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1 Introduction

There exists a large body of empirical evidence suggesting that the aggregate economy is
characterized by periodic shifts between distinct regimes of the business cycle (e.g. Hamil-
ton 1989, Filardo 1994 and Diebold and Rudebusch 1996). A number of researchers have
successfully used Markov regime-switching models to fit the dynamics of the short-term
interest rate (see, among others, Hamilton 1988, Garcia and Perron 1996, Gary 1996 and
Ang and Bakeart 1998).1 These results have motivated the recent studies of the impact of
regime shifts on the entire yield curve using dynamic term structure models. A common
approach, as in Naik and Lee (1997), Boudoukh et al.(1999), Evans (2001) and Bansal and
Zhou (2002), is to incorporate Markov-switching into the stochastic processes of the pricing
kernel and/or state variables.2 The regime-dependence introduced by these studies implies
richer dynamic behavior of the market price of risk and therefore offers greater econometric
flexibility for the term structure models to simultaneously account for the time series and
cross-sectional properties of interest rates. However, as pointed out by Dai and Single-
ton (2003), the risk of regime shifts is not priced in these models, and hence it does not
contribute independently to bond risk premiums.

Without pricing the risk of regime shifts, the previous studies have essentially treated
the regime shifts as an idiosyncratic risk that can be diversified away by bond investors.
However, most of these studies (see, for example, Bansal and Zhou, 2002.) have also shown
that regimes are intimately related to the business cycle, suggesting a close link between the
regime shift and aggregate uncertainties.3 Hence it is most likely that the Markov regime
shifts represent a systematic risk which should be priced in the term structure models.

The main objective of current paper is to extend this strand of literature by developing
a dynamic term structure model under the systematic risk of regime shifts in a general equi-
librium setting similar to Cox, Ingersoll and Ross (1985a, 1985b). Our model implies that
bond risk premiums include two components under regime shifts. One is a regime-dependent
risk premium due to diffusion risk as in the previous studies. This risk premium has added
econometric flexibilities, as demonstrated in the previous empirical studies, relative to those
in single-regime models because of the Markov-shift of the underlying parameters. The other
is a regime-switching risk premium that depends on the covariations between the discreet
changes in marginal utility and bond prices across different regimes. Therefore the model
shows that there is an additional source of time-variation in bond risk premiums in the
presence of regime shifts. This new component of the term premiums is associated with the
systematic risk of periodic shifts in bond prices (or interest rates) due to regime changes.

1The expectation theory is usually invoked to relate long-term interest rates to the short rate in this
literature, such as in Ang and Bakeart (1998).

2Other studies of the term structure of interest rates under hidden Markov chains include Bielecki and
Rutkowski (2001), Elliott and Mamon (2001) among others.

3Following Bansal and Zhou (2002), we plot in Figure 2 the implied regimes by the term structure model
in Section 3 below and the business cycle expansions and recessions identified by NBER. The figure clearly
shows that the regimes are related to the fluctuations of the aggregate economy.
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Given the empirical evidence from the previous studies that the yield curve exhibits signifi-
cantly different properties across regimes, the model implies that the regime-switching risk
is likely to be an important factor that affects bond returns.

We further obtain a closed-form solution of the term structure of interest rates under
an affine-type model using the log-linear approximation similar to that in Bansal and Zhou
(2002). The model is estimated by Efficient Method of Moments (EMM) developed in
Bansal et al. (1995) and Gallant and Tauchen (1996, 2001). We use the monthly data on
6-month treasury bill and 5-year treasury bond from 1964 to 2000 in the estimation. We
find that the market price of regime-switching risk is highly significant and affects mostly
the long-end of the yield curve. The regime-switching risk, as expected, accounts for a
significant portion of the term premiums for long-term bond.

In a closely related study, Dai, Singleton and Yang (2003) develop and estimate a multi-
factor dynamic term structure model with regime-shift risk based on no-arbitrage condition.
Their results also strongly reject the null hypothesis that the regime-shift risk is not priced
in the U.S. treasury bond yields. They show that the model with priced regime-switching
risk can capture some salient features of term structure of interest rates. The focus of this
paper is to derive the term structure model from a general equilibrium setting that allows
us to further elucidates the economic nature of the regime-switching risk, which is the main
difference between the current paper and Dai et al. (2003). Another difference is our model
is specified in continuous time and the model allows the factor loadings in the term structure
to be regime-dependent, while the model in Dai et al. (2003) is in discreet time and the
regime shifts have no impact on the factor loadings.4

The rest of the paper is organized as follows. Section 2 specifies the underlying economy
and lays out the asset pricing model under the systematic regime-switching risk. Section 3
obtains the closed-form solution for the term structure of interest rates. Section 4 discusses
the empirical results from EMM estimation and section 5 concludes.

