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Most existing results of evolutionary games restrict only to the
Nash equilibrium. This paper introduces the analogue of evolution-
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1 Introduction

The Nash equilibrium — the fundamental concept in the theory of non-
cooperative normal form games — deals only with the simple situation where
players choose actions independently. Aumann (1974) extends it to the no-
tion of a correlated equilibrium, which deals with the more general situation
where players may be independent or may have some correlating signals in
choosing their actions. That the correlated equilibrium has natural inter-
pretations in terms of rationality,1 is a very practically relevant solution,2

and has numerous applications 3 has been well accepted.
For sharper predictions of the Nash equilibrium, numerous refinements

have been studied and become standard tools, e.g., the evolutionary stability
(Maynard Smith (1982)), the perfect equilibrium (Selten (1975)), and the
proper equilibrium (Myerson (1978)). The analogue of perfection for the
correlated equilibrium was pioneered by Myerson (1986) and Dhillon and
Mertens (1994). Other refinement analogues, particularly the evolutionary
stability, however, have not been well explored.

In this paper, we will study an analogue of evolutionary stability (May-
nard Smith (1982)) for the correlated equilibrium. Our central notion is
an evolutionarily stable correlation (ESC) that generalizes the traditional
(Maynard Smith) notion of evolutionarily stable strategy Nash equilibrium
(ESS). We also discuss perfection, properness, and a replicator dynamic
process for correlation and relate them to ESC.

We adopt a large population model with a uniform random matching pro-
cess. We assume that a given (conventional) random device will recommend
actions to matched players. When players take the “obedient” strategy, the
device will generate a probability distribution on joint actions played — the
conventional correlation. We investigate the stability of this correlation with
respect to mutations on players’ assignment strategies defined as mappings
from recommended actions into actions actually played. Suppose a group
of mutants appears in the population and they all use the same assignment
strategy that is different from the obedient strategy. Although the (conven-
tional) random device remains the same, the resulting correlation of joint
actions played will be different from the conventional correlation. We say
the conventional correlation is evolutionarily stable (ESC) when an incum-

1 Such as a Bayesian rationality. See Aumann (1974, 1987) for more details.
2 As pointed out by Hart and Mas-Colell (2000, p.1128, lines 2-4), “it is hard to exclude

a priori the possibility that correlating signals are amply available to the players.”
3E.g. sunspots and games with communication. See Forges and Peck (1995) and My-

erson (1994).

2



bent, using the obedient strategy, performs better than a mutant, using the
non-obedient strategy.

We show that an ESC is a correlated equilibrium, but not vice versa, and
characterizes ESC (Proposition 1 and Example 2). We prove that this notion
of ESC is a generalization of the traditional notion of ESS (Proposition
4) in the same manner as the correlated equilibrium generalizes the Nash
equilibrium. In particular, if a correlation ζ is generated by a mixed action
x in the independent manner (i.e. ζ is the product measure of x times x),
then ζ is ESC if and only if x is ESS.

The ESS refines the Nash equilibrium and deals with evolutionary stabil-
ity under the restriction of independent plays. In contrast, the ESC refines
the correlated equilibrium and deals with evolutionary stability without the
restriction of independent plays. In many cases, the set of ESC’s is strictly
larger than the set of ESS’s. While the set of ESS’s is always finite, the set
of ESC’s need not be always finite. For example, in a standard coordination
game (Example 2), the only ESS’s are the two pure Nash equilibria but
many ESC’s are “mixed” correlations. The differences between the sets of
ESC’s and ESS’s sheds some light on clarifying the differences between the
implications of the restriction of the evolutionary stability alone and that of
the evolutionary stability together with independent plays.

We characterize ESC with regard to its local superiority. We prove that
a correlation is ESC if and only if it is locally superior, i.e. incumbents using
obedient strategies earn higher payoffs against all nearby mutants than they
earn against themselves (Proposition 5).

We introduce the notion of a perfect correlated equilibrium, the notion
of a proper correlated equilibrium, and a replicator dynamic process for cor-
relation. We prove that a perfect correlated equilibrium is a generalization
of a perfect Nash equilibrium and a proper correlated equilibrium is a gener-
alization of a proper Nash equilibrium (Proposition 7). Also, we show that
an ESC is a proper correlated equilibrium and a proper correlated equilib-
rium is a perfect correlation (Propositions 7 through 11). However, none
of the inverse is true. We also study a dynamic stability of ESC and show
that an ESC is asymptotically stable with respect to the replicator dynamics
(Proposition 12).

This paper also can be applied to the study of evolutionary ecology. It
has been accepted (cf. Riechert and Hammerstein (1983)) that only pure
symmetrical equilibria in symmetric games are relevant to the biological
conflicts of animals and plans, but many interesting games do not have such
equilibria (e.g. a hawk-dove game). The results of this paper enable us to
interpret ESC as a solution to such conflicts, with the underlying assumption
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that Nature supplies the random device as a phenotype conditional device in
the manner very similar to previous contributions of Selten (1980), Shmida
and Peleg (1997), and Cripps (1991). Moreover, our approach and results
are more general than these works. For example, our model is simpler in that
restrictions of role-asymmetry on the pairwise matching are not necessary,
but such restrictions are crucial in their models. Also, our stability notion
is less restrictive than their stability notion; indeed our ESC generalizes the
classical notion of ESS, but theirs do not. More specifically, their notions
are shown to be equivalent to a strict correlated equilibrium, but our notion
allows non-strict correlated equilibrium.

We relate our work with several existing works on perfection refinements
(Myerson (1986), Dhillon and Mertens (1994)) and learning (Ianni (2001),
Foster and Vohra (1997), Fudenburg and Levine (1999), Hart and Mas-
Colell (2000) for correlated equilibrium. The work of Dhillon and Mertens
(1994) is most closely related to ours; in particular, stability about a cor-
related equilibrium by dealing with assignment functions (obedient vs non-
obedient). Dhillon and Mertens study only the perfection refinement for
correlated equilibrium but we cover evolutionary stability and other issues
for correlated equilibrium. In our model with symmetric two-player game,
our notion of a perfect correlation is the same as Dhillon and Mertens’ no-
tion of a perfect direct correlated equilibrium.4 Similar to a result of Dhillon
and Mertens, our perfect correlated equilibrium is, in general, stronger than
Myerson’s acceptable correlated equilibrium (Example 5).

Foster and Vohra (1997), Fudenburg and Levine (1999), Hart and Mas-
Colell (2000), and Ianni (2001) study dynamic simple procedures for playing
games that lead to a correlated equilibrium, but not study refinements of
the correlated equilibrium.5 We are interested in refining the correlated
equilibrium, from evolutionary and other stability viewpoints. Also, our
study of dynamics (replicator) is different from their dynamics: our process

4 Dhillon and Mertens studied both direct mechanism and indirect mechanism but our
approach is concerned only with the direct one.

5 Foster and Vohra (1997), Fudenburg and Levine (1999), and Hart and Mas-Colell
(2000) seek simple procedures for playing a normal game that generate paths of plays
whose empirical distributions of joint actions played converge to the set of correlated
equilibria of the game. Ianni (2001) studies convergence to correlated equilibrium in an
indirect manner: First, she considers a population game (with an underlying finite normal
form game, a population of players, and an exogenous random matching technology for
players) and shows that a Nash equilibrium in a population game that corresponds to
a correlated equilibrium for the underlying normal game (cf. Mailath, Samuelson, and
Shaked (1997)). Then, she finds a class of population games and a class of simple proce-
dures generating convergence to a Nash equilibrium, leading to a correlated equilibrium.
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is taken in the space of assignment functions (not action space) and our
approach is evolutionary (not learning). Also our main interest in studying
this dynamics is to relate its stable state to our concept of evolutionary
stability.

