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Abstract

Economic models often imply that certain variables are cointegrated. However, tests often fail
to reject the null hypothesis of no cointegration for these variables. One possible explanation of
these test results is that the error is unit root nonstationary due to a nonstationary measurement
error in one variable. For example, currency held by the domestic economic agents for legitimate
transactions is very hard to measure due to currency held by foreign residents and black market
transactions. Therefore, money may be measured with a nonstationary error. If the money demand
function is stable in the long-run, we have a cointegrating regression when money is measured
with a stationary measurement error, but have a spurious regression when money is measured
with a nonstationary measurement error. We can still recover structural parameters under certain
conditions for the nonstationary measurement error. This paper proposes econometric methods
based on asymptotic theory to estimate structural parameters with spurious regressions involving
unit root nonstaionary variables.
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1 Introduction

Economic models often imply that certain variables are cointegrated. However, tests often fail to reject
the null hypothesis of no cointegration for these variables. One possible explanation of these test results
is that the error is unit root nonstationary due to a nonstationary measurement error in one variable.
A nonstationary error in one variable leads to a spurious regression when the true value of the variable
and the other variables are cointegrated. In the unit root literature, when the stochastic error of a
regression is unit root nonstationary, the regression is called a spurious regression. This is because the
standard t test tends to be spuriously significant even when the regressor is statistically independent of
the regressand in Ordinary Least Squares. Monte Carlo simulations have often been used to show that
the spurious regression phenomenon occurs with regressions involving unit root nonstationary variables
(see, e.g., Granger and Newbold (1974), Nelson and Kang (1981, 1983)). Asymptotic properties of
estimators and test statistics for regression coefficients of these spurious regressions have been studied
by Phillips (1986, 1998) and Durlauf and Phillips (1988) among others. For example, currency held
by the domestic economic agents for legitimate transactions is very hard to measure due to currency
held by foreign residents and black market transactions. Therefore, money may be measured with a
nonstationary error. As shown by Stock andWatson (1993) among others, if the money demand function
is stable in the long-run, we have a cointegrating regression when all variables are measured without
error. If the variables are measured with stationary measurement errors, we still have a cointegrating
regression. However, if money is measured with a nonstationary measurement error, we have a spurious
regression. We can still recover structural parameters under certain conditions for the nonstationary
measurement error.
This paper proposes a new approach to estimating structural parameters with spurious regressions.

Our approach is based on the Generalized Least Squares solution of the spurious regression problem
analyzed by Ogaki and Choi (2002), who use an exact small sample analysis based on the conditional
probability version of the Gauss-Markov Theorem. We have developed asymptotic theory for some
estimators motivated by the GLS correction. The GLS estimation is shown to be consistent in spurious
regressions and in drawing inferences based on this GLS estimator. We have developed a Hausman
type specification test that is a consistent test for cointegration against the alternative hypothesis of
no cointegration (or a spurious regression). We construct this test as we note that both the dynamic
OLS and GLS corrected dynamic regression estimators are consistent in cointegration estimation while
the dynamic OLS estimator is more efficient. On the other hand, when the regression is spurious, only
the GLS corrected dynamic regression estimator is consistent. Hence we could do a cointegration test
based on the specifications on the error. We show that under the null hypothesis of cointegration, the
test statistics has a usual χ2 limit distribution; while under the alternative hypothesis of a spurious
regression, the test statistic diverges.
In the unit root literature, asymptotic theory and Monte Carlo simulations have been the main tools

to analyze econometric methods. The exact small sample analysis based on the Gauss-Markov Theorem
has not been used in general. There seem at least two reasons for this. First, in the unit root literature,
most applications involve stochastic regressors, and the conditional expectation version of the Gauss-
Markov Theorem is necessary. The standard measure theory definition of the conditional expectation
assumes that the random vector’s unconditional expectation exists and is finite. As the textbook of
Judge et al. (1985) explains, this severely limits the usefulness of the conditional expectation version
of the Gauss-Markov Theorem, because it is not possible to prove the existence of the unconditional
expectation of the OLS estimator in most applications and simulations (due to the fact that the inverse
of X 0X is involved in the OLS estimator where X is the design matrix). Second, the strict exogeneity
assumption is usually violated in time series applications.
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Ogaki and Choi (2002) propose to overcome the first difficulty by considering a definition of the
conditional expectation based on the conditional probability measure. The conditional expectation
based on the conditional probability measure can be defined even when the unconditional expectation
does not exist as in Billingsley (1986). The Law of Iterated Expectations may not be satisfied when
this definition is employed, but this does not cause problems for our particular application for spurious
regressions. The second difficulty can be dealt with by adding leads and lags of the first difference
of the stochastic regressors, leading to dynamic regressions proposed by Phillips and Loretan (1991)
and Stock and Watson (1993) among others. The idea of the dynamic regressions can also be used for
spurious regressions.
Using the conditional probability version of the Gauss-Markov Theorem, Ogaki and Choi (2002)

study the exact small sample properties of spurious regressions. For the case of a classic spurious
regression of a random walk onto a random walk that is independent of the regressand, they find that
only the spherical variance assumption is violated. Therefore, they propose a GLS correction for the
spurious regression. This solution is essentially the same as the well known solution of taking the first
difference of all variables in this case, but the solution can also be used for the case with endogeneity,
as long as the dynamic regression technique solves the endogeneity problem.
However, the stringent assumptions such as known covariance matrices employed by Ogaki and Choi

(2002) for the exact small sample analysis are not sastisfied in applications. For this reason, in order to
apply the GLS correction, it is necessary to relax some of their assumptions. Because the exact small
sample properties cannot be analyzed when these assumptions are relaxed, we use asymptotic theory to
ananlyze large sample properties of esimtators and test statistics based on the GLS correction. These
methods are applied to estimate the long-run intertemporal elasticity of substitution and parameters
of the money demand function.

2 The econometric model

We consider the following data generating process for observations {xt, yt},

yt = β0xt + gt + et (1)

∆xt = vt (2)

where gt is generated by finite number of leads and lags of ∆xt,

gt = C(L−1)∆xt +D(L)∆xt.

In our following analysis, to simplify notations, we usually take gt = α0∆xt = α0vt. Without loss of
generality, we can set x0 = 0.
Now suppose that β0 in (1) is the parameter of interest. The inference procedure about β0 differs

according to different assumptions on the error term et in (1). When et is stationary, the regression (1)
is a cointegration regression; when et is a unit root nonstationary process, the regression is spurious.
The latter case is motivated by our empirical studies in Macroeconomic modeling and it is the main
interest in the project.

Assumption 1 Let both vt and ut be zero mean stationary processes with E|vt|γ <∞, E|ut|γ <∞ for
some γ > 2. Also assume that vt and ut are statistically independent, and they are both strong mixing
with size −γ/(γ − 2). Consider two situations:

1. ∆et = ut.
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2. et = ut.