2 The Model

2.1 The Underlying Economy

Consider an economy with a single good and a large number of infinitely lived and identical
agents similarly to that in Cox, Ingersoll and Ross (1985a, 1985b) (henceforth CIR). We
first describe the state variables and investment opportunities for the economy as well as
the representative agent’s objective function below.

4The latter feature of the model in Dai et al. (2003) allow them to obtain the exact solution to the
term structure of interest rates without resorting to the log-linear approximation. Their model also allows
the regime-switching probabilities to be state-dependent. While the transition intensities across regimes are
assumed to be constant in the estimated term structure model of the current paper, our main theoretical
results do not depend on this assumption.
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2.1.1 State Variables

We assume that the economy is driven by two state variables.5 One of the state variable
x(t) has a continuous path and is determined by the stochastic differential equation

dx = µxdt + σxdBt (1)

where the drift term µx and the diffusion term σx are in general time-varying and regime-
dependent. The other state variable is a continuous-time Markov chain s(t) taking on values
of 1, 2, · · · , N if there are N distinct regimes. Following Landen (2000), we make use of the
marked point process to obtain a convenient representation of s(t). In particular, the mark
space E, which contains all possible regime shifts, is defined as

E = {(i, j) : i ∈ {1, ..., N}, j ∈ {1, ..., N}, i 6= j}
with σ-algebra E = 2E . Denote z = (i, j) as a generic point in E, representing a regime shift
from state i to j. A marked point process, m(t, ·) is uniquely characterized by its stochastic
intensity kernel,6, which can be defined as

γm(dt, dz) = h(z, x(t−))I{s(t−) = i}εz(dz)dt, (2)

where h(z, x(t−)) is the regime-shift (from regime i to j) intensity at z = (i, j) conditional
on x(t−), I{s(t−) = i} is an indicator function of regime at time t−, and εz(A) is the Dirac
measure for A, a subset of E, at point z (defined by εz(A) = 1 if z ∈ A and 0, otherwise).
Heuristically, for z = (i, j), γm(dt, dz) can be thought of as the conditional probability of
shifting from Regime i to Regime j during [t, t + dt) given x(t−) and s(t−) = i. Note that
γm(dt, dz) is in general state dependent.

Let A be a subset of E. Then m(t, A) counts the cumulative number of regime shifts
that belong to A during (0, t]. m(t, A) has its compensator, γm(t, A), given by

γm(t, A) =
∫ t

0

∫

A
h(z, x(τ−))I{s(τ−) = i}εz(dz)dτ. (3)

This simply implies that m(t, A)− γm(t, A) is a martingale.

Using the above notations, the evolution of the regime s(t) can be conveniently repre-
sented as

ds =
∫

E
ζ(z)m(dt, dz) (4)

with the compensator given by

γs(t)dt =
∫

E
ζ(z)γm(dt, dz), where ζ(z) = ζ((i, j)) = j − i (5)

5It is straight forward to extend the model to include more state variables. We keep the model as simple
as possible to ease exposition.

6See Last and Brandt (1995) for detailed discussion of marked point process, stochastic intensity kernel
and related results.
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For example, if there is a regime shift from i to j occurrs at time t, equation (4) then implies
st = (j − i) + st− = j. Note that

∫
E is equivalent to the double summation

∑
j 6=i

∑
i.

2.1.2 Investment Opportunities

Without loss of generality, we assume that the output is produced by a single technology
which depends on both state variables x(t) and s(t) as described by the following stochastic
differential equation

dy = yµydt + yσydBt +
∫

E
yδy(z)m(dt, dz) (6)

where both µy and σy can be functions of x(t−) and s(t−). And δy(z) is the discrete
percentage change in y due to a regime shift, i.e. δy(z) = y(t,s(t))−y(t−,s(t−))

y(t−,s(t−)) . Therefore we
assume that regime shifts not only affect the drift µy and the volatility σy, they also directly
result in discontinuous changes in the output process as the economy shifts from one regime
to another.

As in CIR model, we assume that there is a competitive market for instantaneous
borrowing and lending at the short-term interest rate r(t). There is also a competitive
market for default-free pure discount bonds whose prices are given by

dF = FµF dt + FσF dBt +
∫

E
FδF (z)m(dt, dz) (7)

where µF , σF and δF (z) are to be determined by the equilibrium conditions. And δF (z)
is the discrete percentage change in the bond prices due to a regime shift, i.e. δF (z) =
F (t,s(t))−F (t−,s(t−))

F (t−,s(t−)) . Hence, unlike the conventional models, we allow regime shifts not only
affect the conditional distribution of bond prices (µF , σF ), but also lead to discontinuous
jumps in the prices when regime shifts occur.

