωL, ωH) ∈ Ω1 \ Ω1A : iωL + (n − i)ωH < n ≦ (i − 1)ωL + (n − i + 1)ωH},

for i = 1, . . . , n. If (ωL, ωH) ∈ Ω1Bi
, i = 1, . . . , n, the first best feasible tax schedule is

tF ∈
{

t ∈ [0, ωL]n × [0, ωH ]n : tL,(n−1)L,0H = ωL, tH,0L,(n−1)H = 1;

tL,(n−1−k)L,kH = ωL, tH,(n−k)L,(k−1)H = ωH , k = 1, . . . , n − i;

(n − k)tL,(n−1−k)L,kH + ktH,(n−k)L,(k−1)H = n, k = n − i + 1, . . . , n − 1
}

.

Since

lim
p→0

∆(tF ; p) =

{
log n

ωL+(n−1)ωH
− (1 − ωL) if i = 1

−(1 − tF
L,0L,(n−1)ωH

) otherwise
< 0, 32

there is no (ωL, ωH) ∈ Ω1Bi
for i = 1, . . . , n such that the first best feasible tax schedule tF can

be the solution to (Pn) for every p ∈ (0, 1). Also, it turns out that the polynomial equation

∆(tF ; p) = 0 of p may have multiple roots so that it is impossible to define the unique ρ such that

∆(tF ; p) ≧ 0 for p ≧ ρ.

Now, suppose that (ωL, ωH) ∈ Ω1A. In this case, the unique first best feasible tax schedule is

tF = (ωL, . . . , ωL; ωH , . . . , ωH).

To find the condition under which tF is the solution to (Pn), consider the (IC) constraint at t∗:33

∆(tF ; p) =
n−1∑

j=0

n−1Cjp
n−1−j

[
n−j∑

k=0

(−1)k+mod(n−1−j,2)
n−jCk log(kωL + (n − k)ωH)

]

− (ωH − ωL),

(8)

where mod(x, 2) is 0 if x is even and 1 if x is odd.

Lemma 5.1 For all n ≧ 2 and all j = 0, . . . , n − 2, ∆(tF ; p) is strictly increasing in pn−1−j.

Proof : See Appendix C.

For (ωL, ωH) ∈ Ω1A, define ρ ∈ R by ∆(tF ; ρ) = 0, and let ρ̂ = min{1, ρ}. Define also

ΩF = {(ωL, ωH) ∈ Ω1A : lim
p→0

∆(tF ; p) = log
nωH

ωL + (n − 1)ωH

− (ωH − ωL) ≧ 0}.

Proposition 5.2 If p ≧ ρ̂, then the first best feasible tax schedule tF is the unique solution to

(Pn). In particular, if (ωL, ωH) ∈ ΩF , then tF is the unique solution to (Pn) for all p ∈ (0, 1).

32 To see that log n
ωL+(n−1)ωH

−(1−ωL) < 0 for (ωL, ωH) ∈ Ω21
, note that d(LHS)/dωL > 0. Since ωL < n−(n−1)ωL

in Ω1B1
, it follows that LHS < lim

ωL→n−(n−1)ωH

log
n

ωL + (n − 1)ωH

− (1 − ωL) = (n − 1)(1 − ωH) < 0.

33 See Appendix B for derivation.
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Proof : Same as the proof of Proposition 3.2.

Corollary 5.3 lim
n→∞

ΩF = 6©.

Proof : Since limn→∞ limp→0 ∆(tF ; p) = −(ωH − ωL) < 0, we have the result.

The intuition of this result is that as the number of agents increases, the incentive for a rich agent to

misreport his type increases because the possibility that too little public good is provided decreases.

Thus, it becomes more difficult to satisfy the (IC) constraint and finally the possibility of first best

feasible tax schedule gets to disappear.

5.2 Second Best Feasible Tax Schedule

The same result as Lemma 3.3 holds for n > 2.

Proposition 5.4 Suppose that a tax schedule t∗ is a solution to (Pn). Then,

t∗H,0L,(n−1)H = min{ωH , 1}.

Proof : Same as the proof of Lemma 3.3.