2 Evoluationarily Stable Correlation

Consider a finite and symmetric two-player normal form game G = {S1, S2; u1, u2},
where the finite set S = {s1, s2, · · · , sm} of (pure) actions and payoff function
u : S × S → R such that S1 = S2 = S, and u1(si, sj) = u(si, sj) = u2(sj , si)
for all si, sj ∈ S. A strategy (or mixed action) is an x ∈ 4(S).6 A correla-
tion is an ζ ∈ 4(S×S).7 A correlation ζ is symmetric if ζ(si, sj) = ζ(sj , si)
for all (si, sj ∈ S).

Definition 1 (cf. Aumann (1974, 1987)) A correlated equilibrium is a
correlation ζ such that for all si ∈ S,

∑

sj∈S

u(si, sj)ζ(si, sj) ≥
∑

sj∈S

u(si′ , sj)ζ(si, sj) for all si′ ∈ S.

It is well-known that a correlated equilibrium can be viewed as the out-
come of Bayesian maximization of players with respect to a random device.

Recall that a random device is a lottery mechanism selecting a private
message for each agent (cf. Aumman (1974,1987)). In this paper, we will
restrict our attention to the case of direct mechanisms, i.e. the message
space Mi = S for each agent i = 1, 2. Formally, a random device is a pair
F = (S, ζ), where ζ is a correlation, a probability distribution over joint
message space M = M1 ×M2 = S × S. When an agent receives a message
si ∈ S = Mi, we interpret that the device recommends the agent to play
action si.

Thus, a correlated equilibrium is a correlation ζ such that the corre-
sponding random device F = (S, ζ) is incentive compatible, i.e. being obe-
dient (playing recommended actions) is a best response for an agent if the
opponent is also obedient.

Of course, given a random device, an agent may not be obedient, and
may choose (pure or mixed) actions different from the recommended actions.

6 For any finite set X, we use 4(X) to denote the set of probability measures over X
and int(4(X)) = {µ ∈ 4(X) : µ(x) > 0 ∀x ∈ X}.

7 Correlations play two roles in this paper: correlation of messages for recommended
actions (see our random-device discussion) or correlation of actions played (Definition 3).
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Definition 2 An assignment function is a function δi : S → 4(S) for
i = 1, 2. An assignment pair is δ = (δ1, δ2) where each δi is an assignment
function.

Thus, when an agent chooses an assignment function δ and when he
receives the signal si from the random device, he will choose the mixed
action δ(si). We use δ(sj |si) to denote the probability assigned on sj under
this mixed action δ(si).

We denote the set of pure assignments by T = {δ|δ : S → S}, the set of
assignments by Q = {δ|δ : S → 4(S)}, and the set of probability measures
over T by 4(T ). As a standard, we can map T onto Q by a natural linear
function, so we can view the set T as the set Q (Remark A in Appendix).

Suppose there is a random device F = (S, ζ) and that each player is
using the obedient assignment (identity assignment function) δid where

δid(sj |si) = 1 for j = i

= 0 for j 6= i .

Then, the resulting correlation (probability distribution) of joint actions
actually played will be ζ, the same as the correlation of recommended actions
in the device. But when players use other assignments, a different correlation
of played joint actions may result.

Definition 3 We say that a correlation µ is generated by a random device
F = (S, ζ) and an assignment pair δ = (δ1, δ2), denoted by µ = K(F, δ), if
for all (si, sj) ∈ S × S,

µ(si, sj) =
∑

(s′i,s
′
j)∈S×S

δ1(si|s′i)δ2(sj |s′j)ζ(s′i, s
′
j).

It is natural to interpret a correlation µ (actions actually played) as
a coordination mechanism among players. Different assignment functions
allow different µ’s on4(S×S), although they need not generate all elements
in 4(S × S). In this sense, we endogenize a coordination mechanism µ.

Now, given a random device F = (S, ζ) and an assignment pair δ, a cor-
relation µ (for joint actions played) is generated, which induces the expected
payoffs for the players.
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Definition 4 Given ζ ∈ 4(S × S) for any assignment pair (δ1, δ2), the
payoffs for the two players are U1 = U(δ1, δ2) and U2 = U(δ2, δ1) where:

U(δ1, δ2) =
∑

(s′i,s
′
j)∈S×S

∑

(si,sj)∈S×S

δ1(si|s′i)δ2(sj |s′j)u(si, sj)ζ(s′i, s
′
j)

=
∑

(si,sj)∈S×S

u(si, sj)µ(si, sj)

where µ = K(F, (δ1, δ2)) and F = (S, ζ) .

Our main idea of defining evolutionary stability relies on relative perfor-
mances of different assignment functions.

It is worthwhile to point out that in our definition of evolutionary sta-
bility, we will focus on a symmetric random device, i.e. a device F = (S, ζ)
where ζ is symmetric. This is natural because the underlying normal form
game is symmetric and players have symmetric roles.

Example 1 shows that two different assignment functions can generate
the same correlation µ (for joint actions played), hence the same payoff (even
when the device is symmetric).

Example 1 Let S = {X,Y }, and ζ = (1/4, 1/4, 1/4, 1/4) on (XX, XY, Y X, Y Y ),
and F = (S, ζ). Let δ′ = δid. Let δ

′′
be such that δ′′(X) = (1/2)X +(1/2)Y ,

and δ′′(Y ) = (1/2)X + (1/2)Y . Then, K(F, (δ′, δ′)) = K(F, (δ′, δ′′)) =
K(F, (δ′′, δ′)) = K(F, (δ′′, δ′′)) = ζ.

If two different assignment functions generate the same correlation µ (for
joint actions played), it is difficult to say that two assignment functions are
really different. For this reason, we give the following definition.

Definition 5 For a given random device F = (S, ζ), we say that two as-
signment functions δ′, δ′′ are equivalent, denoted by δ′ =∗ δ′′, if ζ1 = ζ2 =
ζ3 = ζ4, where, ζ1 = K(F, (δ′, δ′)), ζ2 = K(F, (δ′, δ′′)), ζ3 = K(F, (δ′′, δ′)),
and ζ4 = K(F, (δ′′, δ′′)).

Lemma 1 and its immediate Corollary 1 characterize the equivalence
relation between two assignment functions.

Lemma 1 Consider a given random device F = (S, ζ) where ζ ∈ 4(S ×S)
is symmetric. Then, for all δ′, δ′′ ∈ Q,

[K(F, (δ′, δid)) = ζ] ⇒ [K(F, (δ′, δ′′)) = K(F, (δid, δ′′))].
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Proof: See Appendix.

Corollary 1 Consider a given random device F = (S, ζ) where ζ ∈ 4(S ×
S) is symmetric. Then:

a) for any assignment functions δ′, δ′′:

i) δ′ =∗ δid if and only if K(F, (δid, δ′)) = ζ;

ii) if δ′ =∗ δid and δ′′ =∗ δid, then δ′ =∗ δ′′ and K(F, (δ′, δ′′)) = ζ.

b) the set {δ′ ∈ Q : δ′ =∗ δid} is convex.

The following definition of stability is the central concept of this paper.
A correlation is evolutionarily stable if incumbents with obedient strategies
perform better than mutants with non-obedient strategies. We need to be
careful in defining mutants since not all non-obedient strategies should be
considered mutations (Example 1). For this reason, mutational strategies
are only those that are not equivalent to the identical assignment function.