Note that (7) can be alternatively written as

dF = FµF dt +
∫

E
FδF (z)γm(dt, dz)

+ FσF dBt +
∫

E
FδF (z)[m(dt, dz)− γm(dt, dz)]

(8)

The last two terms in the above equation are martingales. Therefore (8) implies that the
instantaneous expected bond return is

Et−

(
dF

F

)
= µF dt +

∫

E
δF (z)γm(dt, dz) (9)

where the first term is the regime-dependent expected bond return due to diffusion, and
the last term is an additional component in the bond return due to discrete regime shifts.
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2.1.3 The Representative Agent’s Objective Function

Given the initial wealth w0, a representative agent seeks to maximize her expected lifetime
utility given by

E0

[∫ ∞

0
e−ρtU(c(t))dt

]
(10)

where c(t) is the flow of consumption and U(·) is the instantaneous utility function. As usual,
U(·) is assumed to be strictly concave, increasing and twice differentiable with U(0) = 0
and U ′(0) = ∞.

At each instant, the representative agent allocates her wealth among investment in the
physical production, the discount bonds, the risk-free borrowing and lending and consump-
tion. We assume that both physical investment and trading of the financial assets take
place in continuous time without borrowing constraint, transaction cost and all other forms
of market friction. The agent’s budget constraint is therefore given by

dw = wµwdt + wσwdBt +
∫

E
wδw(z)m(dt, dz) (11)

where

wµw = w[φ1(µy − r) + φ2(µF − r) + r]− c (12)
wσw = w[φ1σy + φ2σF ] (13)

wδw(z) = w[φ1δy(z) + φ2δF (z)] (14)

In the above equations, w(t) is the agent’s wealth at time t, φ1 is the proportion of
her wealth invested in the physical production, φ2 is the proportion of her wealth invested
in the discount bonds, and c(t) is her flow of consumption. As we can clearly see from
these equations, regime shifts have two effects on the investor’s wealth process. On one
hand, they affect the the drift and diffusion term of the investor’s wealth (both µw and σw

are regime-dependent). On the other hand, they also create discontinuous changes in the
wealth process when the economy shifts between distinct regimes. This is a more general
setup than the conventional models where regime shifts are assumed to only have the first
effect on the investor’s wealth.

2.2 The Equilibrium Bond Returns

In this section we state the main asset pricing results for the economy subject to the
systematic regime-switching risk. The detailed derivations are provided in the appendices.

Let J(w(t), s(t), x(t)) = sup{c,φ1,φ2} Et

[∫∞
t e−ρ(τ−t)U(c(τ))dτ

]
, be the indirect utility

function. We use the following notations in our discussions below: Jw = ∂J
∂w , Jx = ∂J

∂x ,
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Jww = ∂2J
∂w2 and Jwx = ∂2J

∂w∂x . We also use wc to represent the continuous part of the
wealth process. As in CIR, we denote V ar(wc) = (wσw)2, V ar(x) = σ2

x, and Cov(wc, x) =
(wσw)σx. To further simplify notations, we define ∆sf = f(s(t))−f(s(t−)) for any function
f(·) that depends on s(t). ∆sf is therefore the difference in f(·) due to a regime shift at
time t.

The following two propositions give the equilibrium instantaneous short-term interest
rate and the expected excess rate of return on a bond respectively.

Proposition 1 The equilibrium short-term interest rate is given by

r = µ∗y −
(
−Jww

Jw

)
V ar(wc)

w
−

(
−Jwx

Jx

)
Cov(wc, x)

w

−
∫

E

(
−∆sJw

Jw

)
∆sw

w
γm(dz)

(15)

where
µ∗y = µy +

∫

E
δy(z)γm(dz) (16)

and
γm(dz) = h(z, x(t−))I{s(t−) = i}εz(dz) (17)

Note that µ∗ydt is the instantaneous expected rate of return on the production technology

Et−
(

dy(t)
y(t−)

)
. And ∆sw

w and ∆sJw
Jw

in (15) are the discrete percentage changes in w and Jw

respectively due to a regime shift, i.e. ∆sw
w = δw(z) = φ1δy(z) + φ2δF (z), and

∆sJw

Jw
=

Jw(w(1 + δw(z)), s + ζ(z), x)− Jw(w, s, x)
Jw(w, s, x)

Proposition 1 implies that the instantaneous short-term interest rate r(t) is a function
of both state variables x(t) and s(t) because µ∗y, V ar(wc), Cov(wc, x) and the marginal
utility Jw are regime-dependent. If the regime shifts is not a systematic risk as assumed in
the previous literature, ∆sJw

Jw
would be equal to zero. Otherwise the short-term interest rate

will also be affected by this term. Since the indirect utility function J(w, s, x) is concave in
w, if it is also separable in w and s (as in the case of log utility function), we will have

(
−∆sJw

Jw

)
∆sw

w
> 0

Therefore the systematic regime-switching risk tends to lower the equilibrium short-term
interest rate, as the local risk-free borrowing and lending opportunity offers a hedge against
such risk. This result is similar to the impact of a systematic jump risk on the interest rate
as shown in Ahn and Thompson (1988). Nevertheless,

(
−∆sJw

Jw

)
∆sw

w is not always positive
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in general, because Jw also depends on s. Therefore the regime-switching risk has a different
effect than that of jump risk even though they both lead to discontinuous changes in the
marginal utility and wealth.