On the contrary, the result like Lemmas 3.5 does not hold for n > 2. Nonetheless, we can find a

similar result with a mild assumption.

Proposition 5.5 Suppose that a tax schedule t∗ is a solution to (Pn). For each j ∈ {1, . . . , n−1},

if t∗
H,jL,(n−1−j)H > 0, then

t∗L,(j−1)L,(n−j)H = ωL.

Proof : If ωL = 0, then the claim is obvious. Thus, assume that ωL > 0. Suppose by way of

contradiction that t∗
L,(j−1)L,(n−j)H < ωL. Choose ε such that

0 < ε ≦ min{ωL − t∗L,(j−1)L,(n−j)H , t∗H,jL,(n−1−j)H}.

Consider another tax schedule t′ which replaces t∗
L,(j−1)L,(n−j)H and t∗

H,jL,(n−1−j)H in t∗ by

t′L,(j−1)L,(n−j)H = t∗L,(j−1)L,(n−j)H +
ε

j
, and t′H,jL,(n−1−j)H = t∗H,jL,(n−1−j)H −

ε

n − j
,

respectively. Then, it follows that

Ui(ωH |ωH , t′) = Ui(ωH |ωH , t∗) + n−1Cjp
j(1 − p)n−1−j

(
ε

n − j

)

> Ui(ωL|ωH , t∗)

= Ui(ωL|ωH , t′) + n−1Cj−1p
j−1(1 − p)n−j

(
ε

j

)

> Ui(ωL|ωH , t′),

which implies that ∆(t′; p) > 0. Since ∆(t; p) is continuous in tH,jL,(n−1−j)H we can choose δ ∈

(0, ε) such that a new tax schedule t′′, which replaces t′
H,jL,(n−1−j)H in t′ by t′′

H,jL,(n−1−j)H =
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t′
H,jL,(n−1−j)H + δ

n−j
, satisfies (IC). Note that t′′ also satisfies (Feasibility) by its construction, and

that

jt′′L,(j−1)L,(n−j)H + (n − j)t′′H,jL,(n−1−j)H > jt∗L,(j−1)L,(n−j)H + (n − j)t∗H,jL,(n−1−j)H .

Thus, we have W (t′′; p) > W (t∗; p), a contradiction to the hypothesis that t∗ is a solution.

This result implies that if the tax payment of rich agents is at least positive, poor agents have to

pay 100% tax in the optimal feasible taxation scheme. Thus, the same interpretation as for the

two-agent case applies; the optimal feasible tax schedule imposes the burden caused by the rich

agents’ informational rents on poor agents as much as possible. Also, it is possible that the tax

payment of rich agents is absolutely less than that of poor agents since the optimal feasible tax

schedule may not be increasing.34 Therefore, as the number of agents increases, the regressiveness

of optimal feasible tax mechanism could be worse.

Furthermore, in addition to the above positivity assumption, if we assume that the tax schedule

must be increasing and tH,(n−1)L,0H ≧ ωL, we can show that the same result as Lemma 3.5 for

n > 2. However, even if we restrict the domain of tax mechanism by those assumptions, it is

virtually impossible to describe the optimal feasible tax schedule for n > 2 due to not only too

many corner solutions but also the high dimensionality of social planner’s problem. In the next

section, we study the case in which there is a continuum of agents in the economy.

5.3 n = ∞

Suppose that there are infinitely many agents in the economy. With no loss of generality, we

normalize the set of agents as N = [0, 1]. In this case, a tax schedule can be expressed by t∞ =

(tL,∞, tH,∞) where for example tL,∞ is the tax payment of agent i ∈ N when he reports ωL. Since

Pr(ωj = ωL) = p for all j ∈ N , the expected utility of agent i when his endowment is ωH is

Ui(ωH |ωH , t∞) = log
(
ptL,∞ + (1 − p)tH,∞

)
+ ωH − tH,∞

if he reports ωH , and

Ui(ωL|ωH , t∞) = log
(
ptL,∞ + (1 − p)tH,∞

)
+ ωH − tL,∞

if he reports ωL. Thus, given (ωL, ωH) ∈ Ω and p ∈ (0, 1), the social planner’s problem is

(P∞)

max
t∞

W (t∞; p) = log(ptL,∞ + (1 − p)tH,∞) − (ptL,∞ + (1 − p)tH,∞)

subject to

(IC) tL,∞ ≧ tH,∞

(Feasibility) (tL,∞, tH,∞) ∈ [0, ωL] × [0, ωH ].

