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Abstract

In this paper we consider the problem of testing for a parameter change in regres-

sion models with ARCH errors based on the residual cusum test. It is shown that

the limiting distribution of the residual cusum test statistic is the sup of a Brownian

bridge. Through a simulation study, it is demonstrated that the proposed test cir-

cumvents the drawbacks of Kim, Cho and Lee (2000)’s cusum test. For illustration,

we apply the residual cusum test to the return of yen/dollar exchange rate data.
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1 Introduction

Since Page (1955), the problem of testing for a parameter change has been an im-

portant issue in statistics. It first started in the quality control context and quickly

moved to other fields such as economics, engineering and medicine. So far, a large

number of articles have been published in various journals. See, for instance, Brown,

Durbin and Evans (1975), Wichern, Miller and Hsu (1976), Zacks (1983), Krishnaiah

and Miao (1988) and Csörgő and Horváth (1997). The change point problem has

drawn much attention from many researchers in time series analysis since time series

often suffer from structural changes owing to changes of policy and critical social

events. It is well known that detecting a change point is a crucial task and ignoring it
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can lead to a false conclusion. A standard example can be found in Hamilton (1994,

page 450). For relevant references, we refer to Wichern, Miller and Hsu (1976), Picard

(1985), Inclán and Tiao (1994), Mikosch and Stărică (1999), Lee and Park (2001),

Lee et al. (2003(a), 2003(b)) and the papers cited in those articles.

In this paper, we concentrate ourselves on Inclán and Tiao (1994)’s cusum test in

regression models with ARCH errors. The ARCH and GARCH models have long been

popular in financial time series analysis. For a general review, see Gouriéroux (1997).

Inclán and Tiao (1994)’s cusum test was originally designed for testing for variance

changes and allocating their locations in iid samples. Later, it was demonstrated that

the same idea can be extended to a large class of time series models (cf. Lee et all,

2003(a)). Also, the variance change test has been studied in unstable AR models (cf.

Lee et al. (2003(b)).

In fact, Kim, Cho and Lee (2000) considered to apply the cusum test to GARCH(1,1)

models taking account of the fact that the variance is a functional of GARCH param-

eters, and their change can be detected by examining the existence of the variance

change. Although this reasoning was correct, it turned out that the cusum test suffers

from severe size distortions and low powers. Hence, there was a demand to improve

their cusum test. Here, in order to circumvent such drawbacks, we propose to use the

cusum test based on the residuals, given as the squares of observations divided by

estimated conditional variances. We intend to use residuals since the residual based

test conventionally discard correlation effects and enhance the performance of the

test. In fact, a significant improvement was observed in our simulation study.

Despite the previous work of Lee et al. (2003(b)) also considers a residual cusum

test in time series models, the model of main concern was the autoregressive model

with several unit roots. In fact, the mathematical analysis of the cusum test heavily

relies on the probabilistic structure of the underlying time series model, and the

arguments used for establishing the weak convergence result in unstable models are

somewhat different from those in ARCH models. Therefore it is worth to investigate

the asymptotic behavior of the residual cusum test in ARCH models. Although the

present paper was originally motivated to improve Kim, Cho and Lee (2000)’s test in

the GARCH(1,1) model, we consider the cusum test in a more general class of models
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including regression models with infinite order ARCH errors.

The organization of this paper is as follows. In Section 2, we introduce the residual

cusum test in regression models with infinite order ARCH models that include the

GARCH model, and show that its limiting distribution is the sup of a Brownian

bridge. In Section 3, we perform a simulation study to compare our test with Kim,

Cho and Lee’s test in GARCH(1,1) models. The result indicates that our method

outperforms their cusum test. Then, for illustration, we apply our test to a real data

set. Finally, in Section 4, we provide concluding remarks.