Proposition 2 Let µ∗F dt = Et−
(

dF (t)
F (t−)

)
, be the instantaneous expected rate of return of a

discount bond. In equilibrium, we have

µ∗F − r =
[(
−Jww

Jw

)
V ar(wc) +

(
−Jwx

Jw

)
Cov(wc, x)

]
Fw

F

+
[(
−Jww

Jw

)
Cov(wc, x) +

(
−Jwx

Jw

)
V ar(x)

]
Fx

F

+
∫

E

(
−∆sJw

Jw

)
∆sF

F
h(z, x)I{s = i}εz(dz)

(18)

where Fw = ∂F
∂w , Fx = ∂F

∂x , and ∆sF
F = δF (z) is the discrete percentage change in the bond

price due to a regime shift.

We can clearly see from the above proposition that, in a single regime setting, ∆sF
F = 0,

∆sJw
Jw

= 0 and ∆sw
w = 0, and (18) is reduced to the standard result in CIR. On the other

hand, in the term structure models with regime shifts such as those in Bansal and Zhou
(2002) and Evans (2001) among others, V ar(wc), V ar(x) and Cov(wc, x) are assumed to
be regime-dependent. Therefore these models have additional econometric flexibility due
to the regime-dependent parameters and are shown to have better empirical performance
than single-regime models. One implicit assumption maintained by these models, however,
is that the regime shift is not a systematic risk to investors, i.e. ∆sJw

Jw
= 0.

To further illustrate the role played by ∆sJw
Jw

in determining bond returns, let’s assume
that Jwx = 0 and Fw = 0.7 We can obtain from (18) that

µ∗F − r = −Jww

Jw
wσw

σxFx

F
−

∫

E

∆sJw

Jw

∆sF

F
h(z, x)I{s = i}εz(dz) (19)

The first term in (19) is the instantaneous diffusion risk premium. σxFx
F is the volatility

of the bond return due to diffusions in x(t).
(
−Jww

Jw

)
wσw measures the excess rate of return

per unit of such volatility, commonly referred to as the market price of risk in the literature.
The second term is the instantaneous regime-switching risk premium, where ∆sF

F h(z, x) is
the expected discrete percentage change in the bond price due to a shift from regime i to j,
and

(
−∆sJw

Jw

)
measures the excess bond return per unit of such expected changes. Hence(

−∆sJw
Jw

)
can be analogously defined as the market price of regime-switching risk. And we

7For example, both Jwx = 0 and Fw = 0 hold under log utility function for discount bonds as shown in
CIR.
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can see from (19), unless Jw (the marginal utility) is independent of regime s(t), equilibrium
bond prices will reflect the risk of regime shifts.

Using Ito’s formula, the diffusion term of the bond price is given by FσF = (wσw)Fw +
σxFx. Hence more insight can be obtained by rewriting (18) as

µ∗F − r = −Cov

(
dJc

w

Jw
,
dF c

F

)
−

∫

E

∆sJw

Jw

∆sF

F
h(z, x)I{s = i}εz(dz) (20)

where

Cov

(
dJc

w

Jw
,
dF c

F

)
=

(
Jwwwσw + Jwxσx

Jw

)
σF F

F

(20) implies that the expected excess bond return includes two components under regime
shifts. The first term depends on the covariance of the continuous part of the bond return
and continuous part of the rate of change in the marginal utility of wealth. The second term
depends on the covariation between the discrete percentage change in the marginal utility
and the discrete percentage change in the bond price under regime shifts. The higher the
covariation, the greater the payoff the bond provides when marginal utility is higher. Hence
agents are willing to accept a lower expected rate of return on the asset.

In the previous regime-switching term structure models, greater flexibilities are obtained
in fitting the time-varying excess bond returns by forcing Cov

(
dJc

w
Jw

, dF c

F

)
regime-dependent.

Equation (20) shows that allowing investors to price the regime-switching risk (i.e. ∆sJw
Jw

6=
0) introduces an additional source of time-variation in the expected excess bond returns.
This new component in the bond returns is associated with the potentially large shifts
in bond prices across different regimes ∆sF

F . It also depends on the regime-shift intensity
h(z, x) as well as the market price of regime-switching risk −∆sJw

Jw
. Holding ∆sF

F and −∆sJw
Jw

constant, the higher the regime-shift intensity h(z, x), the larger the risk premium.8 On
the other hand, given

(
−∆sJw

Jw

)
and h(z, x), the regime-switching risk premium depends on

the magnitude ∆sF
F . The bigger the difference in the bond price across different regimes,

the more important the risk premium due to regime shifts. Empirical results from the
previous studies (e.g. Bansal and Zhou, 2002) imply sizeable ∆sF

F , hence suggesting that
the regime-switching risk premium is likely to ne an important component of bond returns.

