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Abstract

This paper is an adaptation of the Chamley-Gale endogenous-timing information-revelation
model of investment (Econometrica, 1994). The paper models a gamewith pure informational
externalities where agents can learn by observing others' actions. Observational |earning about
the value of the investment project can result in massive social imitation, possibly leading the
society to the incorrect choice, to an inefficient cascade. While Chamley and Gale characterize
the equilibrium of such agame, this paper yields an anal ytic approximation to the probability of
inefficient cascades and allows for the derivation of comparative statics results. Thisis useful
for two reasons: i) these results indicate that some of the findings from the exogenous-timing
herding literature may not necessarily be generalizable to the endogenous-timing framework. ii)
the study may be useful intheanaysisof awide variety of applied issuesincluding IPO pricing,
gpecul ative attacks and adoption of new technology.



1. Introduction

Peopl e often observe other peopl e sactionswhile makingtheir own decisions. Thismight bedue
to positive social or network externalities and/or it might be due to socia learning. This paper
focuses solely on observational learning without any externalities. When signals are private,
rational agentsmay be ableto infer the nature of the state from the actions of their predecessors.
Herd behavior or information cascade occurs when everyone isimitating the crowd, even when
their private information suggests the opposite. In this social learning process, if early movers
signals happen to be incorrect then agents may settle on a common inefficient action, resulting
in an inefficient cascade. This paper adapts the endogenous-timing information-revelation
investment model of Chamley and Gale (1994) to study thefactorsthat makeinefficient cascades
more likely.

In a survey study, Devenow and Welch (1996) give an extensive list of empirical
phenomena that informational cascades may explain'. Examples come both from real markets
such as R&D investment decisions and from financia markets; among others, analysts
recommendation of a particular stock, bank runs and managers decisions to pay dividends may
have elements of herding behavior. It is often argued that conformist behavior in financial and
real marketsmay lead to sudden boomsand crashes. This paper studiesthe factorsthat influence
thelikelihood of erroneous mass behavior, either when thereisan investment boom eventhough
thetrue value of the project islow (inefficient positive cascade), or when thereis an investment
collapse even though the true value is high (inefficient negative cascade).

In seminal papers by Banerjee (1992) and Bikhchandani and Hirshleifer and Welch
(1992) each person observesthe behavior of the people who went before him where thereis an
exogenously determined sequence in the moves. These models show that society may settlein
an inefficient outcome because valuable information gets trapped at some stage of socid
learning. Chamley and Gale (1994) prove the existence of herd behavior even when the timing
of moves and information revelation is endogenous. In an endogenous-timing framework, the
individual agent has an incentive to wait in order to observe the actions of other players.
However if everyone were to wait, the agent would rather move early in order to avoid cost of

delay. Hence the timing decision is strategic.

'Also see the “living “ document by Bikhchandani, Hirshleifer and Welch (1996) for an
overview of the theoretical and empirical literature on herding.
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While Chamley and Gale characterize the equilibrium of such agame, this paper yields
an anal ytic approximation to the probability of inefficient cascadesand allowsfor thederivation
of comparative statics results.

To the best of my knowledge, in a framework where agents do not have preferential
access to information?, this is the first endogenous-timing herding model that allows for the
derivation of comparative statics resultsfor the probability of negative and positive information
cascades. The analysis will alow us to examine whether inefficient cascades are more or less
likely assignal quality improves, asthe observation period length increasesand asthereismore
to lose or gain. Thisis useful for two reasons. Fird, it allows a deeper understanding of the
relationship between exogenous and endogenous timing herding models. This paper shows that
someof the results on exogenous-timing herding model s do not necessarily generalize tomodels
with endogenous timing. Secondly, the derivation of comparative static resultsin the Chamley-
Galemodel provides aframework that may be useful in the analysis of awide variety of applied

issues. Some of these will be discussed in the conclusion.

2. Framework
Each of theidentical risk neutral agentswith an investment option can exercisethe option at any
date 7=0,1,2,...~ of hischoice. All optionsareidentical and indivisible. Theinvestment decision
isirreversible. 6 €(0,1) isthe common discount factor. Each player with an option chooses either
toinvest now or delay. If the player never invests the payoff is0. Whether or not the player has
anoptionisprivateinformation. Only if theoption isexercised informationisrevealed. Thetrue
vaueof theinvestmentisidentical for dl playersandit is denoted by Ve /7", 1} where V>0 and
V*<0. V=" with prior probability ¢*c(0,1).

This paper adapts the -Fold Replica Game of Chamley and Gale . Thisimpliesthat the
population is unboundedly large. While the population consists of N agents, only rn of them

?Zhang (1997) provides a endogenous timing franework where the first mover is the
agent with the highest precision of information. A cascade starts immediatdy after the first
mover, all agentsfollow the expert leader.

This corresponds to Section 6 in Chamley and Gale.
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have an opportunity to undertake an investment project. Theresultswill hold as»-~. When the
project value is high, more people are aware of the investment opportunity and hence more

people have an option to inved.
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Chamley and Gale assume that the number of people with an option is sochastic but it
ismore likely to be high when the true value of the project is high. However, here the value of
the project is either high or low and there is a one-to-one mapping between V" and n. The
restriction to only two possible project values will allow usto summarize agents’ beliefs about
the true state of the nature & time 7" in asingle variable: the probability that the project valueis
high. This mapping will prove to be very convenient in eventually formulating the learning
processin alinear fashion. So far thisisaspecia case of Chamley and Gale.