The conditions on vt and ut ensure the invariance principles: for r ∈ [0, 1], n−1/2
P[nr]

t=1 vt →d σ1V (r),
n−1/2

P[nr]
t=1 ut →d σ2U(r) where V (r) and U(r) are independent standard Brownian motions and σ21

and σ22 are long run variances of the sequences {vt} and {ut} respectively. In fact de Jong and Davidson
(2000) provides more general conditions for FCLT, but the conditions listed above are general enough
to include many stationary Gaussian or non-Gaussian ARMA processes, which are commonly assumed
in empirical modeling.
In the next two sections, we will summarize asymptotic properties of different estimation procedures

under these two assumptions. Under assumption 1, the regression will be spurious and in this situation,
OLS is not consistent and either GLS or Feasible GLS estimation will give consistent estimates. Under
assumption 2, GLS estimator is not efficient as it is

√
n convergent, but the feasible GLS estimator is

n convergent and asymptotically equivalent to the OLS estimator.

2.1 Regressions with I(1) error

2.1.1 The dynamic OLS spurious estimation

Consider the OLS estimation of the regression

yt = βxt + αvt + error. (3)

This is a spurious regression since for any value of β, the error term is always I(1). The OLS estimator
β̂n has the following limit distribution

β̂n − β0 →
σ2
R 1
0
V (r)U(r)dr

σ1
R 1
0
V (r)2dr

≡ ξ (4)

which can be written as a mixture of normal distributions centered at zero (Phillips, 1989). As discussed
in Phillips (1986), in spurious regressions, the noise is as strong as the signal, hence uncertainty about
β persists in the limiting distributions.

2.1.2 GLS corrected estimation

When we think of the problem with spurious regressions, it is the persistence in the error. In this
problem, the error

et = ρet−1 + ut.

where ρ = 1. Then we can filter all the variables by taking full difference, and use OLS to estimate

∆yt = β∆xt + α∆vt + ut. (5)

This procedure can be viewed as a GLS corrected estimation. We will also use GLS to refer to this
procedure. Note that in regression (3), the estimator of β and α are asymptotically independent, hence
we don’t have to include vt in the regression if we are only interested in β. But here we need to include
the differences of the leads and lags (who are I(-1)) that are correlated with vt to produce consistent
estimate for β.
Define θ = (β, α)0, we can show that

√
n(θ̃n − θ0)→d (σ

2
vQ)

−1N(0, σ2vσ
2
uQ) = N

µ
0,
σ2u
σ2v

Q−1
¶
, (6)
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where

Q =

·
1 1− ψv

1− ψv 2(1− ψv)

¸
, (7)

where σ2v = E(v2t ), σ
2
u = E(u2t ), and ψv is the first order correlation coefficient of sequence {vt}. We

can see that now β can be consistently estimated (jointly with α).

2.1.3 The Feasible Cochrane-Orcutt GLS estimation

In a spurious regression, even if we don’t know that the autocorrelation coefficient P of the error is
unity, a feasible GLS procedure based on the Cochrane-Orcutt transformation will give asymptotically
equivalent results as in (6). This has been shown by Blough (1992) and Phillips and Hodgson (1994).
In this section, we will show that for the structural spurious regression problem we consider, Cochrane-
Orcutt GLS could also provide consistent estimates.
Let the residual from OLS regression (3) denoted by R̂t, i.e.

R̂t = yt − β̂nxt − α̂nvt.

To conduct the Cochrane-Orcutt GLS estimation, first we run an AR(1) regression of R̂t,

R̂t = ρR̂t−1 + error. (8)

In the appendix, we show that

ρ̂n − 1 = op(1) and n(ρ̂n − 1) = Op(1).

Next, consider the following Cochrane-Orcutt transformation of the data:

ỹt = yt − ρ̂nyt−1, x̃t = xt − ρ̂nxt−1, ṽt = vt − ρ̂nvt−1. (9)

Now consider OLS estimation in the regression

ỹt = β̃x̃t + α̃ṽt + error (10)

Define zt = (x̃t, ṽt)0 and θ = (β, α)0, then the OLS estimator of θ is

θ̃n =

"
nX
t=1

ztz
0
t

#−1 " nX
t=1

ztỹt

#
. (11)

The limit distribution for θ̃ can be shown to be the same as in (6).

√
n(θ̃n − θ0)→d (σ

2
vQ)

−1N(0, σ2vσ
2
uQ) = N

µ
0,
σ2u
σ2v

Q−1
¶
, (12)

Note that if in regression (3), vt is not included, we still have the same limit distribution based on the
residual from the OLS estimation.
In Appendix B, we described some extensions of the model. We show that if a constant is included

in the DGP, the GLS or FGLS corrected estimation give results that are asymptotically equivalent as
given in (6).

5



2.2 Regressions with I(0) error

In this section, we will consider the following problem. When the error term in (1) is I(0) instead
of I(1), so that the regression is a cointegration rather than a spurious regression, while we apply the
same procedure as under the spurious assumption, then how does the estimator behave asymptotically.

2.2.1 The dynamic OLS estimation when the error is I(0)

Suppose that the error term in the data generating process of yt is actually I(0), et = ut while we
keep all other assumptions. The DGP of yt can be written as

yt = β0xt + α0vt + ut.

Use OLS to estimate the regression

yt = βxt + αvt + error. (13)

Clearly, this is a cointegration regression, and the limit distribution of the OLS estimator of β can be
written as

n(β̂n − β0)→d

σ2
R 1
0
V (r)dU(r)

σ1
R 1
0
V (r)2dr

. (14)

If we don’t include vt in regression (13), there will be a bias in the OLS estimator. Denote this

estimator by β̂
+

n ,

n(β̂
+

n − β0)→d

σ2
R 1
0
V (r)dU(r)

σ1
R 1
0
V (r)2dr

+
1
2 (V (1)

2 + σ2v/σ
2
1)R 1

0
V (r)2dr

.

However, the bias is Op(n
−1) hence the OLS estimator β̂

+

n is still consistent.

2.2.2 Taking full difference when the error is I(0)

Now, if we take a full difference as we did in the I(1) case, and estimate the regression

∆yt = β∆xt + α∆vt + ut − ut−1 = z0tθ + ut − ut−1.

Note that we lose efficiency in this transformation as the estimator β̃ is now
√
n convergent rather

than n convergent in the cointegration. With some minor revision of equation (6), we got results for
the limit distribution of estimator in this case:

√
n(θ̃n − θ0)→d N

µ
0,
2σ2u(1− ψu)

σ2v
Q−1

¶
.

where ψu is the first order correlation coefficient of sequence {ut}.
Therefore, the GLS correction or differencing is not efficient if the variables are actually cointegrated.