2 Residual cusum test

Let us consider the model

yt = β0zt + ²t, (1)

²t = htξt,

h2
t = a(θ) +

∞X
j=1

bj(θ)²
2
t−j,

where ξt are iid r.v.’s with zero mean and unit variance, {zt} is a p-dimensional
strictly stationary process, and θ → a(θ) and θ → b(θ) are nonnegative continuous

real functions defined on a subset N in Rd with a(θ) > 0 and
P∞

j=1 bj(θ) <∞ for all

θ ∈ N . We assume that ys,zs, s < t are independent of ξu, u ≥ t, and {(²t, ht,zt)}
is strong mixing. The Model (1) covers a broad class of important models in the

financial time series context including GARCH models. In particular, it becomes a

GARCH(1,1) model if we put zt = 0, θ = (ω,α1,α2), ω,α1,α2 > 0, α1 + α2 <

1, a(θ) = ω/(1 − α1 − α2) and bj(θ) = α1α
j−1
2 . In this case, {(²t, ht,zt)} is geomet-

rically strong mixing (cf. Carrasco and Chen (2002)). Recently, Lee and Taniguchi

(2003) studied the LAN property and the residual empirical process for Model (1).

See also Giraitis et al. (2000).

The objective here is to test the hypotheses

H0 : η = (β
0, θ0)0 remains the same for the whole series vs.

H1 : Not H0.
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For a test, one may construct a cusum test based on {ε̂t := yt − bβ0

zt} as in
Inclán and Tiao (1994) and Kim, Cho and Lee (2000). However, as observed in

the simulation study in Section 3, the test in GARCH(1,1) models is unstable and

produces low powers. Thus one has to develop a better test which is not much affected

by the GARCH parameters. As a candidate, one can naturally consider the cusum

test based on {ξ2
t }, say,

Tn :=
1√
nτ
max

1≤k≤n

¯̄̄̄
¯
kX
t=1

ξ2
t −

µ
k

n

¶ nX
t=1

ξ2
t

¯̄̄̄
¯ , (2)

where τ 2 = V ar (ξ2
1), since Tn is free from the GARCH parameters. In this case,

however, one may speculate whether Tn can detect any changes since Tn itself has

no information about the GARCH parameters. But since ξt are not observable,

one should replace ξ2
t ’s by the residuals

bξt2, which are obtained via estimating the
unknown parameters. Those estimators play an important role to detect changes in

the parameters in the presence of changes, while the iid property of the true errors

still remains when there are no changes. From this reasoning, one can anticipate that

the residual cusum test should be more stable and produce better powers.

Now, we construct the residual cusum test. To this end, we assume that

(A1) E||z1||4+δ1 <∞, E|²1|4+δ1 <∞ and E|ξ1|4+δ1 <∞ for some δ1 > 0.

(A2) There exists δ2 > 0 such that

sup
|| − 0||≤δ2,

0∈N
||ȧ(θ)|| <∞ and

∞X
j=1

sup
|| − 0||≤δ2,

0∈N
||ḃj(θ)|| <∞,

where ȧ(θ) and ḃj(θ) denote the gradient vectors of a and bj at θ.

(A3) There exists a sequence of positive integers with q →∞, q/
√
n→ 0 and

√
n
P∞

j=q+1 bj(θ)→ 0 as n→∞.
(A4) {(²t, ht, zt)} is strong mixing with order γ(h) satisfying

P∞
h=1 γ(h)

δ1
4+δ1 <∞.

Observe that the last condition in (A3) is satisfied if bj(θ) are geometrically bounded

(as in GARCH models), and q = [(log n)]ζ , ζ > 1. Also, if zt are identically zero and

{yt} is a GARCH process, {(yt, ht)} is geometrically strong mixing (cf. Carrasco and
Chen (2002)), so that (A4) is satisfied.
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Now, we construct the residual cusum test. In analogy of h2
t , we define

h2
t = a(bθ) + qX

j=1

bj(bθ)b²2t−j,
b²t = yt − bθ0

zt and bξt = b²t/bht,
where bη = (bβ0, bθ0)0

is an estimator of η with
√
n(bη−η) = OP (1). Then, we have the

following result.

Theorem 1 Assume that (A1)-(A4) hold. Set

bTn := 1√
nbτ max

q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

bξ2
t −

µ
k

n

¶ nX
t=q+1

bξ2
t

¯̄̄̄
¯

where bτ 2 = 1
n−q

Pn
t=q+1

bξ4
t − ( 1

n−q
Pn

t=q+1
bξ2
t )

2. Then, under H0,

bTn d−→ sup
0≤u≤1

|Bo(u)|, n→∞,

where Bo is a Brownian bridge.

