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Abstract. We consider two-round elimination tournaments where
players have fixed resources instead of cost functions. Two approaches are
suggested. If the players have the same resources and a success function is
stochastic, then players always spend more resources in the first than in the
second round in a symmetric equilibrium. Equal resource allocation between
two rounds takes place only in the winner-take-all case. However, if the players
have independent private resources and the success function is deterministic,
then every player spends at least one third of his resources in the first round.
The players spend exactly one third of their resources in the winner-take-all
case. Applications for career paths, elections, and sports are discussed.

1. Introduction

The aim of this paper is to analyze two-round elimination tournaments in which
players have fixed resources instead of cost functions. In the first round players are
matched in two pairs for contests and the winner of each contest proceeds to the next
round. All losers receive the prize, W0, and are eliminated from the tournament.
There is a trade off here. On the one hand, the more resources a player spends in the
first round, the higher her chance to win the current contest and play in the final.
On the other hand, the more resources a player spends in the first round, the less her
chance to win the final. Each player has to allocate optimally her overall resources
between two rounds. This strategic problem is different from the problem analyzed
in the contest literature, where players must decide how much effort to spend to win
the prize(s) in one contest; see, for example, Dixit (1987, 1999), Baik and Shogren
(1992), Baye and Shin (1999), and Moldovanu and Sela (2001).
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Several real-world phenomena have the structure of such tournaments. A par-
ticipant in a two-stage election campaign, who has a fixed total budget, plays an
elimination tournament with fixed resources. A new worker (an assistant professor)
at the beginning of his/her career, when he/she has a limited number of working hours
for the whole career, has to distribute optimally those hours. Needless to say, that
many sportsmen, for example, tennis and soccer players, have to allocate optimally
his/her overall energy across all rounds in elimination tournaments, or chess players
have to decide in which rounds he/she should use his/her novelties in elimination
FIDE World Championship.
The tournament literature has focused theoretically, see, for example, Lazear and

Rosen (1981), Rosen (1981, 1986), and empirically, Ehrenberg and Bognanno (1990),
Knoeber and Thurman (1994), on players’ incentives in tournaments, when players
have some costs for exerting effort. Classical papers Lazear and Rosen (1981) and
Rosen (1981) analyze a stochastic success functions and show that high differences
in prizes in the last round(s) must provide enough incentives for players to insert the
same effort in all rounds. We show that the equal resource allocation between two
rounds takes place only in the winner-take-all case, if the success function is stochastic.
Moreover, in the symmetric equilibrium every player will spend more resources in the
first round that in the final round, if the prize scheme is different from the winner-
take-all. The intuition is straightforward: if a player keeps her resources until the
last round to get higher prizes, then she will be eliminated in the first round.
However, if the success function is deterministic - if the player spends more in

the current round than her opponent, then she wins the current round for sure, then
the prediction is different. Every player spends at least one third of her resources in
the first round, but she can spend more resources in the final now. The intuition is
that the players are going to face a strong opponent in the final now, because the
opponent is the best in the other pair of the players from the first round. Moreover,
in the symmetric monotone equilibrium every player will spend exactly one third of
her resources in the first round, if the prize scheme is the winner-take-all. It contrasts
with Krishna and Morgan (1998) and Moldovanu and Sela (2001), where the authors
show that the winner-take-all prize scheme is often the optimal for the principal, who
wants to maximize joint effort of the players.
The rest of this paper is organized as follows. We consider the stochastic model in

Section 2 and the deterministic model in Section 3. Section 4 provides a discussion.

2. Stochastic Model: The Same Resources

We begin the formal analysis by considering equilibrium behavior in two-round, four
risk-neutral players, elimination tournaments. In round 1 all players are matched in
pairs for fights/contests, where only two winners of the first round continue to fight
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for higher payoffs in the final. All losers get payoff W0, each of them wins 0 contest,
and are eliminated from the tournament. In the final, round 2, the winners of the first
round, 2 players, are matched in pair for new fight/contest. The winner of the final
gets payoff W2 and the loser receives payoff W1. We make the standard assumption
that prizes increase from round to round

A1. 0 ≤W0 ≤W1 < W2. (1)

Each player i has an initial fixed resource E, and must decide how to allocate
this resource between two rounds. Denote the spent part of player i’s resource in the
first round by xi1 and in the second round by x

i
2. If player i chooses to use a part

xik ∈ [0, E] of her resource in k round, k = 1, 2, when her opponent in k round, player
j, spends a part xjk ∈ [0, E], then player i wins this fight with probability

g (xik)

g (xik) + g
¡
xjk
¢ , (2)

where g (x) is a positive, twice differentiable, and increasing function:

A2. g (x) > 0, g0 (x) > 0, and g00 (x) ≤ 0 on the interval [0, E] . (3)

We will call the function (2) success function. A pure strategy for player i is a
rule (xi1, x

i
2), which assigns a part of her resources for every round in the tournament,

such that xi1 + x
i
2 = E, x

i
k ≥ 0 for any i ∈ {1, ..., 4} and k ∈ {1, 2}.1

We will call the following prize structure

0 ≤W0 =W1 < W2

winner-take-all. The main results of the Stochastic Model can be stated now.