2.2.3 The Cochrane-Orcutt feasible GLS estimator when the error is I(0)

Instead of taking full difference, if we estimate the autoregression coefficient in the error and use
this estimator to filter all sequences, then we will obtain an estimator that is asymptotically equivalent
to the OLS estimator. Intuitively, in the case that the error is i.i.d. (et = ut is i.i.d.), then the AR(1)
coefficient P̂n will converge to zero, hence the transformed regression will be asymptotically equivalent
to the original regression. Or, if the error is stationary and serially correlated, then the AR(1) coefficient
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will be less than unit, and as has been shown in Park and Phillips (1988), the GLS estimator and OLS
estimator in a cointegration are asymptotically equivalent.
First run OLS estimation of

yt = β̂nxt + α̂nvt + ût = z0tθ̂ + ût.

Then run an AR(1) regression of ût,

ût = ρ̂nût−1 + error.

Write
ût = yt − z0tθ0 + z0t(θ0 − θ̂) = ut + z0t(θ0 − θ̂).

Now, consider the Cochrane-Orcutt transformation (9) and estimate

ỹt = β̃nx̃t + α̃ṽt + error. (15)

The limit distribution of β̃n can be shown to be

n(β̃n − β0)→d

(1− ψu)
2σ1σ2

R 1
0
V (r)dU(r)

(1− ψu)
2σ22

R 1
0
V (r)2dr

=
σ2
R 1
0
V (r)dU(r)

σ1
R 1
0
V (r)2dr

. (16)

which is exactly the same as the limit of the OLS estimator given in (14). In summary, the feasible
GLS is not only valid in spurious regression, but also harmless to the estimator in the limit when the
regression is actually a cointegration. In particular, FGLS can be regarded as a robust procedure with
respect to error specifications. It is asymptotically equivalent to GLS estimator in a spurious regressions
and it is asymptotically equivalent to OLS estimator in a cointegration regressions.

2.3 Hausman specification test

Now if we compare two estimators: an OLS estimator (β̂n) and an GLS estimator (β̃n) corresponding
to ρ = 1. This is equivalent to a question like: take difference or not. We let the error be I(0) under the
null and the error be I(1) under the alternative. Our above discussions show that under the null, both
OLS and GLS are consistent but OLS estimator is more efficient; while under the alternative, which
corresponds to spurious regression, only GLS estimator is consistent. Since including the leads and lags
doesn’t have critical effect, we assume that there are no leads and lags in the DGP for simplicity. Hence
the DGP under the null is

yt = β0xt + ut, (17)

and under the alternative is
yt = β0xt + et, ∆et = ut. (18)

Now under the null hypothesis, the OLS and GLS estimator are

β̂n =

Pn
t=1 xtytPn
t=1 x

2
t

= β0 +

Pn
t=1 xtutPn
t=1 x

2
t

(19)

and

β̃n =

Pn
t=1∆xt∆ytPn
t=1∆x

2
t

= β0 +

Pn
t=1 vt(ut − ut−1)Pn

t=1 v
2
t

(20)
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Let qn denote the difference between these two estimators

√
nqn =

√
n(β̃n − β̂n) =

n−1/2
Pn

t=1 vt(ut − ut−1)
n−1

Pn
t=1 v

2
t

− n−3/2
Pn

t=1 xtut
n−2

Pn
t=1 x

2
t

=
n−1/2

Pn
t=1 vt(ut − ut−1)

n−1
Pn

t=1 v
2
t

− op(1)

→p N(0, τ2).

where τ2 = 2σ2u(1 − ψu)/σ
2
v. A consistent estimator for τ2 can be computed based on the sample

moments:

τ̂2n =
2s2n(1− ψ̂u)

σ̂2n
, where σ̂2n =

1

n

nX
t=1

∆x2, s2n =
1

n

nX
t=1

(∆yt − β̃n∆xt)
2

ψ̂n =
1

s2nn

nX
t=2

(∆yt − β̃n∆xt)(∆yt−1 − β̃n∆xt−1)

Define the test statistics

hn =
nq2n
τ̂2n
→ [N(0, τ2)]2

τ2
= χ2(1). (21)

Hence hn has a limiting χ2(1) distribution under the null hypothesis. Now, under the alternative of
I(1) errors, the inconsistent OLS estimator dominates.

qn = β̃n − β̂n → ξ (22)

where ξ is bounded in probability.
So under the alternative, for the statistics defined in (21), qn = Op(1), τ̂

2
n still converges to τ , hence

hn diverges. In summary, the Hausman test statistics has a limiting χ2(1) distribution under the null
and diverges under the alternative.
Note that in this test the null hypothesis is cointegration, while usually the null of a cointegration test

is that no cointegrating relationship presents. Both type of tests will be useful to empirical researchers.
For instance, if the results reject the null of no cointegration and also reject the null of cointegration,
we may need to seek alternative model specifications.

2.4 Simulations

We know that in spurious regressions, FGLS estimator is asymptotic equivalent to GLS estimator;
and in cointegration regressions, FGLS estimator is asymptotically equivalent to OLS estimator. In the
simulation, we show the finite sample performance of FGLS in these two situations. In the simulation,
we generate vt and �t from independent standard normal distribution and let ut = �t + 0.5�t. The
parameters are set to be β = 2, α = 0.5. Figure 1 shows the finite sample distribution when the error
term is unit root nonstationary. The left figure plots the distribution of the GLS estimator and the right
figure plots that of the feasible GLS estimator. We can see that although FGLS is consistent, it has
larger variance even when the sample is relatively large. Figure 2 shows the finite sample distribution
when the error term is I(0). The left figure plots the distribution of OLS estimator and the right figure
plots that of FGLS estimator. These two estimators both converge very fast and the difference between
them is almost invisible.
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Figure 1: Distributions of OLS and FGLS estimators when the error is I(0)
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Figure 2: Distributions of GLS and FGLS estimators when the error is I(1)
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3 Empirical Applications

In this section we apply the GLS correction methods to analyze three macroeconomic issues: the
long-run intertemporal elasticity of substitution (IES), long-run money demand in the U.S., and the
Purchasing Power Parity.