L et us now introduce the changes to the Chamley and Gale framework. In Chamley and
Gale both orders and processing of orders hgppen in discrete time. Whereas here, agents will
placediscrete-timestate-contingent orderswhich get processed in continuoustime. Playersplace
their orders a the beginning of each period. Orders are processed randomly during the period
—theexacttimethat anindividual order isprocessed isdistributed uniformly in the period. Since
information on others’ actionswill be arriving during the period, players are permitted to make
their orders (both invest and wait orders) contingent on the flow of information. Payoffs on all
orders processed in a period are received at the end of the period. The benefit of moving to
continuous-time order processing isthat it will allow usto approximate a transformation of the
agent’ sproblem asaWiener processwith absorbing boundaries and hence derive the probability
of inefficient cascades.

Each invest order comes with a state-contingent wait order. The investment cannot be
reversed in case theinvest order isalready processed. During theinterval /T,7+1), if the state-
contingent wait order is triggered, then at most M of the newly triggered wait orders are
processed, where M is alarge but finite number. The number of newly triggered wait orders W
may exceed M. In that case, arandomly selected W-M of these newly triggered wait orders are

ignored. Theseare simply continued to be processed asinvest orders. One caninterpret M asthe



maximum capacity of the process ng agency to accommodate state-contingent orders. Each wait
order comes with a state-contingent inves order. Duringthe interval [T, T+1), if the state of the
state-contingent invest order istriggered, then a most M of the newly triggered invest ordersare
processes. If the number of the newly triggered invest orders Z is greater than M, then the
remaining Z-M are not processed during the period. As will be shown, this form of contingent
order will ensure that in equilibrium the expected payoffs from putting an invest or wait order
will be the same as the expected payoffs from putting in an invest or wait order inthe Chamley

and Gale framework.

3. Equilibrium

Wewill start out by conjecturing that the equilibrium of this new game mirrors the equilibrium
in the game of Chamley and Gale. Then it will be shown that in this conjectured equilibrium the
players expected payoffs from their equilibrium strategies and from possible deviations are the
same as those resulting to playersin Chamley and Gale’ sgame. And hence Chamley and Gal€ s
proof of equilibrium will apply here as well*.

Each player who receives an investment option faces a tradeoff between investing and
delaying. If the player invests now he collects the undiscounted payoff but faces the risk of
making alossin casethetruevalueis V- If the player delays he collects only discounted payoffs
but he can make use of information revealed by other players actions. If the agent knew how
many peopl e had theinvestment option hewould know /. Hence observing the number of people
who invest can help predict the true value of the project. The focus is only on the symmetric
Perfect Bayesian Equilibria. Before describing the equilibrium strategies, let us first introduce

some critical values.

3.1. Critical Values

Theprior probability that '=7"isq*. Denoteq, asthe subjective probability at time that thetrue
valueishigh. Since orders are processed in continuoustime, ¢, evolvesin continuoustime. The
index of time for discrete decision time nodes will be denoted by 7. While 7cR", the index

T 1. So, at discretetimenodeswhen =T, ¢g,=q,. Atthebeginning of the game, the probability

“This approach cannot rule out the possibility that other equilibria may also exist.
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that the project has a high value, ¢, at time 7=0, conditional on having received an investment

opportunity, is given by:

4= P )b
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Since i = H—H , (2) can be rewritten as,
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The gameisof interest if initially the expected vadue of the project is positive. Otherwise each

agent would strictly prefer to wait and the game would end immediately with an investment

collapse’.

It will be useful to introduce two criticd values for the subjective probability. Define ¢
as the probability where the expected value of the project is zero:

q V' +(1-q) V=0 (4)d
When ¢,<g, the expected value of investment isnegative. So theagent will strictly prefer towait.
Since everyone who has not yet invested is identical they all prefer to wait and the game
effectively ends. Investment stops for good.

Definegq asthe probability where theagent isjust indifferent between investing now and
waiting even though information about the true value of the project isto be fully revealed with
certainty next period:

gV +(1-q) V' =8q V" (B)e
The left hand side is the expected value from investing. The right hand side gives the expected
valuefromwaiting given that the true value of the project isto berevealed. When ¢,>¢ the agent
will strictly prefer to invest now. And so will all identica players, and the game ends where all

players with an option invest. The game will be said to be active when ¢<¢,<g.

*Thisimpliesthat s

H
(1-g%_ V%
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3.2. Learning
The player’s actions depend on the publicly observed history of the game which is described by
the sequence of the number of people who invested during each period. Following the notation
in Chamley and Gale, for any history 4, let A(h) denote the probability that aplayer who has not
yetinvested does so after observing thehistory 4. In the active phase of the game, it must be that
0<\A(h)<1. Assumefor amoment that an agent expectsall peoplewith aninvestment opportunity
to invest thisperiod. Then he would strictly prefer to wait to be able to learn the value of the
project for sure. But so would everyoneelse. Hence A(%) = 1. If he expects nobody else to invest
thisperiod, therewould be no learning thisperiod, so aslong as expected value from investment
is positive he would strictly prefer to invest now.® But so would everyone else. Hence A(h)+0,
by contradiction. Inequilibrium, 0<A(#)<1, such that playersarejust indifferent between waiting
and investing now. Noticethat A isthe endogenousinformation revelation parameter. If 1 were
zero, no information would bereveaed. If A were equal to one, the number of peoplewho invest
would fully reved information about the value of the project.