3 The Term Structure of Interest Rates

In this section we obtain a closed form solution for the term structure of interest rates. To
do so, we assume that U(c) = log(c). The prices of default-free pure discount bonds are
then given by the following proposition (see the Appendix C for proof).

8Boudoukh et al (1999) found that economic turning points are usually characterized by highly volatile
and strongly time-varying term premium.
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Proposition 3 The price at time t of a default-free pure discount bond F (t, x(t), s(t), T )
that matures at time T satisfies the following system of partial differential equations

Ft + (µx − σyσx)Fx +
1
2
σ2

xFxx

+
∫

E
(1− λs(z))∆sFh(z, x)I{s = i}εz(dz) = rF

(21)

with the boundary condition: f(T, x, s, T ) = 1 for all x and s.

In the above equation, Ft = ∂F
∂t , Fx = ∂F

∂x , Fxx = ∂2F
∂x2 , ∆sF = F (t, x(t), s(t−)+ζ(z), T )−

F (t−, x(t−), s(t−), T ), and λs(z) = δy(z)
1+δy(z) . Note that (21) holds for each regime of s(t), it

therefore defines a system of N partial differential equations if there are N distinct regimes.
Moreover, under the log utility function, the equilibrium short-term interest rate can be
obtained from Proposition 1 as

r = µy − σ2
y +

∫

E
λs(z)h(z, x)I{s = i}εz(dz) (22)

In general the system (21) does not admit a closed form solution to the bond price.
Hence we consider the following affine specification which is known to offer a tractable
model of the term structure of interest rate.9 In particular, we assume

µx = a0(s) + a1(s) x (23)
σx =

√
σ(s) x (24)

h(z, x) = eηs(z) (25)
σy = θx(s)

√
σ(s) x (26)

µy = x + θ2
x(s)σ(s)x−

∫

E
λs(z)γm(dz) (27)

λs(z) = 1− eθs(z) (28)

where γm(dz) = h(z, x)I{s = i}εz(dz).

Under (23) and (24), the state variable x(t) follows a conventional mean-reverting
square-root process with regime-dependent drift and diffusion terms

dx = (a0(s) + a1(s) x) dt +
√

σ(s) x dBt (29)

Equation (26) and (27) are the assumptions about the drift term and the diffusion term of
the physical production process y(t). Under the log utility function, these imply that the
market price of the diffusion risk in equilibrium is given by

λx(s) = θx(s)
√

σ(s) x (30)
9Duffie and Kan (1996) and Dai and Singleton (2000) offer detailed discussions of affine term struc-

ture models under diffusions. Bansal and Zhou (2002), Evans (2001) and Landen (2000) also use affine
specifications in their regime-switching models.
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Equation (25) assumes that the Markov chain s(t) has constant transition probabilities
given by eηs(z) for simplicity. Equation (28) parameterizes the market price of the regime-
switching risk λs(z) as 1− eθs(z). Moreover (22), (26) and (27) together imply that r(t) =
x(t). Therefore we can write

dr = κ(s)(r̄(s)− r) dt +
√

σ(s) r dBt (31)

where κ(s) = −a1(s), r̄(s) = a0(s)
−a1(s) .

The Appendix D shows that, using a log-linear approximation similar to that in Bansal
and Zhou (2002), the term structure of interest rates can be solved as follows

Proposition 4 Under assumptions (23) – (28), the price at time t of a default-free pure
discount bond with maturity τ is given by F (t, τ) = eA(τ,s(t))+B(τ,s(t))r(t) and the τ -period
interest rate is given by R(t, τ) = −A(τ,s(t))

τ − B(τ,s(t))r(t)
τ , where A(τ, s) and B(τ, s) are

determined by the following system of differential equations

−∂B(τ, s)
∂τ

+ [a1(s)− θx(s)σ(s)]B(τ, s) +
1
2
σ(s)B2(τ, s)

+
∫

E

(
e∆sA∆sB

)
eηs(z)+θs(z)1(s = i)εz(dz) = 1

(32)

and
−∂A(τ, s)

∂τ
+ a0(s)B(τ, s) +

∫

E

(
e∆sA − 1

)
eηs(z)+θs(z)1(s = i)εz(dz) = 0 (33)

with boundary conditions A(0, s) = 0 and B(0, s) = 0, where ∆sA = A(τ, s+ ζ(z))−A(τ, s)
and ∆sB = B(τ, s + ζ(z))−B(τ, s)

Proposition 4 nests the models in Bansal and Zhou (2002) and Landen (2000). Without
using the log-linear approximation, Landen(2000) only considers models where ∆sB = 0
and is silent on the market prices of risk θx(s) and θs(z). In Bansal and Zhou (2002), the risk
of regime shifts is not priced, namely θs(z) is assumed to be zero. Admittedly, the model
in Proposition 4 still makes some strong assumptions such as constant regime-switching
probabilities, even though the theoretical results in the previous section do not depend on
these assumptions. In the next section, we provide some empirical results regarding the risk
of regime shifts in the term structure of interest rates based on the model above.