Definition 6 An evolutionarily stable correlation (ESC) is a symmetric ζ ∈
4(S×S) such that the identity assignment δid is evolutionarily stable with
respect to F = (S, ζ), i.e. for every assignment function δ′ 6=∗ δid, there is a
ε̄ > 0 such that for all ε ∈ (0, ε̄):

(1− ε)U(δid, δid) + εU(δid, δ′) > (1− ε)U(δ′, δid) + εU(δ′, δ′).

Suppose there is a large population of individuals whose habit of coor-
dination is the correlation ζ. With respect to the physical random device
F = (S, ζ), regarded as the conventional device, all individuals are pro-
grammed to play the obedient assignment δid. Now, suppose a small group
of mutants appears. These mutants use a mutational assignment function
δ′ 6=∗ δid, but they cannot change the conventional device. With the physi-
cal device ζ, ε portion of the population are mutants who use δ′, and 1− ε
portion of the population are incumbents who use δid. Pairs of individuals
in this bimorphic population are repeatedly drawn to play the game with a
uniform matching probability. In playing the game, the pair of players faces
the conventional random device F (S, ζ). Then, if ζ is ESC, the incumbents
perform better than the mutants; therefore, the evolutionary force drives
out the mutants and the incumbents and the conventional random device
F (S, ζ) will last long.

Note that the possible correlations (for joint actions played) generated
are restricted to be local in the sense that they are generated restrictively
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by perturbed mutations through assignments with a fixed direct random
device F = (S, ζ). Such mutations need not generate all possible measures
on 4(S × S).8

This formulation also captures the idea of mutation arising from mis-
perceptions by agents. For example, suppose the conventional random de-
vice remains unchanged but some mutants mistakenly perceive a change in
the device. With respect to the perceived device, the mutants will change
their assignment functions to accommodate the changes. Our notion of
evolutionary stability ensures that these mutants will eventually disappear
if their mutational assignment function is different from the conventional
obedient one.

The ESC is the analogue of the notion of Maynard Smith’s evolutionarily
stable (Nash) strategy for correlated equilibria.

Definition 7 (Maynard Smith (1982))An evolutionarily stable strategy
(ESS) is an x ∈ 4(S) such that for every y ∈ 4(S) with x 6= y, there is a
ε̄ > 0 such that for all ε ∈ (0, ε̄):

(1− ε)V (x, x) + εV (x, y) > (1− ε)V (y, x) + εV (y, y).

(V (·, ·) denotes the (expected) payoff for the first player, so for x, y ∈ 4(S),
we have V (x, y) =

∑
(si,sj)∈S×S x(si)y(sj)u(si, sj).)

The following fact is well-known.

Fact 1 (Weibull (1995), p.37, Proposition 2.1) A x ∈ 4(S) is ESS if
and only if it satisfies:

a) V (y, x) ≤ V (x, x) ∀y ∈ 4(S);
b) V (y, x) = V (x, x) ⇒ V (y, y) < V (x, y) ∀y ∈ 4(S) with y 6= x.

(1)

We obtain a similar characterization for our ESC. By the standard ar-
guments for the proof of Fact 1 (cf. Weibull (1995), p. 37), Proposition 1
follows immediately.

8 This contrasts with the fact that it is possible to find an indirect random machine
(i.e. whose message space for each agent need not be S) that can generate the whole set
of 4(S × S) through varying assignment pairs. Constructing such a random machine is
not difficult. We omit it for brevity.
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Proposition 1 (Characterization of ESC) A ζ ∈ 4(S × S) is ESC if
and only if it satisfies:

a) U(δ′, δid) ≤ U(δid, δid) for every assignment function δ′;
b) U(δ′, δid) = U(δid, δid) ⇒ U(δ′, δ′) < U(δid, δ′)

for every assignment function δ′ 6=∗ δid.
(2)

Proposition 2 is immediate from Proposition 1.

Proposition 2 . If ζ ∈ 4(S×S) is an ESC, then ζ is a correlated equilib-
rium.

Example 2 shows that the converse of Proposition 2 is not true and thus
ESC gives us a natural selection of correlated equilibria.

Example 2 This example will show that not every correlated equilibrium
is ESC. Consider the following coordination game where S = {X,Y } and
the payoffs are:

X Y
X (1, 1) (0, 0)
Y (0, 0) (1, 1)

It is easy to verify that a symmetric ζ ∈ 4(S×S) is a correlated equilibrium
if and only if it is in the form of ζ = (a, b, c, c) on (XX,Y Y, XY, Y X) with
a ≥ c and b ≥ c. We can show that ζ is an ESC if and only if a > c and
b > c. It is clear that if a > c and b > c, then ζ is a strict equilibrium,
hence an ESC.9 Conversely, suppose a ≥ c and b = c, then it is easy to
check that for the mutational pure assignment function δ′ with δ′(X) = Y
and δ′(Y ) = Y , we have a violation of condition (b) in Proposition 1, hence
ζ cannot be an ESC. Similarly, when a = c and b ≥ c, ζ cannot be an ESC.

Example 2 is interesting because it shows how ESC compares with ESS.
It contrasts sharply with the fact that for any symmetric game there are
at most finitely many ESS’s: in Example 2 there are only two ESS’s, but
infinitely many ESC’s. More importantly, ESS does not allow any of mixed
strategy profiles as an ESS but ESC does. This observation was also made by
Theorem 4 in Kandori, Mailath and Rob (1993), which shows that the limit
distribution places equal probability on each of two pure Nash equilibria.
They also argue that this limit equilibrium has the flavor of a correlated

9The set of correlated equilibrium is convex. It is not difficult to show that the set of
ESC is also convex.
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equilibrium. Thus, Example 2 rigorously confirms their observations in the
context of evolutionary approach to correlated equilibria.

It is well-known that the existence of ESS is not guaranteed. Neither is
ESC.

Example 3 This example shows the possibility of having no ESC. Consider
the following game where S = {X, Y, Z} and the payoffs are:

X Y Z
X (1, 1) (2,−2) (−2, 2)
Y (−2, 2) (1, 1) (2,−2)
Z (2,−2) (−2, 2) (1, 1)

If ζ ∈ 4(S×S) is symmetric, then it is in the form of aXX + bY Y + cZZ +
dXY + dY X + eXZ + eZX + fY Z + fZY . It is easily verified that if ζ
is a correlated equilibrium, then we must have a = b = c = d = e = f =
1/9, which is the product measure of the Nash equilibrium mixed action
(1/3)X + (1/3)Y + (1/3)Z. This Nash equilibrium is not ESS, because any
mutation of pure action will perform equally as well as that mixed action.
Consequently, this game has no ESC.

Proposition 3 is also immediate from Proposition 1.

Proposition 3 Suppose a symmetric ζ ∈ 4(S × S) is a strict correlated
equilibrium, i.e. for all si ∈ S, if ζ(si) =

∑
sj∈S ζ(si, sj) > 0, then:

∑

sj∈S

u(si, sj)ζ(si, sj) >
∑

sj∈S

u(si′ , sj)ζ(si, sj) for all si′ ∈ S with s′i 6= si.

Then ζ is ESC.

However, an ESC is not necessarily a strict correlated equilibrium, shown
in Example 4.

Example 4 This example shows that an ESC need not be a strict correlated
equilibrium. Consider the following game where S = {X, Y } and the payoffs
are:

X Y
X (1, 1) (1, 1)
Y (1, 1) (0, 0)

ζ = 1 on XX is ESS, hence also ESC. Clearly, this ESC is not a strict
correlated equilibrium.
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Proposition 4 shows the relationship between ESS and ESC.

Proposition 4

a) If x ∈ 4(S) is ESS, then ζ = x× x is ESC.

b) If ζ ∈ 4(S × S) is ESC and x ∈ 4(S) with ζ = x× x, then x is ESS.