As r-, the number of people putting in invest orders at adecision nodeis given by the
Poisson approximation to the binomial distribution. The parameter of the Poisson distribution
isthe mean number of invest orders, rn times A=A(#%). The probability that k playersinvest at a

decision node given A is:

e (Arn)F
Ah)= —k_! forkeMand ke [Qrn] ©6)f
0 airewhere

Define 1 (k;A)=f(k;A) whenn= n", and f*(k;1)= f(k;1) when n=n*. If n- were equal to»", then
Y=1 and the two probability density functionswould collapse together. In such an extreme case
thequality of thesigna k would benil and the signal would not reveal any information. However
as | decreases, thesignal quality improves and an observation of therate of investment provides
vauable information in distinguishing between 1 “(k, ) and f* (k, A).

®While intuitive, this argument assumes that is not optimd to wait for information that
may arrive several periodslater. Thisisin fact thecase. The optimal program will have a“one-
step property” where a any period the agent is willing to make a once and for al invest-not
invest decision. See Chamley and Gale proposition 3 for the proof.
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Define &, as the number of invest orders put in at the decision node 7-7. Assuming no
contingenciesaretriggered, k. is total number of people who invest inthetimeinterval [7-1,T)
and it ispublic knowledge at decision node 7. The history up totime T is /,. The A that makes
the agents indifferent between investing and waiting at the decision node 7 is A;. Bayesian
learning suggests that at time 7, when the agent observes &, people investing, the subjective
probability will evolve foll owing:

o= Gra) e ) (Mg
d Fr” H[{’;-'r Ay )Gy I : (R, Ay )

Chamley and Gale prove tha in equilibrium A is independent of both r and the total
number of peoplewho haveaready invested’. Thebasicintuitionisthat theindividuals' learning
is equivalent to learning from sequence of samples. Since r-«, the rate of investment is very
small compared to the size of the economy. Therefore one can think of the sampling simply as
sampling with replacement. The equilibrium A at the decision node 7, will solely depend on
history captured by g;., and k;. In the acrive phase of the game, for each g,¢(q , 0), therewill be
acriticd x=«(q,), suchtha q,,, isjust at or below g. Sothefollowing equation implicitly defines

A, Where the agent isjust indifferent between investing now and waiting.

fi’rVH"‘ ff'fi’rJVz =

o H H (8)h
LA FHa- 1 7. FL g AW +(l-g (ki
o s g, £ Adr I il-g JE (M ds ) TG T TR

The left hand side givesthe expected payoff from investing now. The right hand side gives the
discounted expected payoff from waiting. The first term of the brackets is the probability of
observing aparticular k at time 7+ 1. The second term isthe expected val ue of the project given

that the particular k is observed.

3.3. Equilibrium Strategies

"See Proposition 8 and the proof in Chamley and Gale.
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Let usfirst assume that the institutional setup restricts the agents to only useis g and qastheir
triggersfor the contingency orders. In Appendix C, thisassumption isrelaxed. The equilibrium
of the game with any finite set T" of possible contingency trigger pointswith cardinality greater
than one and which contains both 7z andg is shown to yield the same boundary crossing
probabilities as the baseline model.

ProPOSITION: Let A; be described by Equation (8), thefollowing equilibrium strategy supports
a symmetric Perfect Bayesian Equilibrium:

a) If subjective probability is sufficiently low ¢, <q, put inawait order with a state-contingent
invest order. If inthetimeinterva /T,T+1), g, >q, the state-contingent invest order istriggered.
b) If subjective probability is sufficiently high, ¢, >¢, put in an invest order with a state-
contingent wait order. If in the time intervd /7,7+1), g,<q, the state-contingent wait order is
triggered.

c)If subjective probahility is q<q,<q, with probability A,, put in an invest order with a stat-
contingent wait order. If in the timeintervd /T,T+1), 9,29, the state-contingent wait order is
triggered. With probability (7-A,) put in await order with a state-contingent invest order. If in
thetimeinterval /7,7+1), q,>¢q the state-contingent invest order is triggered.