3.1 The long-run IES for consumption

We consider a simplified version of Cooley and Ogaki’s (1996) model of consumption and leisure for the
purpose of illustrating the project. In the model, the representative household maximizes

U = E0[
∞X
t=0

δtu(t)]

where Et denotes the expectation conditioned on the information available at t. Consider a simple
intraperiod utility function that is assumed to be time- and state-separable and separable in nondurable
consumption, durable consumption, and leisure

u(t) =
C(t)1−β − 1
1− β

+ v(l(t))

where v(·) represents a continuously differentiable concave function, C(t) is nondurable consumption,
and l(t) is leisure.
The usual first order condition for a household that equates the real wage rate with the marginal

rate of substitution between leisure and consumption is:

W (t) =
v0(l(t))
C(t)−β

whereW (t) is the real wage rate. We assume that the stochastic process of leisure is (strictly) stationary
in the equilibrium as in Eichenbaum, Hansen, and Singleton (1988). Then an implication of the first
order condition is that ln(W (t)) − β ln(C(t)) = ln(v0(l(t))) is stationary. When we assume that the
log of consumption is difference stationary, this implies that the log of the real wage rate and the log
of consumption are cointegrated with a cointegrating vector (1,−β)0. Now assume that ln(W (t)) and
ln(C(t)) are measured with errors. Imagine that the ln(C(t)) is measured with a stationary measurement
error, ξ(t), and that ln(W (t)) is measured with a difference stationary measurement error, �(t) (perhaps
because of the difficulty in measuring fringe benefits). Assume that �(t) is independent of ln(C(t)) and
ξ(t) at all leads and lags. Consider a regression

ln(Wm(t)) = a+ β ln(Cm(t)) + u(t), (23)

where Wm(t) is the measured real wage rate, Cm(t) is the measured consumption, and u(t) = −�(t) +
βξ(t)+ln(v0(l(t)))−a. If �(t) is stationary, then u(t) is stationary, and Regression (23) is a cointegrating
regression as in Cooley and Ogaki.
If �(t) is unit root nonstationary, then Regression (23) is a spurious regression because u(t) is

nonstationary in this case. Hence the standard methods for cointegrating regressions cannot be used.
However, the preference parameter β can still be estimated by the spurious regression method.
Table 1 presents the estimation results for preference parameter (β) based on various estimators:

dynamic OLS, GLS, and dynamic feasible GLS.1 We follow the empirical analysis in Cooley and Ogaki
1 In dynamic GLS, the serial correlation coefficient in error term is estimated before being applied to the Cochrane-

Orcutt transformation while it is assumed to be unity in GLS estimation which is analogous to regressing the first difference
of variables without constant term.
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except that GDP deflators are used in lieu of the implicit deflator based on consumption measures
to deflate nominal wages.2 The results in Table 1 illustrate several points. First, using non-durable
consumption for C(t) all point estimates for β have theoretically correct positive sign and they seem
to be robust to the choice of lead and lag terms. This is readily confirmed by our results using BIC
rule for lead and lag selection as the point estimates of the structural parameter is stable over various
choice of leads and lags. Among the three estimators under study, DOLS estimates are the largest while
DGLS estimates are the smallest. Interestingly, GLS estimates fall between the two. Our estimates
are in general smaller than those found by Cooley and Ogaki based on the Canonical Cointegration
Regression (CCR). The picture changes slightly when we add service consumption to non-durable
consumption as consumption measure. Point estimates are consistently smaller by 0.14~0.23 than when
only non-durable consumption is used, which is in sharp contrast with the results of Cooley and Ogaki
who found favorable evidence for cointegration for ND rather than NDS. This time FGLS estimates
appear to be smaller than the other two though the difference among them is not as large as before.
This is reflected in our Hausman specification test results reported in Table 1. Overall our estiamtes
throw additional light on the long-run relation between real wage and consumption in the absence of
cointegrating restriction.

3.2 Elasticities of Money Demand in the U.S.

The long-run income and interest elasticities of money demand has often been estimated under the
cointegrating restriction among real balances, real income, and interest rate. The restriction is legitimate
if the money demand function is stable in the long-run and if all variables are measured without
error. Indeed Stock and Watson (1993) found a supportive evidence of stable long-run M1 demand by
estimating cointegrating vectors. However, if money is measured with a nonstationary measurement
error, we have a spurious regression and the estimation results based on cointegration regression become
questionable. We apply our GLS correction methods to estimate long-run income and interest elasticities
of M1 demand. To this end, regression equations are set up with real money balance (MP ) as regressand
and income (y) and interest (i) as regressors. Following Stock and Watson (1993), the annual time series
for M1 deflated by the net national product price deflator is used for M

P , real net national product for
y and the six month commercial paper rate in percentage for i. M

P and y are in logarithms while three
different regression equations are considered depending on the measures of interest. We have tried the
following three functional forms. Equation 1 has been studied by Stock and Watson (1993).

ln

µ
M

P

¶
t

= α+ β ln (yt) + γit + ut, (equation 1)

ln

µ
M

P

¶
t

= α+ β ln (yt) + γ ln(it) + ut, (equation 2)

ln

µ
M

P

¶
t

= α+ β ln (yt) + γ ln

·
1 + it
it

¸
+ ut. (equation 3)

It is worth noting that the liquidity trap is possible for the latter two functional forms. When the
data contain the periods with very low nominal interest rates, the latter two functional forms may be
more appropriate.
Table 2 presents the results. In all cases considered, point estimates for income elasticity of money

demand (β) and inerest semi-elasticity (γ) have correct signs.3 The point estimates of β are quite similar

2See Cooley and Ogaki (1996, page 127) for the detailed description of data.
3The point estimates for γ have positive sign in equation 3 because the regressor is approximately equivalent to the

inverse of the counterparts in the other two equations.
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across estimators but not necessarily for point estimates of γ in which GLS estimates are consistently
lower than DOLS and FGLS estimates. Point estimate of β is largest in equation 1 and smallest in
equation 3, but it appears to be stable in most cases. Estimated income elasticities range from 0.8 (in
equation 3) through close to one in equation 1. As a consequence, long run U.S. money demand appears
to be stable during 1900-1989, consistent with the finding by Stock and Watson.

3.3 Purchasing Power Parity

Let pt and p∗t denote the logarithms of the consumer price indices in the base country and foreign
country respectively, and st be the logarithm of the price of foreign country’s currency in terms of the
base country’s currency. Long-run PPP requires that a linear combination of these three variables be
stationary. To be more specific, long-run PPP is said to hold if ft = st+p∗t is cointegrated with pt such
that �t ∼ I(0) in

ft = α+ βpt + �t,

where β = 1. It is widely agreed that the empirical evidence on long-run PPP remains inconclusive
despite extensive research. We apply our techniques to the long-standing issue in international economics
among 21 OECD countries during the post Bretton Woods period.
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Appendix

Appendix A: Proof of results in section 2.1

To show the distribution of the OLS estimator in regression (3), define

Hn =

·
n 0

0 n1/2

¸
. (24)

The OLS estimator for β and α can be written as"
β̂n − β0
α̂− α0

#
=

·
H−1n

· Pn
t=1 x

2
t

Pn
t=1 xtvtPn

t=1 xtvt
Pn

t=1 v
2
t

¸
H−1n

¸−1 ·
n−2

Pn
t=1 xtet

n−1
Pn

t=1 vtet

¸
For the first term,·

n−2
Pn

t=1 x
2
t n−3/2

Pn
t=1 xtvt

n−3/2
Pn

t=1 xtvt n−1
Pn

t=1 v
2
t

¸
→
"
σ21
R 1
0
V (r)2dr 0

0 σ2v

#
. (25)

where σ2v = E(v2t ). For the second term,·
n−2

Pn
t=1 xtet

n−1
Pn

t=1 vtet

¸
→d

"
σ1σ2

R 1
0
V (r)U(r)dr

σ1σ2
R 1
0
U(r)dV (r)

