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Abstract

We study how heterogeneous beliefs affect returns and examine whether they are a priced factor

in traditional asset pricing models. To accomplish this task, we suggest new empirical measures

based on the disagreement among analysts about expected earnings (short-term and long-term)

and show they are good proxies. We first establish that the heterogeneity of beliefs matters for

asset pricing and then turn our attention to estimating a structural model in which we use the

forecasts of financial analysts to proxy for the beliefs of agents. Finally, we investigate if the

amount of heterogeneity in analysts’ forecasts can help explain asset pricing puzzles.



Economic agents differ in their beliefs, preferences, and endowments. Despite these differences

and despite strong and persuasive arguments put forward for including heterogeneity in finance

and macroeconomics, the representative agent paradigm is still the leading structural approach to

asset pricing.1 This has happened for many reasons. First, in many contexts it is difficult to derive

testable predictions in asset pricing models with heterogeneous agents, though many researchers

have made progress; for example see Duffie and Constantinides (1996), Heaton and Lucas (1995),

and Shefrin (2001). Second, there is a lack of tangible data that reflect heterogeneity. Most of

the data available on the consumption, endowments and beliefs of individual agents is sparse and

of questionable quality. Third, many of the most tractable formulations of heterogeneous agent

models are observationally equivalent to representative agent models. For example when prefer-

ences Gorman aggregate (Gorman 1953) there is often no need to explicitly consider heterogeneous

agents because there exists a representative agent, with a utility function of the same form as the

agents, which can be used for asset pricing (see the early work of Wilson (1968) and Rubinstein

(1974)).

In this paper we focus on the heterogeneity of beliefs and for simplicity let agents have the same

preferences. The heterogeneity of beliefs captures how individual agents interpret or have access to

differing information sets. Models with agents who have heterogeneous beliefs have been previously

studied by Abel (1989), Basak (2000), Detemple and Murthy (1994), Li (1999), Shefrin (2001),

Shefrin and Statman (1994), Williams (1977), and Zapatero (1998). One of our main innovations

is to use the publicly stated forecasts of financial analysts to proxy for the beliefs of agents in an

asset pricing model with optimizing agents. Financial analysts may not be a random sample from

the general population so we discuss various specifications, some of which drive a wedge between

the expectations of agents and the predictions of analysts. In our model there is a representative

agent whose beliefs are the composite of the beliefs of individual agents. Despite the existence of

a representative agent, there is useful information in the beliefs of individual agents. This paper

(1) develops an empirically testable theoretical prediction that expected returns are impacted by

heterogeneous beliefs; (2) uses a factor structure to demonstrate empirically that heterogeneity

explains a portion of expected returns and volatility; and (3) estimates a consumption-based model

that incorporates dispersion and biases in analysts’ forecasts. In work that was undertaken and

completed at about the same time as earlier drafts of this paper, Shefrin (2001) studies closely

related issues. Shefrin’s approach is slightly more general, as we make specific assumptions for the

empirical implementation of the model.

Before estimating our structural model we take a reduced form approach and examine first

whether the heterogeneity of beliefs is a priced factor in traditional asset pricing models. We

suggest new empirical measures of heterogeneity. Unlike factors for size, book-to-market, and mo-

1For example see the arguments presented in Browning, Hansen, and Heckman (2000).
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mentum that have emerged due to evidence of empirical regularities, our hypothesis that dispersion

is priced emerges from a theoretical model. We show factors constructed from the disagreement

among analysts about expected (short-term and long-term) earnings have explanatory power in

asset pricing models. Next we focus on return volatility. Since one might expect the same fac-

tors that predict returns also predict future volatility, we examine whether disagreement among

analysts explains return volatility. Implementing methodology similar to Chan, Karceski, and

Lakonishok (1999), we find simple models, particularly those that include only the dispersion fac-

tors, produce lower forecast errors and have better sample properties than complex multi-factor

models.

While the explicit analysis of heterogeneity of beliefs is only timidly present in traditional

asset pricing models, it is most often omnipresent in behavioral finance models.2 The latter

class of models emphasizes the psychology of individuals and its relevance for financial markets,

particularly in the pricing of assets. The analysis in this paper relates to the behavioral finance

literature in several ways. The use of analyst forecasts prompts the question about biases in their

predictions and recommendations (see Daniel, Hirshleifer, and Teoh (2002) for a comprehensive

overview of analyst biases). We estimate parameters which reflect the extent to which agents have

the beliefs of financial analysts. More importantly, both psychological and purely rational theories

of asset pricing generally imply that returns are predictable. However, most often behavioral

finance models are not formulated explicitly in the context of pricing kernel models. One notable

exception is Shefrin (2001) who analyzes the manner in which traders’ errors (called sentiments)

affect the pricing kernel. In this paper, we estimate pricing kernels for models with heterogeneous

agents whose beliefs are connected to those of analysts.

The remainder of the paper is organized as follows. In Section 1 we discuss fundamental pricing

equations in heterogeneous agent economies. Section 2 discusses the limited form of rationality

that agents in our models have and shows that dispersion is priced. Section 3 describes the data

used in this paper and how the beliefs of individuals are measured. Section 4 examines the role of

heterogeneity of beliefs, particularly dispersion of analyst forecasts, as a priced factor in traditional

asset pricing models. This section also describes the contribution of the dispersion factor above

fundamental factors to predict out-of-sample returns and volatility. Section 5 introduces the

behavioral elements of amplification and bias into our model. Section 6 investigates if analyst

forecasts can help explain asset pricing puzzles. Section 7 concludes.

2It is impossible to cite the many papers in this area. See, however, the recent surveys and general discussions
by Barberis and Thaler (2002) and Daniel, Hirshleifer, and Teoh (2002).
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1 Beliefs and the pricing kernel

There are a variety of ways to formulate models with agents who have heterogeneous beliefs. For

example, see Detemple and Murthy (1994), Zapatero (1998), Basak (2000) and Shefrin (2001),

among others. In this section we describe a complete markets model in which agents have hetero-

geneous beliefs and identical power reward functions. The first subsection describes the pricing

kernel, while the second subsection specifies how the distribution of beliefs is determined from

data on beliefs about conditional means. The third subsection describes how we approximate

consumption forecasts. We conclude by showing how the return on an asset can be decomposed

into a fundamental component that depends only on the true probabilities and a component which

depends on the actual beliefs of agents.3

1.1 The pricing kernel

Consider a complete markets heterogeneous agent economy in which agents have different beliefs

about the world. We assume the beliefs of any agent are absolutely continuous with respect to

the true probabilities and vice versa. For now, we make no other assumptions about what agents

believe or how their beliefs evolve. Agents may be Bayesians who optimally update their beliefs

or they may have degenerate priors and refuse to take into account new information.

Assume there are I types of agents who have power reward functions and live an infinite

number of periods. The lifetime utility function for agents of type i is

Ei0

∞∑
t=0

βt c1−γ
it

1− γ
(1)

where β is a time discount factor, Eit is the expectation with respect to information available

at time t, cit is time t consumption, and γ > 0 is the coefficient of relative risk-aversion. When

γ = 1 we interpret the agents’ reward functions as logarithmic. We allow agents in each period to

either consume or invest in one of n different assets. We assume there are enough assets to make

markets complete. Let the gross real return, including dividends, from holding asset p between

periods t and t+1 be rpt+1. For a risk-free asset this return is observed at time t. For a risky asset

3An earlier version of the decomposition in Section 1.4 that applied to the model of Detemple and Murthy (1994)
appeared in Ghysels and Juergens (2001). That version only applied when agents have logarithmic utility and did
not link the beliefs of agents to available data. The earlier version was written independently and simultaneously
to the work by Shefrin (2001) who reported similar results and related them to the behavioral finance literature.
The latter will be further discussed in Section 5. The more general version of the decomposition included in this
paper was written before we were aware of the work of Shefrin (2001).
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the return is unknown at time t but observed at time t + 1. The budget constraint of a type i

agent at time t is

cit +
n∑

p=1

ϕipt = wit +
n∑

p=1

ϕipt−1rpt (2)

where at time t, the amount invested in asset p is ϕipt and labor income is wit. An agent’s problem

is to maximize lifetime utility, equation (1), subject to the sequence of budget constraints given by

equation (2) for each date t. A constraint to rule out Ponzi schemes is also imposed. The agents

choose consumption and the amount to invest in each asset at each date adapted to information

that is known. At time t agents know the value of variables dated t and earlier. They also know

the return on risk-free assets from time t to t + 1. It is straightforward to show that if the time t

price of an asset is one then its random payoff rpt+1 at time t + 1 satisfies

1 = Eit

[
β

(
cit

cit+1

)γ

rpt+1

]
. (3)

This is the fundamental equation for consumption-based asset pricing and it is one way to write

the Euler equation for type i agent’s optimization problem.4 This equation holds for any asset

using the beliefs and consumption of any agent.

Let λit be the time t Pareto weight for agents of type i (a formal definition of Pareto weights

appears in Appendix A). The Pareto weight measures the importance of type i agents and is

directly related to their wealth. The Pareto weights are constructed so that they sum to one at

every date. We will assume that a function of the Pareto weights are constant over time:

Assumption 1 (Constant Distribution) The distribution of agents, as measured by,

I∑
i=1

(λit)
1
γ (4)

is constant over time.

This assumption holds exactly if the economy has reached an invariant distribution across agents

and always holds exactly when γ = 1, even if an invariant distribution has not been reached.

Note that the Pareto weight of any individual agent can evolve over time; however, the population

distribution is assumed time invariant. If an invariant distribution has not been reached assuming

a constant distribution, equation (4) is a plausible simplifying approximation over short time

intervals when (1) γ is close to one, (2) the economy is near an invariant distribution, and (3) the

beliefs of agents are not too disparate. See Blume and Easley (1992) for examples of economies

for which it would be unreasonable to assume a constant distribution. It is possible to do the

4The agent’s labor income does not enter this equation and will play no direct role in this paper.
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theoretical analysis in this section without imposing Assumption 1. Shefrin (2001) takes this

approach. Since we do not have reliable data on the short term movements of the Pareto weights

it is convenient for our empirical analysis to impose Assumption 1.

Using our notion of Pareto weights, it is shown in Appendix A that the pricing equation (3)

can be written as

1 =
I∑

i=1

λitEit

[
β

(
ct

ct+1

)γ

rpt+1

]
. (5)

Equations similar to (5) have been studied by Detemple and Murthy (1994), Basak (2000) and

Shefrin (2001) and tells us that security prices are a weighted average, across agents, of the security

prices that would obtain when all agents are identical. Equation (5) is in terms of aggregate

consumption whereas equation (3) is in terms of the consumption of a single agent. Equation (5)

allows us to state the pricing equation in terms of fundamentals– aggregate consumption and asset

returns– and the variables pertaining to individual agents which are embedded in λit and Eit.

1.2 The distribution of an individual’s beliefs

In this paper we empirically estimate equation (5) using the forecasts of analysts as proxies for

beliefs. For many of the variables, including asset returns, we face the following situation. We have

an historical record of actual values and we have forecasts of conditional expectations stated by

analysts. To estimate equation (5) we need more than this: we need the entire distribution of each

analyst’s beliefs. The data on analyst forecasts doesn’t provide any information on analysts’ beliefs

beyond their conditional expectations. In this section we explain a method for approximating the

entire distribution by tying the higher order moments of agents’ beliefs to the true distribution.5

To make things concrete, let x be a vector of positive variables for which we have a time series

record of observations. At time t, the actual value of x is denoted xt. Assume we also have a

time series record of conditional expectations of several different agents of the one period ahead

value of x : µxit+1|t = Eitxt+1. We have no other direct information about the individual agent’s

perception of the distribution of x. Since our empirical work requires more information about the

individuals’ perceived distribution of x we need to make an assumption about the distribution of

an individual’s beliefs, namely:6

5In an ideal world, we would not only have mean forecasts across analysts for each stock, but we would also have
some measure of dispersion of each analysts’ beliefs regarding the distribution of forecasts. Graham and Harvey
(2003), using survey data of CFOs about the expected risk premium, are able to obtain a distribution of beliefs
for each individual respondent. In the future, work along the lines of Graham and Harvey (2003) may eventually
yield more data regarding the distribution of beliefs for individual stocks or portfolios.

6We thank the referee for the suggestion to call the following assumption homotopy.
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Assumption 2 (Homotopy) Let xt+1 be generated by the conditional cdf ξxt (xt+1) and µxt+1|t

be the true conditional mean of xt+1 given time t information. Let the conditional expectation of

agent i be µxit+1|t = Eitxt+1. Then the conditional cdf of xt+1 given time t information from the

point of view of agent i is

ξixt (xt+1) = ξxt

(
xt+1 ∗ µxt+1|t / µxit+1|t

)
.

Here the notation “*” denotes element by element multiplication and “/” denotes element by

element division.