2.1. Existence of a symmetric equilibrium. We show first that there exists
a symmetric equilibrium in pure strategies. The properties of the symmetric equilib-
rium are analyzed after that.

Proposition 1. Suppose that assumptions (1) and (3) hold. Then there exists a
symmetric equilibrium in pure strategies.

1Note that the strategy of player i is completely determined by her choice in the first round, but
for the convenience of exposition we will write the strategy of player i as her choices in two rounds.
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Proof: Note first that if every player but player 1 plays strategy (y1, y2), then
player 1 faces one and the same opponent in every round. Given the opponents’
resource allocation (y1, y2), the player 1’s resource allocation decision x1 in the 1-st
round of the tournament is determined by the solution of:

max
x1∈[0,E]

G(x1, y1), (4)

where the payoff function

G(x1, y1) =
g (y1)

g (x1) + g (y1)
W0+

+
g (x1)

g (x1) + g (y1)

µ
g (E − x1)

g (E − x1) + g (E − y1)W2 +
g (E − y1)

g (E − x1) + g (E − y1)W1

¶
or

G(x1, y1) =
g (x1)

g (x1) + g (y1)

µ
g (E − x1)

g (E − x1) + g (E − y1) [W2 −W1] + [W1 −W0]

¶
+W0.

Note that

∂G(x1, y1)

∂x1
=

g0 (x1) g (y1)

[g (x1) + g (y1)]
2

µ
g (E − x1)

g (E − x1) + g (E − y1) [W2 −W1] + [W1 −W0]

¶
+

g (x1)

g (x1) + g (y1)
× −g0 (E − x1) g (E − y1)
[g (E − x1) + g (E − y1)]2

[W2 −W1]

and

∂2G(x1, y1)

∂x21
= − 2g0 (x1) g (y1)

[g (x1) + g (y1)]
2 ×

g0 (E − x1) g (E − y1)
[g (E − x1) + g (E − y1)]2

[W2 −W1] +

g00 (x1) [g (x1) + g (y1)]
2 − 2 [g0 (x1)]2 [g (x1) + g (y1)]

[g (x1) + g (y1)]
4 ×µ

g (E − x1)
g (E − x1) + g (E − y1) [W2 −W1] + [W1 −W0]

¶
g (y1)+

g00 (E − x1) [g (E − x1) + g (E − y1)]2 − 2 [g0 (E − x1)]2 [g (E − x1) + g (E − y1)]
[g (E − x1) + g (E − y1)]4

×

g (x1) g (E − y1)
g (x1) + g (y1)

[W2 −W1] .

Since g00 ≤ 0, by assumption (3), then ∂2G(x1,y1)
∂x21

≤ 0 and the continuous payoff

function G is quasi-concave in x1. It means that we can apply Kakutani’s fixed-point
theorem to the player 1 best reply correspondence. The fixed point is a symmetric
equilibrium in pure strategies. End of proof.
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2.2. Properties of the symmetric equilibrium. Since Proposition 1 estab-
lishes the existence of a symmetric equilibrium in pure strategies, we can analyze
properties of this equilibrium.

Proposition 2. Suppose that assumptions (1) and (3) hold. Then, in symmetric
equilibrium, (x∗1, x

∗
2), it must be x

∗
1 ≥ x∗2, for any prize structure (W0,W1,W2). Equal

resource allocation between two rounds, x∗1 = x
∗
2, takes place only in the winner-take-

all case.