4 Empirical Results

4.1 Data and Summary Statistics

The data used in this study are monthly interest rates from June 1964 to November 2000
obtained from the Center for Research in Security Prices (CRSP). There are eight interest
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rates with maturities ranging from 1 month to 5 years. Table 1 contains their summary
statistics. We can see that the yield curve is on average upward-sloping and the large
skewness and kurtosis suggest significant departure from Gaussian distribution.

We also report in Table 2 the results from regressions of excess bond returns on for-
ward interest rates and a business cycle dummy variable. We use NBER dates of business
cycles to distinguish between expansions and recessions. As in the previous literature we
find significant coefficients on forward rates in the regression, suggesting that forward rates
contain information about the state variables driving the interest rates. More importantly,
the coefficients on the business cycle dummy variable are all negative and significant, sug-
gesting important regime-dependent property of the bond returns. Note that the sign of
the coefficient on the business cycle dummy variable is consistent with the counter-cyclical
behavior of risk premiums as documented in Fama and French (1989).

4.2 Econometric Methodology

We use Efficient Method of Moments10 (EMM) estimate the term structure model in Propo-
sition 4. We assume that there are two distinct regimes (N = 2) for s(t). Therefore (32)
and (33) define a system of 4 differential equations that must be solved simultaneously. The
model has a total of 12 parameters. As in Bansal and Zhou (2002), we fit the model to the
data on the 6-month and the 5-year rates.

Under EMM procedure, the empirical conditional density of the observed interest rates
is first estimated by an auxiliary model that is a close approximation to the true data
generating process. Gallant and Tauchen (2001) suggests a semi-nonparametric (SNP) series
expansion as a convenient general purpose auxiliary model. As pointed out by Bansal and
Zhou (2002), one advantage of using the semi-nonparametric specification for the auxiliary
model is that it can asymptotically converge to any smooth distributions (Gallant and
Tauchen, 1998), including the density of Markov regime-switching models. The dimension
of this auxiliary model can be selected by, for example, the Schwarz’s Bayesian Information
Criterion (BIC). The score function of the auxiliary model are then used to generate moment
conditions for computing a chi-square criterion function, which can be evaluated through
simulations given the term structure model under consideration. A nonlinear optimizer
is used to find the parameter setting that minimizes the criterion function. Gallant and
Tauchen (1996) shows that such estimation procedure yields fully efficient estimators if the
score function of the auxiliary model encompasses the score functions of the model under
consideration.

10Bansal et al (1995) and Gallant and Tauchen (1996, 2001) contain detailed discussion of EMM. Bansal
and Zhou (2002) is an excellent example of applying EMM to estimate the term structure model under regime
shifts. Dai and Singleton (2000) also provides extensive discussions of estimating affine term structure models
using EMM procedure.
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4.3 Results

Table 3 and Table 4 contain the results from SNP estimation. In searching for the preferred
specification, we follow closely Bansal and Zhou (2002) mainly because we use the same
interest rate data (with longer sample period). Different choices of SNP density and their
corresponding BIC values are reported in Table 3. Consistent with Bansal and Zhou (2002),
we find that the SNP specification with 1 lag (Lµ = 1) in the VAR-based conditional mean,
5 lags in ARCH term (Lr = 5) and a polynoinal of order 4 (Kz = 4) in the standardized
residual z has the overall best fit based on BIC. Estimates of the coefficients in the preferred
SNP density are reported in Table 4.

Given the SNP density, the parameters of the term structure model can be estimated
through simulations. We estimate three versions of CIR model. Model One is the standard
one-factor CIR model. Model 2 is a one-factor CIR model with regime shifts, but the
risk of regime shifts is not priced. We allow the parameters in the diffusion process of
the instantaneous short-term interest rate r(t) to be regime-dependent. We also assume
different market prices of the diffusion risk across regimes. Model 3 is the one-factor CIR
developed in Proposition 4 where the risk of regime shifts is priced. The results are reported
in Table 5.11

In the standard 1-factor CIR model, the parameter estimates imply a highly persistent
short-term interest rate process with a long-run average level of 6.4% [r̄ = a0/(−a1)] and a
speed of adjustment of only 0.0907 (κ = −a1). This roughly corresponds an AR(1) process
with the coefficient on the lagged interest rate being around 0.91, which is consistent with
the results from the previous empirical studies of the interest rate. The estimates also imply
stochastic volatility is an important property of the interest rate process with a conditional
standard deviation of 1.27% on average

(√
σr̄

)
.