Proof: See Appendix.
The product measure (a random device) such as ζ = x×x does not gen-

erate differential information for different recommendations. In particular,
if a player is recommended to play si or to play sj , and if the opponents are
assumed to be obedient, he will make the same prediction about the oppo-
nent’s mixed action, namely x. Therefore, his best response to obedience
will be x. Under the product measure ζ = x× x, the (constant) assignment
δ′, that for each recommendation si plays the same mixed action x, satisfies
δ′ =∗ δid.

This idea allows us to pass a Nash equilibrium in the standard context
of uncoordinated play to the present context of coordinated play and vice
versa. These two ideas will be used in our proofs for carrying over other
standard refinements of the Nash equilibrium to a correlated equilibrium.

We will now study the structures of the set of ESC and its connections
with other known refinements of correlated equilibrium.

3 Evolutionary Stability and Local Superiority

It is well-known that any ESS earns a higher payoff against all nearby mu-
tants than these earned against themselves. This characteristic of ESS is
called the local superiority. We will obtain similar characteristics for ESC.

Definition 8 Given a random device F = (S, ζ), an assignment δ is lo-
cally superior if there is a neighborhood N of δ in Q such that U(δ, δ′) >
U(δ′, δ′) for all δ′ ∈ N with δ′ 6=∗ δ. We say ζ is locally superior if the obe-
dient assignment δid is locally superior.

Proposition 5 A symmetric ζ ∈ 4(S×S) is ESC if and only if ζ is locally
superior.

Proof: See Appendix.
In Definition 6, the invasion barrier ε̄ may depend on the mutant δ′.

The following Lemma 2 shows that in the present finite game, the invasion
barrier can be taken uniformly for any mutants.
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Lemma 2 . The invasion barrier ε̄ in Definition 6 can be taken uniformly
over all δ′.

Proof: See Appendix.
Proposition 5 and Lemma 2 are analogues of the similar results in ESS

for ESC. (cf. Weibull (1995), Proposition 2.5 and 2.6) We need to make
relevant modifications so that we can take care of the =∗ relation.

Proposition 6 shows that Definition 8 is a generalization of the standard
definition of local superiority for ESS.

Proposition 6 Let x ∈ 4(S) and ζ = x × x. Then, ζ is locally superior
(in the sense of Definition 8) if and only if x is locally superior (in the
standard ESS sense), i.e. there is a neighborhood N of x in 4(S) such that
V (x, y) > V (y, y) for all y 6= x ∈ N .

Proof: It is well-known that an x ∈ 4(S) is ESS if and only if it is locally
superior in the standard ESS sense. By Proposition 1 and Proposition 5,
x is ESS if and only if ζ is locally superior in the sense of Definition 8.
Q.E.D.

4 Asymmetric Animal Conflict

We can apply our model to the study of evolutionary stability on biological
conflicts due to Selten (1980), Shmida and Peleg (1997) and Cripps (1991).

It has been noted (cf. Riechert and Hammerstein (1983)) that for ap-
plying the ESS notion (Maynard Smith (1982)) to the study of biological
conflicts of animals and plants, only pure symmetrical equilibria are rel-
evant, but many games do not admit such equilibria. For example, in a
Hawk-Dove game:

D H
D (2, 2) (2, 4)
H (4, 2) (0, 0)

the Nash equilibria are: HD, DH, and (1/2)D + (1/2)H. To bridge this
gap, Selten (1980) introduced a role assignment random process, studied
evolutionary stability for behavior strategies (“role conditional strategies”),
and proved that any strict (possibly-mixed) Nash equilibrium is the outcome
of some process with pure behavior strategy ESS. Shmida and Peleg (1997)
and Cripps (1991) extend the work of Selten to cover correlated equilibria
(not just Nash equilibria).
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For a given symmetric normal form game G with payoff function u and
strategy set S as given in the beginning Section 2, the ideas of Shmida and
Peleg (1997) and Cripps (1991) can be summarized as follows. 10

Definition 9 An asymmetric animal conflict11 12

is a pair (W,p) such that:

1) W = W1 ∪W2, where W1,W2 are non-empty finite sets that are disjoint,

2) role assignment measure p ∈ 4(W × W ) satisfies p(w, v) = p(v, w) for
all w, v ∈ W and

(role asymmetry) Supp(p) = W1 ×W2 ∪W2 ×W1. (3)

In an asymmetric animal conflict (W,p), a behavioral strategy is a func-
tion b : W → 4(S), and we use b(s|w) to denote (b(w))(s). A behavioral
strategy b is pure if b(w) is a pure (not-mixed) action for every w ∈ W .
Given a pair of behavioral strategies b, b′, define the expected payoff by:

Ũ(b, b′) =
∑

w∈W

∑

v∈W

∑

s∈S

∑

s′∈S

u(s, s′)b(s|w)b′(s′|v)p(w, v).

As in the standard (Maynard Smith’s) sense, a behavioral strategy b is ESS
if

a) Ũ(b′, b) ≤ Ũ(b, b) for every behavioral strategy b′;
b) Ũ(b′, b) = Ũ(b, b) ⇒ Ũ(b′, b′) < Ũ(b, b′)

for every behavioral strategy b′ 6= b.
(4)

A ζ ∈ 4(S) is the outcome of a behavioral strategy b if

ζ(s, s′) =
∑

w∈W

∑

v∈W

b(s|w)b(s′|v)p(w, v) for all s, s′ ∈ S.

10Shmida and Peleg (1997) restricts to such symmetric bimatrix games, Cripps works
for general bimatrix games (1991).

11The term of asymmetric animal conflict is due to Shmida and Peleg (1997), and it is
called a simple contest in Cripps (1991).

12The role set W discussed below corresponds to our message space S (of recommended
actions), and the role assignment function p discussed below corresponds to our correlation
ζ, and the behavioral function b discussed below corresponds to our assignment function
ζ, and the equation (4) below corresponds to our equation (2).
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Definition 10 A ζ ∈ 4(S × S) is SPC if ζ is the outcome of some pure
ESS b in some asymmetric animal conflict (W,P ).13

Then main results of Shmida and Peleg (1997, Theorem 4.1), and Cripps
(1991, Theorem) can be stated in this context:

Fact 2 (Shmida and Peleg (1997), and Cripps (1991) A symmetric
ζ ∈ 4(S × S) is SPC if and only if ζ is a strict correlated equilibrium.

Our work and their work share some similarities in that we commonly
relate the notion of correlated equilibrium to the idea of evolutionary stabil-
ity by using phenotypic conditional behavior. But we are different in several
aspects.

First, in motivation, they aim at explaining why a mixed (strict) corre-
lated equilibrium (with asymmetric action pair in its support) is consistent
with the idea that only a symmetric pure action equilibrium is relevant in
the biological conflict situation. We aim at refining the set of correlated
equilibria (allowing non-strict ones) in the spirit of evolutionary stability.
Our work admits their interpretation.

Second, in formalizing conditional behavior, they use a role set W , and
require the role assignment measure to satisfy the role asymmetry (3), which
is essential in their proofs and it makes their space, in general, larger than
the action space S. We use the action space as the message space. We
also do not need any asymmetry, e.g. we do not require action(or message)-
asymmetry, i.e., ζ(s, s) = 0 for all s ∈ S for a given correlation ζ, although
we allow it. (See the fourth comment below).

Third, their notion SPC is too restrictive to be a generalization of the
ESS notion. But ESC generalizes ESS. In particular, their SPC is equivalent
to the notion of a a strict equilibrium, hence SPC fails to generalize ESS.
For example, in the Hawk-Dove game above, the Nash equilibrium (1/2)H+
(1/2)D is an ESS, but it is neither a strict Nash equilibrium nor a strict
correlated equilibrium, hence it is not SPC. However, it is ESC, as every
ESS is ESC.