The assumption completely specifies the distribution of individual beliefs in terms of the known

conditional mean held by an agent, the unknown true conditional mean, and the unknown true

distribution. This assumption entails that if agent i has a more optimistic view of the conditional

mean than agent j then agent i is globally more optimistic than agent j in the sense that if µxit+1|t ≥
µxjt+1|t then for any xt+1 it is the case that ξixt (xt+1) ≤ ξjxt (xt+1) . Similar to Assumption 1, it

is possible to do the theoretical analysis in this section without imposing Assumption 2. Shefrin

(2001) takes this approach. Since we do not have data on the distribution of an individual’s beliefs

it is convenient for our empirical analysis to impose Assumption 2.7

This specification has a number of appealing additional properties. Under this specification if

an agent has the correct beliefs about the conditional distribution then he has the correct beliefs

about the entire distribution. That is if µxit+1|t = µxt+1|t then ξixt (xt+1) = ξxt (xt+1) and from

the Homotopy Assumption 2 agent i knows the complete distribution of xt+1. This specification

easily allows us to transform integrals against ξixt (xt+1) into integrals against ξxt (xt+1) . We have

for any function f, when the integrals below exist,∫
f(xt+1) dξixt (xt+1) =

∫
f (xt+1) dξxt

(
xt+1 ∗ µxt+1|t / µxit+1|t

)
(6)

=

∫
f

(
yt+1 ∗ µxit+1|t / µxt+1|t

)
dξxt (yt+1) . (7)

From this it follows that µxit+1|t really is the mean of i’s beliefs since∫
xt+1 dξixt (xt+1) =

(
µxit+1|t / µxt+1|t

)
∗

∫
yt+1 dξxt (yt+1) = µxit+1|t.

Appendix B shows this specification has the appealing property that all agents correctly know the

second and higher order central moments of log(x).

7In this paper the vector x will consist of variables which are gross returns and hence non-negative by construc-
tion. We make the additional assumption that µxt+1|t and µxit+1|t for all i are strictly positive.
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1.3 Beliefs about consumption growth

Our data does not provide direct measurements on analysts’ perceived conditional means of con-

sumption growth whereas our empirical work requires such information. We construct an ap-

proximation, µgit+1|t, to type i agents’ mean forecast of the gross rate of aggregate consumption

growth by tying the forecast to the forecasted market return. We state the approximation as an

assumption.

Assumption 3 Agent i’s belief about conditional mean of aggregate consumption growth, µgit+1|t,

satisfies

log µgit+1|t = qt + φ log µmit+1|t (8)

where φ is a constant, qt is an unknown function of current information and µmit+1|t is agent i’s

forecast of the market return.

We take the time-invariant constant φ and the time-varying function qt to be the same for all

agents. Note that µgit+1|t is agent i’s forecast of aggregate consumption growth which is not

necessarily equal to agent i’s forecast of his own consumption growth.

In our empirical work we consider different values of φ. It is interesting to note that φ should

be equal to one in a general equilibrium model in which all agents have the same beliefs and power

reward functions when the market return is an i.i.d. process. Also if all agents have logarithmic

reward functions and the same beliefs then, for quite general specifications of the market return

process, φ should be one.

1.4 A decomposition

In this section we decompose expected returns into a fundamental component and a heterogeneity

component. We exploit our earlier assumptions to write the pricing equation (5) as:

1 =
I∑

i=1

λitEit

[
βg−γ

t+1rpt+1

]
(9)

=
I∑

i=1

λiEt

[
β

(
gt+1

µgit+1|t

µgt+1|t

)−γ

rpt+1

µpit+1|t

µpt+1|t

]
(10)

= βhptEtg
−γ
t+1rpt+1 (11)
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where gt+1 = ct+1/ct is the gross rate of aggregate consumption growth and

hpt =

[
I∑

j=1

λjt

(
µgjt+1|t

µgt+1|t

)−γ (
µpjt+1|t

µpt+1|t

)]
(12)

is the heterogeneity component of the pricing equation for asset p. Notice that hpt varies across

assets. Equation (10) follows from equation (9) and the result in equation (6) applied to conditional

expectations. Equation (11) follows because the conditional mean forecasts are known at time t.

A simple conditional decomposition follows from rearranging terms in equation (11) using the

identity that Etxy = EtxEty + covt(x, y). The expected return of asset p is therefore

Etrpt+1 = Λt −
covt

(
g−γ

t+1, rpt+1

)
Etg

−γ
t+1︸ ︷︷ ︸ + Λt

(
1− hpt

hpt

)
︸ ︷︷ ︸

= Fundamental component + Heterogeneity component

where we have defined

Λt =
1

βEtg
−γ
t+1

(13)

to be the risk-free rate if agents agreed on their forecasts of g for all assets. The actual risk-free

rate, which we call rbt+1, in our economy is different when agents disagree and is given by

rbt+1 =
Λt

hbt

. (14)

Even though all agents agree on forecasts of a risk-free return there are pricing implications if

agents disagree on forecasts of consumption growth.

This decomposition illustrates the effect of heterogeneity of beliefs on expected returns. When

there is no disagreement, at all dates, hpt = 1 for all t and the heterogeneity component in the

decomposition is zero. When there is heterogeneity hpt need not equal to one and there can be

pricing implications. The fundamental component of the return is not altered as heterogeneity is

increased.8 We will revisit the decomposition of returns in Section 5.3.

We have derived the decomposition under Assumptions 1 and 2. It is possible to derive an

analogous decomposition without requiring both assumptions. Shefrin (2001) takes this more

general approach.

8This is true from the point of view of an econometrician faced with a fixed data set. In general, since het-
erogeneity can affect the return of assets it also can affect covt(g

−γ
t+1, rpt+1) and hence can alter the fundamental

component of the return.
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2 Limited rational expectations and dispersion

For now, we assume agents have exactly the same beliefs as analysts. So, if there are I analysts

we assume there are I types of agents and agents of type i (for i=1,. . . I) have the same beliefs as

analyst i.9 The data used in this paper provides us with measures of the conditional means of stock

returns stated.10 We construct a conditional mean forecast for consumption growth as described

at the end of Section 1.2. We do not have direct observations on the true conditional means of

consumption growth and stock returns. To apply the Homotopy Assumption 2 we need to take

a stand on these true conditional means. We propose a limited form of rational expectations in

which the economy as a whole is correct on average about its expectations of consumption growth

and stock returns. In this section we assume the true conditional means of consumption growth

and any stock p are:11

µgt+1|t =
I∑

i=1

λitµgit+1|t (15)

µpt+1|t =
I∑

i=1

λitµpit+1|t. (16)

The Pareto weights are used to measure the importance of agents. This assumption is motivated

from a desire to include the actual beliefs of agents in asset pricing models while making as few

departures as possible from rational asset pricing models. As we explain at the end of this section,

the economy as a whole will not have rational expectations about all variables in the economy and

our model will include some features prevalent in the behavioral finance literature.

Recall that equations (5) and (11) tell us security prices are a weighted average, across agents,

of the security prices that would obtain when all agents are identical. The dispersion of beliefs

about g−γ
t+1rpt+1 doesn’t matter. Only the mean matters. However, the dispersion of beliefs about

gt+1 and rpt+1 can matter. To see this, interpret the Pareto weights as probabilities and Êt and

9Throughout this paper, unless explicitly said otherwise, we use “analyst” to refer to the fictitious analyst
constructed from the views of all analysts in a particular brokerage house.

10The computations of the conditional mean forecast of stock returns is described in Section 3.2.
11We assume that agents do not use the fact that the analysts are correct on average when formulating their

beliefs.
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ĉovt as the expectation and covariance operators over these fictitious probabilities (so for example

Êtµpit+1|t =
∑I

i=1 λitµpit+1|t). We can decompose hpt as

hpt = Êt

[(
µgjt+1|t

µgt+1|t

)−γ
]

Êt

(
µpjt+1|t

µpt+1|t

)
+ ĉovt

[(
µgjt+1|t

µgt+1|t

)−γ

,
µpjt+1|t

µpt+1|t

]
(17)

= Êt

[(
µgjt+1|t

µgt+1|t

)−γ
]

+ ĉovt

[(
µgjt+1|t

µgt+1|t

)−γ

,
µpjt+1|t

µpt+1|t

]
(18)

where the second line follows from equation (16). If the co-dispersion in the last term increases

then hpt will increase if the first term remains constant. So, if the mean of µ−γ
gjt+1|t and µpjt+1|t

remain constant hpt can still increase. Likewise, depending upon the value of γ, it is possible that if

the mean of µgjt+1|t remains constant, Êt

[(
µgjt+1|t
µgt+1|t

)−γ
]

can increase as dispersion in consumption

growth increases.12

One could object to our formulation because if we assumed agents are correct on average

about the conditional mean of g−γ
t+1rpt+1 then dispersion would not matter. Furthermore given we

assumed in equations (15) and (16) agents are correct on average about the conditional means

of asset returns and consumption growth it might seem natural to assume they also are correct

about the conditional mean of g−γ
t+1rpt+1. However this objection is not valid. If we assume agents

are correct on average in their expectations of asset returns and consumption growth, then, in

general, under Assumption 2, agents cannot have the correct expectations about g−γ
t+1rpt+1, when

they disagree about the expectations of asset returns and consumption growth. This is what

equation (18) tells us.

Hence in our model, the economy as a whole, has a limited form of rational expectations. It

has rational expectations about simple variables like asset returns and consumption growth but

possibly irrational expectations about more complicated variables like g−γ
t+1rpt+1. This feature is

also present in a number of behavioral finance models including the early work of Simon (1955)

and Tversky and Kahneman (1974). Using this work, Hirshleifer (2001) argues that biases can

be viewed as outgrowths of heuristic simplification. One can indeed argue, as in equations (15)

and (16), that agents are correct on average about the conditional means of asset returns and

consumption, but may not be able to capture properly expectations of complex processes such as

those that enter the stochastic discount factor. In reality agents’ expectations of asset returns and

consumption growth are probably not correct on average. If we allowed for this then including

heterogeneous beliefs about asset returns and consumption growth would have two effects. One

effect comes from the dispersion of beliefs and another effect comes from errors in the conditional

12Since consumption growth is an endogenous variable chosen by agents, an increase in dispersion of consumption
is interpreted as increase in the dispersion of the information available to agents which in turn creates dispersion
in their optimal choices.
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mean of beliefs about asset returns and consumption growth. In this section we zero out the second

effect and focus only on the dispersion effect. In Section 5 we allow agents (but not analysts) to

have biased expectations of stock returns.

3 Measuring beliefs

Thus far, we studied the theoretical properties of models with heterogeneous beliefs; however,

our ultimate goal is to empirically investigate the role played by the heterogeneity of beliefs. We

follow two different empirical strategies. We first examine whether the heterogeneity of beliefs is a

priced factor in traditional asset pricing models. This is a reduced form approach and requires the

construction of factors that reflect heterogeneous beliefs. The second empirical strategy consists

of estimating structural equations, based on the models presented in the previous sections, while

being careful about measuring agents’ actual beliefs.

In this section we describe the data used for the various empirical exercises. Both empirical

approaches require different data collections and constructions. We construct a factor specifica-

tion for short-term earnings and long-term earnings growth forecasts (measured as the standard

deviation of month-end forecasts) and examine the relevance of these factors in standard asset

pricing models. Similarly, based on analyst earnings predictions we construct expected returns

which are necessary to estimate fundamental pricing equations.

3.1 Constructing heterogeneity factors

We begin by acquiring Fama-French factors for a sample period that coincides with the heterogene-

ity factor. Monthly firm returns (denoted r for a generic firm), prices, and shares outstanding are

collected from the CRSP monthly tapes. Data to compute book value of equity is collected from

the annual Compustat tapes. We also obtain the risk-free interest rate (rb), monthly estimates

of size, book-to-market, and momentum factors (SMB, HML, and UMD, respectively) as well as

market returns (rm).13 Tables 1 and 2 provide summary statistics for returns and explanatory

variables. The average monthly firm and market excess returns of 1.23% and 1.16% are substan-

tially larger than those computed by Fama and French (1993) of 0.67% and 0.43%, respectively.14

These results are not surprising given the time period of analysis (1991-1997) primarily occurred

during up markets (market returns were positive in 61 out of 84 months). The average monthly

size factor (SMB) is 0.14%, the book-to-market factor (HML) averages 0.47%, and the momentum

13This data along with a description of how the factors are formed is available on Ken French’s web site.
14 The average returns reported within are more closely aligned with those found by Griffin (2002) who also

examines a later time period (1981-1995) than Daniel and Titman (1997) and Fama and French (1993).
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factor (UMD) is 0.78% per month. These results are similar to those found in other research that

use substantially longer time series.

We want to construct factors that pertain to heterogeneity in the same fashion. For the

remainder of this subsection, we discuss our methodology.

3.1.1 Why analyst dispersion?

We investigate whether the heterogeneity of beliefs is a priced factor in traditional asset pricing

models. We argue that factors constructed from the disagreement among analysts about expected

(short-term and long-term) earnings are good proxies for quantifying heterogeneous beliefs. Other

proxies have been proposed. For example, as support for Harris and Raviv (1993) and Shalen

(1993), Graham and Harvey (1996) find dispersion among newsletter “forecasts” is positively

related to historical volatility, implied (or expected) volatility and volume. Alternatively, Bessem-

binder, Chan, and Seguin (1996) examine the open interest on the S&P 500 Index futures as a

measure of disagreement in opinion and link it to trading volume. Disagreement among analysts

is a more appealing source to extract heterogeneity. Unlike other measures, such as short-sale

constraints, breadth of ownership, open interest and newsletter forecasts, dispersion measures are

easily available for a large number of equities.

Diether, Malloy, and Scherbina (2002) examine short-term earnings forecast dispersion in pre-

dicting future stock returns and relate their findings to the short sale constraint literature, where

increased disagreement among investors leads to lower future returns. Unlike their work, we ex-

plicitly construct a factor specification for short-term and long-term forecast dispersion, which

allows us to measure the incremental contribution of dispersion in factor asset pricing models,

and sets the stage for out-of-sample predictive properties of these factors, which is detailed in

Section 4. Before providing the details, we note that the idea to use the dispersion among analyst

forecasts as a measure of heterogeneous beliefs is found in a number of papers. For instance, it

has been shown contemporaneous dispersion of analysts’ short-term forecasts is significantly and

positively related to volatility [see, for example, Ajinkya and Gift (1985), L’Her and Suret (1996),

and Lobo and Tung (1998)].