For (ωL, ωH) ∈ Ω2, the optimal feasible tax schedule is

t∗∞ ∈ {(tL,∞, tH,∞) ∈ [0, ωL] × [0, ωH ] : ptL,∞ + (1 − p)tH,∞ = 1, tL,∞ ≧ tH,∞}.

34 For the three-agent case, we can show that there exists a non-increasing optimal feasible tax schedule under the
positivity assumption of rich agents’ tax payment.
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If the social planner insists that the tax schedule be increasing, then the unique second best feasible

tax schedule is

t∗∞ = (t∗L,∞, t∗H,∞) = (1, 1).

Proposition 5.6 For (ωL, ωH) ∈ Ω1, the unique optimal feasible tax schedule is

t∗∞ = (t∗L,∞, t∗H,∞) = (ωL, ωL).

Proof : Straightforward.

This result implies that there is no way to prevent a rich agent from lying if tH,∞ is greater than

tL,∞, so that imposing ωL on every agent is optimal for n = ∞. Note that the poor agent’s tax

rate is always 100%, but the rich agent’s is strictly less than 100%.

6 Concluding Remarks

In this paper, we consider the feasible taxation problem of a public good economy from an efficiency

point of view. Using a Bayesian mechanism design approach, we fully characterized the optimal

feasible tax mechanism for an economy with two agents, and conducted some comparative statics

analyses of the mechanism. Also, we provided some partial characterization results for the case of

more than two agents. These characterization results show how the optimal tax mechanism deals

with the incentive or free-riding problem of the economy and the (individual) feasibility constraint

simultaneously. In the following, we will discuss some extensions of this study.

In this paper, we assumed that the social welfare is the sum of the agents’ utilities. However, if

we assume another form of social welfare functions such as weighted sum of the agents’ utilities or

Rawlsian welfare function, then finding an optimal feasible tax mechanism would be a quite difficult

problem because we are no longer able to reduce the dimension of the social planner’s problem. By

nature, the feasibility constraint renders the optimal tax mechanism to have many corner solutions

so that the high dimensionality of the problem will produce so many cases we have to handle.

Our optimal feasible tax mechanism is not renegotiation-proof. Consider for example of Fig-

ure 3(d). If two agents are both poor, then each one’s tax payment is t∗LL ≈ 0.21 < 0.25 = ωL.

Thus, after the optimal taxation, they have an ex-post incentive to renegotiate for increasing the

underprovided public good since the marginal benefit from the increase in public good is greater

than the marginal cost, −1. In this case, we can easily make our optimal feasible tax mechanism

renegotiation-proof by imposing a constraint that t∗LL = ωL if ωL ≦ 1/2 and t∗LL > 1/2 if ωL > 1/2.

Note that this renegotiation-proofness decreases t∗HL for some cases.

Finally, we may consider the model with more than two types. If a continuous type space is

employed for each agent, we have to deal with the (IC) constraint which has a form of partial differ-

ential equation or inequality. Unfortunately, the standard differential approach used in mechanism

design literature (e.g., Laffont and Maskin [1979]) is not applicable to this case. Thus, it is an open

question in the future research how to transform such a partial differential equation suitable to the

social planner’s objective function.
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Appendix

A Derivation of Equation (7)

∆(tF ; p) =

n−1∑

j=0

n−1Cjp
j(1 − p)n−1−j

(
tFL,jL,(n−1−j)H + tFH,jL,(n−1−j)H

)

=

n−1∑

j=1

[
n−1Cj−1p

j−1(1 − p)n−j
(
tFL,(j−1)L,(n−j)H − 1

)
+ n−1Cjp

j(1 − p)n−1−j
(
1 − tFH,jL,(n−1−j)H

)]

=

n−1∑

j=1

[
n−1Cj−1p

j−1(1 − p)n−j
(
tFL,(j−1)L,(n−j)H − 1

)
+ n−1Cjp

j(1 − p)n−1−j

(
j

n − j

)(
tFL,(j−1)L,(n−j)H − 1

)]

=

n−1∑

j=1

n−1Cj−1p
j−1(1 − p)n−1−j

(
tFL,(j−1)L,(n−j)H − 1

)
.