Fourth, their SPC is in general stronger than our notion of ESC, as a
strict correlated equilibrium is also ESC. Their “strict” conclusion is rooted
to the requirement of role asymmetry (3) in their formulation. (Cf. Cripps

13“SPC” is our own terminology (standing for Shmida-Peleg-Cripps); we use it to avoid
confusion. In Shmida and Peleg (1997) (or Cripps (1991)), it is simply called “the outcome
distribution of an ESS in an animal conflict (or a simple contest).”
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(1991, p. 432, third paragraph.)14 Interestingly, if a given correlation ζ is
action-asymmetric (i.e. ζ(s, s) = 0 for all s ∈ S), then it can easily shown
that ζ is ESC if and only if ζ is a strict correlated equilibrium. Thus under
action-asymmetry, their SPC and our ESC are equivalent.

5 Evolutionary Stability, Perfection, and Proper-
ness

It is well-known that an ESS Nash equilibrium is a perfect equilibrium and
even a proper equilibrium. We will give the similar results for correlated
equilibria and ESC.

For every number ε > 0, we define:

Qε = {δ ∈ Q : δ(sj |si) ≥ ε ∀si, sj ∈ S}
4ε(S) = {x ∈ S : x(sj) ≥ ε ∀sj ∈ S} .

We will first define the standard notions of perfect and proper equilib-
rium in the context of symmetric games.

Definition 11 (cf. Selten (1975))An x ∈ 4(S) is a perfect Nash equilib-
rium if there is a sequence of positive εt → 0, and a sequence of xt ∈ 4εt(S)
such that xt → x and for every t, V (xt, xt) = max{V (y, xt) : y ∈ 4εt(S)} .

Definition 12 (cf. Myerson (1978))An x ∈ 4(S) is a proper Nash equi-
librium if there is a sequence of positive εt → 0, and a sequence xt ∈
int(4(S)) such that xt → x and for every t,

V (sp, xt) < V (sq, xt) ⇒ xt(sp) ≤ εtx(sq) ∀sp, sq ∈ S.

We now give analogues of these definitions in our coordination context.

Definition 13 A perfect correlated equilibrium is a symmetric ζ ∈ 4(S ×
S) such that there is an δ ∈ D = {δ′ ∈ Q : δ′ =∗ δid}, a sequence of
positive εt → 0, and a sequence δt ∈ Qεt such that δt → δ and for every t,
U(δt, δt) = max{U(δ′, δt) : δ′ ∈ Qεt} .

In Definition 14, we will use the following set, int(Q) = {δ ∈ Q :
δ(sj |si) > 0 ∀si, sj ∈ S} . For every si, sp ∈ S, and δ ∈ Q, we define:

U(sp, δt|si) =
∑

sk,sj∈S

ζ(si, sj)δt(sk|sj)u(sp, sk).

14In short, role asymmetry leads to the situation where mutants may meet, but mutant
component (actually mutated action) will never meet itself. Cf. Weibull (1995, p. 66).
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Definition 14 A proper correlated equilibrium is a symmetric ζ ∈ 4(S×S)
such that there is an δ ∈ D = {δ′ ∈ Q : δ′ =∗ δid}, a sequence of positive
εt → 0, and a sequence δt ∈ int(Q) such that δt → δ and for every t and
every si ∈ S:

U(sp, δt|si) < U(sq, δt|si) ⇒ δt(sp|si) ≤ εtδt(sq|si) ∀sp, sq ∈ S .

In Proposition 7, we show that Definitions 11 and 12 are generalizations
of perfect Nash and proper Nash equilibria.

Proposition 7 . Let x ∈ 4(S) and ζ ∈ 4(S × S) = x× x. Then:

a) x is a perfect equilibrium if and only if ζ is a perfect correlated equilibrium;

b) x is a proper equilibrium if and only if ζ is a proper correlated equilibrium.

Proof: See Appendix.
The relationship between a perfect correlated equilibrium and a proper

correlated equilibrium is same as the case for the Nash equilibrium.

Proposition 8 A proper correlated equilibrium is a perfect correlated equi-
librium but the converse is not true.

Proof: The first assertion follows easily along the lines of a standard proof
(cf. Myerson (1978)) that a proper Nash equilibrium is a perfect Nash equi-
librium, and we omit the details. The second assertion follows from Propo-
sition 7, and the well-known fact that a proper Nash equilibrium is not
necessarily a perfect Nash equilibrium (cf. Myerson (1978)). Q.E.D.

We provide two other natural formalizations for perfectness and proper-
ness. For a given ζ ∈ 4(S × S), we define the game Γ(ζ) = (T1, T2, U1, U2)
where the strategy sets are T1 = T2 = T and T is the set of pure assign-
ments (see the paragraph after Definition 2). And for all x, y ∈ 4(T ), the
payoffs are defined by U1(x, y) = U(x, y), and U2(x, y) = U(y, x), where
U(x, y) =

∑
(δ,δ′)∈T×T x(δ)y(δ′)U(δ, δ′), and U(δ, δ′) is defined in Definition

4. In Definitions 13 and 14, we define the perfection and properness for
correlated equilibria in the context of the agent normal form for extensive
games. Definition 15 defines the perfection for correlated equilibria for nor-
mal form games.

Definition 15 A perfect correlated equilibrium is a symmetric ζ ∈ 4(S×S)
such that there is an δ ∈ D such that δ is a perfect equilibrium in the game
Γ(ζ) where D = {δ ∈ 4(T ) : δ =∗ δid}.

17



Proposition 9

a) Definition 13 and Definition 15 are equivalent.

b) Definition 15 is equivalent to the following seemingly weakening of Defi-
nition 15:

a symmetric ζ ∈ 4(S × S) such that

δid is a perfect equilibrium in the game Γ(ζ).

Proof: See Appendix.
The condition stated in Proposition 9 is the same as the definition of

a perfect direct correlated equilibrium ζ defined by Dhillon and Mertens
(1994) in our symmetric context. Therefore, our notion of a perfect corre-
lation is the same as their notion. Many of results in Dhillon and Mertens
(1994) are also valid. Their Proposition 3 shows that a perfect direct cor-
related equilibrium is an acceptable correlated equilibrium (defined by My-
erson (1986)). Therefore, our notion of a perfect correlated equilibrium is
also an acceptable correlated equilibrium.

However, an acceptable correlated equilibrium is not necessarily a per-
fect correlated equilibrium. A useful fact by Dhillon and Mertens (1994,
Proposition 4) is that in a two-player game, the acceptable correlated equi-
libria are those correlated equilibria for which only undominated strategies
are recommended. Using this fact, the following example shows that an
acceptable equilibrium does not necessarily imply a perfect correlated equi-
librium. Dhillon and Mertens (1994, Example 2) give such an example with
a two-player game that is not symmetric; our Example 5 is a symmetric
game.