Remark. A choice of q may be an issue in actual practice since it may affect the

test, despite the affection would not be so serious for fairly large samples. However,

if h2
t has a more specific form as in GARCH(1,1) models, the test statistic can be

free of a choice of q . See Theorem 2 below. In general, the above Brownian bridge

result does not hold for all regression models (cf. Jandhyala and MacNeill (1991)).

Therefore, the result of Theorem 1 should not be applied directly to all situations.

Proof. Split bξ2
t into ξ2

t +
P6

i=1 Ji,t, where

J1,t =
(h2
t − bh2

t )ξ
2
t

h2
t

, J2,t =
(h2
t − bh2

t )
2ξ2
t

h2
t
bh2
t

J3,t =
−2(bβ − β)0zt²t

h2
t

, J4,t =
−2(bβ − β)0zt²t(h2

t − bh2
t )

h4
t

J5,t =
−2(bβ − β)0zt²t(h2

t − bh2
t )

2

h4
t
bh2
t

, J6,t =
((bβ − β)0zt)2bh2

t

.
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We claim that

∆i,n :=
1√
n

max
q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

Ji,t −
µ
k

n

¶ nX
t=q+1

Ji,t

¯̄̄̄
¯ = oP (1), i = 1, · · · , 6. (2)

First, we handle J1,t. Note that

h2
t − bh2

t = a(θ)− a(bθ) + ∞X
j=q+1

bj(θ)²
2
t−j

+

qX
j=1

³
bj(θ)− bj(bθ)´ ²2t−j + qX

j=1

bj(bθ) ¡²2t−j − b²2t−j¢ := 4X
i=1

Ii,t. (3)

Owing to (A4) and the invariance principle for strong mixing processes (cf. Theorem

1.7 of Peligrad (1986)), we have

1√
n

max
q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

µ
ξ2
t

h2
t

− E ξ2
t

h2
t

¶
−
µ
k

n

¶ nX
t=q+1

µ
ξ2
t

h2
t

− E ξ2
t

h2
t

¶¯̄̄̄
¯ = OP (1),

which implies

1√
n

max
q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

I1,tξ
2
t

h2
t

−
µ
k

n

¶ nX
t=q+1

I1,tξ
2
t

h2
t

¯̄̄̄
¯ = oP (1). (4)

Meanwhile,

1√
n

max
q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

I2,tξ
2
t

h2
t

−
µ
k

n

¶ nX
t=q+1

I2,tξ
2
t

h2
t

¯̄̄̄
¯ = oP (1) (5)

since by (A3),

1√
n

nX
t=q+1

∞X
j=q+1

bj(θ)²
2
t−jξ

2
t /h

2
t = OP

Ã
√
n

∞X
j=q+1

bj(θ)

!
= oP (1).

Now, we verify that

1√
n

max
q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

I3,tξ
2
t

h2
t

−
µ
k

n

¶ nX
t=q+1

I3,tξ
2
t

h2
t

¯̄̄̄
¯ = oP (1). (6)

For this task, it suffices to show that for λ > 0,

ln := P

Ã
qX
j=1

|bj(θ)− bj(bθ)|Λnj > λ

!
= o(1), n→∞, (7)
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where

Λnj =
1√
n

max
q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

µ
²2t−jξ

2
t

h2
t

− E
²2t−jξ

2
t

h2
t

¶¯̄̄̄
¯

which is OP (1) due to the invariance principle and (A4). Observe that for anyM > 0,

ln :≤ P

Ã
MX
j=1

|bj(θ)− bj(bθ)|Λnj > λ

2

!
+ P

Ã ∞X
j=M+1

|bj(θ)− bj(bθ)|Λnj > λ

2

!
:= l1,n + l2,n,

l1,n = o(1), and

l2,n ≤ P
Ã
kbθ − θk ∞X

j=M+1

sup
k − 0k≤δ2

kḃ(θ0)k · 1√
n

Ã
nX
t=1

²2t−jξ
2
t

h2
t

+

nX
t=1

E
²2t−jξ

2
t

h2
t

!
>

λ

2

!

for all large n. Then, using Markov’s inequality and (A2), we can show that l2,n

becomes arbitrary small by taking a sufficiently large M . Hence, l2,n = o(1) and thus

ln = o(1), which yields (6).