Our analysis extends the existing literature of the role of analyst dispersion on returns by

distinguishing fundamental factor contributions from factors for the heterogeneity of beliefs and

by explicitly testing a decomposition of asset pricing returns and volatility that ties into theoretical

models. Moreover, we focus more explicitly on return and volatility dynamics by examining out-

of-sample performance. This safeguards us from data mining issues, as we construct a pricing
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factor that captures the heterogeneity of beliefs and test its predictive ability for out-of-sample

returns and volatility.15

While dispersion of analyst forecasts is a reasonable measure of heterogeneous beliefs, there are

several issues, including biases and timing issues that should be addressed. There is an extensive

literature that examines the value of analysts’ earnings forecasts (Daniel, Hirshleifer, and Teoh

2002), and substantial evidence exists that analysts are biased in their forecasts. Analysts are

generally optimistic about annual and longer-term forecasts (Brown 2001; Capstaff, Paudyal,

and Rees 1998; De Bondt and Thaler 1985; De Bondt and Thaler 1987; De Bondt and Thaler

1990; Dechow and Sloan 1997; LaPorta 1996), but there is some evidence that as the forecast

period declines, analysts become slightly pessimistic in their forecasts (Brown 2001; Matsumoto

2002; O’Brien 1988). Moreover, analysts tend to overreact to positive news and underreact to

negative news (Easterwood and Nutt 1999). There are many reasons for this persistent bias,

including agency issues (Michaely and Womack 1999; Rajan and Servaes 1997) and behavioral

biases (Barberis, Shleifer, and Vishny 1998; Daniel, Hirshleifer, and Subrahmanyam 1998). It also

appears that investors do not fully correct for biases.16 While we do not dispute this evidence, we

should note that our analysis is based on portfolios rather than individual stocks, an issue we will

revisit in Section 6.

Whatever the verdict about biases, we focus on dispersion among analysts. In the event

forecasts are biased, we take the dispersion or deviation from the consensus forecast.17 Stocks with

little disagreement, though perhaps biased in the mean, are treated differently from stocks where

analysts have widely different views. However, focusing on dispersion is not entirely immune to bias

issues. For example, Lin and McNichols (1998) argue that analysts are more likely to discontinue

coverage of firms about which they have unfavorable opinions. Therefore, analysts that predict

extremely negative earnings forecasts may disappear from the sample, which may reduce the “true”

dispersion of analysts’ beliefs. Moreover, analysts are also under no obligation to update forecasts,

even as new information arrives. The potential problem of staleness in forecasts and dispersion

arises. However, we cannot determine from our data whether analysts insufficiently update their

forecasts or if the forecasts are not updated because the beliefs of the analysts remain unchanged.

15Qu, Starks, and Yan (2003) construct factors for both short-term earnings forecast dispersion which impacts
returns through differing private information as well as the volatility of that dispersion which captures uncertainty
about firm fundamentals. However, they argue that rather than being “new” factors, dispersion captures elements
of other well-documented, but often less easily explained, risk factors such as size and book-to-market.

16 Womack (1996) documents price drift measurable up to six months following a recommendation change.
17Given the documented biases that exist in analyst forecasts, we will explicitly test this hypothesis. This material

is deferred to Section 6 as we only deal with dispersion here.
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We err on the side that analysts do not update because their beliefs remain unchanged and use

all available forecasts in the construction of dispersion.18

A final note regarding sample selection is in order. Prior studies that examine the empirical

implications of fundamental factors on returns and volatility have primarily analyzed relatively

long time horizons for estimation and use large cross-sectional samples of firms [see, for example,

Chan, Karceski, and Lakonishok (1999), Fama and French (1993), and Griffin (2002)]. However,

because of the constraints on the availability of our measures of dispersion, long time series of data

cannot be constructed. We examine the S&P 500 Index between 1991 and 1997 because many

small firms had little or no analyst coverage in the early First Call data, and adequate analyst

coverage is needed to construct meaningful dispersion measures. While the results obtained may

be criticized as being sample specific given the intentional design of the sample and the short time

period for analysis, we construct tests similar to those of previous studies [specifically, Section 4.2

of Fama and French (1993)] for comparison purposes.

3.1.2 Analyst forecasts, dispersion and factor specifications

We construct two measures of heterogeneous beliefs from the First Call/Thomson databases:

dispersion of short-term (one-year ahead) dollar earnings forecasts and dispersion of long-term

(five-year ahead) earnings growth rate forecasts, measured as the standard deviation of forecasts.

Only the last available dispersion measure in each month is used. The average monthly level of

short-term (long-term) forecast dispersion is $0.20 (4.14%), with approximately 15 (19) analysts

furnishing short-term (long-term) forecasts per firm in the S&P 500 Index, which is substantially

higher than the average of three analysts per firm for the entire First Call database.

Panel B of Table 1 examines the differences in firm characteristics between high and low

dispersion firms. Similar to Diether, Malloy, and Scherbina (2002) and Qu, Starks, and Yan

(2003), we find a negative relation between dispersion and returns. Confirming Crombez (2001)

and others, we find larger firms tend to have less disagreement about earnings expectations, as do

growth (low BE/ME) firms. Interestingly, we find that there is greater institutional participation

and a larger number of analysts for high dispersion firms, which is directly in contrast to Crombez

(2001) and the short-sale restriction literature (Chen, Hong, and Stein 2000), which predicts that

as disagreement increases, the breadth of ownership should decrease.

In Figure 1, we display average levels of dispersion. As noted, analyst optimism tends to

decline as the fiscal year draws to a close. While we do not actually make a comparison to realized

18We believe this is reasonable considering that one metric used in ranking analysts is the timeliness and accuracy
of forecasts. Stickel (1992) shows compensation is directly linked to rankings, thus forecasts should be updated as
beliefs about valuation change.
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earnings, we find some evidence that forecasts decline throughout the fiscal year for short-term

forecasts. However, we do not find any evidence of seasonal patterns in long-term forecasts.

We also examine the incidence of “switching” from low to high dispersion firms across months.

Panel C of Table 1 displays that for short-term dispersion approximately 30% of firms switch from

high dispersion to low dispersion or vice versa in a given year. (Monthly switching is slightly less.)

Approximately 15% of firms characterized by long-term dispersion switch per year.

In order to be comparable to the market, size, book-to-market, and momentum factors, we

construct dispersion factors for both the short-term and long-term forecasts. Dispersion factors

include all 500 firms in the S&P 500 Index, which are updated annually to reflect changes to the

index. In each month, the dispersion, is ranked and the median value is used as the breakpoint

to categorize high and low dispersion forecasts.19 Value-weighted returns are then calculated

each month for high and low dispersion portfolios. A zero investment strategy is realized as we

purchase high dispersion stocks and short low dispersion stocks [see, for example, Chan, Karceski,

and Lakonishok (1999) for the construction of mimicking portfolios]. The two factors examined are

DISP and LTGDISP for short-term and long-term forecasts, respectively. Merton (1987) posits

that dispersion represents a compensation to investors for the idiosyncratic risk from holding

undiversified portfolios. Since dispersion implies higher variation in earnings streams, stocks with

high dispersion should earn larger future returns.20

As reported in Table 2, the average monthly return for the short-term dispersion factor, DISP,

is -0.28%, while the average return for LTGDISP is 0.23% per month. Hence, LTGDISP appears

to be consistent with the Merton hypothesis that dispersion proxies for idiosyncratic risk, while

DISP is not. The market factor and UMD are highly statistically significant, HML and DISP are

marginally significant at the 10% level; however, the average returns for the SMB and LTGDISP

factors are insignificantly different from zero. Table 2 also provides Pearson correlation coefficients

for relations between the explanatory factors. Unlike Fama and French (1993), we do not observe

a significant relation between the market and the size factors; however, HML is significantly

negatively correlated with both rm − rb and SMB, which is consistent with the findings of Fama

and French. Although positively correlated with both the market factor and HML, DISP is

significantly positively correlated at the 1% level only with SMB, indicating that dispersion may

be more important for smaller firms. LTGDISP is positively correlated with rm − rb, SMB and

19Other breakpoints, including quintiles and deciles were examined. The results are robust to various specifica-
tions of high and low dispersion.

20Alternatively, we can rely on the short-sale restriction literature for justification of high dispersion firms having
greater risk than low dispersion firms. Chen, Hong, and Stein (2000) show as the breadth of ownership decreases
(conversely, the dispersion of agents’ beliefs increases), expected returns decline. Thus we could expect similar
results for analysts’ forecasts as well, where high forecast dispersion firms would have lower future expected returns.
However, we have no reason to believe that short-sale constraints would necessarily be binding for high dispersion
firms.
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DISP, and negatively correlated with HML. Both DISP and LTGDISP are significantly negatively

correlated with UMD. Returns for both dispersion factors tend to be higher when small cap stocks

outperform large cap stocks; however, we observe DISP (LTGDISP) returns are higher (lower)

when value stocks outperform growth stocks. Overall, these findings suggest traditional factors

may be encapsulating, as anticipated, some of the same risk measures dispersion factors have

captured.

3.2 Construction of expected returns

In order to construct expected return forecasts to be used in the aforementioned structural models,

we collect fiscal short-term earnings estimates, long-term earnings growth forecasts, and investment

recommendations from First Call/Thomson databases. Brokerage houses are not required to

follow a schedule, such as that for macroeconomic forecasts, when updating their investment

recommendations or earnings forecasts. Therefore, there is an unevenness when forecasts occur in

a given month. For example, Merrill Lynch may update an earnings forecast for IBM three times

during July 1995 and then will not update again until October 1995. We take two steps to correct

for this. First, for each firm, we select only the last forecast in a given month to be the month-end

forecast, regardless of where it may fall in the month. If there is no forecast within a given month,

we carry forward the previous month’s forecast until the the analyst issues the next new forecast.

Our study focuses on the S&P 500 firms included in the Index between 1991 and 1997 (updated

annually). While the S&P 500 firms are among the largest firms listed in US markets, brokerage

houses are under no obligation to cover any particular firm. Thus, while some of the brokerage

houses cover at least a subsample of S&P 500 firms between 1991 and 1997, we examine six bulge-

bracket brokers that covered identical monthly subsets of S&P 500 firms between April 1994 and

December 1997 (45 monthly observations).21 Unlike the factor composition which includes all 500

firms in the Index, the number of firms that jointly spans the six brokerage houses in each month

ranges from 50 to 83 firms, with the mean (median) number of firms as 68 (66).

Analysts do not forecast future returns per se. Recent work by Brav, Lehavy, and Michaely

(2003) employs analysts’ price target estimates to approximate ex ante expected returns; however,

price target data are unavailable during the time period we examine. Instead, given our data

limitations, we rely on analysts’ earnings forecasts and investment recommendations. In order

to extrapolate return forecasts from analysts, we implement a modified constant dividend growth

21The six brokerage firms that we include are Credit Suisse First Boston, Lehman Brothers, Paine Webber,
Prudential Bache, Salomon Brothers, and Smith Barney.
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model.22 While this model relies on expected future dividends to back out the market capitalization

rate (expected future returns), there are several issues that make this model difficult to use. First,

not all firms pay dividends. Second, while we have today’s dividend in dollars, analysts do not

predict future dividends or the expected growth of those dividends. Third, firms have the option to

suspend dividend payments in times of financial trouble. Thus, while our measure of the forecasted

returns is not exactly that intended by the constant dividend growth model, we believe that it

is a fairly accurate approximation since all firms report earnings and most firms are covered by

at least one brokerage firm that provides earnings forecasts. Thus, we substitute the next fiscal

year’s earnings forecast in for the expected future dividend and substitute the long-term earnings

growth forecast for the growth rate of dividends.

Assumption 4 At time t, brokerage house i’s belief about the expected return on stock p between

periods t and t + 1 is

µ̄pt+1|t = 1 +
∆ipt

Qpt

+ δipt

where for stock p and brokerage house i : ∆ipt is the one-year ahead fiscal year net income per

share forecast, Qpt is the current-month price, and δipt is the five-year earnings growth forecast.

∆ and δ change when a brokerage house updates its short-term or long-term earnings forecasts;

however, the expected return (or market capitalization rate) is updated at the end of each month.

The beliefs of brokerage house i are the combined beliefs of all analysts at brokerage house i. In

our data set for a given brokerage house i there is at most one analyst who covers each stock.23

In subsequent sections we often refer to the beliefs of brokerage house i as being the beliefs of a

fictitious analyst that we refer to as analyst i.

Three series of returns are constructed based on short-term dispersion, long-term dispersion,

and historical volatility (based on a 60-month rolling sample of historical standard deviation of

price returns). In each month, the firms are ranked from lowest to highest for each of the three

series. For example, in April 1994, the percentage short-term dispersion (broker-weighted average

dispersion divided by month-end price) is computed for each firm. Rather than equally weighting

each brokerage firm, we rank-weight each brokerage firm in each year according to the ranking of

their analysts in the Institutional Investor. All American Research Team poll in the prior year.

The weights are normalized to sum to 1 in each year. These percentage dispersions are ranked

22The justification of using a modification of the constant dividend discount model can be found in Brav, Lehavy,
and Michaely (2003); Crombez (2001); Gebhardt, Lee, and Swaminathan (2001); and Guay, Kothari, and Shu
(2003); among others.