ProoF: &) By equation (4), when the subjective probability is g, the expected val ue of the project
isjust equal to zero. Hence the agent strictly prefers to wait when g, <q. If inthetimeinterval
[T.T+1), q,>q the expected value of the project would be so high that the agent would prefer to
invest. Notethat in this case, the contingency order will never betriggered in equilibrium. Once
qr <q all identical agents with an investment opportunity will prefer to wait. This becomes an
absorbing state and the investment ends for good. No new information can be received in the
timeinterval /T,7+1) to increase ¢, abovey.

b) By equation (5), when the subjective probahility isg, the expected value of investing now is
just equal to waiting one more period assuming that information about the true value of the
project wereto bereveal for sure next period. Hence, when ¢,> ¢, the agent prefersto invest right
avay. If inthe time interval /7,7+1) new information were to arrive such that g,<q the agent
would prefer to wait. Notice that this is an asorbing state. When ¢,>¢ all agents with an

investment option would prefer to invest. Since r-«, the rate of information flow would be a



continuous variable and the true value of »n and hence ¥, would be reved ed at once. If V=",
agents subjective probability would remain abovey. If V'=V"*, the subjective probability would
immediately drop down below g. All agents state contingent orders would be triggered at once
but only M of them wouldbe ableto stop theinvestment. The gamewould end with all investing
except for those lucky M people.

c) If subjective probahility is 9<9r<q the expected value of investing is positive but the agent
will also consider waiting in order to learn about the true value of the project. In equilibrium the
agentsisjust indifferent between investing now and waiting. See the beginning of section 3.2 for
the discussion of the non-existence of pure-strategy equilibrium.

1) The agent with an investment option who has not yet exercised his option will put an invest
order at time 7'with probability A,. If however inthetimeinterval /T,7+1), ¢, fallsbelow q, the
agentwould prefer towait. Oncethe contingencyistriggered all unprocessed invest orderswould
convert into wait orders. Since M isavery large number, investment would stop for good.

i) Theagent with an investment option who has not yet exercised her optionwill put await order
at time 7 with probability (1-A;). If however in the timeinterva /T,7+1), g, rises above g the
agent would prefer to invest. In fact all agents would now prefer to invest all at once. M isvery
large but finite, whereas r-~. Hence M newly arrived invest orders would be processed this
period. All the rest would be processed next period. At time 7, the agent realizes that theisan
infinitely small probability that his invest order would be processed if the state is triggered.

Hence equation (H) continues to define A-.

The equilibrium strategies and the possible deviations of this game yield the same

payoffs as in Chamley and Gale.

4. Information Cascades

The subjective probability evolves as a result of observational learning from the rate of
investment each period, which isastochastic variable. Chamley and Gale prove that eventudly
the game will end with an information cascade?. I the subjective probability hits(i beforeq, the
game ends with an investment collapse. If the subjective probability hitsg before q, the game

ends with an investment boom. We are particularly interested in the probability of inefficient

®Proposition 8 in Chamley and Gale.



cascades. The measures of interest are then the probability that the process hitsg beforeqg when
V=", and the probability that the process hits g before g when V= 7. Thefirst would be an

inefficient negative cascade and the latter would be an inefficient positive cascade.

4.1. Transformation

In order to obtain the boundary crossing probabilities, we will need to transform the problem
into an equivaent problem that is tractable. Subjective probabilities evolve following (7),
substitute f "(k;A;,) and f “(kq;A1,) into (7). Cancel out &, factorial from the numerator and
denominator. Take the inverse of both the left and right hand side of the equation and subtract
one from each side. Now plugging in ¢ for:_ yields,

I-gr _I-dr, vl m'wk (9)k
' dr_;

Taking the natural logarithm of both sidesyidds:

2 by,
»{f}#{i]ﬂ-%ﬁ%@@ (10)m

where k, is distributed Poisson with the parameter A, ,7n" when the true value of the project is
high and it is distributed Poisson with the parameter A, ,7n" when thetrue value of theprojectis
low. For large Arn, the Poisson distribution can be approximated by the normal distribution.
Notice that k;>0. However the normal distribution assigns paositive probability to events with

k;<0. Hence this approximation is |ess than perfect for smal Arn. Definew, as:

-
'AP{%] (hp

Notice that w, is an increasing monotonic transformation of ¢, Plugging (p) into (m), we get a

transformed problem:

wo=w Tk (12)zh
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where k,” is distributed normal with mean p. and variance o*

(14)zo0

o [ 2055 Hohp P e wov
Wit i Labahiept] 6 F unif el wow=v

u>0 by Appendix Claim Al. And u“<0 by Appendix Claim A3.

Individual learning is a stochastic process with independent increments. Thisprocessis
a well known description of individual learning in cognitive psychology. In much of that
literature individuals are modeled as learning through random sampling with exogenoudy
determined*” responsethresholds.” Thischaracterization of thelearning processisusedtoexplain
laboratory evidence on individual response times and error rates. The present paper shows that
evenwith fully rational agentsgroup behavior will resembleindividual behavior with boundedly
rationa agents of the type used in cognitive psychology.®

Thetransformation (p) of the lower bound given by (4), of the upper bound given by (5)
and of the starting point given by (3) yield :

Thelower bound: g = w w=inf-V*)-inV ¥ (19)q
Theupper bound: g = w w=Inf-V*)-Inv¥ - Infi- 4 (16)r
The starting point: ¢, = w, w, = Ing" -infl-q" )- lmy (17)s

Notice that for the game to be active, w <w, since initially the expected value of the project is

positive (see footnote 5). And w, <w examining (€) and (c) together.

4.2. Boundary Crossing Probabilities with constant A

The individual learning process follows the equation (14) where the error term is distributed

approximately normal with mean p and variance ¢® Both the mean and the variance of the

process depend A, and hence they depend on the history of the game. They are not constant.
Now we are going to examine a different process. In this modified problem, we will

examine the process described by equation (zh) and (zo) yet with a constant A<(0,1), implying

See Luce (1986) for an introduction to this literature. MORE?
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aconstant drift and variance. In section4.3, wewill provethat the process with the endogenoudy
determined A, will yield identical boundary crossing probabilitiesasinthemodified problemwith
fixed 1.