#
.

Equation (4) then follows.
To show the limit distribution of the GLS corrected estimator in regression (5), let zt = (∆xt,∆vt)4,

then
√
n(θ̃n − θ0) =

"
n−1

nX
t=1

ztz
0
t

#−1 "
n−1/2

nX
t=1

ztut

#
. (26)

For the first term,

n−1
nX
t=1

ztz
0
t =

·
n−1

P
v2t n−1

P
vt∆vt

n−1
P

vt∆vt n−1
P
∆v2t

¸
→ σ2v

·
1 1− ψv

1− ψv 2(1− ψv)

¸
= σ2vQ, say,

where ψv is the first order correlation coefficient of {vt}. If vt is i.i.d, ψv = 0 and σ2v = σ21.
For the second term, we want to show that

n−1/2
nX
t=1

ztut =

·
n−1/2

P
vtut

n−1/2
P
∆vtut

¸
→ N(0, σ2vσ

2
uQ)

To show this, let λ = (λ1, λ2)0 be an arbitrary vector of real numbers.

n−1/2
nX
t=1

λ0ztut = n−1/2
nX
t=1

(λ1vt + λ2∆vt)ut

= λ1n
−1/2

nX
t=1

vtut + λ2n
−1/2

nX
t=1

∆vtut

→ N(0, σ2vσ
2
u(λ

2
1 + 2λ1λ2(1− ψv) + 2λ

2
2(1− ψv))

= N(0, σ2vσ
2
uλ

0Qλ)
4Through this paper, we always use zt to denote the vector of independent variables and let θ to denote the vector

of parameters (but keep in mind that we are mostly interested in β). Note that in different regressions, those symbols
denote different variables.
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Hence, for the quantity defined in (26), we have the limit distribution given in (6).
To derive the limit distribution for the FGLS estimator, we first derive the limit distribution for ρ̂n

in regression (8). Write the process of R̂t as

R̂t = yt − β̂xt − α̂vt

= yt−1 − β̂xt−1 − α̂vt−1 + [(yt − yt−1)− β̂n(xt − xt−1)− α̂(vt − vt−1)]

= R̂t−1 + [(β0 − β̂n)vt + (α0 − α̂)(vt − vt−1) + ut]

= R̂t−1 + ht, say.

From this expression, we can see that R̂t is a unit root process with serially correlation error ht. Then
the OLS estimator ρ̂n can be written as

ρ̂n =

Pn
t=1 R̂tR̂t−1Pn
t=1 R̂

2
t−1

= 1 +

Pn
t=1 R̂t−1htPn
t=1 R̂

2
t−1

To derive the limit of ρ̂n, write

R̂t = yt − β̂nxt − α̂nvt = (β0 − β̂n)xt + (α0 − α̂n)vt + et. (27)

Hence the denominator

R̂2t = (β0 − β̂n)x
2
t + e2t + 2(β0 − β̂n)xtet

+(α0 − α̂n)
2v2t + 2(α0 − α̂n)(β0 − β̂n)xtvt + 2(α0 − α̂n)etvt,

where we can see that the sum of the first line diverges faster as they are products of I(1) variables. In
particular,

n−2
nX
t=1

R̂2t = (β0 − β̂n)
2n−2

nX
t=1

x2t + n−2
nX
t=1

e2t + 2(β0 − β̂n)n
−2

nX
t=1

xtet + op(1)

→d ξ2σ21

Z 1

0

V (r)2dr + σ22

Z 1

0

U(r)2dr + 2ξσ1σ2

Z 1

0

V (r)U(r)dr ≡ ζ.

For the numerator,

R̂t−1ht = [(β0 − β̂n)xt−1 + (α0 − α̂)vt−1 + et−1][(β0 − β̂n + α0 − α̂)vt − (α0 − α̂)vt−1 + ut]

The sum of all the terms of products in this expression converges when normed with n−1. We omit the
details here as we will not make use of the exact distribution of ρ̂n. Plug in the limits of all the terms,
we can write

n−1
nX
t=1

R̂t−1ht → η, say.

Hence,

n(ρ̂n − 1) =
n−1

Pn
t=1 R̂t−1ht

n−2
Pn

t=1 R̂
2
t−1

→d
η

ζ
. (28)

Actually, in our following computations, all we need to know is that

ρ̂n − 1 = op(1) and n(ρ̂n − 1) = Op(1).
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Below, we show how to derive the limit distribution for θ̃. For the sequence of ỹt, we can write it as

ỹt = yt − ρ̂nyt−1
= β0xt + α0vt + et − ρ̂n(β0xt−1 + α0vt−1 + et−1)

= β0(xt − ρ̂nxt−1) + α0(vt − ρ̂nvt−1) + (et − et−1) + (1− ρ̂n)et−1
= β0x̃t + α0ṽt + ut + (1− ρ̂n)et−1
= z0tθ0 + ut + (1− ρ̂n)et−1

Now, we can write

θ̂ − θ0 =

"
nX
t=1

ztz
0
t

#−1 " nX
t=1

zt[ut + (1− ρ̂n)et−1]

#
. (29)

For the first term:
nX
t=1

ztz
0
t =

· P
x̃2t

P
x̃tṽtP

x̃tṽt
P

ṽ2t

¸
The asymptotics of each term follows. First,

nX
t=1

x̃2t =
nX
t=1

(xt − ρ̂nxt−1)
2

=
nX
t=1

[(1− ρ̂n)xt−1 + vt]
2

= (1− ρ̂n)
2

nX
t=1

x2t−1 + 2(1− ρ̂n)
nX
t=1

xt−1vt +
nX
t=1

v2t .

Hence,

n−1
nX
t=1

x̃2t = n(1− ρ̂n)
2

Ã
n−2

nX
t=1

x2t−1

!
+ 2(1− ρ̂n)

Ã
n−1

nX
t=1

xt−1vt

!
+ n−1

nX
t=1

v2t

= n−1
nX
t=1

v2t + op(1)

→ σ2v

Similarly,

n−1
X

x̃tṽt = n−1
nX
t=1

v2t − ρ̂n

Ã
n−1

nX
t=1

vtvt−1

!
+ op(1)

→p σ2v(1− ψv).

Finally, n−1
Pn

t=1 ṽ
2
t → 2σ2v(1− ψv). Hence,

n−1
nX
t=1

ztz
0
t →p σ

2
v

·
1 1− ψv

1− ψv 2(1− ψv)

¸
= σ2Q. (30)

Now, consider the second term in (29)

nX
t=1

zt[ut + (1− ρ̂n)et−1] =
· Pn

t=1 x̃t[ut + (1− ρ̂n)et−1]Pn
t=1 ṽt[ut + (1− ρ̂n)et−1]

¸
.
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It is not hard to see that n−1
Pn

t=1 zt[ut + (1− ρ̂n)et−1]→p 0. Intuitively, x̃t is asymptotically like
vt, while u and v are independent by assumption. Again, our remaining task is to show that

n−1/2
nX
t=1

zt[ut + (1− ρ̂n)et−1]→ N(0, σ2vσ
2
uQ). (31)

This can be shown in the same way as in the proof for (6). Combine (31 with (30), we obtain the limit
distribution for θ̃, as given in (11).