23One reason for this is that customers might become confused if different analysts within a brokerage gave
different predictions for the same stock.
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and we separate firms into “high” or “low” dispersion based on where the firm falls relative to the

median of the series.24 Firms are then size-weighted within each category each month.

We also use these weights to proxy for the Pareto weights of agents.

Assumption 5 The number of types of agents, I, is equal to the number of brokerage houses.

The Pareto weight of agents of type i is determined by the rank of analysts in brokerage house i.

Throughout this paper we link agents of type i with brokerage house i. Assumption 5 says that

brokerage houses with higher quality analysts correspond to agents who have more total wealth.25

4 The dispersion of beliefs as a factor

While the market, size, and book-to-market factors are designed to capture the component of

expected returns and volatility related to fundamental factors, a major focus of this paper is

whether a factor that captures the heterogeneity of investors’ beliefs improves upon either the

factor models or the predictive ability of these models for out-of-sample returns or volatility.

In Section 1.4 we observed that expected returns can be decomposed into two components : one

component determined by traditional factors, the other component dependent on the heterogeneity

of beliefs. The first empirical assessment of heterogeneity will exploit this decomposition. In

particular, consider Hansen and Richard (1987) and subsequent work, and suppose one projects

the unobserved stochastic discount factor onto a set of asset prices. Namely, we replace st+1 in

the fundamental pricing equation by the projection sf
t+1 = Proj(st+1|ft), onto a set of “traditional

factors”, ft, that can be viewed as proxies for marginal utility growth. Besides the “traditional

factors”, i.e. the Fama-French factors, we use a dispersion factor that relates to heterogeneity. We

proceed in two steps, namely first project returns onto the Fama-French factors and then project

the pricing error onto the dispersion factor. This two-step strategy allows the traditional factors

to explain as much as possible the dependence of the stochastic discount factor on heterogeneity.

In this first empirical assessment we do not only limit our attention to excess returns, but

also examine return volatility. One might expect the same factors that explain returns also

predict return volatility. Chan, Karceski, and Lakonishok (1999) employ various factor models

and compare each model’s forecasts of future volatility and covariance.26 They find the most

24Medians, rather than upper and lower quartile rankings, are used because of the limited size of the sample in
each month.

25Ideally, the Pareto weights should be based on consumption or wealth shares of agents. Unfortunately data on
assets under management are not readily obtainable nor comparable among the various institutions we include in
our study.

26 The factors they examine include the Fama-French factors (Fama and French 1993), technical or past-return
factors (Chan, Jegadeesh, and Lakonishok 1996; Jegadeesh and Titman 1993), macroeconomic factors (Fama and
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simple models, in particular, the one-factor market model, have smaller forecast errors than more

complex multi-factor models in predicting variances, indicating (1) factors predicting the mean

return do not predict volatility and (2) higher-dimensional models may overfit the data. When we

include a factor for dispersion of beliefs in our estimates of out-of-sample volatility, the forecast

error in volatility models is substantially reduced, confirming again the theoretical predictions of

the decomposition put forward.

Before moving on, it is worth pointing out that our analysis is based on conventional asset

pricing models where no other frictions are present apart from the heterogeneity of beliefs. The

reduced form approach taken in this section does not preclude alternative interpretations, many

which rely on some type of market friction.27 For example, since Miller (1977) there have been

attempts to resolve the issue of short sales regulations and divergence of opinions. When there are

short sale constraints on assets, an increase in the divergence of opinions leads to lower subsequent

returns. Chen, Hong, and Stein (2000) use the breadth of ownership as a measure of dispersion and

find that decreases in breadth of ownership (an increase in divergence of opinion) leads to lower

subsequent returns. In a separate line of research, Easley, Hvidkjaer, and O’Hara (2000) utilize

market microstructure principles and create a measure of private information. They find investors

need to be compensated for the risk of holding firms with greater information asymmetries between

investors as the probability of private information increases.28 These models suggest neither short

sale constraints nor private information asymmetries can be diversified away and are likely reflected

in measures of dispersion of beliefs. They represent a form of systematic risk; therefore, investors

should be compensated for that risk.

4.1 Construction of factor models, forecasts of returns and volatility

Consider the return process, which we shall denote rt, and the linear projection:

rt+1 = EL
t [rt+1 |ft ] + ηf

t = a′ft + ηf
t (19)

where EL stands for the linear projection and assume the Fama-French set of factors are being

used. As noted before, such a specification can be extended to include other factors as well, namely

Gibbons 1984), principal component or statistical factors (Connor and Korajcyzk 1988), and the return on the
market portfolio.

27When we move to the empirical investigation of structural asset pricing models our analysis will be more
discriminatory with regards to such alternative interpretations.

28The latter is also closely related to the work of Amihud and Mendelson (1986) and numerous subsequent papers
that try to test whether less liquid assets have a premium and are held by a different clientele, which have longer
investment horizons. Here heterogeneity pertains to investment horizons, not beliefs, and therefore is a separate
issue.
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those pertaining to heterogeneous beliefs. The main motivation for the empirical work reported

in this section is to find empirical factors, ht, that are related to the residual variation of (19)

namely:

ηf
t = d′ht + ηt. (20)

In time series regressions of factor models, the slopes and R2s are direct evidence of whether

pricing factors capture common variation in stock returns. More specifically, in the fixed parameter

case with excess returns the intercept provides a measure of the pricing error of each model while

the slope coefficients give the factor loadings of each stock i on each of the factors rm − rb, SMB,

HML, UMD, DISP, and LTGDISP.

For the purpose of empirical testing we construct 15 factor models that incorporate various

combinations of the six factors. Model 1 is a standard one-factor CAPM model that uses the excess

return on the value-weighted market index. Model 2 supplements the excess market return with

size and book-to-market factors (Fama and French 1993). Model 3 represents the Carhart (1997)

four-factor model, namely Fama-French, plus a factor which captures momentum. Models 4 and

5 examine the excess market return in conjunction with the short-term and long-term dispersion

factors, respectively. Models 6 and 8 combine the three-factor model with short-term and long-

term dispersion, while Models 7 and 9 augment Models 6 and 8 with the momentum factor.

Models 10 and 11 examine the individual power of the dispersion factors, while Models 12 and 14

combine the dispersion factors with size and book-to-market and Models 13 and 15 supplement

with momentum. Models 10-15 exclude the presence of the market factor, which Fama and French

show to be significantly related to expected returns, in order to isolate the impact of the other

factors.29 In Section 4.2, we examine the in sample predictive power of the dispersion factor on

excess returns.

We next create estimations of equity returns and volatility employing the methodology similar

to that used in Chan, Karceski, and Lakonishok (1999). Using a rolling sample of return data

over the previous 60 months as our estimation period, we obtain the estimated sensitivities, the

mean and variance of each factor, the covariances between factors, as well as residuals for return

estimates and squared residuals for volatility estimates. The factor model described in Chan,

Karceski, and Lakonishok (1999) is utilized to obtain forecasts of monthly returns and volatility.

Monthly out-of-sample returns and volatility are constructed using a 12-month rolling sample

starting in the month following the factor measurements. Out-of-sample tests are presented in

Section 4.3.

29 Although the CAPM is the standard benchmark for asset pricing models, standard asset pricing models based
on the CAPM do not do very well at predicting returns or volatility out of sample. Therefore, we include models
which exclude the market in an attempt to determine whether non-market based factors have superior predictive
ability for either returns or volatility.
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4.2 Is dispersion of beliefs a priced factor?

We examine the role of dispersion as a factor in various factor models using individual security

returns as well as portfolio returns based on size and book-to-market ratios (see Fama and French

(1993) for portfolio formation details). Table 3 contains estimates of in-sample time-series regres-

sions for a value-weighted portfolio of all stocks in the S&P 500 Index , constructed in each of

the 84 months of the sample period. Only the nine factor models which contain the market factor

are presented in Table 3. While the dispersion factors are highly significant in Models 10-15, we

do not include these models in Table 3 due to the very large pricing errors.30 We obtain the

intercept (the pricing error of the model), coefficients for each factor and relevant t-statistics, and

adjusted-R2s for each of the time-series regressions.

Both measures of the dispersion factor are highly statistically significant and the coefficients

are positively related to the S&P 500 Index returns as shown in Table 3. The market factor

is the dominant factor, although each of the other factors is generally statistically significant.

The size factor is positively and significantly related to excess returns; however, the magnitude

and significance of the size factor decreases when either of the dispersion factors are included.

Moreover, in unreported tests of individual portfolios, we observe that dispersion is significantly

positive for firms in the bottom two quintiles, indicating that dispersion as a factor may have

even greater significance for smaller firms not in the S&P 500 Index. HML is significantly and

positively related to excess returns, while the momentum factor is significantly and negatively

related to excess returns. On average, dispersion captures nine to 26 basis points of excess return,

depending on the model employed. Using the adjusted-R2 as a diagnostic, the model with the best

fit is Model 9, which includes the four-factor model, plus the long-term dispersion factor (adj-R2

= 0.9725), followed by Model 7 which incorporates the short-term dispersion factor (adj-R2 =

0.9718). Generally, the pricing errors of the models are small and insignificantly different from

zero. Models with the lowest pricing errors are the four-factor model and the four-factor model

with long-term dispersion.31

30Fama-MacBeth regressions are also performed. While the parameter estimates and their statistical significance
are quantitatively similar to those presented in Table 3, the fit of the models is substantially reduced (adjusted-R2s
are approximately 13%). Results are available upon request. Individual portfolios based on size and book-to-
market breakpoints as well as the aggregate of these portfolios are also examined. In the aggregate, only the
market factor is significant in the models 1-9, while models 10-15 indicate that dispersion factors are positively and
significantly related to portfolio excess returns and HML is negatively and significantly related to portfolio excess
returns. Moreover, time series regressions that utilize the original Fama-French factors provide results similar to
those found in Fama and French (1993), implying that the results obtained are not likely sample specific and
dispersion may be a priced risk factor for other firms. Individual portfolio results are also available upon request.

31A two-step regression analysis is also performed. Residuals from excess returns projected onto traditional
factors are projected onto the dispersion factors. We find that dispersion is significantly related to the residuals
and explain between 3% and 25% of the pricing error. Results are available upon request.
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Evident from the factor model analysis, a factor for dispersion cannot fully compensate for the

explanatory power of fundamental factors, but the inclusion of this factor does improve the fit

of the factor models, especially for small firms. In the next section, we create estimates of asset

returns and volatility from the 15 factor models. We then determine which models best predict

out-of-sample returns and return variances.

4.3 Using factor models to estimate returns and volatility of S&P 500 firms

Does the choice of factor model have implications for portfolio management? We investigate this

issue by examining the out-of-sample predictive ability of traditional factors and the heterogeneity

factor for returns and variance. We estimate 60-month rolling regressions beginning every month

from January 1991 through the remaining sample period, using both individual securities as well

as portfolios formed on size and book-to-market.32 As noted in Griffin (2002), we estimate the

time-series regressions without intercept terms because this has been shown to generate more

accurate estimates (Fama and French 1997; Simin 2000). We then implement the methodology

detailed above to calculate both return estimates [similar to that detailed in Griffin (2002)] and

variance estimates (Chan, Karceski, and Lakonishok 1999).

We construct forecasts of stock returns using Fama and French (1997) methodology for the 15

factor models for both individual firms and portfolio returns, where portfolios are formed on size

and book-to-market factors. There is a general consensus that expected returns are notoriously

difficult to predict. Overall, none of the models does a particularly good job of predicting out-of-

sample returns, and we do not find substantial deviations in the predictive power of a variety of

models. More parsimonious models are slightly better, but forecasts of returns from all models

underestimate actual returns. The results are not surprising given the strong market for most

of the actualization period. Forecasts from models that excluded the market had marginally

improved fit, as measured by adjusted-R2. Similar results are obtained when portfolios of the

S&P 500 stocks are examined, indicating that factor models do not perform well in estimating

out-of-sample returns, regardless of their ability to explain in-sample returns, as shown in Section

4.2.33

32Unlike the analysis performed in the previous subsections, we use individual firm data rather than a value-
weighted portfolio for estimating returns and volatilities out-of-sample. Because of the limited First Call data,
we do not have complete 60-month rolling samples in the early years. Since the initial First Call data on both
short-term and long-term forecasts began in earnest in March 1989, we have only 21 months of data for the initial
month of the sample (January 1991). While this could lead to problems with estimation of returns and variances,
we do not find any statistical difference between those observations with the full 5-year estimation period and those
with reduced estimation periods.

33 Results from estimation of out-of-sample returns are available upon request.
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In Table 4, we examine whether the addition of dispersion factors in conjunction with models of

fundamental factors improves the predictability of out-of-sample return variances. We implement

the methodology detailed in Chan, Karceski, and Lakonishok (1999) for estimating return variances

for individual securities variances. Their results indicate the estimates from more parsimonious

models (historical market variance and historical security variance) have the lowest forecast errors

and the highest correlations with realized variances.

In predicting out-of-sample volatility, Model 10, where short-term dispersion is the only factor is

the best estimate of individual security return variance. When the factor for short-term dispersion

is the sole estimator, the slope and the correlation between the estimate and the realized variance

is maximized (0.5457). The model also has the highest adjusted-R2 of the models tested (0.3051).

The market model (Model 1) and the market accompanied by short-term dispersion (Model 4)

are also good models for predicting volatility. Similar to the findings of Chan, Karceski, and

Lakonishok (1999), more parsimonious models have better prediction ability than the complex

multifactor models. Models that contain the Fama-French three-factor specification tend to have

the largest standard deviation, but also the lowest forecast averages, indicating that these models

underestimate individual firm volatility. These models also perform the most poorly in prediction

as given by their correlation coefficients and the fit of each model. We observe the short-term

dispersion model arrives at better forecasts of individual stock variance than even the market.