Notethat orders are processed in continuous time and the processing time of each order
is distributed uniformly over the period [T,T+1). So we can define w, as a continuous variable
which coincideswithw; whent=T. Denote k,™ asthe stochastic term whichisdistributed normal
where p and o (given by Equation (zo)) are respectively the drift velocity and the power of the
noise of the process. Assuming A, ,= A;., W, can be approximated by a Wiener process™:

Ww=w +k (A2)

Equations (17), (15) and (16) give the starting point and the bounds. We can easly computethe

boundary crossing probabilities.

i) Probability of hitting w before w when V=V" and A, ,= A, In this case, the drift is
positive, p'>0. The probability of hitting w beforew is given by™:

_ Rw R w A w R W
Prﬂb{Ebeﬁrew|V= v and Ap=Ap ;= i- glo ' _pled glo b gl (18t

The system is defined by six equations: (8), (15), (16), (17), (18) and (12) that defines u”. and
(o®)". Combining the six equations, one can find a closed form solution for the probability of
hitting the lower bound before the upper bound. Divide the numerator and the denominator of
(18) by .up[ il J and plug inthe values of w, , w, and u" and (@*)""

(w? )

_ E_E-?{WH Fbg Hhp B T J]
Frobwhefrew|y =V ad Jp, = Ap)=I- 7 (19u
_ _fy-i+Ing) - - . . . e
where ¢ = _W_ . <0 by Claim A1l in the Appendix. Notice that this probability is
M
independent of A.
YFOOTNOTE 7?7772

"See Karlin and Taylor (1975).
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ii) Probability of hitting w before w when V=V"* and A..,= A;: In this case the drift is
negative, p“<0. The probability of by of hitting w before w when V=7*:

- ey RwY O Rw W
Hﬂb{yizﬁmw|¥={/‘tm,qr_j =Ap =T T ST g (v

The system isthus defined by six equations: (8), (15), (16), (17) , (20) and (12) describing p.* and
(o°)F. Combining these six equations, one can find a closed form solution for the probability of
by of hitting w before w when V="

e[ g +he b iV ]

_ i ol
Frobiwbefore w |V = V‘Emz.::f,lr = Ar )= [ TR (
- -

where v = % .v>0 by Clam A3 in the Appendix.

4.3. Inefficient Cascade Probabilities for the Original Problem

Proposition 1: The boundary crossing probabilities of the original problem are equal to the
boundary crossing probabilities found using a Wiener process, (19) and (21) of the modified
problem.

Proof: In the actual learning process the parameter 1 is updated via equation (8) at each T .

As long as contingencies are not triggered A stays constant during the interval /7, T+1). The
boundary crossing probabilitiesfor thisprocess can be reconstructed iterativel y using theLemma
in Appendix C1. Startingwith the Wiener processwith absorbingboundariesdefinedin (*), (**),
(15), (16) and (17), create a process where the parameter .1 changesto A ' (which is stochastic)
at =1 and stays constant thereafter. From the lemma this new process has the same transition
probabilities as the original process. Since after =1 the process is a Wiener process we can do
this again after one more period and the new process will aso have the same transition

probabilities. Iterating this argument yields the result. O
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5. Comparative Statics

Since we have approximated closed-form solutionsfor the probability of inefficient cascadeswe
can examine thecomparative statics. We will start with the comparative staticsthat behave same
asin exogenous-timing model s and then move on to the new comparative staticsresultswelearn

from this endogenous-timing framework.

5.1. The Prior:
As one would expect, increasing the ex-ante probability that ’=1" decreases the probability of
an inefficient negative cascade.

AProbC) _ zwé‘-?p[hfi-q Hng +ep-BV +EV ]

<0 22)x
dyy (I-g" )g'f1- 7P ) (22)

sincep<Oand | i-¢e =0,

Thelikelihood of gettinginto into apositive cascade even though V'=V", increases asthe

prior goes up.
[ ]
dProb(IPC) _ Zpe -0 (23)y
dy (I-g Jg (I-e J
sincey>0and;- ¢ i< o . The prior probability ¢ * can take the interpretation of reputation.

The comparative statics results indicate that the better the initial reputation of the investment
project, the higher chances it will have to be undertaken by masses even when the true value of

the project islow.

5.2. Project Value:

In an exogenous-timing herding framework Welch (1992) showsthat asthe expected valuefrom
investment goes up, early movers are more likely to invest. Hence the isahigher change that the
soci ety ends up with apositive cascade. In our endogenous-timing framework, we get the similar
comparative staticsfor different reasons. If thereis moreto gain from successful investment, the

probability of inefficient negative cascade goes down.

ciPmE;-{_.f}‘-.f.:jj Ewé.'zp[j‘ff'@ Hing +hype bV il }]

7 TR R = (24)ze
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and likewise if there is less to lose from investing the probability of an inefficient negative

cascade goes down.