B Derivation of Equation (8)

∆(tF ; p) =
n−1∑

j=0

n−1Cjp
j(1 − p)n−1−j

[
log

( jωL + (n − j)ωH

(j + 1)ωL + (n − 1 − j)ωH

)
− (ωH − ωL)

]

=
n−1∑

j=0

n−1Cjp
j(1 − p)n−1−j log

( jωL + (n − j)ωH

(j + 1)ωL + (n − 1 − j)ωH

)
− (ωH − ωL)(p + (1 − p))n−1

=

n−1∑

j=0

n−1Cjp
n−1−j

[
n−j∑

k=0

(−1)k+mod(n−1−j,2)
n−jCk log(kωL + (n − k)ωH)

]
− (ωH − ωL),

To see that the third equality holds, consider the coefficient of pn−1−j , j = 0, . . . , n− 1. Suppose (n− 1− j)
is even. Then, the coefficient is

(
n−1C0 · n−1Cn−1−j

)[
log(nωH) − log(ωL + (n − 1)ωH)

]

−
(

n−1C1 · n−2Cn−2−j

)[
log(ωL + (n − 1)ωH) − log(2ωL + (n − 2)ωH)

]

+
(

n−1C2 · n−3Cn−3−j

)[
log(2ωL + (n − 2)ωH) − log(3ωL + (n − 3)ωH)

]

...

+
(

n−1Cn−1−j · jC0

)[
log((n − 1 − j)ωL + (j + 1)ωH) − log((n − j)ωL + jωH)

]

=
(

n−1C0 · n−1Cj

)
log(nωH) −

(
n−1Cj · jC0

)
log((n − j)ωL + jωH)

+

n−j−1∑

k=1

(−1)k
(

n−1Ck−1 · n−kCj + n−1Ck · n−k−1Cj

)
log(kωL + (n − k)ωH)

=
(

n−1C0 · n−1Cj

)
log(nωH) −

(
n−1Cj · jC0

)
log((n − j)ωL + jωH)

+

n−j−1∑

k=1

(−1)k+1
(

n−1Cj · n−jCk

)
log(kωL + (n − k)ωH)

= n−1Cj

n−j∑

k=0

(−1)k
n−jCk log(kωL + (n − k)ωH).
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A similar calculation shows that when (n − 1 − j) is odd the coefficient is the same.

C Proof of Lemma 5.1

Proof : Let ξn,j(ωL, ωH) =
∑n−j

k=0(−1)k+mod(n−1−j,2)
n−jCk log(kωL + (n − k)ωH). First, we want to show

that ξn,j(ωL, ωH) is strictly increasing in ωH . For j = 0, . . . , n − 2,

∂ξn,j(ωL, ωH)

∂ωH

=
∂

∂ωH

(
n−j∑

k=0

(−1)k+mod(n−1−j,2)
n−jCk log(kωL + (n − k)ωH)

)

=

n−j∑

k=0

(−1)k+mod(n−1−j,2) (n − k)n−jCk

kωL + (n − k)ωH

= (n − 1 − j)!(ωH − ωL)n−1−j

[
n

∏n−1−j

k=0 (kωL + (n − k)ωH)
−

j
∏n−j

k=1(kωL + (n − k)ωH)

]

= (n − j)!(ωH − ωL)n−1−j

[
nωL∏n−j

k=0(kωL + (n − k)ωH)

]

> 0.

Thus, we have for all n ≧ 2 and all j = 0, . . . , n − 2,

ξn,j(ωL, ωH) > ξn,j(ωL, ωL) = log(nωL)

n−j∑

k=0

(−1)k+mod(n−1−j,2)
n−jCk = 0

by the Binomial Theorem. It follows that

∂∆(tF ; p)

∂pn−1−j
= n−1Cjξn,j(ωL, ωH) > 0.
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