Appendix B: Some extensions

So far we have assumed that there is no constant term or deterministic time trends in the DGP of yt.
If there is a constant term, e.g.

yt = δ0 + β0xt + α0vt + ut.

Correspondingly, in the OLS estimation, we also include a constant,

yt = δ + βxt + αvt + error. (32)

The limit of β̂n and α̂n are similar as in the case without constant, except that we have demeaned
Brownian motions instead of standard Brownian motions in the limit. Since this is still a spurious
regression, the estimator of the constant term diverges as was shown in Phillips (1986). Here

δ̂n = ȳ − β̂nx̄− α̂nv̄t

= δ0 + (β̂n − β0)x̄+ (α̂n − α0)v̄ + ē

Hence

n−1/2δ̂n = n−1/2δ0 + (β̂n − β0)n
−3/2

nX
t=1

xt + (α̂n − α0n
−3/2

nX
t=1

vt + n−3/2
nX
t=1

et

→d ξ̄σ1

Z 1

0

V (r)dr + σ2

Z 1

0

U(r)dr.

where we let ξ̄ to denote the limit of β̂n − β0. Next, if we do GLS or the differenced regression, the
constant is canceled so we could have the same limit result as is given by (6). Finally, consider the
Cochrane-Orcutt feasible GLS estimation. Still let R̂t denote the OLS residual

R̂t = yt − δ̂n − β̂nxt − α̂nvt.

Then do another OLS estimation in

R̂t = ρ̂nR̂t−1 + error.

Write

R̂t = yt − δ̂n − β̂nxt − α̂nvt

= R̂t−1 + [(β0 − β̂n)vt + (α0 − α̂n)(vt − vt−1) + ut]

= R̂t−1 + ht
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which takes the same form as in the previous section where no constant is included. Hence we still have

ρ̂n − 1 =
Pn

t=1 R̂t−1htPn
t=1 R̂

2
t−1

.

Write the process of R̂t as:

R̂t = yt − δ̂n − β̂nxt − α̂nvt = (β0 − β̂n)(xt − x̄) + (α0 − α̂n)(vt − v̄) + (et − ē). (33)

Comparing equation (33) with (27), the only difference in (33) is that all terms are subtracted by their
sample means. This will correspond to demeaned Brownian motions instead of standard Brownian
motions in the limit of the distribution of ρ̂n. Using similar methods as in the previous section, we can
show that

ρ̂n − 1 = op(1) and n(ρ̂n − 1) = Op(1).

Next, conduct the Cochrane-Orcutt transformation as in (9), and consider the OLS estimator in the
regression

ỹt = β̃nx̃t + α̃nṽt + error.

Define zt = (x̃t, ṽt)0 and θ = (β, α)0, then

θ̃n =

"
(
nX
t=1

ztz
0
t)
−1
#"

nX
t=1

ztỹt

#
.

For ỹt, write

ỹt = yt − ρ̂nyt−1
= (1− ρ̂n)δ0 + β0x̃t + α0ṽt + ut + (1− ρ̂n)et−1
= z0tθ0 + (1− ρ̂n)δ0 + ut + (1− ρ̂n)et−1

Hence we can write

θ̂n − θ0 =

"
nX
t=1

ztz
0
t

#−1 " nX
t=1

zt[(1− ρ̂n)δ0 + ut + (1− ρ̂n)et−1]

#
. (34)

The only difference of (34) with (29) is that we have a term (1 − ρ̂n)δ0 here. However, since δ0 is
just a finite constant and n(1− ρ̂n) = Op(1), this term does not affect the asymptotics of θ̃n. Therefore,
using the Cochrane-Orcutt transformation, the limit distribution of the estimators are the same no
matter whether we have or have not a constant in the data generating process of the data. So we have
the same result as given by (6).

Appendix C: Proof of results in section 2.2

To show the limit distribution of the dynamic OLS estimator in the cointegration, using the matrix Hn

defined in (24), we can write"
n(β̂n − β0)

n1/2(α̂n − α0)

#
=

·
H−1n

· Pn
t=1 x

2
t

Pn
t=1 xtvtPn

t=1 xtvt
Pn

t=1 v
2
t

¸
H−1n

¸−1 ·
n−1

Pn
t=1 xtut

n−1/2
Pn

t=1 vtut

¸
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For the first term on the right hand side,·
n−2

Pn
t=1 x

2
t n−3/2

Pn
t=1 xtvt

n−3/2
Pn

t=1 xtvt n−1
Pn

t=1 v
2
t

¸
→
"
σ21
R 1
0
V (r)2dr 0

0 σ2v

#
. (35)

so the estimator of the I(1) and I(0) components are asymptotically independent. For the second term
on the right hand side, ·

n−1
Pn

t=1 xtut
n−1/2

Pn
t=1 vtut

¸
→d

"
σ1σ2

R 1
0
V (r)dU(r)

N(0, σ2vσ
2
u)

#
. (36)

Equation (14) then follows.
To show the limit distribution for FGLS estimator in regression (15), write

n−1
nX
t=1

û2t

= n−1
nX
t=1

u2t + 2

Ã
n−1H−1n

nX
t=1

utz
0
t

!
Hn(θ − θ̂) +Hn(θ − θ̂)0

Ã
n−1H−1n

nX
t=1

ztz
0
t

!
Hn(θ − θ̂)

= n−1
nX
t=1

u2t + op(1)→ σ2u

Similarly, we can show that

n−1
nX
t=1

ûtût−1 = n−1
nX
t=1

utut−1 + op(1)→ ψuσ
2
u.

ρ̂n =
n−1

Pn
t=1 ûtut−1

n−1
Pn

t=1 û
2
t

→p ψu

Conduct the Cochrane-Orcutt transformation (9) and estimate

ỹt = β̃x̃t + α̃ṽt + error.

For the sequence of ỹt, we can write it as

ỹt = β0x̃t + α0ṽt + ut − ρ̂nut−1.