Now, we verify that

1√
n

max
q+1≤k≤n

¯̄̄̄
¯

nX
t=q+1

I4,tξ
2
t

h2
t

− k
n

nX
t=q+1

I4,tξ
2
t

h2
t

¯̄̄̄
¯ = oP (1). (8)

Note that

²2t−j − b²2t−j = 2²t−j ³bβ − β´0 zt−j − µ³bβ − β´0 zt−j¶2

.

Since

1√
n

max
q+1≤k≤n

°°°°°
nX

t=q+1

µ
zt−j²t−jξ

2
t

h2
t

− Ezt−j²t−jξ
2
t

h2
t

¶°°°°° = OP (1)
by (A4), and

∞X
j=1

bj(bθ) ≤ ∞X
j=1

kbθ − θk sup
k − 0k≤k − k

°°°ḃj(θ0)°°°+ ∞X
j=1

bj(θ)

= OP (1), (9)
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following essentially the same arguments between (6) and (8), we can see that

1√
n

max
q+1≤k≤n

°°°°°
kX

t=q+1

qX
j=1

bj(bθ)³bβ − β´0 zt−j²t−jξ2
t /h

2
t

−
µ
k

n

¶ nX
t=q+1

qX
j=1

bj(bθ)³bβ − β´0 zt−j²t−jξ2
t /h

2
t

°°°°° = oP (1). (10)
Combining this and the fact

1√
n

nX
t=q+1

qX
j=1

bj(bθ)kbβ − βk2kzt−jk2ξ2
t /h

2
t = oP (1), (by (9))

we obtain (8). From (4),(5),(6) and (8), we establish ∆1,n = oP (1).

Now, we deal with∆2,n. Since h
2
t ≥ a(θ) > 0 and bh2

t ≥ a(bθ), to show 1√
n

Pn
t=q+1 J2,t =

oP (1), it suffices to prove

1√
n

nX
t=q+1

(h2
t − bh2

t )
2ξ2
t = oP (1). (11)

It is obvious that 1√
n

Pn
t=q+1 I

2
1,tξ

2
t = oP (1). Also, we have

1√
n

nX
t=q+1

I2
2,tξ

2
t =

1√
n

nX
t=q+1

Ã ∞X
j=q+1

bj(θ)²
2
t−j

!2

ξ2
t

= OP

⎛⎝√nÃ ∞X
j=q+1

bj(θ)

!2
⎞⎠ = oP (1) (12)

by(A3). Meanwhile, by the Cauchy-Schwarz inequality,

1√
n

nX
t=q+1

I2
3,tξ

2
t ≤

1√
n

nX
t=q+1

qX
j=1

kbθ − θk2 sup
k − 0k≤k − k

°°°ḃj(θ0)°°°2

²4t−jξ
4
t

= OP (q/
√
n) = oP (1). (by (A3)) (13)

Moreover,

1√
n

nX
t=q+1

I2
4,tξ

2
t ≤

2√
n

nX
t=q+1

"
qX
j=1

bj(θ)

½¯̄̄
²t−j(bβ − β)0zt−j ¯̄̄+ ³(bβ − β)0zt−j´2

¾#2

ξ2
t

= oP (1). (14)
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This together with (11)-(13) yields ∆2,n = oP (1).

Now, it remains to show ∆n,i = oP (1), i = 3, 4, 5, 6. It is trivial to show that

∆n,3 = oP (1) and ∆n,6 = oP (1). Also, one can verify the negligibility of ∆n,4 and

∆n,5 in a similar fashion to prove that of ∆n,1 and ∆n,2, respectively. Hence, (2) is

established, which directly implies

1√
n

max
q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

bξ2
t −

µ
k

n

¶ nX
t=q+1

bξ2
t

¯̄̄̄
¯

=
1√
n

max
q+1≤k≤n

¯̄̄̄
¯

kX
t=q+1

ξ2
t −

µ
k

n

¶ nX
t=q+1

ξ2
t

¯̄̄̄
¯+ oP (1). (15)