These results may occur because unlike the other factors that rely upon historical data, earnings

forecasts are forward-looking expectations, which are significantly related to both future returns

and volatility of firms.

5 Behavioral expectations

The heterogeneity of beliefs and risk tolerance are basic premises of the behavioral decision-making

literature. The emphasis in behavioral finance is on how psychological biases affect investor behav-

ior and prices. Investors’ subjective return distributions are at times too high (too optimistic or

overconfident) or too low (too pessimistic). These behavioral features have prompted a substantial

debate about many key issues ranging from predictability of asset returns and plausible explana-

tions based on investor biases, regarding momentum and long-run reversals, equity premium and

risk free rate puzzles, to name just a few.34

In this section we introduce the behavioral elements of amplification and bias into the model

described in Section 1. Amplification magnifies the differences among analyst forecasts. Biases

34An abundance of references should be cited here which appear in a systematic, organized way in the recent
surveys of Barberis and Thaler (2002) and Daniel, Hirshleifer, and Teoh (2002). A detailed overview of biases in
analyst forecasts and recommendations is provided in Section 3.1.1.
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allow the beliefs of analysts to be systematically different from the beliefs of agents. Effectively

biases adjust the conditional means of analyst forecasts whereas amplification adjusts the variance

(and higher moments) of forecasts across analysts. The first subsection pertains to amplifying

beliefs whereas the second subsection pertains to biases. The final subsection relates our models

to Shefrin’s work on sentiments and pricing kernels.

5.1 Amplifying beliefs

The diversity of analyst forecasts used in our empirical work may not fully represent the diversity of

beliefs in the economy as a whole. Financial analysts receive similar training, work in institutions

with similar goals, and interact in a community of other financial analysts. It is likely the views of

financial analysts will under-represent the views of agents in the economy as a whole since many

other agents will have much different experiences and points of view.35

Another reason the diversity of analyst forecasts may not fully represent the diversity of beliefs

in the economy is that it is perhaps in the interest of analysts to understate their beliefs. Ana-

lysts may face pressure to state forecasts that are not too far out of line with analysts at other

institutions. It may be optimal for analysts to understate their beliefs to perform well in their

job. When an analyst’s constructed return forecast indicates that he believes that the return on

an asset is going to be 0.01 higher than the market, he may really mean that he believes it is going

to be 0.05 higher but in case he is wrong and the asset under-performs the market he hedges his

estimate. If he reported 0.05 and that turns out to be wrong, he may lose credibility in the future

if all other analysts were much less optimistic. If 0.05 is right and he reports 0.01, he may still get

credit and be rewarded if he had the highest forecast among analysts.

Therefore, the heterogeneity of beliefs present in our sample may under/over represent the

heterogeneity of beliefs in the economy. In this subsection, we continue to assume that the diversity

of analyst forecasts correctly measures the direction of agents’ beliefs but not their magnitudes.

Consequently we introduce a parameter θ that can amplify or dampen heterogeneity by amplifying

or dampening the stated beliefs of financial analysts.36 We now let the ratio of beliefs of type i

35De Bondt (1993), using primarily experimental settings, observes that individual investors tend to follow trends,
while expert investors mean revert. In contrast, (LaPorta 1996) finds excessive optimism (pessimism) following
good (bad) announcements when he proxies for the beliefs of naive investors with analyst forecasts.

36When we say “stated beliefs” we mean the return forecasts constructed (using Assumption 4) from earnings
forecasts.
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agents of the conditional means of consumption growth and stock returns to the true conditional

means be

µgit+1|t

µgt+1|t
=

(
µ̄git+1|t

)θ∑I
k=1 λkt

(
µ̄gkt+1|t

)θ
(21)

µpit+1|t

µpt+1|t
=

(
µ̄pit+1|t

)θ∑I
k=1 λkt

(
µ̄pkt+1|t

)θ
(22)

where µ̄git+1|t is the conditional expectation of consumption growth stated by financial analyst i

and µ̄pit+1|t is the conditional expectation of the return on stock p stated by financial analyst i.37

Note that we still link the beliefs of type i agents to those of analyst i, but we no longer require

them to be equal to the stated by beliefs of analyst i. Our previous analysis is a special case in

which θ is assumed to be one. When θ is greater than one then the heterogeneity among analysts

is amplified and when it is less than one but greater than zero it is dampened.

Following our discussion at the beginning of this section, there are two interpretations of

amplification. The first interpretation is that financial analysts really believe their stated forecasts,

µ̄gt+1|t and µ̄pt+1|t for all p, but to obtain the beliefs of agents we need to amplify the forecasts of

analysts. The second interpretation is that financial analysts understate their true beliefs and by

amplifying their beliefs we can recover their true beliefs which also are the beliefs of agents. For

our analysis it does not matter which interpretation is correct, though the language we use in the

rest of the paper follows the second interpretation. Regardless of the interpretation, equations (21)

and (22) can be viewed as maintaining limited rational expectations in which the true conditional

expectations of consumption growth and stock returns are the weighted means of the beliefs of

agents
I∑

i=1

λit

µgit+1|t

µgt+1|t
= 1

I∑
i=1

λit

µpit+1|t

µpt+1|t
= 1

which are equal to the weighted means of the amplified beliefs stated by analysts,

Including θ gives us a convenient way to test for the importance of including analyst forecasts.

The formula for hpt is still given by equation (12), though the specifications of µgit+1|t/µgt+1|t and

µpit+1|t/µpt+1|t have changed. When θ is zero the forecasts of analysts have no effect on asset

pricing since hpt = 1. If estimates of θ turn out to be significantly different from zero then there

is evidence that analyst forecasts do matter for asset pricing. In Section 6 we will estimate θ. If

the beliefs of analysts are symmetric then the sign of θ does not affect the value of hpt.
38

37As mentioned earlier we use “analyst” to refer to the fictitious analyst constructed from the views of all analysts
in a particular brokerage house.

38The notion of symmetry used here is as follows: Let τt be a non-negative constant that can vary over time and
be arbitrarily chosen at any particular date. Beliefs are symmetric if the total Pareto weight on agents who believe
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For our empirical analysis we only need the ratio of beliefs given in equations (21) and (22). We

do not need to determine µgit+1|t and µpit+1|t. If one took µgit+1|t and µpit+1|t to be the numerators

of the right hand side of equations (21) and (22) then the mean of beliefs across analysts can be

unreasonably large when θ is large. This mean can easily be reduced to sensible levels without

changing the ratios by dividing the beliefs of analysts by any number which is constant across

analysts at a given date. The number can vary across dates. See Section 6.1 for more discussion

and an example.

5.2 Incorporating biases

The starting point of behavioral models is that the economy as a whole features biases. In previous

sections we have assumed the beliefs of financial analysts are unbiased proxies for the beliefs of

agents. In this section we allow for biases. We use data on the buy/sell recommendations of

analysts to approximate the difference of the beliefs of analysts and agents. When a financial

analyst strongly recommends buying a stock we view this as signifying that the analyst views the

future prospects of the stock more favorably than individual agents. Since our models require the

beliefs of agents, we adjust the return forecasts of financial analysts by analyst recommendations.

We continue to maintain the assumption that financial analysts are correct (where their beliefs

are given by equations (21) and (22)) on average about actual expected returns.

Financial analysts provide recommendations on many different stocks. Their recommendations

are classified into five categories: strong sell, sell, hold, buy, and strong buy. We assign the

following point structure for financial analyst i’s recommendation of stock j

Rij =



−2 if strong sell

−1 if sell

0 if hold

1 if buy

2 if strong buy

so that a higher number indicates a stronger positive recommendation. Our analysis uses a single

measure of the recommendations of all financial analysts about a portfolio of stocks where we have

the conditional mean of a variable is % is equal to the total Pareto weight of agents who believe the conditional
mean is τt/%.
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the recommendations of several investment houses for each stock in the portfolio.39 We construct

this measure for portfolio p at time t as

bpt+1|t =
I∑

i=1

m∑
j=1

λiϑjRij

when there are m stocks in the portfolio and I financial analysts. Here λi is a measure of the

importance of financial analyst i and ϑj is a measure of the market share of stock j. We require∑I
i=1 λi = 1,

∑m
j=1 ϑj = 1, λi ≥ 0, and ϑj ≥ 0.

Many researchers have studied the bias of financial analysts with respect to ex post realizations.

In this paper we will be assuming that the return forecasts of financial analysts are not biased but

agents’ beliefs can be biased. Although some evidence suggests financial analysts provide biased

predictions of reality [see Daniel, Hirshleifer, and Teoh (2002) for a comprehensive overview of

analyst biases], most of the emphasis in the literature concerns individual stocks. For the portfolios

discussed in this paper it is plausible that financial analysts are not biased. In Table 5 we see that

the difference between the unconditional return forecasts and the actual market return is very

small. For other assets the differences are slightly larger but still arguably small.

In this paper biases are situations in which agents and analysts disagree. Since analysts’ return

forecasts are assumed to be correct on average when there is a wedge between the beliefs of agents

and analysts, agents have biased beliefs of reality. However, we do not allow for biases in all

variables. We assume that there are no biases between financial analysts and individuals, on

average, across all stocks at any date. Thus in our model, individuals and financial analysts have

the same beliefs about the performance of the market portfolio.40 We also assume that individuals

and financial analysts have exactly the same beliefs about nominal risk-free bonds, whose returns

are known with certainty in nominal terms. To the extent individuals and analysts disagree about

future inflation this is a poor assumption. In addition, for convenience we assume there are no

biases in the beliefs about consumption growth. For all other assets and portfolios there can be

biases.

Although we assume analysts’ return forecasts are unbiased, the language that analysts use to

state recommendations may be biased. It is well known that analysts on average recommend buy-

ing stocks. For our sample in Table 5 we see that the average recommendation across all analysts

of the market is 0.8118. This average is only across stocks for which we have recommendations as

39The group of investment houses is held fixed across time and portfolios. See Section 3.2 for more details.
40Analysts’ stated recommendations for the market vary over time. One could use this to allow for biases in the

market return. Our approach assumes there are never any biases in the market return. This is partially justified
because as we see from Table 5 the stated market recommendations have a very low standard deviation over time.
From a practical standpoint another reason we choose to assume there are no biases in the market is that we don’t
have recommendations for all stocks in the market.
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we do not have recommendations for all stocks in the market. Since we assume on average there

are no biases, we need to adjust for favorable recommendations. We let ζ be the adjustment factor.

We will consider models in which ζ is set to 0.8118 and, for comparison purposes, models in which

it is set to 0.9. We take a recommendation of ζ for a portfolio to indicate that agents should hold

their position. In the rest of this paper when we say a financial analyst recommends holding a

stock we mean that the recommendation for the portfolio is ζ. Any recommendation above (be-

low) this signifies a buy (sell) recommendation. The difference between the recommendation and

ζ measures the strength of the buy (sell) recommendation.

Our approach views the recommendations of analysts as comments on the current beliefs of

agents. When analysts strongly recommend agents buy a stock, analysts think agents are too

pessimistic about the stock. Equivalently, analysts think if agents had the correct beliefs then the

stock is underpriced. However, agents are optimizing and under their beliefs the stock is correctly

priced. This interpretation can be problematic if agents adjust their beliefs upon hearing the

recommendations of analysts and analysts do not immediately revise their recommendations. For

example, if upon hearing a change in recommendations from hold (ζ) to buy (an average level of

recommendations greater than ζ), agents update their beliefs, so that their beliefs are identical to

the beliefs of analysts then the price of the stock should rise so that the stock is correctly priced

under the updated beliefs. After the rise, the stock is no longer an attractive buy, and analysts

should revise their recommendations to be ζ. There is some evidence which bears on this issue. In

practice, analyst recommendations are generally long term in nature, while prices are continually

updated as individual beliefs change. There is evidence (Womack 1996; Michaely and Womack

1999) that agents adjust their beliefs upon hearing the recommendations of analysts. However, as

Michaely and Womack (1999) report, the adjustments are insufficient to bring their expectations

in line with analysts.

We make an assumption about how the beliefs of agents are tied to the beliefs of the analysts:

Assumption 6 The ratio of beliefs of type i agents about the conditional mean of consumption

growth and the conditional mean of the return on stock p to the true conditional means are:

µgit+1|t

µgt+1|t
=

(
µ̄git+1|t

)θ∑I
k=1 λkt

(
µ̄gkt+1|t

)θ
(23)

µpit+1|t

µpt+1|t
=

[ (
µ̄pit+1|t

)θ∑I
k=1 λkt

(
µ̄pkt+1|t

)θ

]
exp

[
−d

(
bpt+1|t − ζ

)]
(24)

where µ̄git+1|t is the conditional expectation of consumption growth stated by financial analyst i and

µ̄pit+1|t is the conditional expectation of the return on stock p stated by financial analyst i.
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Appendix C justifies the specification for µpit+1|t/µpt+1|t in Assumption 6 using arguments based

on optimizing behavior. We do not adjust analyst i’s beliefs by analyst i’s recommendation to

obtain the beliefs of type i agents but rather adjust analyst i’s beliefs by the average level of

recommendations across all analysts. The constant d is a parameter which is constant across

stocks and measures the extent to which recommendations signify differences in the beliefs of

analysts and agents. If there are no differences then d = 0 and there is no informational content

in analyst recommendations. Our previous analysis is a special case in which d is assumed to be

zero. When d > 0, if analysts strongly recommend buying a stock then agents are pessimistic

about the stock relative to analysts. In this case bpt+1|t > ζ and

µpit+1|t

µpt+1|t
<

[ (
µ̄pit+1|t

)θ∑I
k=1 λkt

(
µ̄pkt+1|t

)θ

]
. (25)

Here the right hand side can be interpreted as the ratio of beliefs of analyst i about the conditional

mean of the return on stock p to the true conditional mean. When d > 0, if analysts strongly

recommend selling a stock then agents are optimistic about the stock relative to analysts. In this

case bpt+1|t < ζ and the inequality in equation (25) is reversed. We estimate d in later sections

and find it to be positive, though usually not significantly different from zero. The parameter θ is

included to allow for amplification and ζ is included to allow for biased language in recommendation

statements.