APrabIic) Ewép[mfi-q i+ BT ;u]

25)zf
avt (7- g i E-dl 17 =0 (29)

There are three forces. When the expected value of the project goes up either due to an increase
in V" or I, the agent ismoreinclined to move now rather than delay. Hence theequilibrium rate
of information flow goes up, making the agent just indifferent between waiting and not. With a
higher information flow it becomeslesslikely to fall into a negative cascade sincethe true value
ishigh (astronger p due to ahigher 1). However as the information flow goes up, so does the
power of the noise of the learning process. The noise makesit morelikely to fall into anegative
cascadewhen V'=1". These two forces exactly cancel each other out since A cancels out fromthe
probability of inefficient negative cascade. Meanwhile as the expected val ue of the project goes
up, the upper bound ¢ and the lower bound q both decrease, see equations (5) and (4), while the
starting point is unchanged. Therefore the probability of hitting the lower bound before hitting
the upper bound decreases, making an inefficient negative cascade lesslikely.

When the expected value of the project goes up, either dueto anincreasein V" orin V*,
the likelihood of an inefficient positive cascade goes up.

AProb(IPC) 2y D[R g+ b ]

7 R = (26)zg

and

APrabilPC) 2},2'2?[&4{3--? g +hpBaV RV ]

27)zk
avt (4 - g 4yt =0 0

As the expected value of the project goes up, both the lower bound and the upper bounds goes
down. The probability of hitting the lower bound before hitting the upper bound decreases,

making an inefficient positive cascade morelikely.

5.3. Discounting:
Discounting doesn’'t play arole in exogenous timing models. Examination of thisissue requires

an endogenous timing model. To my knowledge, Thisisthe first endogenous-timing paper with
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comparative statics results on discounting. The agent makes a choice between investing now or
later. If the agent waits, he can learn by observing other peopl € sactions, however the payoff gets
discounted. All else constant, as people get more patient, & goes up, they will be more willing
to wait. Since waiting induces learning, one might be tempted to conclude that higher 6 would
be associated with a smaller probability of an inefficient negative cascade. However thisis not

the case.

2 EDE-EFMJ’-E'

dRrob{INC) -
(F- ) - girhd )

= (I- Prob{INC) 0 (22

With ahigher 8, at the ongoing rate of information flow agents would strictly prefer to wait, A
would be equal to zero. However as argued earlier, A=0 cannot be sustained in equilibrium. So
therate of information flow goesdown. In other words, in equilibrium, people arejust indifferent
between waiting and moving, hence ahigher & inducesa smaller rate of information flow. Since
y=1", aweaker information flow simply increasing thelikelihood of a negative cascade due to
aweaker p". However at the sametime the weaker information flow would increase thenoisein
the learning process. And these two opposing effects cance each other out since A cancels out
from the probability of inefficient cascade. Meanwhile, ahigher 6 yields a higher upper bound
g, leaving the starting point and the lower bound unchanged. This aso makes the inefficient
negative cascade morelikdly.

On the other hand, the probability of an inefficient positive cascade goes down as § goes
up.

dPrab(iPC) Ark{-a)

= Prob{iPC) 2ye

(1-8)(i- o)

. (29)za

A higher 8 induces a higher upper boundg. The subjective probability that 7’=7" must be higher
for apatient agent to prefer to invest now when sheisto find out the true val ue of the project for

sure next period. Thismakes theinefficient pogtive cascadelesslikdy.

5.4. Quality of information:
In the exogenous-timing model of Bikhchandani, Hirshleifer and Welch (1996) as quality of
information goes up the likelihood of incorrect cascades unambiguously goes down. However in

our endogenous-timing framework the effect of signal quality on the probability of inefficient
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herding is not monotone. Asthe signal quality improves, the likelihood of inefficient cascades
may go up or down depending on the parameter values. (NEL SON?, Decamps?)

A decrease in thesignal qudity (anincrease in ¢) leads to a decrease in q,, leaving the
upper bound and the lower bound unchanged. An decrease in q, increase the probability of a
positive cascade and decreases the probability of a negative cascade. Meanwhile anincreasein
Y (decrease in signal quality) also affects the drift velocity and the power of the noise of the
stochastic learning process:

" _ Y
& usl{D mddﬁ) :lquﬂ

i Ny W

af T F

I and 2=

@;411@( % iyt
Denote:

B=lnfl-g*)-lng*-InVE+ini-v*) @

then,
dProb(INC) _ Ze ? 3 .:;i'_;-::-]

v e J[w”ﬁ T 2 (31)2¢

2 (i-¢ Imir-9%% 7 g
(I-e J dy <

Theeffect of anincreaseiny onthe probability of aninefficient negative cascade may be positive

or negative depending on the value [E +{ 3 +imyr) j_ﬂ takes (See Appendix A3). Appendix A4
w w

shows that the increase in ¢ may result in an increase or in a decrease in the probability of an

inefficient positive cascade depending on the parameter values.
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Thissuggest that the results on signal quality of the exogenoustiming herding literature may not
be applicable to the endogenous timing herding. When the sequence of moves is endogenous
there arethree forcesto be studied; Higher quality information (smaller ) increasesthe chances
of efficient learning, and hence decreases the probability of an inefficient cascade. But as quality
of information goes up, the rate of information arrival goes down. Thisincreasesthe probability
of aninefficient cascade. Thethird factor isthe starting point. When y goes up, the starting point
Or-; goes down. This makes the probability of a positive cascade go down and it makes the
probability of anegative cascade go up. Exactly which force overwhelmsthe other/s dependson

the parameter vaues of the problem. Examples?