Finally, we show that bτ 2 P−→ τ 2 = V ar(ξ2
1). Note that

bξ2
t − ξ2

t =
(h2
t − ĥ2

t )ξ
2
tbh2

t

+ ρt, (16)

where ρt := (bε2
t − ε2

t )/
bh2
t satisfies

1

n

nX
t=q+1

ρt = oP (1) and
1

n

nX
t=q+1

ρ2
t = oP (1). (17)

Thus, in view of (11) and (17),¯̄̄̄
¯ 1n

nX
t=q+1

(bξ2
t − ξ2

t )

¯̄̄̄
¯ ≤

¯̄̄̄
¯ 1n

nX
t=q+1

(h2
t − bh2

t )ξ
2
t

h2
t

¯̄̄̄
¯+ 1

n

nX
t=q+1

(bh2
t − h2

t )
2ξ2
t

h2
t
bh2
t

+ oP (1)

≤ a(θ)

Ã
1

n

nX
t=q+1

(h2
t − bh2

t )
2

!1/2Ã
1

n

nX
t=q+1

ξ4
t

!1/2

+ oP (1),

which is oP (1) since (11) with ξ2
t replaced by 1 is also oP (1), of which proof is essen-

tially the same as that of (11) and is omitted for brevity. Hence,

1

n− q

nX
t=q+1

bξ2
t

P−→ Eξ2
1 . (18)

Now, by (17),

1

n

nX
t=q+1

(bξ2
t − ξ2

t )
2 ≤ 1

n

nX
t=q+1

(h2
t − bh2

t )
2ξ4
t /a(

bθ)2 + oP (1)
≤

µ
1√
n
max

q+1≤t≤n
ξ2
t

¶Ã
1√
n

nX
t=q+1

(h2
t − bh2

t )
2ξ2
t

!
/a(bθ)2 + oP (1)

= oP (1),
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and furthermore,

1

n

nX
t=q+1

(bξ2
t + ξ2

t )
2 ≤ 2

n

nX
t=q+1

(bξ2
t − ξ2

t )
2 +

8

n

nX
t=q+1

ξ4
t = OP (1).

Hence,¯̄̄̄
¯ 1n

nX
t=q+1

bξ4
t −

1

n

nX
t=q+1

ξ4
t

¯̄̄̄
¯ ≤

Ã
1

n

nX
t=q+1

(bξ2
t − ξ2

t )
2

!1/2Ã
1

n

nX
t=q+1

(bξ2
t + ξ2

t )
2

!1/2

= oP (1),

so that (n− q)−1
Pn

t=q+1
bξ4
t
P→ Eξ4

1 . This together with (18) yields bτ 2 P−→ τ 2. In view

of this and (15), we establish the theorem.

Now, as mentioned in the remark below Theorem 1, we demonstrate that a modi-

fication of the test, free from a choice of q, can be constructed for the models with h2
t

satisfying a specific equation. Here, considering its extreme popularity in the financial

time series context, we concentrate ourselves on the case of GARCH(1,1) errors:

yt = β
0
zt + εt, (19)

εt = htξt,

h2
t = ω + α1ε

2
t−1 + α2h

2
t−1

with ω > 0,α1,α2 ≥ 0 and α1 + α2 < 1. In this case, we can write

h2
t = a+ α1

∞X
j=1

αj−1
2 ε2

t−j (20)

with a = ω/(1− α1 − α2), and its estimate is

bh2
t = ba+cα1

qX
j=1

bαj−1
2 bε2

t−j, (21)

where bεt = yt − bβ0

zt, bβ, ba, bα1, bα2 are the estimators for β, a, α1 and α2 satisfying

√
n
³bβ − β´ = OP (1) ,√n (ba− a) = OP (1) ,

√
n (bα1 − α1) = OP (1) and

√
n (bα2 − α2) = OP (1) ,
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and q is a sequence of positive integers with q →∞, q/
√
n→ 0 and

√
nαq2 → 0, which

ensures (A3). Note that the estimate of the conditional variance can be obtained

recursively from the equation

h̃2
t = bω + bα1bε2

t−1 + bα2h̃
2
t−1, (22)

in sofar as initial values bε2
0 and h̃

2
0 are provided. From this, we have that for t ≥ 2,

h̃2
t = bω(bαt2 − 1)/(1− bα2) + bα1

t−1X
j=1

bαj−1
2 bε2

t−j + bα1cα2
t−1bε2

0 + bαt2h̃2
0. (23)

Then, in view of (21) and (23), we have

1√
n

nX
t=q+1

bε2
t |bh−2

t − h̃−2
t | = oP (1), (24)

and moreover,

1√
n

qX
t=1

ε̂2
t |bh−2

t − h̃−2
t | = OP (q/

√
n) = oP (1). (25)

Therefore, from Theorem 1, (24) and (25), we have the following.