Example 5 Consider the following symmetric two-player game where S =
{x1, x2, x3, x4, x5, x6} and the payoffs are:

x1 x2 x3 x4 x5 x6

x1 (1, 1) (0, 0) (0, 1) (0, 0) (1, 0) (−100, 0)
x2 (0, 0) (1, 1) (0, 0) (0, 1) (−100, 0) (1, 0)
x3 (1, 0) (0, 0) (1, 1) (1, 1) (0, 0) (0, 0)
x4 (0, 0) (1, 0) (1, 1) (1, 1) (0, 0) (0, 0)
x5 (0, 1) (0,−100) (0, 0) (0, 0) (0, 0) (0, 0)
x6 (0,−100) (0, 1) (0, 0) (0, 0) (0, 0) (0, 0)

Then, x1, x2 are undominated actions. Also, ζ = (1/4, 1/4, 1/4, 1/4) on
(x1x1, x1x2, x2x1, x2x2) is a correlated equilibrium (indeed Nash) with only
undominated actions, hence it is an acceptable correlated equilibrium.
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We will now show that ζ is not an perfect correlated equilibrium and not
an ESC. It suffices to show that, given the random device ζ, the obedient
assignment δid is weakly dominated by some δ′. We define δ′ ∈ Q where
δ′(x1) = x3 and δ′(x2) = x4. We will show that for every δ ∈ int(Q), we
have U(δ′, δ) > U(δid, δ). Then, δid is weakly dominated by δ′, hence δid

cannot be an perfect equilibrium for Γ(ζ), so ζ is not a perfect correlated
equilibrium and not an ESC.

Consider any δ ∈ int(Q). We will now show that U(δ′, δ) > U(δid, δ).
We write δ in the forms of:

δ(x1) = (a, b, c, d, e, f) on (x1, x2, x3, x4, x5, x6)
δ(x2) = (a′, b′, c′, d′, e′, f ′) on (x1, x2, x3, x4, x5, x6)

where a, a′, b, b′, c, c′, d, d′, e, e′, f, f ′ > 0. By a simple calculation, we have:

U(δid, δ) =
1
2
[
a + a′

2
(1) +

e + e′

2
(1) +

f + f ′

2
(−100)]

+
1
2
[
b + b′

2
(1) +

e + e′

2
(−100) +

f + f ′

2
(1)]

U(δ′, δ) =
1
2
[
a + a′

2
(1) +

c + c′

2
(1) +

d + d′

2
(1)]

+
1
2
[
b + b′

2
(1) +

c + c′

2
(1) +

d + d′

2
(1)],

so U(δ′, δ) > U(δid, δ).

We also give the definition of properness for correlated equilibria in the
context of normal form games.

Definition 16 A strongly proper correlated equilibrium is a symmetric ζ ∈
4(S ×S) such that there is an δ ∈ D such that δ is a proper equilibrium in
the game Γ(ζ).

Proposition 10 If ζ ∈ 4(S×S) is a strongly proper correlated equilibrium,
then it is a proper correlated equilibrium.

Proof: See Appendix.
The following Proposition 11 summarizes the relationships among the

perfection, the properness, and ESC.

Proposition 11 If ζ is ESC, then it is a strongly proper correlated equilib-
rium.
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Proof: See Appendix.
The following Example 6 illustrates Proposition 11

Example 6 Consider the following Rock-Scissor-Paper type game.

X Y Z
X (0, 0) (2, 1) (1, 2)
Y (1, 2) (0, 0) (2, 1)
Z (2, 1) (1, 2) (0, 0)

This game has a strict correlated equilibrium assigning probability 1/6
on XY, XZ, Y X, Y Z, ZX, ZY , where each player gets a payoff of 3/2. This
equilibrium is ESC and strongly proper. This equilibrium does not require
the correlated equilibrium to be a product measure and thus is different from
the unique mixed strategy Nash equilibrium, where each player randomizes
between the three actions with equal probability.

As a consequence of Propositions 10 and 11, if ζ is ESC, then it is a
proper correlated equilibrium, hence it is also a perfect correlated equilib-
rium by Proposition 8. However a proper or perfect correlated equilibrium
need not be an ESC. In Example 3, the totally mixed Nash equilibrium
x = (1/3)X + (1/3)Y + (1/3)Z is a proper equilibrium, hence it gives a
proper correlated equilibrium. However, this is not an ESC.

Whether the notion of strong properness is strictly stronger than that of
properness in correlated equilibria remains open. Whether the properness
of Nash equilibria implies the strong properness of correlated equilibria also
remains open.

6 Evolutionary Stability and Replicator Dynamic
Stability

The previous sections study the stability with respect to both a mutation
process and mistakes trembling. We now turn to the dynamic stability with
respect to replicator dynamics.

We will consider games Γ(ζ). A population state is an element x ∈ 4(T ).
We will obtain the stability result for the set D = {x ∈ 4(T ) : x =∗ δid}.

Recall that for a given ζ ∈ 4(S × S) and any x, y ∈ 4(T ), we define:

U(x, y) =
∑

(δ,δ′)∈T×T

x(δ)y(δ′)U(δ, δ′)
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where U(δ, δ′) is defined in Definition 4.

Definition 17 Given a symmetric ζ ∈ 4(S×S), the replicator dynamic is
the dynamic system on 4(T ) described by the differential equation:

ẋ(δ) = [U(δ, x)− U(x, x)]x(δ)

where ẋ(δ) denotes dx(δ)/dt.

By the Picard-Lindelöff Theorem, the equation defines a solution map-
ping X : R ×4(T ) → 4(T ), which to each initial state x0 and time t ∈ R
assigns the population state X(t, x0) ∈ 4(T ) at time t. Note that our
formulation reduces to a standard Nash context so we can apply existing
literature of the replicator dynamics. We recall standard stability criteria
from the literature.

Definition 18 A closed set A ⊆ 4(T ) is Lyapunov stable if every neigh-
borhood N ⊆ 4(T ) of A contains a neighborhood N0 ⊆ 4(T ) of A such
that X(t, x0) ∈ N for all x0 ∈ N0 and all t ≥ 0. A closed set A ⊆ 4(T ) is
asymptotically stable if it is Lyapunov stable and there exists a neighbor-
hood N∗ ⊆ 4(T ) of A such that:

X(t, x0) → A as t →∞ for all x0 ∈ N∗.

Proposition 12 If ζ is ESC, then D is asymptotically stable.

Proof: See Appendix.
The converse of Proposition 12 is not true. It is well-known that in the

standard Nash context, x ∈ 4(S) that is asymptotically stable is not nec-
essarily an ESS. For example, as shown in Weibull (1995, p. 102, Example,
3.9), the following game

X Y Z
X (1, 1) (5, 0) (0, 5)
Y (0, 5) (1, 1) (5, 0)
Z (5, 0) (0, 5) (4, 4)

has a unique Nash equilibrium x = (3/18, 8/18, 7/18) on (X, Y, Z), which
is asymptotically stable but not an ESS. Thus, the product measure ζ =
x × x is not an ESC. Consider any y ∈ 4(T ). Because ζ is a product
measure, it is easy to verify that y has a unique ỹ ∈ 4(S) such that the
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assignment pair (y, y) induces the same distribution as ỹ × ỹ. Moreover,
the replicator dynamics of y induces a dynamics on 4(S), which is the
same as the standard replicator dynamics of ỹ. Then, for every open set
W 3 x in S(4), we define an open set N = {y ∈ 4(T ) : ỹ ∈ W} of D
in 4(T ). Because x is Lyapunov stable, D is Lyapunov stable. Also, as
x is asymptotically stable, we can find a neighborhood N∗ such that for
every initial y0 ∈ N∗, the path y(t) ∈ 4(T ) has its counterpart ỹ(t) ∈ 4(S)
converging to x. As ỹ(t) converges to x, y(t) must converge to D. Therefore,
D is also asymptotically stable.

7 Concluding Remarks

The conventional ESS approach focuses only on the Nash equilibrium, where
Nature provides private and independent signals to each player. Even though
the ESS gives a good selection of the Nash equilibrium which, all too often
are multiple, it is restricted in the sense that people in many cases observe
public and correlated signals. The concept of correlated equilibrium is a nat-
ural extension of the Nash equilibrium to deal with this case. However, the
correlated equilibrium is not free from the multiplicity of equilibria either.