We continue to assume a limited form of rational expectations in which the average amplified

beliefs of analysts are rational. Because of Assumption 6 agents on average are correct about

consumption growth but possibly incorrect on average about some assets when d 6= 0 since

I∑
i=1

λit

µpit+1|t

µpt+1|t
= exp

[
−d

(
bpt+1|t − ζ

)]
. (26)

Analysts are still correct on average about all stocks. In Section 2 we imposed equations (15) and

(16) which stated that agents are correct on average about the conditional means of asset returns

and consumption growth. It was noted that this restriction does not imply we have nothing to say

about the distributions of other variables since we do not assume that weighted average forecasts

of all variables are correct. Thus, even in our earlier models the economy as a whole can be biased

in some variables. The analysis in this section effectively broadens the scope of potential biases

to include mean stock returns.
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5.3 Behaviorally-based decompositions

In section 1.4 we decomposed the expected return of an asset into fundamental and heterogeneity

components. When there is no disagreement, at date t, hpt = 1 and the heterogeneity component

is zero. With our biased beliefs specification in the previous section the pricing equation is again

given by equation (11) and hpt is given by equation (12). Now hpt includes components related to

bias in conditional mean stock returns, in addition to heterogeneity components, since the beliefs

of agents about conditional mean stock returns can be biased. Even if all agents have identical

beliefs hpt need not equal one if beliefs about conditional mean stock returns are biased. The

decomposition in Section 1.4 still applies with the new specification of beliefs.

Shefrin (2001) formulates a similar decomposition in a different way. Shefrin (2001) shows

that the log-pricing kernel can be decomposed into two stochastic processes, one pertaining to

fundamentals and the other pertaining to sentiments where the latter refers to the errors in the

expectations of a stand-in representative agent. Prices are efficient whenever the sentiment com-

ponent is uniformly zero. Shefrin’s sentiment component can include the effects of heterogeneity,

biases and irrational beliefs. The decomposition set forth in Shefrin (2001) is easiest to state in

terms of notation similar to that used in our Appendix A as it is driven by a likelihood ratio

πR (ωv|ωs) /π (ωv|ωs) . The ratio involves on the one hand π (ωv|ωs) , which is the true probability,

based on information available at time s that the history of states will actually be ωv at time v.

On the other hand, it involves at time s, the representative agent beliefs πR (ωv|ωs) , which are

a weighted average of the beliefs of individual agents. Whenever the two probabilities πR (ωv|ωs)

and π (ωv|ωs) coincide, the representative agent holds correct beliefs and the sentiment compo-

nent in the Shefrin (2001) decomposition disappears. In any other situation, there is a sentiment

component present in the pricing kernel due to biased aggregate beliefs. Shefrin’s approach is an

elegant way to characterize the importance of sentiments on asset returns.41

6 GMM estimation of models with heterogeneity and biases

In this section we estimate structural models of the stochastic discount factor described in earlier

sections. In Section 6.1 we estimate the heterogeneous agent model without biases and in Section

41This heterogeneity/bias component (hpt) in our work captures all deviations from fundamentals and plays the
same role as the sentiment component in Shefrin (2001). We prefer the label heterogeneity/bias component to
sentiment component because sentiment has a connotation that agents are irrational and somehow are using a
mechanical procedure to form their beliefs. As Shefrin states in a book about behavioral finance: “A consistent
theme in this book is that sentiment is the reflection of heuristic-driven bias” Shefrin (2000, page 53). The
heterogeneity/bias component is present because of heterogeneity and bias whether or not they are heuristically
driven.
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6.2 we include biases. Our results suggest that both heterogeneity and bias matter for asset

pricing.

The pricing equation (11) implies the unconditional moment condition

E
[
βg−γ

t+1hptrpt+1 − 1
]

= 0 (27)

holds for any asset. We estimate a model with five assets using GMM (Hansen 1982) without any

instruments.42 The five assets are the market, a nominal risk-free bond, a portfolio of stocks with a

high degree of past volatility, a portfolio of stocks with a high degree of dispersion among analysts

short-term forecasts and a portfolio of stocks with a high degree of dispersion among analysts

long-term forecasts. We assume there is no disagreement about the return on the nominal risk-

free bond, b, so that µbit+1|t = µbt+1|t for all i. All asset returns and consumption growth are in

real terms and we use the monthly CPI for inflation. We measure consumption with the sum of

monthly services and non-durables.

In Section 6.1, for any asset p, hpt is formed using the amplified beliefs presented in equations

(21) and (22). In Section 6.2, for any asset p, hpt is formed using the amplified beliefs with biases

presented in equations (23) and (24). Following Assumption 3 both sections set

log µ̄git+1|t = q̄t + φ log µ̄mit+1|t. (28)

Note that when forming hpt the value of q̄t cancels and that q̄t need not equal qt. The formula for

hpt involves the current Pareto weights of agents and we approximate for the Pareto weights using

Assumption 5. We update the Pareto weights once a year.43

6.1 Heterogeneity

In this subsection we discuss estimates of various combinations of θ, β, and γ in the consumption-

based model without biases. Each panel of Table 6 presents estimates of the same 12 models

except that panel A fixes φ at one and panel B fixes φ at 0.05. In models one through three, we

estimate only θ for several different values of γ. In models four through six we estimate versions

of the model in which all agents have the same beliefs. These models are obtained by setting

42We use the fixed weighting matrix W = (Ertr
′
t)
−1 where rt is the vector of gross returns on the five assets used

in our estimation. The expectation is approximated with the sample average. Hansen and Jagannathan (1997)
show that this weighting matrix has a number of appealing properties. While not all of those properties hold in
the setting of this paper, it is a convenient fixed weighting matrix.

43Our theory tell us that the Pareto weights should vary from month to month if agents have different beliefs.
Holding the Pareto weights fixed during a year is an approximation.
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θ = 0 and consequently do not use data on analyst forecasts.44 In models seven through nine we

set θ = 1 so that the beliefs of agents are unamplified. In models 10 through 12 we estimate the

amplification of beliefs, θ, along with various combinations of other parameters.

If financial agents were a random sample from the population and accurately reported their

forecasts we would expect that models in which θ = 1 would perform better than models which

ignored analyst forecasts and set θ = 0. Our results confirm this because models seven, eight,

and nine which set θ = 1 do better than the corresponding models four, five, and six which set

θ = 0. The gains from increasing θ from zero to one are extremely small. For example consider

the reduction in the GMM objective from going from model seven, which is the best model which

restricts θ to be zero, to model nine, which is the best model which restricts θ to be one. The

GMM objective is reduced from 0.3692 to 0.3618 in panel A and from 0.3692 to 0.3690 in panel

B.

To understand why the gains are small it is helpful to study the magnitudes of the differences

in forecasts presented in Figure 2. In this figure we graph the difference of the most optimistic

return forecast and most pessimistic return forecast across investment houses. Although there is

a lot of dispersion in forecasts in the high short term portfolio there is less dispersion in market

forecasts. Since the dispersion in market forecasts is low the dispersion in consumption forecasts

is low due to Assumption 3. For example, if there is no dispersion in aggregate consumption then

hpt = 1 even if there is much dispersion in asset p. Hence, from the decomposition in Section 1.4,

heterogeneity will have a small effect.

It might be the case that the dispersion in analyst forecasts has the right direction but the

wrong magnitude. To investigate this, in models 10 through 12 we estimate θ and let the data

tell us its appropriate values. When we estimate θ we find that it is usually barely significantly

different from zero. Because of our small data set and our choice to not use the optimal GMM

weighting matrix it is not surprising that the standard errors of our parameter estimates are large.

In most of our models all of the parameters are usually just barely significant.

We find that estimates of θ vary dramatically from -4.60 to 476.05. Part of the reason for the

large differences in estimates is that there is a tradeoff between γ and θ. In models one through

three we see that if γ is fixed at a low value then the optimal estimate of θ is large. If γ is fixed

at a high value then the optimal estimate of θ is small. This tradeoff is also apparent in models

10 through 12. In model 10 in which γ is fixed at five, the optimal estimates of θ are much larger

than when γ is in models 11 and 12. This happens because values of γ are much larger than five.

44When θ = 0, the value of φ does not matter so the estimates presented for models four through six in panel A
are identical to the estimates in panel B.
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At first glance one may think that our estimates of θ range from being unreasonably negative

to being unreasonably large and positive. If we consider what negative and large positive θ’s

imply for beliefs most of our estimates are perhaps reasonable. The plots in Figure 2 suggest that

amplifications of 10 and -4 are plausible, at least for the market. When θ = 10, the difference

between the most optimistic and the most pessimistic monthly market forecast varies over time

between about 0.8% and about 2%. When θ = −4, it varies between about 0.1% and 0.6%.

However the plots suggest than an amplification as large as 50 is not plausible for the market.

In this case forecasts vary between about 1% and about 20%. Looking at the high short term

dispersion portfolio, we see that we see that an amplification of 50 implies optimistic and the most

pessimistic monthly market forecast varies over time between about 1% and 40%.

To understand the implications of amplification consider an example in which θ = 10 and the

most optimistic analyst predicts that the gross market return is 1.011 and the most pessimistic

analyst predicts that the gross market return is 1.010. If we let the beliefs of agents be given by

the numerator of the right hand side of equation (22) then the beliefs of agents who correspond

to the optimistic and pessimistic analysts are 1.1156 and 1.1046 respectively which are, perhaps,

unreasonably high. However, note that because of our specification of hpt all that matters for

our analysis are ratios of the form
(
µ̄mit+1|t

)θ
/
∑I

k=1 λkt

(
µ̄mkt+1|t

)θ
. This ratio is unaffected if

we replace µ̄mit+1|t for all i with µ̄mit+1|t/ηt for any constant ηt. We could set ηt = 1.1 and let

the beliefs of the agents who correspond to the optimistic and pessimistic analysts be 1.0142

and 1.0042. These beliefs are plausible and would not change the parameter estimates in our

consumption-based model. Note that we are free to divide by different constants at different dates

and our empirical results would not change.

6.2 Biases

Table 7 provides estimates of the consumption-based model when there are biases. We estimate

12 different combinations of d, θ, β, and γ for two different values of ζ and φ. The assets are the

same as in the previous subsection, though the 12 models do not correspond to the 12 models

estimated in Tables 6. In models one through four, φ is fixed at one and ζ is fixed at 0.8118. In

models five and six, φ is fixed at 0.05 and ζ is fixed at 0.8118. In models seven through ten, φ is

fixed at one and ζ is fixed at 0.9. In models 11 and 12, φ is fixed at 0.05 and ζ is fixed at 0.9.

When we include biases we find that optimal estimates of d are remarkably stable and range

between 0.04 and 0.06. If d = 0.05 and ζ = 0.8118 then when analysts on average state a buy

recommendation, analysts are about 1% more optimistic than individuals about returns on the

asset since exp [−d (1− ζ)] ≈ .99. If d = 0.05 and ζ = 0.8118 then when analysts on average state
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a hold recommendation, analysts are about 4% more pessimistic than individuals about returns

on the asset since exp [−d (0− ζ)] ≈ 1.04. We find both of these numbers reasonable.

When ζ = 0.8118, φ = 1 and we estimate d, θ, β, and γ the value of the GMM criterion is

0.1849, which is much lower than it was when we set d = 0 and estimated θ, β and γ in model

12 of Table 6. Both dispersion and bias seem to be important. In model three, when we don’t

allow for dispersion and estimate d, β, and γ the model does not do as well. In models nine and

ten we see that when ζ is fixed at 0.9, this is not always the case. In these models dispersion

adds very little over bias which suggest in some circumstances biases may be more important than

dispersion. However, since model four does better than model 10, we believe our evidence shows

both dispersion and bias matter. Though our estimates of θ and d are usually not significantly

different from zero.

It is well known from Hansen and Singleton (1982), Mehra and Prescott (1985), Hansen and

Jagannathan (1991), Kocherlakota (1996) and many others, that in consumption-based models

optimal estimates of γ tend to be unreasonably large when θ is restricted to be zero.45 Many

researchers consider any estimate of γ larger than five to be unreasonable. Moreover consumption-

based models have a difficult time accounting for the difference between returns on stocks and

returns on risk-free bonds. This is referred to as the equity premium puzzle. Can including analyst

forecasts help resolve the equity premium puzzle? The standard model has trouble accounting for

the equity premium because the variance of consumption growth and the correlation of consump-

tion growth with stock returns is low. In the models presented in this paper, the agents’ perceived

variance of unconditional consumption growth increases and the agents perceived unconditional

correlation with stock returns is affected. However our results indicate that our model can not

satisfactorily account for the equity premium. In addition, although there is a tradeoff between

θ and γ, the estimates of γ are still too large. Interestingly when γ and θ are jointly estimated

the estimates of γ can be larger than when θ is fixed at zero. One possible reason for this is that

when θ 6= 0, γ affects the value of hpt.