Using the same weight matrix Hn, write·
n(β̃ − β0)

n1/2(α̃− α0)

¸
=

·
H−1n

· Pn
t=1 x̃

2
t

Pn
t=1 x̃tṽtPn

t=1 x̃tṽt
Pn

t=1 ṽ
2
t

¸
H−1n

¸−1 ·
n−1

Pn
t=1 x̃t(ut − ρ̂nut−1)

n−1/2
Pn

t=1 ṽt(ut − ρ̂nut−1)

¸
(37)

There are three different elements in the first term. Using similar methods as in the earlier proofs,
we can show that

n−2
nX
t=1

x̃2t →d (1− ψu)
2σ21

Z 1

0

V (r)2dr

n−2/3
nX
t=1

x̃tṽt →p 0

n−1
nX
t=1

ṽ2 → (1− 2ψuψv + ψ2u)σ
2
v
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Hence, the limit of the first item in (37) is

H−1n

"
nX
t=1

ztz
0
t

#
H−1n =

·
n−2

Pn
t=1 x̃

2 n−3/2
Pn

t=1 x̃ṽ

n−3/2
Pn

t=1 x̃ṽ n−1
Pn

t=1 ṽ
2

¸

→d

"
(1− ψu)

2σ21
R 1
0
V (r)2dr 0

0 (1− 2ψuψv + ψ2u)σ
2
v

#
.

Next, consider the second term in (37). Actually, we are only interested in the first element,

n−1
nX
t=1

x̃(ut − ρ̂nut−1)

= n−1
nX
t=1

(vt + (1− ρ̂n)xt−1)(ut − ρ̂nut−1)

= n−1
nX
t=1

vtut − ρ̂n

nX
t=1

vtut−1 + (1− ρ̂n)n
−1

nX
t=1

xt−1ut − ρ̂n(1− ρ̂n)n
−1

nX
t=1

xt−1ut−1

→ (1− ψu)
2σ1σ2

Z 1

0

V (r)dU(r).

Therefore, we obtain the limit distribution for β̃n as given in (16).

Appendix D: Data Descriptions

For the purpose of comparisons, we use the same data set as in Cooley and Ogaki (1996) for the long-
run intertemporal elasticity of substitution, and the data set of Stock and Watson (1993) for the U.S.
money demand. Readers are referred to the original work for further details on data.
In the PPP application, two data sets have been employed. The first data set is comprised of

quarterly (??) nominal exchange rates and consumer price indices during the post Bretton Woods period
over 1973:1 - 1998:4 for 21 industrial countries: Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Greece, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal,
Spain, Sweden, Switzerland, the United Kingdom, and the United States. They were retrieved from
the International Monetary Fund’s International Financial Statistics (IFS) and nominal exchange rates
are end-of-quarter observations (IFS line code AE) while CPIs are quarterly averages (IFS line code
64). The second data set consists of monthly CPIs for durable goods and nominal exchange rates for
Canada, Japan, and the U.S. They were obtained from the Organisation for Economic Cooperation and
Development’s (OECD) Main Economic Indicators CD-ROM for the period of 1965:1 - 2001:6.
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Table 1: Application to Preference Parameter (β) Estimation

Estimator k AR(1) error AR(2) error
ND NDS ND NDS

0 0.897 (0.041) 0.660 (0.039) 0.897 (0.043) 0.660 (0.049)
1 0.897 (0.043) 0.661 (0.047) 0.897 (0.036) 0.661 (0.035)

DOLS 2 0.896 (0.040) 0.661 (0.041) 0.896 (0.041) 0.661 (0.042)
3 0.895 (0.040) 0.662 (0.040) 0.895 (0.039) 0.662 (0.040)
4 0.894 (0.043) 0.661 (0.045) 0.894 (0.040) 0.661 (0.046)
5 0.892 (0.038) 0.660 (0.045) 0.892 (0.038) 0.660 (0.046)
BIC 0.890 (0.034) 0.658 (0.044) 0.886 (0.042) 0.658 (0.053)
[lag] [6] [10] [9] [10]
0 0.372 (0.050) 0.529 (0.049) 0.372 (0.050) 0.529 (0.049)
1 0.637 (0.067) 0.620 (0.057) 0.637 (0.067) 0.620 (0.057)

GLS 2 0.694 (0.072) 0.642 (0.059) 0.694 (0.072) 0.642 (0.059)
3 0.765 (0.073) 0.671 (0.058) 0.765 (0.073) 0.671 (0.058)
4 0.814 (0.075) 0.681 (0.059) 0.814 (0.075) 0.681 (0.059)
5 0.827 (0.078) 0.683 (0.059) 0.827 (0.078) 0.683 (0.059)
BIC 0.814 (0.075) 0.642 (0.059) 0.814 (0.075) 0.642 (0.059)
[lag] [4] [2] [4] [2]
0 0.901 (0.042) 0.662 (0.028) 0.901 (0.042) 0.662 (0.028)
1 0.731 (0.030) 0.533 (0.025) 0.771 (0.026) 0.576 (0.021)

FGLS 2 0.749 (0.027) 0.550 (0.021) 0.736 (0.028) 0.536 (0.022)
3 0.753 (0.030) 0.549 (0.023) 0.752 (0.030) 0.558 (0.023)
4 0.744 (0.032) 0.531 (0.026) 0.752 (0.031) 0.518 (0.027)
5 0.757 (0.031) 0.519 (0.030) 0.752 (0.031) 0.528 (0.031)
BIC 0.744 (0.032) 0.531 (0.026) 0.752 (0.031) 0.558 (0.023)
[lag] [4] [4] [4] [3]
0 7.003** 110.972** 7.003** 110.972**
1 0.520 15.249** 0.520 15.249**

Hausman- 2 0.111 7.950** 0.111 7.950**
Test 3 0.029 3.195* 0.029 3.195*

4 0.119 1.134 0.119 1.134
5 0.139 0.716 0.139 0.716

Note: Figures in the parenthesis represent standard errors. ‘k’ denotes the maximum length of leads and lags. GLS

refers to the GLS corrected estimator which is obtained through regressing the first difference of variables without

constant term. FGLS represents the FGLS estimator based on iterative Cochrane-Orcutt method. AR(1) error term is

structured as ut = ρut−1 + �t while AR(2) error term is ut = δ1ut−1 + δ2ut−2 + �t. The Hausman test statistic is
(β̂OLS−β̃GLS)2)

V ar(β̃GLS)
→ χ2(1). The critical values of χ2(1) are 2.71, 3.84 and 6.63 for ten, five, and one percent significance

level. Single (double) asterisk represent that the null hypothesis of β̂OLS = β̃GLS can be rejected at 5% (1%)

significance level.
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Table 2: Application to Long Run U.S. Money Demand

Estimator k Equation 1 Equation 2 Equation 3
β̂ γ̂ β̂ γ̂ β̂ γ̂

AR(1) Error Term
0 0.944 (0.054) -0.090 (0.015) 0.889 (0.057) -0.308 (0.058) 0.850 (0.085) 0.906 (0.280)
1 0.958 (0.048) -0.096 (0.014) 0.884 (0.046) -0.313 (0.045) 0.843 (0.066) 0.915 (0.216)
2 0.970 (0.051) -0.101 (0.014) 0.879 (0.044) -0.320 (0.043) 0.837 (0.072) 0.941 (0.233)