Proof: Suppose that all players, but player 1, allocate resource E in the same
way (y1, y2). Given the opponents’ resource allocation (y1, y2), the player 1’s resource
allocation decision x1 in the 1 − st round of the tournament is determined by the
solution of (4). The first order condition for the problem (4) is

∂G(x1, y1)

∂x1
=

g0 (x1) g (y1)

[g (x1) + g (y1)]
2

µ
g (E − x1)

g (E − x1) + g (E − y1) [W2 −W1] + [W1 −W0]

¶
−

− g (x1)

g (x1) + g (y1)

g0 (E − x1) g (E − y1)
[g (E − x1) + g (E − y1)]2

[W2 −W1] = 0

In symmetric equilibrium, x2 = y2 = x
∗
2, x1 = y1 = x

∗
1 and we have

g0 (x∗1)
g (x∗1)

([W2 −W1] + 2 [W1 −W0]) =
g0 (E − x∗1)
g (E − x∗1)

[W2 −W1] . (5)

Assumption (3) guarantees that the left-hand side (LHS) in equation (5) is a
strictly decreasing function of x∗1 on the interval [0, E], and the right-hand side (RHS)
in the same equation is a strictly increasing function of x∗1 on the interval [0, E]. It
follows from the fact that g0/g is a strictly decreasing function since g00g − [g0]2 < 0,
which is a corollary of the assumption (3).
The existence of a symmetric equilibrium in pure strategies follows from Propo-

sition 1. Hence, equation (5) either has no solution and x∗1 = E is a unique pure
strategy symmetric equilibrium or has a unique solution x∗1 inside of the interval
(0, E), since it defines the intersection of a decreasing and an increasing continuous
functions. Moreover, in the last case, if x∗1 = E/2, then LHS

¡
E
2

¢ ≥ RHS ¡E
2

¢
, be-

cause of the assumption (1), with equality if and only if W0 = W1. It means that a
unique solution of the equation (5) must be x∗1 ≥ E/2. End of proof.

Corollary 1. If the difference in prizes (W1 −W0) is positive, then the players spend
more resources in the first round.
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Example 1. Suppose that the resource is equal to ten, E = 10; g (x) = 1 + x;
and the following prize structure, W0 = 0, W1 = 0 and W2 = 30. Then, the payoff
function G(x1, 5) = 30

1+x
1+x+6

11−x
11−x+6 for value of y1 = 5 looks

2

3

4

5

6

7

8

0 2 4 6 8first round spending

Figure 1

The optimal first round spending is x1 = 5 as we know from Proposition 2. Figure
1 supports our finding.

3. Deterministic Model: Independent Private Resources

We consider elimination tournaments in an environment with independently and iden-
tically distributed private values of resources in this section. There are three prizes,
W2 > W1 ≥ W0 ≥ 0, in the elimination tournament, where W2 is the prize for the
winner of the tournament (she wins two rounds), W1 is the prize for the finalist (she
wins one round) and W0 is the prize for the loser of the first round (she wins no
rounds). There are four players in the elimination tournament. Each player i assigns
a resource of Xi - the maximum amount a player can spend in all rounds of the elim-
ination tournament. A player wins a round if she spends more than her opponent. If
both players spend the same amount, then each of them has fifty percent chance to
be the winner of the round. Each Xi is independently and identically distributed on
some interval [0, E], E <∞, according to the increasing distribution function F . It
is assumed that F admits a continuous density f ≡ F 0 and has full support.
A player i knows the realization xi of Xi and only that the other players’ resources

are independently distributed according to F . Players are risk neutral and maximize
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their expected profits. The distribution function F is common knowledge. A strategy
for a player i is a function βi = (β1i ,β

2
i ) : [0, E] → [0, E]2, which determines her

spending in the first and the second rounds of the tournament. Of course,

β1i + β2i ≡ xi. (6)

We will be interested in the outcomes of a symmetric equilibrium - an equilibrium in
which all players follow the same strategy.
We assume that the player 1 plays with the player 2 and the player 3 plays with

the player 4 in the first round, each player i simultaneously spends amount β1i in the
first round, and given (β1,β2, β3,β4), the payoff of the player 1 is

π1 =

⎧⎨⎩ W0 if β11 < β12
W1 if β11 > β12 and β21 < β234
W2 if β11 > β12 and β21 > β234

,

where β234 =

⎧⎨⎩ β23 if β13 > β14
β24 if β13 < β14
0.5 (β23 + β24) if β13 = β14

.