7 Conclusions

The contribution of this paper is to empirically implement dynamic general equilibrium models

with heterogeneous agents, being careful about measuring agents’ actual beliefs. We examine

whether the heterogeneity of beliefs is priced and show factors constructed from the disagreement

among analysts about expected (short-term and long-term) earnings is a risk factor affecting both

45There have been many proposed solutions to the equity premium puzzle including Campbell and Cochrane
(1999) and Bansal and Yaron (2000). See Benartzi and Thaler (1995) and Barberis, Huang, and Santos (2001) for
proposed behavioral solutions.
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expected returns and volatility. While previous research has documented positive and significant

association between dispersion, returns and volatility, almost none of these tests have examined

how dispersion affects asset pricing models.46 Second, we establish the out-of-sample properties of

dispersion in predicting volatility and returns. We suggest the disagreement among analysts about

expected earnings is a good proxy that measures the heterogeneity of beliefs and has attributes

that correspond to the theoretical predictions. We show dispersion of earnings forecasts is a priced

factor in traditional factor asset pricing models and is a good predictor of return volatility in out-

of-sample tests. Our results indicate dispersion has better out-of-sample properties for individual

firms than for portfolios of stocks, but the general findings about the importance of a factor that

captures the heterogeneity of beliefs still remains.

Next, having established that the heterogeneity of beliefs matters for asset pricing we turn our

attention to estimating a structural model. We develop a model in which agents have the correct

beliefs about expected consumption growth but possibly incorrect beliefs about all other variables

including the higher moments of consumption growth. We link the beliefs of agents about expected

stock returns to the stated beliefs of analysts allowing the beliefs to differ according to the average

level of recommendations. Since there is a representative agent whose beliefs are a weighted beliefs

of analysts, the impact of heterogeneity is channelled through its affect on average beliefs. As in

Shefrin (2001) the mean beliefs may not equal the true beliefs. When they don’t heterogeneity/bias

matter. We estimate the discount factor β and risk aversion parameter γ and the determinants

of agents’ beliefs via analyst forecasts. Our results suggest that including analyst forecasts can

improve the performance of asset pricing models. However the estimates of the parameters which

determine amplification and bias are usually not significant.

It is common to ignore the heterogeneity of beliefs in empirical asset pricing models. Imple-

menting such models can be troublesome and the available data can be of low quality. Our paper

is an attempt to address these issues, suggesting factor specifications and suggesting how to em-

pirically incorporate the heterogeneity of beliefs in stochastic discount fundamental asset pricing

equations. The data we use accurately represent the stated beliefs of analysts. The results in our

paper suggest that heterogeneity is a “missing factor” when it comes to predicting returns and

volatility. The results also suggest that traditional asset pricing models have greatly improved

empirical fits when heterogeneity is taken into account.

46The exception is Easley, Hvidkjaer, and O’Hara (2000), which uses a measure of private information and its
relation to return in Fama-French type models.
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Appendix A. Pricing with heterogeneous agents

This appendix derives equation (5). We use more formal notation than in the text. Let ωt be the state of the
economy at time t which captures both exogenous and endogenous information. We take the number of possible
values of ωt for a given t to be finite, though our approach applies more generally. Let ωt = (ω0 . . . ωt) be the
history of states from time zero to time t. Let πi (ωv|ωs) be the probability, based on information available in the
history ωs, that agents of type i believe that the history of states will be ωv at time v. Let π (ωv|ωs) be the true
probability, based on information available in the history ωs, that the history of states will actually be ωv at time
v. If the history of states is ωt at time t then let ct (ωt) be aggregate consumption, cit (ωt) be the consumption of
agent i, λit (ωt) be the Pareto weight of agent i, and αit (ωt) be the fraction of aggregate consumption that agent
i consumes. Also consider an asset which has a time t price of one and pays rpt+1

(
ωt+1

)
at time t + 1.

Let there be I agents who have identical power reward functions with the same discount factor. To compute
an equilibrium we can solve the following Pareto optimal problem: maximize

I∑
i=1

∞∑
t=0

∑
ωt

λi0

(
ω0

)
πi

(
ωt|ω0

)
βt [cit (ωt)]1−γ

1− γ

by choice of consumption allocations for all dates and histories subject to

I∑
i=1

cit

(
ωt

)
≤ ct

(
ωt

)
cit

(
ωt

)
≥ 0

for all dates and histories.
{
λi0

(
ω0

)}I

i=1
are the initial Pareto weights which we construct to sum to one.

The solution to this problem entails that the optimal one period consumption allocation rules are

cit

(
ωt

)
= αit

(
ωt

)
ct

(
ωt

)
(A1)

where

αit

(
ωt

)
=

[
λi0

(
ω0

)
πi

(
ωt|ω0

)] 1
γ∑I

j=1 [λj0 (ω0) πj (ωt|ω0)]
1
γ

(A2)

=
[λit (ωt)]

1
γ∑I

j=1 [λjt (ωt)]
1
γ

(A3)

can be written so that they only depend on the current Pareto weights, λit (ωt). The current Pareto weights are
defined so that the right hand side of equation (A3) equals the right hand side of equation (A2). Under this
definition the Pareto weights evolve as

λit+1

(
ωt+1

)
=

λit (ωt) πi

(
ωt+1|ωt

)∑I
j=1 λjt (ωt)πj (ωt+1|ωt)

. (A4)

The denominator normalizes the term so that the time t Pareto weights sum to one. If agents have the same beliefs
then the Pareto weights will be constant over time. The pricing equation (3) becomes

1 =
∑
ωt+1

βπi

(
ωt+1|ωt

) [
cit (ωt)

cit+1 (ωt+1)

]γ

rpt+1

(
ωt+1

)
.
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Substituting in first from equations (A1) and (A3), second then from equation (A4), and then rearranging
allows us to obtain

1 =
∑
ωt+1

βπi

(
ωt+1|ωt

) [
λit (ωt)

λit+1 (ωt+1)

]
Ωt

(
ωt+1

) [
ct (ωt)

ct+1 (ωt+1)

]γ

rpt+1

(
ωt+1

)
=

∑
ωt+1

β

 I∑
j=1

λjt

(
ωt

)
πj

(
ωt+1|ωt

)Ωt

(
ωt+1

) [
ct (ωt)

ct+1 (ωt+1)

]γ

rpt+1

(
ωt+1

)
=

I∑
j=1

λjt

(
ωt

) ∑
ωt+1

πj

(
ωt+1|ωt

)
βΩt

(
ωt+1

) [
ct (ωt)

ct+1 (ωt+1)

]γ

rpt+1

(
ωt+1

)
where we define

Ωt

(
ωt+1

)
=

∑I
j=1

[
λjt+1

(
ωt+1

)] 1
γ∑I

j=1 [λjt (ωt)]
1
γ

γ

to reflect the change in the distribution of wealth from periods t to t + 1. Notice that if agents have logarithmic
reward functions (γ = 1) then Ωt

(
ωt+1

)
always equals one. Also if the distribution of wealth is the same in histories

ωt and ωt+1 then Ωt

(
ωt+1

)
will equal one. We will assume the distribution of wealth, as measured by,

I∑
j=1

[
λjt

(
ωt

)] 1
γ

is constant and consequently our pricing equation becomes

1 =
I∑

j=1

λjt

(
ωt

) ∑
ωt+1

πj

(
ωt+1|ωt

)
β

[
ct (ωt)

ct+1 (ωt+1)

]γ

rpt+1

(
ωt+1

)
. (A5)

Equation (A5) is a formal version of equation (5) in the text.

Appendix B. Correct higher order log central moments

We show that Assumption 2 implies that all agents correctly know the second and higher order central moments
of log(x). To see this let x be a scalar and note that conditional expected value of log xt+1 from the point of view
of agent i is

µ∗xit+1|t =
∫

log xt+1 dξixt (xt+1)

=
∫

log xt+1 dξxt

(
xt+1 ∗ µxt+1|t / µxit+1|t

)
=

∫ (
yt+1 + log µxit+1|t − log µxt+1|t

)
dξxt (yt+1)

= log µxit+1|t − log µxt+1|t + µ∗xt+1|t

where µ∗xt+1|t is the true conditional mean of log xt+1. The n > 1 central moment of log xt+1 from the point of view
of agent i is∫ (

log xt+1 − µ∗xit+1|t

)n

dξixt (xt+1) =
∫ (

log xt+1 − µ∗xit+1|t

)n

dξxt

(
xt+1 ∗ µxt+1|t / µxit+1|t

)
=

∫ (
yt+1 + log µxit+1|t − log µxt+1|t − µ∗xit+1|t

)n

dξxt (yt+1)

=
∫ (

yt+1 − µ∗xt+1|t

)n

dξxt (yt+1)
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which is the equal to the actual nth central moment of log xt+1. This argument can be extended to the case in
which x is a vector.

Appendix C. Justification of Assumption 6

This appendix justifies the specification of µpit+1|t/µpt+1|t in Assumption 6. Let the ratio of the beliefs of financial
analyst i about the conditional mean of stock p to the true conditional mean be(

µ̄pit+1|t
)θ∑I

k=1 λkt

(
µ̄pkt+1|t

)θ
(C1)

and let equation (23) hold. Recall that a type i agent’s utility function from time t onward is

Eit

∞∑
s=t

βs

(
wis +

∑n
p=1 ϕips−1rps −

∑n
p=1 ϕips

)1−γ

1− γ

where the term in parenthesis is equal to cis. At time t the derivative of this utility function with respect to holdings
of asset p between periods t and t + 1 is

Dipt = βtc−γ
it Eit

[
β

(
cit

cit+1

)γ

rpt+1 − 1
]

(C2)

= βtc−γ
it Et

[(
citµgt+1|t

cit+1µgit+1|t

)γ rpt+1µpit+1|t

µpt+1|t
− 1

]
(C3)

where we use Assumption 2 to replace Eit in equation (C2) with Et. Since agents maximize their utility, given their
beliefs, Dipt will always equal zero. Moreover, the derivative of a type i agent’s lifetime utility function using the
beliefs of financial analyst i is

D̄ipt = βtc−γ
it Ēit

[
β

(
cit

cit+1

)γ

rpt+1 − 1
]

(C4)

= βtc−γ
it

[(
citµgt+1|t

cit+1µgit+1|t

)γ rpt+1

(
µ̄pit+1|t

)θ∑I
k=1 λkt

(
µ̄pkt+1|t

)θ
− 1

]
(C5)

where Ēit denotes the expectation with respect to analyst i’s beliefs. This may or may not equal zero. We assume
that

D̄ipt

βtc−γ
it

= exp
[
d

(
bpt+1|t − ζ

)]
− 1 (C6)

where d is a positive constant. When financial analysts on average recommend holding stock p, (so that bpt+1|t = ζ)
we view that as indicating analysts believe agents are optimizing under analysts’ beliefs and hence Dipt = D̄ipt = 0.
When financial analysts on average recommend buying a stock (bpt+1|t > ζ), analysts believe that agents could
obtain more utility by purchasing more of stock p, and hence D̄ipt > 0 = Dipt. When financial analysts on average
recommend selling a stock (bpt+1|t < ζ), we view that as indicating analysts believe agents could obtain more utility
by selling stock p and hence D̄ipt < 0 = Dipt. Rearranging equation (C3) using Dipt = 0 and rearranging equation
(C5) using equation (C6) yields

µpit+1|t

µpt+1|t
=

[
Et

(
citµgt+1|t

cit+1µgit+1|t

)γ

rpt+1

]−1

(C7)(
µ̄pit+1|t

)θ∑I
k=1 λkt

(
µ̄pkt+1|t

)θ
=

[
Et

(
citµgt+1|t

cit+1µgit+1|t

)γ

rpt+1

]−1

exp
[
d

(
bpt+1|t − ζ

)]
. (C8)

Dividing equation (C7) by equation (C8) and rearranging terms yields the formula given in Assumption 6 of the
text.
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Figure 1: Average Level of Dispersion throughout the Fiscal Year

The top figure displays the average monthly dispersion of short-term (one-year ahead) analyst earnings forecasts
in dollars for S&P 500 Index firms. The bottom figure shows the average monthly long-term (five-year average
growth rate of earnings) dispersion. Average dispersion is computed as the equal-weighted average of S&P 500
firm’s dispersion in each month of a firm’s fiscal year (where month 12 is the final month in the fiscal year). Results
are reported on an annual basis as well as averaged across the full sample (1991-1997).
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Figure 2: Dispersion of beliefs

This figure plots the dispersion of beliefs for several different values of θ. In each row, the left figure displays the
highest forecast of the market return across houses minus the lowest forecast. The right figure displays the highest
forecast of the high short term dispersion portfolio minus the lowest forecast. In row one θ = 1, in row two θ = 10,
in row three θ = 50, and in row four θ = −4.
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Table 1: Descriptive Statistics for S&P 500 Stocks (1991-1997)

This table provides summary data for the S&P 500 Index firms between 1991 and 1997. Panel A provides summary
statistics. Excess returns (r−rb), market capitalization (Mkt. Cap.), a proxy for firm size, and the book-to-market
ratio (BE/ME) are averaged cross-sectionally across 25 portfolios formed on size and book-to-market (Fama and
French 1993). The dispersion of short-term (Disp. ST) and long-term earnings forecast (Disp. LT), the number
of analysts reporting short-term (Analysts ST) and long-term forecast (Analysts LT), are calculated annually for
individual firms. Summary statistics are based on time series averages across the sample period. Panel B provides
a comparison of average returns, size, book-to-market ratios, institutional ownership and the number of analysts
between high and low dispersion portfolios. Panel C examines the percentage of firms in each year that switch
from high to low dispersion (or vice versa), where high dispersion firms are those with average dispersion above
the median. P-values are in parentheses.