In this paper, we provide an evolutionary approach to the correlated equi-
librium as a natural selection criterion. In this regard, this paper fills the
gap between ESS and correlated equilibria. Proposition 4 makes clear that
the new concept of ESC is a generalization of ESS. We note that our work
can be applied to the study of evolutionary ecology (animal conflict). We
also provide other refinements for ESC and those have corresponding ana-
logues in the refinements of Nash equilibria. We studied a perfect correlated
equilibrium, a proper Nash equilibrium for this purpose and established the
relationship between these concepts and corresponding analogues for Nash
equilibria. Propositions 7 through 11 show that the concept of ESC gives
a good selection of correlated equilibria in the sense that an ESC is proper
and perfect but not vice versa.

One interesting topic that we did not investigate in this paper is to extend
this approach to study long-run characteristics of the correlated equilibrium
in the context of Kandori, Mailath, and Rob (1993) and Young (1993). Our
approach and theirs share some interesting observations. In the pure coordi-
nation game in Example 2, they predict the society spends equal time in two
pure Nash equilibria. A similar observation was made in this paper, even
through ESC allows more equilibria. The conventional ESS only predicts
two pure Nash equilibria.
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Our approach is only concerned with the direct mechanism. One lim-
itation of this restriction is that the direct mechanism with mutations on
assignment functions does not generate all the possible measures on S×S. If
indirect mechanisms are allowed, it is possible to generate all possible joint
distributions simply by varying assignment functions. Thus, an interesting
extension would be to generalize the message space of the random device.

8 Appendix

Proof of Lemma 1: Let S = {s1, · · · , sm}. For notational simplicity, for
all i, j ≤ m, write: ζij = ζ(si, sj), δ′kj = δ′(sj |sk), and δ′′kj = δ′′(sj |sk). Since
K(F, (δ,′ , δid)) = ζ, we have:

ζij =
m∑

k=1

ζkjδ
′
ki for all i, j.

Then, for the ζ ′′ = K(F, (δ′, δ′′)), by definition for all i, j, the number
ζ ′′(si, sj) satisfies:

ζ ′′(si, sj) =
∑

1≤p,k≤m

δ′kiζkpδ
′′
pj

=
m∑

p=1

δ′′pj(
m∑

k=1

ζkpδ
′
ki)

=
m∑

p=1

δ′′pjζip

Therefore, ζ ′′ = K(F, (δid, δ′′)). Q.E.D.

Proof of Proposition 4:
(Part a) Let x ∈ 4(S) be ESS, and ζ = x × x. Then (x, x) is a Nash
equilibrium by Fact 1, so ζ is a correlated equilibrium; therefore, ζ satisfies
(2a) in Proposition 1. Thus it suffices to show that ζ satisfies (2b) in Propo-
sition 1. Consider any assignment function δ′ : S → 4(S) with δ′ 6=∗ δid.
Define a y ∈ 4(S) by y(sj) =

∑
si∈S x(si)δ′(sj |si). The following relations

are immediate from Definition 3 and y:

K(F, (δid, δid)) = x× x
K(F, (δid, δ′)) = x× y
K(F, (δ′, δid)) = y × x
K(F, (δ′, δ′)) = y × y

(5)
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Because δ′ 6=∗ δid, we must have y 6= x. Now, also note that:

U(δid, δid) = V (x, x) U(δ′, δid) = V (y, x)
U(δid, δ′) = V (x, y) U(δ′, δ′) = V (y, y) .

(6)

Then, (2b) follows from (1b).
(Part b) Let ζ ∈ 4(S × S) be an ESC (in our sense), and x ∈ 4(S) with
ζ = x× x. For any y ∈ 4(S) with y 6= x, we define an assignment function
δ′ : S → 4(S) by δ′(sj |si) = y(sj). Then, (5) and (6) hold. Because y 6= x
by (5) we have δid 6=∗ δ′. Therefore, (1a) and (1b) in Fact 1 follows from
(2a) and (2b) in Proposition 2. Q.E.D.

Remark A. Consider the linear h : 4(T ) → Q defined by:

(h(x))(sj |si) =
∑

{δ:δ∈T&δ(si)=sj}
x(δ) .

This maps 4(T ) onto Q because there is a function g : Q → 4(T ) such
that h(g(δ)) = δ for all δ ∈ Q. For example, one can choose the function
g : Q →4(T ) defined by g(δ) = x where

x(δ̂) = Πsi∈Sδ(δ̂(si)|si) for all δ̂ ∈ T.

Therefore, we often identify an element x ∈ 4(T ) with the element h(x) ∈ Q.
Also, with this h function, we can view the set Q as simplex generated by
the extreme points δ ∈ T .

In fact, for every small ε > 0, the function h maps 4ε(T ) onto Qε′ ,
where ε′ = ε#(S)#(S)−1. This can be proved by constructing a function
gε : Qε′ →4ε(T ) such that h(gε(δ)) = δ for all δ ∈ Qε′ .15

Proof of Lemma 2. The “if” part is trivial. We only need to prove the
“only if” part. By using the linear mapping h as given in Remark A, we
identify Q with 4(T ), the simplex spanned by T . For a given ESC ζ, we

15 We give such a function gε. First, for each δ ∈ T , define xδ to be an element in 4(T )
such that xδ(δ

′) = ε for all δ′ ∈ T with δ′ 6= δ. Then, A = {xδ : δ ∈ T} is the set of vertices
spanning4ε(T ) and4ε(T ) = con(A). Also, for each si ∈ S, define ysi to be the element in
4(S) such that ysi(sj) = ε′ for all sj ∈ S with sj 6= si. Then, B = {ysi : si ∈ S} is the set
of vertices spanning 4ε′(S) and 4ε′(S) = con(B). Note that for all xδ, h(xδ) is a “vertex”
of Qε′ , in particular, h(xδ) ∈ Qε′ is such that h(xδ)(si) = yδ(si) for all si ∈ S. For each
δ′ ∈ Qε′ , there are non-negative scalars λysj

,si where sj , si ∈ S and
P

sj∈S λysj
,si = 1

and δ′(si) =
P

sj∈S λysj
,siysj for all si. Then, we can define gε(δ

′) =
P

δ∈T µδxδ where

scalars µδ = Πsi∈Sλh(xδ)(si),si
. It can be verified that this gε satisfies the desired property.
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define Z ⊆ 4(T ) = Q to be the union of all boundary faces of 4(T ) that do
not contain any element of the closed convex set D = {δ′ ∈ Q : δ′ =∗ δid}.
Then Z is compact and we can take a uniform barrier ε̄ for all δ′ ∈ Z. Note
that for every δ′′ ∈ Q\D, there is a number λ ∈ (0, 1), a δ1 ∈ Z and a δ2 ∈ D
such that δ′′ = λδ1 + (1− λ)δ2. So, it follows that (1/λ) is also a barrier for
δ′′. Therefore, ε̄ is a uniform barrier. Q.E.D.
Proof of Proposition 5. First, we prove the “if” part. Suppose an open set
N ⊆ Q is a neighborhood of δid as given in Definition 8. Note that for every
δ′ ∈ Q, there is a small ε > 0 such that w = εδ′+(1−ε)δid ∈ N . If δ′ 6=∗ δid,
then we have w 6=∗ δid. Then the local superiority of δid and bilinearity
of u imply (1 − ε)U(δid, δid) + εU(δid, δ′) > (1 − ε)U(δ′, δid) + εU(δ′, δ′).
Therefore, ζ is an ESC.