6. Discussion

The comparative statics results from this endogenous timing herding model may be able to shed
some light on a variety of questions from different fields of economics. The parameters of the
model, the discount factor, the prior beliefs, the sgnal quality and the expected value of the

project can take different interpretations depending on the market under consideration.

6.1. Initial Public Offerings

The IPO market is a fixed-price common-vaue good market where later potential investors can
observetheinvesment decisionsof earlyinvestors. One of the puzzlesin thismarket isthe strong
documented underpricing **. And casua observation of the IPO market shows that offerings
occasionally fail becausethereistoo low of ademand. Both these features are consi stent with our
herding model of investment. A lower offering price increases the expected value to potential
investors. Thismodel would predict that alower offering pricewould be associated with alower

probability of a negative cascade where the offering fails. Welch (1992) examines the price

12See Beatty and Ritter (1986).
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setting by aninformed sdler of an PO where buyers cascade. When thereisinside information,
Welch (1992) can explain why an optimally priced | PO might fail. This paper, however, predicts
positive probability of a negative cascade for any price the seller picks even when there is no

inside information.

6.2. Financial versus Real Markets

While 6 simply represents the discount factor, it may also be regarded as capturing the time
required to process and react to information. Keeping the rate of time preference constant, asthe
timeto processinformation increases so does thedi stance between the time periodsinthe model,
leading to a lower &. In financid markets agents tend to atain and process information very
quickly. In real investment, however, there is often a non-negligible time gap between the
moment of adecision to undertake aninvestment project and thevisibility of that decision. Hence
in financial markets the relevant 6 would be larger than in red markets. The paper suggests that
as 6 goes up the rate of information flow goes down and hence, the likelihood of an inefficient
collapsewould be higher in markets with quick information dissemination and processing even
though one might be tempted to think that financial markets would have more information
efficiency.

Inamorefully devel oped model for the purposes, one could analyzethe effect of liquidity
on the probability of inefficient collapses. The more liquid market might imply ahigher & since
expected time to trade would be shorter. Hence a financial market that is open to the world
markets and hence with higher liquidity might be more prone to inefficient collapse. This
possibility is often suggested in the discussion of hot money and exchange rate/debt crises and

the model presented here may be adaptable to give some meat to that discussion.

6.3. Speculative Attacks

The model may help to gain further understanding of the importance of the reputation of a
government pursuing a fixed exchange rate regime. Suppose that an agent invests in foreign
currency, the agent will have alow expected payoff if in reality the fundamental s of the economy
arebad. The agent will have ahigh expected payoff if in reality the fundamental s of the economy
are good. Each agent is aware of the potential speculative gains and has a one unit of domestic

currency for possibleinvestment in the foreign exchange market. Agents can observe the amount
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of speculative purchasesfrom the monetary authority each period. Themodel would suggest that
it ispossiblethat aspecul ative attack is staged even when economic fundamentals are good. The
possibility of such an inefficient cascade would decline however with the good reputation of the

government.

6.4. Advertising, Warrantees and Buy-Back Options

This paper suggests that firms producing an identical high quality product will face different
chances of falling into a negative cascade depending on their reputation g*. While the firm with
agood reputation might haveits product be purchased by masses, thefirmwith alesser reputation
has a higher chance of not being able to take off. This presents two questions to be further
investigated: In amarket with social learning would firms be tempted to overinvest in reputation
possibly in advertising in order to avoid faling into anegative cascade?

Another key variableintheanalysisisthe expected val ue of the project. Warranty and buy
back options are important elements of marketing new products as better warranty and buy back
options signal higher product quality. Hence these options increase the expected value from
investing in the product both directly and indirectly through signaling. This model suggests that
in markets where there is social learning these marketing tools will have even a bigger
significance. By offering warranty and buy back options, firms can increase the chances of
positive cascades where purchases of the product booms. All else equal, firms that do not offer

these options will have arelatively high probability of facing a collapse of purchases.
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Appendix

Appendix A:

Claim Al : fige - bagh=0)
Proof: Define f()=y-1-Iny. Note that f(1)=0. Since

Fram=i-t=¥lay = f(9)>0for 0<y<I. So,{y-i-lnw)>C O
[y

i
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Claim A2: d—w <0
dyr

Proof 28 _ (=w)lny - 2)- 2ay
dyr e (lﬂ!,.,f!))

Define f(@)=(1-U)(Iny-2)-2Iny. Note that f(1)=0. Since
Fp= iy = (<O =)0 for 0y =

Claim A3: fige F-ighyg <6
Proof: Define f(§)=y-1-Ylny . Note that f(1)=0. Since f' (@)= I-Iny-1=-Iny>0
= f(¥) <0 for 0<y<I. So fir -1 -winw) <0 O

Claim A4: d—}; =0
dyr

Proof: Tz_r’w-f-wfﬂw,’ o & _ 2w l-yluy -luy

, <0
wilny) dy vy
Define f(@)=2y-2-YIny-Iny. Note that f(1)=0. Since
f’{w=f—fmr—£=—£|f—w+w£wgﬂ=iﬂ by Al. Hence f({)>0. So j—‘v 0. O
woow W

Appendix B:

dFrobiING) dFrobINC)
=8 or

ey iy

Claim B1: =0 depending on parameter values.