Model 2 introduces Markov regime shifts into the standard CIR model without pricing
such risk. Consistent with the previous studies, we find that the interest rate process is
characterized by two distinct regimes. In one regime (Regime 2) the short rate r(t) is highly
persistent (κ = −a1 = 0.0735) with a long-run mean of 11.7% [r̄ = a0/(−a1)]. The short
rate in the other regime (Regime 1), however, is less persistent (κ = −a1 = 0.1501) with a
much lower long-run mean of 1.8%. Given the average short-term interest rate of 5% - 6% in
the sample (see Table 1), this implies that the interest rate is usually rising in Regime 2 and
declining in Regime 1. This empirical regularity is consistent with features of the business
cycle where expansions are usually characterized by rising interest rates and recessions tend
to witness declining interest rates. Moreover, the estimated coefficients on the conditional
volatility and the market price of (diffusion) risk all are different across regimes, further

11We didn’t estimate a multi-factor model mainly because the main purpose of this section is not to obtain
a good empirical fitting, but to highlight the potential impact of the systematic risk of regime shifts on the
term structure of interest rates. Bansal and Zhou (2002) and Dai et al (2003) provide excellent estimation
results of multi-factor term structure models under regime shifts.
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suggesting that the yield curve exhibits strong regime-dependence properties.12 The regime-
shift intensity is parameterized as eηs(z) in the model. Table 5 reports that ηs(1, 2) =
−1.2040 and ηs(2, 1) = −1.4706. This implies that Regime 2 is more persistent than Regime
1 (namely smaller transition probability from Regime 2 to Regime 1). For the monthly
data used in the paper, the estimates of ηs(z) suggest that the probability of switching
from Regime 1 to Regime 2 is approximately 0.0250 while the probability of switching from
Regime 2 to Regime 1 is approximately 0.0191. These findings are consistent with the
results based on discreet time models (e.g. Bansal and Zhou, 2002).

In Model 3, the risk of regime shifts is priced. The estimates of the model parameters (a0,
a1, σ, θx and ηs) are similar to those obtained in Model 2, confirming that the periodic shifts
across distinct regimes is an important empirical property of the interest rate dynamics.
In Model 3, the implied long-run mean of r(t) becomes 11.1% in Regime 2 and 2.4% in
Regime 1 respectively. The estimates of a1 and σ indicate that r(t) is more persistent with
a larger conditional variance in Regime 2 (κ = −a1 = 0.0916, σ = 0.0034) than in Regime
1 (κ = −a1 = 0.1491, σ = 0.0025). As in Model 2, we also find that the market price of the
diffusion risk varies across regimes. The estimate of θx is −15.54 in Regime 1 and −17.00
in Regime 2 respectively. Finally, the estimates of ηs(z) imply that, at monthly frequency,
the Markov chain s(t) switches from Regime 1 to Regime 2 with probability 0.0260 and
switches from Regime 2 to Regime 1 with probability 0.0169.

In Figure 1, we plot the yield curve at the estimated parameters in Regime 1 together
with that in Regime 2 by fixing the short-term interest rate at the sample average of 5.6%
using Model 3. The differences in the yield curves are obvious. In Regime 2 the yield curve
is higher and steeper compared to that in Regime 1 due to the fact that interest rates tend
to rise in Regime 2. The average yield curve in Regime 1 not only has a lower level, but
also has a different shape. It initially slopes downward and then slopes upward. This is
because that the short-term interest rate declines in Regime 1 on average. Since the term
premiums are small for bonds of short maturities, the interest rates on these bonds are
mainly determined by the expectation of the short-term interest rate in the near future,
therefore resulting in a negative slope in the yield curve. However, as maturities of the
bonds increase, the term premiums start to play a more important role in determining the
interest rates. Moreover, since Regime 1 is not as persistent as Regime 2, the short-term
interest rate is also expected to increase over a long horizon as s(t) switches from Regime 1
to Regime 2 in the future. Hence the slope of the yield curve becomes positive as maturities
increase.

Figure 1 clearly shows that the yield curve alternates between two distinct regimes as
s(t) evolves over time. Whether or not these regime shifts pose a significant risk to investors
depends on the estimate of θs(z), the parameter that determines the market price of the

12The conditional volatility of the short term interest rate r(t) is given by
p

σr(t), and the market price

of diffusion risk is given by θx

p
σr(t) in the model.
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regime-switching risk.13 Table 5 shows that the estimates of θs(z) are highly significant in
both regimes. In particular, θs(z) is estimated to be 0.1438 with a standard error of 0.0337
in Regime 1 and -0.0789 with a standard error of 0.0109 in Regime 2 respectively. Moreover
there is a substantial improvement in the goodness-of-fit of the regime-switching model.
The χ2 statistics decreases from 109.70 with 18 degree of freedom in Model 2 to 60.38 with
16 degree of freedom after the regime-switching risk is priced in Model 3.

Notice that the χ2 statistics still indicates an overall poor fitting of the model. This is
not surprising given that the model has only one factor (plus a Markov regime-switching
variable). Bansal and Zhou (2002) and Dai et al. (2003) showed that the overall fit can be
further improved in multi-factor models. Moreover, the results in Dai et al. (2003) indicate
that the market price of regime-switching risk remains significant even when additional fac-
tors are included. These results suggest that the significant regime-switching risk parameter
found in our model is not due to omitted factors. The regime shifts in the term structure
documented in many empirical studies most likely represent a systematic risk.