Second, we prove the “only if” part. We choose the sets Z and D as
defined in the proof of Lemma 2 and choose the uniform invasion barrier
ε̄ ∈ (0, 1) as given in Lemma 2. Define the open set N by N = {δ′ ∈
Q : δ′ = εδ1 + (1 − λ)δ2 for some δ1 ∈ D and δ2 ∈ Z and ε ∈ [0, ε̄)} . It is
easy to verify that the set N satisfies the condition as given in Definition 8.
Q.E.D.

Proof of Proposition 7. (Part a) Let x ∈ 4(S) be a perfect Nash equi-
librium and let εt and xt be as given in Definition 11. Now, define δ ∈ Q
and δt ∈ Qεt by:

δ(sj |si) = x(sj) ∀si, sj ∈ S;
δt(sj |si) = xt(sj) ∀si, sj ∈ S.

Then, δ =∗ δid and δt → δ. Also, each δt ∈ Qεt . It is easy to verify that
U(δt, δt) = max{U(δ′, δt) : δ′ ∈ Qεt}. Therefore, ζ = x × x is a perfect
correlated equilibrium.

Let ζ = x × x be a perfect correlated equilibrium. Let δ, εt, and δt be
as given in the Definition 13. Define xt ∈ 4εt(S) by:

xt(sj) =
∑

si∈S

x(si)δt(sj |si) .

Now that for every y ∈ 4, the product measure y×xt is equal to K(ζ, (δt, δ
′)),

where δ′ ∈ Q is defined by δ′(sj |si) = y(sj) for all si, sj ∈ S. More-
over, y ∈ 4εt(S) if and only if δ′ ∈ Qεt . Therefore, we have V (xt, xt) =
max{V (y, xt) : y ∈ 4εt(S)}. Thus, x is a perfect Nash equilibrium.

(Part b) We will use similar arguments.
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Let x ∈ 4(S) be a proper Nash equilibrium and let εt and xt be as given
in Definition 12. Now define δ ∈ Q and δt ∈ Qεt by:

δ(sj |si) = x(sj) ∀si, sj ∈ S;
δt(sj |si) = xt(sj) ∀si, sj ∈ S.

Then, δ =∗ δid and δt → δ. Also, each δt ∈ int(Q). And for each si, sp, sq ∈
S,

U(sp, δt|si) = x(si)V (sp, xt)
U(sq, δt|si) = x(si)V (sq, xt)

Therefore, as xt satisfies the required property in Definition 12, these δt also
satisfies the required property in Definition 14. Thus, ζ = x× x is a proper
correlated equilibrium.

Let ζ = x× x be a proper correlated equilibrium. Let δ, εt, and δt be as
given in the Definition 14. Define xt ∈ 4εt(S) by:

xt(sj) =
∑

si∈S

x(si)δt(sj |si) .

Now, note that for every t, the product measure xt × xt ∈ 4(S × S) is
equal to K(ζ, (δt, δt)). Moreover, xt ∈ int(S) as δt ∈ int(Q). Also, note that
because ζ = x× x is a product measure, by independence for all si, sp, sq:

U(sp, δt|si) = x(si)V (sp, xt)
U(sq, δt|si) = x(si)V (sq, xt) .

Therefore, for all sp, sq ∈ S:

U(sp, δt|si) < U(sq, δt|si) for some si ∈ S

⇔ U(sp, δt|si) < U(sq, δt|si) for all si ∈ S with x(si) > 0 .

Recall that V (sp, xt) =
∑

si∈S U(sp, δt|si) and V (sq, xt) =
∑

si∈S U(sq, δt|si).
Therefore, if V (sp, xt) < V (sq, xt), then:

U(sp, δt|si) < U(sq, δt|si) for all si ∈ S with x(si) > 0

hence:

δt(sp|si) ≤ εtδt(sq|si) for all si ∈ S with x(si) > 0

consequently xt(sp) ≤ εtxt(sq). Thus x is a proper equilibrium. Q.E.D.
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Proof of Proposition 9: (Part a). Definitions 13 and 15 are equivalent
because for every small ε > 0, the function h given in Remark A maps 4ε

onto the set Qε′ , where ε′ = ε#(S)#(S)−1. (Part b) Because the game Γ(ζ)
is a symmetric two-player game, an x ∈ 4(T ) is a perfect equilibrium if
and only if x is not weakly dominated by any strategy. (See van Dame
(1984), Theorem 3.22, cf. Weibull (1995), Proposition 1.4). Then, δid is
undominated if and only if some x ∈ D is undominated if and only if every
x ∈ D is undominated. Q.E.D.

Proof of Proposition 10: It clearly suffices to show that, for any small
ε > 0, if x ∈ int(4(T )) satisfies

V (δ′, x) < V (δ′′, x) ⇒ x(δ′) ≤ εx(δ′′) ∀δ′, δ′′ ∈ T , (7)

then h(x) is such that for every si ∈ S, and all sp, sq ∈ S,

U(sp, h(x)|si) < U(sq, h(x)|si) ⇒ (h(x))(sp|si) ≤ ε(h(x))(sq|si) (8)

where h(x) is defined in Remark A.
First, suppose U(sp, h(x)|si) < U(sq, h(x)|si) and (7) holds. Define T−i

to be the set of functions δ−i : S\{si} → S. For every δ−i, define (sp, δ−i)
to be the element in T , which agrees with δ−i over S\{si} and assigns sp at
si, and similarly for (sq, δ−i). For every δ−i ∈ T−i, we have:

V ((sp, δ−i), x)− V ((sq, δ−i), x) = U(sp, h(x)|si)− U(sq, h(x)|si).

As U(sp, h(x)|si) < U(sq, h(x)|si), we have V ((sp, δ−i), x) < V ((sq, δ−i), x),
therefore,

x((sp, δ−i)) ≤ εx((sq, δ−i)) for all δ−i ∈ T−i.

Then:

(h(x))(sp|si) =
∑

δ−i∈T−i

x((sp, δ−i)) ≤
∑

δ−i∈T−i

εx((sq, δ−i)) = ε(h(x))(sq|si).

Thus, (8) holds. Q.E.D.

Proof of Proposition 11: The set D = {δ ∈ 4(T ) : δ =∗ δid} is a closed
and convex set in 4(T ). Moreover, because ζ is ESC, by definition D is
an ESS set (defined by Swinkels (1992), Definition 10) in the normal form
game Γ(ζ), i.e. D is closed and contained in the set of Nash equilibria of
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Γ(ζ) such that there is an ε′ > 0 such that for all ε ∈ (0, ε′), all x ∈ D and
all y ∈ 4(T ):

C(x) ⊆ B((1− ε)x + εy)) ⇒ (1− ε)x + εy ∈ D,

where C(x) = {δ ∈ T : x(δ) > 0}, B(z) = {δ ∈ T : U(δ, z) = max{U(w, z) :
w ∈ 4(T )} for all z ∈ 4(T ). Therefore, as proved by Theorem 5 in Swinkels
(1992) such a convex and closed ESS set contains a proper equilibrium. This
proves Proposition 10. Q.E.D.

Proof of Proposition 12: Because ζ is ESC, it is locally superior. There-
fore, we can choose the neighborhood N ⊃ D as constructed in the proof
of Proposition 11. Then for every x ∈ D, the neighborhood Nx = N of x
satisfies U(x, y) > U(y, y) for all y ∈ N\D. In other words, the set D is
evolutionary stable∗ in the standard (Nash) context (Weibull 1995, Defini-
tion 3.1). Then, by a well-known result of replicator dynamics (cf. Weibull
1995, Proposition 3.13), D is asymptotically stable. Q.E.D.
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