Theorem 2. Let h̃2
t be the one in (22), and set ξ̃2

t = bε2
t/h̃

2
t . Let

T̃n := max
1≤t≤n

˜Tn,k :=
1√
nτ̃
max

1≤k≤n

¯̄̄̄
¯
kX
t=1

ξ̃2
t −

µ
k

n

¶ nX
t=1

ξ̃2
t

¯̄̄̄
¯ ,

where τ̃ 2 =
1

n

nP
t=1

ξ̃4
t −

µ
1

n

nP
t=1

ξ̃t

¶2

. Then if (A1) holds, under H0,

T̃n
d→ sup

0≤u≤1
|Bo (u)| , n→∞.

Remark. Notice that unlike in bTn, the first q number of T̃n,k’s are involved in
construction of T̃n. Therefore the test statistic is free from a choice of q in this sense.

As for initial values bε2
0 and h̃

2
0, one can put any numbers. However, one may like

to choose ε̃2
0 =

1
n

Pn
t=1 bε2

t and h̃
2
0 =

1
n−q

Pn
t=q+1

bh2
t . In the latter, a choice of q is

not of serious concern since initial effects somehow will disappear very fast. It may

be reasoned that the initial values may affect the test, but the effect will not be

severe since the last two terms in (23) decay to 0 exponentially fast. In the case of

zt = (yt−1, . . . , yt−p+1)
0
, one has to adopt the test T̃p,n := maxp+1≤t≤n T̃n,k and the

initial value ε̃2
p,0 =

1
n−p

Pn
t=p+1 bε2

t .
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3 Empirical study

3.1 Simulation study

In this section, we evaluate the performance of the test statistic T̂n with q = [(log n)]
3/2,

[(log n)2] and [(log n)3] through a simulation study. Also, we evaluate T̃n with ε̃2
0 and

h̃2
0 that has q = [(log n)

2]. In particular, they are compared with Kim, Cho and Lee

(2000)’s test statistic BT (Ĉ). In this simulation we perform a test at nominal level

0.05. The empirical sizes and power are calculated as the rejection number of the null

hypothesis out of 1000 repetitions.

In order to see the performance of T̂n, we consider the model

yt = htξt,

h2
t = ω + α1y

2
t−1 + α2h

2
t−1,

where y0 is assumed to be 0 and {ξt} are iid standard nomal random variables. Now

we consider the problem of test the following hypotheses:

H0 : θ = (ω,α1,α2) are constant during the time t = 1, · · · , n. vs.
H1 : θ changes to θ0 = (ω0,α01,α

0
2) at n/2.

Here we evaluate T̂n with sample sizes n = 500, 800, 1000. The empirical sizes and

powers are summarized in Tables 1-3. The figures in the parentheses denote the sizes

and powers of Kim, Cho and Lee’s test.

As we see in the tables, we can see that our test has no size distortions. In

particular, the test is still stable even for the case that α1+α2 is close to 1 (see Tables

2 and 3). As mentioned earlier, this is because bξ2
t behaves asymptoticall like iid ξ2

t ,

unaffected by the GARCH parameters. Meanwhile, we can see that the powers are

more than 0.9 at the sample size 1000. Generally, the cusum test in GARCH models

needs a much larger sample size to make accurate inference compared to iid samples.

It seems that the GARCH data with volatility makes it harder to identify small

changes. Compared to ours, Kim, Cho and Lee’s test shows severe size distortions

and much lower powers. Overall, our simulation study strongly supports the validity

of the residual cusum test.

12



** Tables 1-3 here **

3.2 Real data analysis

In this section, we intend to demonstrate the validity of our method in actual practice.