Proof: In equation (31), the first term on the right hand side is positive. (B+Iny)<0, for q,_,>0.
@ is given by (xx). j—ﬁj < () by Appendix Al. Examining (xx), for 0<a<lI, 0>(B+Iny)>In(1-8)>-
w

o, This condition is equivalent to q<q,<q of the original problem. Taking the limit when

(B+Iny)=0,

d@ ¢
B ol >0.
dyr pr(l — gm0y

Taking the limit when In(1-0)=- « first term of (???) goes to zero using the L’ ’Hopital’s Rule,

v = — g2l irhy ) [E+ (53 +1nw)d—§p] For [E+ [ﬁ+1nwjd—w] =10
dyr W dyr W dyr
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F

o —yr +
dp (Il -y +lony) + (1 —w twlny)
dw

This is also equivalent to,

g« Inw (1—p +w i) . 0
(I-w+lnw )+ (l-w +wing)

Prob{TPO
Claim B2: —————>0 or M

dy chy

Proof: Examining (32), for 0<p<I, 0>(T+Iny)>In(1-6)>-. This condition is equivalent to q <
q,< q of the original problem. Taking the limit when (T+Iny)=0,

< 0 depending on parameter values.

a4 2¢
= s <0
dy  (l-e e

since 1—g =40

THE OTHER SIDE MISSING
Appendix C:

Lemma CI: Let w,(A) be a Wiener process with absorbing boundaries as defined in (*), (**),
(15), (16) and with starting point w,  {w,w ) . Letw, be another process with the same form
and parameters as w, up to some possibly stochastic time ¢ > T at which time the parameter A
is replaced by A', which may also be stochastic. Both w,(A) and w, yield the same probabilities
of hitting the boundaries which are given by * and **.

Proof: Definebw(r,w, A" as the joint p.d.f. of t, w_and A’ conditional on not hitting either

boundary in ¢ < ¢ Define F, as the probability starting from w . that process hits the

AW

boundry w before w. Since w,(A) is a standard Wiener process F, .,, . is given by

L

Auww 3w Y f e Bww
Pm_}w=f— e -e< |/ e -e- (33)zp
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=1-F These depend on ) only through the ratio u{*. From (12) this

and F, widbew

LAFS S
ratio is given by:

Trwtlaw o g

1
iﬂ=1 i‘*"l (34)zq
TR eyt

wing

Hence the probabilities of w,(A) hitting the boundaries do not depend on A. Although the date

T as no special relevance to this process we can still decomposed this probability into the

probability that it transitions before or at t and the probability it transitions after t -

PWI:A:I—}'W:P (1w
e (35)zm
+[1=Py gt = Brgaongse |1 | (B a1 e 002 5 042
W '

While we know the lefi-hand side of this, the formulas for the conditional probabilities and p.d.f.s
on the right-hand side are unknown. However, since # starts off as the same process we can

similarly decompose its probability as:

P'II' ST Pw
(2w
2 o (36)zn
+ [1‘ B tarempse = m—wpﬁ;l‘ ! Briapewblrwe 20 de dw dd
A

Here both the left and right-hand side probabilities are unknown. Nevertheless, since it is the
same process up to t these conditional probabilities and p.d.f.s are the same as in (35) with the
exception of the continuation probabilities in the integrals. Note however these are simply the

probabilities for the Wiener process starting from w_with parameter A'and hence for each
potential realization of w_ and A" the probability can be found from (33) by substituting w_ for

w,. As before A*cancels out from these probabilities. Therefore each F, ., in equation (36)
is equal to the corresponding %, .,y in (35) and hence 7, ., . = Fy o The same argument

shows that F, F which completes the proof of the lemma.

wildlrw  twowr
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Proposition Cl1: The equilibrium of the game with any finite setI" of possible contingency trigger
points with cardinality greater than one and which contains both g and g will yield the same

transition probabilities as the baseline model.

Proof: From the baseline model where” = : q.q : add one contingency trigger pointg'. If
g'&{g.F) then the state g' would never be reached in the baseline equilibrium and hence we
can construct a parallel equilibrium where no agent chooses to have a contingency triggered at
g'. Hence the edition of ¢ will not change the transition probabilities.

If a'=i{q.F)then some agents may choose to set contingencies there. Let
algr.tl hencefo;th 7, be the probability that an individual agent chooses to set a contingency
trigger at q'. This may be either to buy or to cancel an impending order. Note that & may depend
on t since for a given number of impending orders the time remaining in the period will determine
the rate of information flow which in tern influences the expected value of waiting. By the same
argument used for A it is straightforward to show that n<lI. If g"is a buy trigger and n=1 then
each individual would prefer to wait since ¢' < g. If it is a wait trigger and n=1 then each
individual would prefer to buy since g* > g.

So either the addition of g¢" has no effect on the outcome in the period (n=0) or in

equilibrium each individual will be indifferent between using it as a trigger or not.
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