Every player faces a simple trade off. An increase in spending in the first round will
increase the probability to win the first round and play in the final, at the same time
reducing the probability to win the final. To get some idea about how these effects
balance off, we begin with a derivation of symmetric equilibrium strategies.
Suppose that players j 6= 1 follow the symmetric, increasing and differentiable

equilibrium strategy β∗ = β = (β1,β2). Suppose that the player 1 receives a resource,
X1 = x, and spends b1 in the first round and b2 in the second round. We wish to
determine the optimal spending b = (b1, b2).
First, notice that it can never be optimal to choose b1 > β1 (w) since in that case,

player 1 would win the first round for sure and could do better by reducing her first
round spending slightly so that she still wins for sure but increases her chance to win
the final. So we need only to consider b1 ≤ β1 (w). Second, a player with resource 0
must have β (0) = (β1 (0) , β2 (0)) = (0, 0).
The player 1 wins the first round whenever she spends more than the player 2

does, that is, whenever β12 (X2) < b1. The player 1 wins the tournament whenever
she wins the first round, β12 (X2) < b

1, and the second round, that is, whenever she
spends more in the second round than the winner of the first round pair the player 3
and the player 4, that is, whenever b2 > β234 (X3,X4), where β

2
34 (X3,X4) is the second

round spending of the winner of the first round pair the player 3 and the player 4.
The player 1’s expected payoff is therefore

F
³£

β1
¡
b1
¢¤−1´h

F 2
³£

β2
¡
b2
¢¤−1´

W2 +
³
1− F 2

³£
β2
¡
b2
¢¤−1´´

W1

i
+
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+
³
1− F

³£
β1
¡
b1
¢¤−1´´

W0, (7)

where F 2 is the distribution function of Y34, the highest second round spending of
players 3 and 4. Maximizing expression (7) with respect to b1, given that

b1 + b2 ≡ x,

yields the first order condition:

f
³
[β1 (b1)]

−1´
β10
¡
[β1 (b1)]−1

¢ hF 2 ³£β2 ¡x− b1¢¤−1´W2 +
³
1− F 2

³£
β2
¡
x− b1¢¤−1´´W1

i
+

F
³£

β1
¡
b1
¢¤−1´⎡⎣−2F

³
[β2 (x− b1)]−1

´
f
³
[β2 (x− b1)]−1

´
β20
¡
[β2 (x− b1)]−1¢ [W2 −W1]

⎤⎦−
−
f
³
[β1 (b1)]

−1´
β10
¡
[β1 (b1)]−1

¢W0 = 0. (8)

At a symmetric equilibrium

b1 = β1 (x) , b2 = β2 (x) and F
³£

β1
¡
b1
¢¤−1´ ≡ F ³£β2 ¡x− b1¢¤−1´ ,

and thus we can rewrite (8) as

f
³
[β1 (b1)]

−1´
β10
¡
[β1 (b1)]−1

¢ hF 2 ³£β1 ¡b1¢¤−1´W2 +
³
1− F 2

³£
β1
¡
b1
¢¤−1´´

W1

i
+

F
³£

β1
¡
b1
¢¤−1´⎡⎣−2F

³
[β1 (b1)]

−1´
f
³
[β1 (b1)]

−1´
β20
¡
[β2 (x− b1)]−1¢ [W2 −W1]

⎤⎦−
−
f
³
[β1 (b1)]

−1´
β10
¡
[β1 (b1)]−1

¢W0 = 0. (9)

The equation (9) yields the differential equation

f (x)

β10 (x)

£
F 2 (x)W2 +

¡
1− F 2 (x)¢W1

¤
+
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F (x)

∙
−2 F (x) f (x)

β20 (x− β1 (x))
[W2 −W1]

¸
− f (x)

β10 (x)
W0 = 0. (10)

Using (6), we obtain
β10 + β20 ≡ 1. (11)

Using (11), the differential equation (10) can be rewritten as¡
1− β10 (x)

¢ £
F 2 (x)W2 +

¡
1− F 2 (x)¢W1

¤
=

= 2F (x) [F (x) [W2 −W1]]β
10 (x) +

¡
1− β10 (x)

¢
W0 (12)

or equivalently,©
3F 2 (x) [W2 −W1] + [W1 −W0]

ª
β10 (x) = F 2 (x) [W2 −W1] + [W1 −W0]

and

β10 (x) =
F 2 (x) [W2 −W1] + [W1 −W0]

3F 2 (x) [W2 −W1] + [W1 −W0]
.

Since β1 (0) = 0, we have

β1 (x) =

Z x

0

F 2 (s) [W2 −W1] + [W1 −W0]

3F 2 (s) [W2 −W1] + [W1 −W0]
ds.

Define

c =
W1 −W0

W2 −W1
.

Then

β1 (x) =
x

3
+
2

3

Z x

0

c

3F 2 (s) + c
ds (13)

and

β2 (x) =
2

3

½
x−

Z x

0

c

3F 2 (s) + c
ds

¾
. (14)

The derivation of the function β is only heuristic because (12) is merely a necessary
condition - we have not formally established that if the other three players follow β,
then it is indeed optimal for a player with resource x to spend β1 (x) in the first
round. The following proposition verifies that this is indeed correct.
Definition. Let a set of pairs {y, z | x} = Ω (x) ∈ R2 be the set of the solutions

of the following maximization problem

max
y,z

F (y)
£
F 2 (z) + c

¤
s.t. y + 2z +

Z y

z

cds

3F (s) + c
= 3x.
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Proposition 3. Suppose that, function F and constant c are such that for all x ∈
[0, E], (x, x) ∈ Ω (x). A symmetric equilibrium of the elimination tournament is given
by the function β = (β1,β2) defined as (13) and (14).