For this task, we analyze the return of yen/dollar exchange rate data from Jan 5, 1998

to Jan 27, 2003. Recall that the Dk plot, defined in Inclán and Tiao (1994), is a useful

tool to detect multiple changes. In our case, we only detected one change point on

Sep 28, 1999 (see the vertical line in Figure 1). The data in the first period from Jan

5, 1998 to Sep 28, 1999 appears to follow the model:

yt = 0.007 + εt,

εt = htξt,

h2
t = 0.140 + 0.175ε

2
t−1 + 0.686h

2
t−1,

and the data in the second period follows the model

yt = 0.015 + εt

εt = htξt

h2
t = 0.087 + 0.025ε

2
t−1 + 0.729h

2
t−1.

Theis result indicates that the parameters experience significant changes.

Meanwhile, we ignored the change on purpose and fitted the GARCH(1,1) model

to the whole observations. Consequently, we obtained an IGARCH(1,1) model as

follows:

yt = 0.011 + εt

εt = htξt

h2
t = 0.012 + 0.061ε

2
t−1 + 0.917h

2
t−1.

The result vividly shows that ignoring changes can lead to a false conclusion in sta-

tistical inference. This misspecification result coincides with the one reported by

Maekawa et al. (2003).

** Figure 1 here **
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4 Concluding remarks

In this paper, we proposed a residual based cusum test based and derived that the

test statistic is asymptotically distributed as the sup of a Brownian bridge under

regularity conditions. In the proof, we used the invariance principle result for beta

(strong) mixing processes, which was possible owing to the results of Carrasco and

Chen (2002) and Pelrigrad (1986). The proof was of an independent interest since

the mixingale approach adopted by Kim, Cho and Lee (2000) is not easy to apply,

and the proof would be much lengthier without the beta mixing condition.

In fact, the present paper was motivated to circumvent the drawbacks of the cusum

test proposed by Kim, Cho and Lee in GARCH(1,1) models. The idea in developing

our test is explained in Section 2. As seen in Subsection 3.1, the simulation result

appeared to be remarkably favorable to our test: the sizes and powers are greatly

improved compared to the original cusum test. This indicates that the residual cusum

test is highly trustful. In Subsection 3.2, the test was applied to the yen/dollar

exchange rate data and detected one change point. It was also seen that ignoring the

change leads to a wrong conclusion. Overall, we believe that our test constitutes a

functional tool for testing for a parameter change in ARCH models. We leave the

residual cusum test in other types of GARCH models as a task of future study.
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Table 1. θ = (0.5, 0.2, 0.2)

θ0 = (ω0,α0, β0) n = 500 n = 800 n = 1000 n = 1500

size 0.026 (0.02) 0.033 (0.025) 0.049 (0.035) 0.043 (0.039)

(3.0, 0.2, 0.2) 0.306 (0.077) 0.866 (0.031) 0.99 (0.009)

(0.5, 0.6, 0.2) 0.493 (0.144) 0.777 (0.349) 0.901 (0.432)

(0.5, 0.2, 0.6) 0.537 (0.111) 0.806 (0.269) 0.902 (0.381)

Table 2. θ = (0.1, 0.4, 0.4)

θ0 = (ω0,α0, β0) n = 500 n = 800 n = 1000 n = 1500

size 0.036 (0.009) 0.038 (0.004) 0.049 (0.005) 0.04 (0.002)

(0.4, 0.4, 0.4) 0.854 (0.198) 0.994 (0.387) 0.997 (0.449)

(0.1, 0.1, 0.4) 0.526 (0.157) 0.839 (0.493) 0.928 (0.646)

Table 3. θ = (0.1, 0.2, 0.7)

θ0 = (ω0,α0,β0) n = 500 n = 800 n = 1000 n = 1500

size 0.02 (0.002) 0.032 (0.003) 0.032 (0.008) 0.042 (0.01)

(0.4, 0.2, 0.7) 0.219 (0.173) 0.722 (0.228) 0.919 (0.271)

(0.1, 0.2, 0.2) 0.616 (0.07) 0.917 (0.194) 0.983 (0.313)

Figure 1: Plot of Foreign Exchange rate data
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