DOLS 3 0.975 (0.055) -0.104 (0.015) 0.871 (0.036) -0.328 (0.035) 0.832 (0.062) 0.975 (0.205)
4 0.967 (0.054) -0.108 (0.015) 0.855 (0.029) -0.334 (0.028) 0.824 (0.065) 0.995 (0.215)
BIC 0.967 (0.054) -0.108 (0.015) 0.851 (0.026) -0.353 (0.026) 0.836 (0.054) 1.114 (0.193)
[lag] [4] [6] [6]
0 0.407 (0.081) -0.014 (0.004) 0.419 (0.079) -0.086 (0.022) 0.388 (0.078) 0.300 (0.082)
1 0.654 (0.119) -0.025 (0.010) 0.685 (0.115) -0.177 (0.046) 0.643 (0.115) 0.506 (0.148)
2 0.837 (0.134) -0.050 (0.013) 0.848 (0.130) -0.248 (0.053) 0.787 (0.133) 0.620 (0.161)

GLS 3 0.856 (0.145) -0.067 (0.017) 0.884 (0.140) -0.289 (0.061) 0.816 (0.146) 0.725 (0.185)
4 0.962 (0.161) -0.086 (0.022) 0.898 (0.151) -0.283 (0.067) 0.811 (0.153) 0.654 (0.195)
BIC 0.856 (0.145) -0.067 (0.017) 0.884 (0.140) -0.289 (0.061) 0.718 (0.155) 0.699 (0.229)
[lag] [3] [3] [7]
0 0.942 (0.052) -0.083 (0.023) 0.893 (0.049) -0.290 (0.079) 0.858 (0.071) 0.850 (0.435)
1 0.888 (0.040) -0.065 (0.009) 0.872 (0.035) -0.278 (0.030) 0.815 (0.045) 0.744 (0.115)
2 0.940 (0.045) -0.081 (0.010) 0.901 (0.036) -0.309 (0.031) 0.840 (0.054) 0.797 (0.128)

FGLS 3 0.980 (0.050) -0.096 (0.011) 0.905 (0.029) -0.330 (0.026) 0.851 (0.046) 0.912 (0.124)
4 1.010 (0.045) -0.108 (0.011) 0.886 (0.025) -0.333 (0.023) 0.833 (0.051) 0.895 (0.133)
BIC 1.006 (0.037) -0.112 (0.009) 0.867 (0.024) -0.347 (0.022) 0.824 (0.041) 0.986 (0.120)
[lag] [5] [6] [6]
0 289.892** 113.485** 79.188**
1 54.427** 10.203 9.946**

Hausman- 2 15.059** 1.867 3.978
Test 3 4.690 0.460 1.852

4 1.112 0.820 3.102
AR(2) Error Term

0 0.944 (0.034) -0.090 (0.009) 0.889 (0.050) -0.308 (0.050) 0.850 (0.076) 0.906 (0.251)
1 0.958 (0.046) -0.096 (0.013) 0.884 (0.048) -0.313 (0.047) 0.843 (0.071) 0.915 (0.233)
2 0.970 (0.046) -0.101 (0.013) 0.879 (0.038) -0.320 (0.037) 0.837 (0.062) 0.941 (0.201)

DOLS 3 0.975 (0.048) -0.104 (0.013) 0.871 (0.035) -0.328 (0.034) 0.832 (0.066) 0.975 (0.218)
4 0.967 (0.050) -0.108 (0.014) 0.855 (0.030) -0.334 (0.028) 0.824 (0.077) 0.995 (0.255)
BIC 0.967 (0.050) -0.108 (0.014) 0.851 (0.026) -0.353 (0.026) 0.832 (0.066) 0.975 (0.218)
[lag] [4] [6] [3]
0 0.407 (0.081) -0.014 (0.004) 0.419 (0.079) -0.086 (0.022) 0.388 (0.078) 0.300 (0.082)
1 0.654 (0.119) -0.025 (0.010) 0.685 (0.115) -0.177 (0.046) 0.643 (0.115) 0.506 (0.148)
2 0.837 (0.134) -0.050 (0.013) 0.848 (0.130) -0.248 (0.053) 0.787 (0.133) 0.620 (0.161)

GLS 3 0.856 (0.145) -0.067 (0.017) 0.884 (0.140) -0.289 (0.061) 0.816 (0.146) 0.725 (0.185)
4 0.962 (0.161) -0.086 (0.022) 0.898 (0.151) -0.283 (0.067) 0.811 (0.153) 0.654 (0.195)
BIC 0.856 (0.145) -0.067 (0.017) 0.884 (0.140) -0.289 (0.061) 0.718 (0.155) 0.699 (0.229)
[lag] [3] [3] [7]
0 0.942 (0.052) -0.083 (0.023) 0.893 (0.049) -0.290 (0.079) 0.858 (0.071) 0.850 (0.435)
1 0.900 (0.039) -0.069 (0.009) 0.872 (0.038) -0.276 (0.031) 0.809 (0.049) 0.722 (0.118)
2 0.948 (0.042) -0.086 (0.010) 0.894 (0.033) -0.312 (0.029) 0.839 (0.049) 0.830 (0.131)

FGLS 3 0.991 (0.044) -0.100 (0.011) 0.907 (0.029) -0.332 (0.026) 0.853 (0.050) 0.903 (0.128)
4 1.012 (0.042) -0.109 (0.010) 0.889 (0.026) -0.335 (0.023) 0.827 (0.061) 0.856 (0.142)
BIC 1.012 (0.042) -0.109 (0.010) 0.857 (0.024) -0.346 (0.021) 0.806 (0.043) 0.970 (0.121)
[lag] [4] [6] [6]
0 289.892** 113.485** 79.188**
1 54.427** 10.203 9.946**

Hausman- 2 15.059** 1.867 3.978
Test 3 4.690 0.460 1.852

4 1.112 0.820 3.102

Note: Figures in the parenthesis represent standard errors. ‘k’ denotes the maximum length of leads and lags. In dynamic GLS,

the serial correlation coefficient in error term is estimated before being applied to the Cochrane-Orcutt transformation whereas

it is assumed to be unity in GLS estimation which is analogous to regressing the first difference of variables without constant

term. AR(1) error term is structured as ut = ρut−1 + �t while AR(2) error term is ut = δ1ut−1 + δ2ut−2 + �t. The Hausman

test statistic is (Γ̂OLS − Γ̃GLS)Σ(Γ̂OLS − Γ̃GLS)0 → χ2(2) where Γ = [β, γ] and

Σ =

·
var(β̃GLS cov(β̃GLS, γ̃GLS)

cov(β̃GLS, γ̃GLS) var(γ̃GLS)

¸
. The critical values of χ2(2) are 4.61, 5.99 and 9.21 for 10%, 5%, and 1%

21



significance levels. Single (double) asterisk represent that the null hypothesis of β̂OLS = β̃GLS can be rejected at 5% (1%).
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