Proof: Suppose that all but the player 1 follow the strategy β∗ ≡ β = (β1,β2)
given in (13) and (14). We will argue that in that case it is optimal for the player 1
to follow β also. First, notice that β is an increasing and continuous function. Thus,
in equilibrium the player with the highest resource spends more in both rounds and
wins the tournament. Denote γ = β1 and η = β2. It is never optimal for the player 1
to spend an amount b1 > γ (w) in the first round. The expected payoff of the player 1
with the resource x if she spends b1 ≤ γ (w) in the first round is calculated as follows.
Denote by y = γ−1 (b1) and z = η−1 (b2) = η−1 (x− γ (y)) the resources for which b1

and b2 are the equilibrium bids in the first and the second rounds, that are, γ (y) = b1

and η (z) = b2. Then we can write the player 1’s expected payoff from spending γ (y)
in the first round and η (z) in the second round when her resource is x as follows:

π (y, z | x) = F (y) £F 2 (z)W2 +
¡
1− F 2 (z)¢W1

¤
+ (1− F (y))W0

= F (z)F 2 (z) [W2 −W1] + F (z) [W1 −W0] +W0,

where

γ (y) =
y

3
+
2

3

Z y

0

c

3F 2 (s) + c
ds,

η (z) =
2

3

½
z −

Z z

0

c

3F 2 (s) + c
ds

¾
and

γ (y) + η (z) = x. (15)

Since, by assumption, (x, x) ∈ Ω (x), for all x, then π (x, x | x) − π (y, z | x) ≥ 0 for
all y and z such that the equality (15) holds. End of proof.

Example 2. Suppose that c = 0, or W0 = W1 = 0, E = 1 and F (x) = x. Find
the set Ω (x). We have the following maximization problem

max
y,z

yz2

s.t. y + 2z = 3x.

It follows
max
z∈[0,E]

(3x− 2z) z2
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or
z = x and y = x for any x ∈ [0, E] .

It means that all assumptions of the Proposition 3 holds and therefore

β1 (x) =
x

3
and β2 (x) =

2x

3
.

4. Discussion

We consider two-round elimination tournaments, where risk-neutral players have fixed
resources. Two approaches are analyzed: stochastic and deterministic. In the sto-
chastic model all players spend more resources in the first than in the second round
in the symmetric equilibrium. The intuition is straightforward: the expected payoffs
are higher in the first than in the second round of the tournament. The same reason-
ing is valid for Rosen’s (1986) model, where players have costs for exerting effort in
every round instead of fixed resources. Rosen (1986) shows that prizes must increase
over rounds to provide enough incentives for players to exert the same effort in every
round, if players have trade off between costs and expected high future payoffs. In our
model, if a principal/designer of the tournament wants players to allocate resources
equally in two rounds, then he must implement the winner-take-all prize scheme.
Moldovanu and Sela (2001) analyze a contest with multiple, nonidentical prizes

with deterministic relation between effort and output. They show that the winner-
take-all is the optimal prize scheme, if cost functions are linear or concave in effort.
Deterministic assumption should be contrasted with stochastic result of a contest
in every round of the tournament in Rosen (1986) and the stochastic model of this
paper. Moreover, our results for the deterministic model are different not only from
the results for the stochastic model, but also from Moldovanu and Sela (2001). If the
principal wants to maximize joint spending in the deterministic model, then he should
make the difference W1 −W0 as high as possible and never use the winner-take-all
scheme.
Although elimination tournaments are usually associated with sports: tennis, soc-

cer and chess, for example, there are many applications for hierarchy in a firm, acad-
emic career, and election campaigns as well. This simple model helps to explain why
an assistant professor must work harder at the beginning of his/her career, tennis
and soccer players have to exert a lot of effort at the beginning of an elimination
tournament, and why new workers spend all day long in their offices.
Some work has been done to test prediction of Lazear and Rosen (1981) theory, see

for example Ehrenberg and Bognanno (1990) and Knoeber and Thurman (1994). It
will be interesting to test the relationship between prizes/relative prizes and allocation
of players’ resources in experimental and nonexperimental frameworks.
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