Panel A
Summary Statistics of S&P 500 Stocks

Mean Std. Dev. Min Q1 Median Q3 Max
r− rb 1.23 0.18 0.98 1.07 1.23 1.37 1.53
Mkt. Cap. 6763 7732 657 2007 3602 6376 26147
BE/ME (%) 0.57 0.31 0.18 0.36 0.52 0.71 1.19
Disp. ST ($) 0.20 0.41 0.00 0.03 0.08 0.21 8.64
Analysts ST 15 7 2 10 15 20 37
Disp. LT (%) 4.14 4.34 0.00 1.95 3.16 4.90 129.27
Analysts LT 12 5 2 8 12 15 33

Panel B
Comparison of High and Low Dispersion Firm Characteristics

Short-term Long-term
Low High t-stat Low High t-stat

r− rb 1.76 1.51 2.98 1.64 1.64 0.02
Mkt. Cap. 8546 6686 4.02 8876 6392 5.39
BE/ME 0.49 0.66 -12.87 0.54 0.60 -4.84
Inst. Own. 0.58 0.60 -3.72 0.57 0.62 -6.93
Analysts 15 16 -3.07 13 13 -0.41

Panel C
Annual Switching Between High and Low Dispersion Portfolios

1992 1993 1994 1995 1996 1997
Disp. ST 39.60% 29.95% 31.83% 32.48% 31.79% 28.75%
Disp. LT 19.49% 17.61% 16.20% 12.05% 14.68% 14.02%
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Table 2: Descriptive Statistics for Explanatory Factors

Summary data on the independent explanatory factors is provided in this table. The factors include the Fama and
French (1993) risk factors: rm − rb (the systematic risk factor of the excess market return over the risk-free rate),
SMB (the risk factor for small firms over large firms), and HML (the risk factor for high book equity to market
equity firms over low book-to-market firms). A factor to capture momentum, UMD, is also included. Risk factors
to capture heterogeneity of beliefs, DISP (the risk factor between firms with high and low dispersion of earnings
forecasts) and LTGDISP (the risk factor between firms with high and low dispersion of long-term earnings growth
forecasts), are also presented. Panel A describes summary statistics (in returns) which are pooled monthly from
January 1991 to December 1997. Autocorrelations through lag 12 are also included. Panel B provides pairwise
Pearson correlation coefficients for the explanatory factors. P-values are in parentheses.

Panel A
Summary Statistics of Fama-French, Momentum, and Dispersion Factors: N = 84

Autocorr.
Mean Std. Dev. t-stat 1 2 12

rm − rb 1.16 3.09 3.46 -0.21 0.11 -0.06
SMB 0.14 2.68 0.47 0.10 -0.09 0.10
HML 0.47 2.44 1.75 0.21 -0.06 0.13
UMD 0.78 2.52 2.84 0.04 0.01 0.12
DISP -0.28 1.44 -1.75 0.14 0.00 0.16
LTGDISP 0.23 0.27 0.96 0.09 -0.07 0.11

Panel B
Cross-Sectional Correlation Coefficients: N = 84

rm − rb SMB HML UMD DISP
SMB 0.0203

(0.8543)

HML -0.4420 -0.3049
(0.0001) (0.0048)

UMD 0.1662 -0.2108 -0.0136
(0.1308) (0.0543) (0.9023)

DISP 0.1120 0.3574 0.1159 -0.3546
(0.3103) (0.0008) (0.2938) (0.0009)

LTGDISP 0.2495 0.5052 -0.3511 -0.2263 0.4913
(0.0221) (0.0001) (0.0011) (0.0385) (0.0001)
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Table 3: Regressions of Firm Excess Returns on Explanatory Factors

This table provides time-series regression coefficients of excess returns on explanatory factors for a value-weighted
portfolio of the S&P 500 firms from January 1991 to December 1997 (N = 84). The explanatory factors include the
excess market factor, the size factor, the book-to-market factor, the momentum factor, the short-term dispersion
factor and the long-term dispersion factor. The general form of the model follows from equations (19) and (20).
t-statistics in parentheses and adjusted-R2s are reported for each model. Model 1 is a one-factor model that uses the
excess return on the value-weighted market index, which corresponds to the standard CAPM. Model 2 supplements
the excess market return with size and book-to-market factors (Fama and French 1993). Model 3 represents the
Carhart (1997) four-factor model, which includes the market, size, and book-to-market factors, plus a factor which
captures momentum. Models 4 and 5 examine the excess market return in conjunction with the short-term and
long-term dispersion factors, respectively. Models 6 and 8 combine the three-factor model with short-term and
long-term dispersion, while Models 7 and 9 augment Models 6 and 8 with the momentum factor.

Model Intercept rm − rb SMB HML UMD DISP LTGDISP Adj-R2

1 0.06 1.03 0.9516
(0.73) (40.42)

2 -0.07 1.08 0.10 0.14 0.9614
(-0.88) (42.04) (3.71) (4.06)

3 0.01 1.10 0.08 0.14 -0.13 0.9701
(0.14) (47.98) (3.10) (4.60) (-4.94)

4 0.15 1.02 0.26 0.9639
(1.99) (45.92) (5.39)

5 0.06 1.01 0.12 0.9570
(0.74) (40.68) (3.36)

6 0.04 1.05 0.06 0.10 0.19 0.9667
(0.45) (42.63) (1.90) (2.83) (3.69)

7 0.06 1.08 0.05 0.11 -0.10 0.12 0.9718
(0.86) (45.83) (1.94) (3.54) (-3.92) (2.37)

8 -0.08 1.06 0.06 0.15 0.13 0.9659
(-1.07) (43.20) (1.90) (4.73) (3.39)

9 -0.01 1.08 0.05 0.15 -0.11 0.09 0.9725
(-0.09) (48.07) (1.69) (5.12) (-4.47) (2.79)
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Table 4: Performance of Variance Forecasting Models for Individual Firms

This table displays forecasts of monthly return variances (in %) generated from 15 models based on a rolling
60-month window of data for each stock. Reported are the Pearson correlation coefficients, the slope coefficient
in the regression of realizations on forecasts and the adjusted-R2 values for those regressions. Model 1 contains
the market factor. Model 2 is the Fama and French (1993) three-factor model, while Model 3 is the three-factor
model plus the momentum factor. Model 4 (5) is computed from the market factor plus short-term (long-term)
dispersion. Model 6 (8) expands on 4 (5) by adding size and book-to-market factors, while Model 7 (9) expands on
6 (8) with the inclusion of the momentum factor. Model 10 (11) isolates the impact of the short-term (long-term)
dispersion factor. Models 12, 13, 14, and 15 exclude the impact of the market factor from models 6, 7, 8, and 9,
respectively.

Model Correlation Slope Adj-R2

1 0.5403 0.66 0.2990
2 0.4203 0.63 0.2267
3 0.5339 0.59 0.2851
4 0.5404 0.66 0.2987
5 0.5388 0.66 0.2968
6 0.4170 0.60 0.2208
7 0.5367 0.61 0.2880
8 0.4172 0.59 0.2236
9 0.5337 0.61 0.2848
10 0.5457 0.68 0.3051
11 0.4874 0.66 0.3033
12 0.5358 0.65 0.2927
13 0.5358 0.62 0.2870
14 0.5332 0.63 0.2898
15 0.5347 0.61 0.2859
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Table 5: Comparison of actuals, forecasts and recommendations, (April 1994- De-
cember 1997)

This table provides summary statistics for the actual gross returns, the average forecasted gross returns, and
the analyst recommendations for the portfolios used in our GMM estimations. The first return used is from
April to May of 1994 and last return used is from November to December of 1997. All returns are adjusted
for inflation with the CPI. At each date, the average forecasted return is computed by weighting the forecasts
of each investment house by their importance. The means reported in the table are the means over all dates
in our sample. The recommendations were computed as follows. A single analyst recommendation of a single
stock is assigned a -2 if the analyst strongly recommends selling the stock, -1 if the analyst recommends
selling the stock, 0 if the analyst recommends holding the stock, 1 if the analyst recommends buying the
stock, and 2 if the analyst strongly recommends buying the stock. Recommendations for the portfolios
are constructed by taking a weighted average across analysts (where the weights are the importance of the
analysts) and a weighted average across the stocks in the portfolio (where the weights are determined by the
market share of the stocks. The market recommendations reported are only for the subset of stocks for which
we have data — the returns forecasts and the actual returns are for a larger group of stocks. We also don’t
have any data on the return forecasts or the recommendations of the nominal risk-free bond used in our estimations.

Comparison of actual returns, return forecasts, and recommendations
Actual returns Return forecasts Recommendations
Mean Std. Mean Std. Mean Std.

Market 1.0198 0.0333 1.0205 0.0062 0.8118∗ 0.0052∗

High volatility portfolio 1.0178 0.0454 1.0039 0.0095 0.9055 0.0876
High short-term dispersion portfolio 1.0002 0.0391 0.9895 0.0222 0.7473 0.0690
High long-term dispersion portfolio 1.0194 0.0397 1.0031 0.0093 0.8596 0.0909
Nominal Risk-free bond 1.0040 0.0004 – – – –
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Table 6: Estimates of the consumption-based model

This table displays GMM estimates of θ, β, and γ in the consumption-based model with five assets – the market, a
nominal risk-free bond, and three portfolios. The portfolios consist of stocks with a high degree of past volatility,
a high degree of long term dispersion, and a high degree of short term dispersion. The standard errors of the
parameters are listed under the variables in parenthesis. If there is no standard error present then the variable
was fixed and not estimated. In this case the value of the variable in the estimate column is the value at which it
is fixed. Objective is the value of the GMM criterion. In panel A we fix φ at one and in panel B we fix φ at 0.05.

Panel A: φ = 1 Panel B: φ = 0.05
Model θ̂ β̂ γ̂ Objective θ̂ β̂ γ̂ Objective

1 88.70 0.999 1 0.5206 476.05 0.999 1 0.5412
(35.98) (250.85)

2 40.70 0.999 5 0.5188 180.88 0.999 5 0.5326
(14.21) (87.27)

3 28.91 0.999 10 0.5068 125.85 0.999 10 0.5234
(9.77) (54.99)

4 0 1.005 5 0.6038 0 1.005 5 0.6038
(0.030) (0.030)

5 0 0.999 447.07 0.3698 0 0.999 447.07 0.3698
(235.41) (235.41)

6 0 0.966 457.29 0.3692 0 0.966 457.29 0.3692
(0.3831) (318.57) (0.3831) (318.57)

7 1 1.005 5 0.6036 1 1.005 5 0.6038
(0.030) (0.030)

8 1 0.999 445.20 0.3626 1 0.999 447.10 0.3694
(235.51) (235.41)

9 1 0.953 459.70 0.3618 1 0.966 457.31 0.3690
(0.3956) (321.30) (0.3832) (318.60)

10 40.63 1.003 5 0.5096 179.89 1.009 5 0.5326
(14.32) (0.004) (88.48) (0.005)

11 3.68 0.999 229.87 0.3188 18.93 0.999 439.54 0.3110
(2.01) (229.87) (9.88) (238.51)

12 -4.60 0.688 497.00 0.2932 19.01 0.956 453.64 0.3104
(1.97) (0.530) (414.47) (9.54) (0.414) (343.07)
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Table 7: Estimates of the consumption-based model with biases

This table displays GMM estimates of d, θ, β, and γ in the consumption-based model with biases. The assets are
the market, a nominal risk-free bond, and three portfolios. The portfolios consist of stocks with a high degree of
past volatility, a high degree of long term dispersion, and a high degree of short term dispersion. The standard
errors of the parameters are listed under the variables in parenthesis. If there is no standard error present then
the variable was fixed and not estimated. In this case the value of the variable in the estimate column is the value
at which it is fixed. Objective is the value of the GMM criterion. In models one through four, φ is fixed at one
and ζ is fixed at 0.8118. In models five and six, φ is fixed at 0.05 and ζ is fixed at 0.8118. In models seven through
ten, φ is fixed at one and ζ is fixed at 0.9. In models 11 and 12, φ is fixed at 0.05 and ζ is fixed at 0.9.

Model d̂ θ̂ β̂ γ̂ Objective

1 0.040 0 0.999 5 0.5312
(0.031)

2 0.048 43.90 1.003 5 0.4038
(0.076) (13.77) (0.006)

3 0.048 0 0.879 498.59 0.2501
(0.037) (0.478) (354.02)

4 0.047 -4.51 0.674 509.04 0.1849
(0.196) (0.3084) (0.549) (362.96)

5 0.059 243.60 0.991 5 0.4014
(0.031) (55.60) (0.034)

6 0.044 17.91 0.928 473.54 0.2120
(0.787) (36.66) (0.782) (537.54)

7 0.068 0 0.999 5 0.4210
(0.034)

8 0.058 26.68 1.004 5 0.4070
(0.277) (38.46) (0.011)

9 0.051 0 0.981 443.11 0.2282
(0.037) (0.400) (328.51)

10 0.047 2.45 0.922 447.65 0.2256
(0.167) (0.42) (0.440) (333.60)

11 0.060 114.85 1.005 5 0.4109
(0.085) (101.06) (0.022)

12 0.053 0.00 0.993 442.18 0.2282
(0.163) (7.44) (0.393) (329.06)
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