In fact, following the approach in Bansal and Zhou (2002),14 we can plot the implied
regimes together with the business cycle expansions and recessions identified by NBER in
Figure 2. The figure clearly shows that the distinct regimes underlying the dynamics of the
term structure of interest rates are intimately related to the fluctuations of the aggregate
economy. Therefore it is important that these periodic shifts in regimes are treated as a
systematic risk to investors in the dynamic term structure models. It is also interesting to
note from Figure 7 that the regime shifts tend to precede business cycle turning points.15

This is consistent with the empirical finding that the yield curve has significant predictive
power for the business cycle, see Estrella and Mishkin (1995) and Chauvet and Potter (2003)
among others.

4.3.1 The Term Premiums due to Regime-switching Risk

To assess quantitatively the potential impact of the regime-switching risk, we can decompose
the term premium on a long-term bond into two parts. One is a term premium due to the
diffusion risk and the other component is associated with the risk of regime shifts. In

13The market price of the regime switching risk λs(z) is parameterized as 1 − eθs(z) in the model, see
equation (28).

14Specifically, the estimated term structure model allows us to compute interest rates of different ma-
turities conditional on the regime R̂(t, τ |st). An estimate of st can be obtained by choosing the regime
that minimizes the average difference between the actually observed interest rate R(t, τ) and R̂(t, τ |st), i.e.
ŝt = arg min

P
τ |R(t, τ)− R̂(t, τ |st)|

15Note that the regime shifts near the end of the sample period precede the most recent recession starting
from March 2001 as classified by NBER.
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particular, ignoring the Jensen’s inequality terms, one can obtain that,

R(t0, τ)− 1
τ
Et0

[∫ t0+τ

t0

rtdt

]
≈

1
τ
Et0

[∫ t0+τ

t0

θx(st)σ(st)xtB(t0 + τ − t, st)dt

]
+

1
τ
Et0

[∫ t0+τ

t0

∫

E
λs(z)

(
e∆SA(t0+τ−t,st)+∆sB(t0+τ−t,st)xt − 1

)
γm(dt, dz)

]
(34)

where R(t0, τ) is the interest rate on a default-free bond of maturity τ at time t0, rt is
the instantaneous short-term interest rate. So the left-hand side of (34) is the difference
between the interest rate on the long-term bond of maturity τ and the average of the
expected future short-term interest rate. The Expectation Hypothesis of the term structure
maintains that this difference is zero because long-term interest rates are solely determined
by the expected future short rate. However, as it is made clear in (34), long-term interest
rates can deviate substantially from the levels implied by the Expectation Hypothesis. The
first term on the right-hand of (34) is the excess return demanded by investors due to the
diffusion risk and the second term is the excess return due to the regime-switching risk,
where the market prices of risk are given by θx(st)

√
σ(st)xt and λs(z) respectively. Note

that A(τ, s) and B(τ, s) are determined in Proposition 4 and γm(dt, dz) is given in (2). Using
the estimated parameters, the average values of these two components of the term premium
can be obtained through Monte Carlo simulations.16 In Figure 3, we report the average
total term premiums and the two components for bonds of various maturities ranging from
3 months to 30 years. In each graph the lower part measures the diffusion risk premiums
and the upper part measures the regime-switching risk premiums. For bonds with short
maturities (less than 1-year), we can see that the term premiums are small and are due
to the diffusion risk. As bond maturity increases, both components of the term premiums
increase, and the regime-switching risk premiums become a significant part of the total
term premiums. The lower panel of Figure 2 indicates that the regime-switching risk can
account for more than 10% of the term premiums for bonds with maturities longer than 6
years, and up to 15% for a 30-year bond.

4.3.2 How Does the Regime-shift Risk Affect the Yield Curve?

The term structure model developed in Proposition 4 allows us to compute the prices of
bonds of different maturities in the presence of the regime-switching risk. In this section we
examine the impact of such risk on the yield curve. Specifically, we compare the estimated
bond prices in Model 3 with the bond prices obtained using the same model and the same

16More specifically, we simulate the 5000 independent sample paths of r(t) and s(t) given r(t0) and s(t0).
To get ride of the impact of the initial values of r(t0) and s(t0), for each sample path the first one thousand
points of r(t) and s(t) are ignored. We then take the average over the 5000 sample paths of r(t) and s(t) to
obtain unconditional expectations.
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parameter values except holding the market price of the regime-switching risk θs(z) at
zero.17 When computing the bond prices, we set the short-term interest rate at the sample
average of the 1-month rate of 5.6%. We report the price differential between the two
regimes in Figure 4 and the corresponding yield curves in Figure 5. Consistent with the
result from the last section, we find that when fixing θs(z) at zero, the prices of long-term
bonds become significantly higher because of the reduction of the (total) term premiums.
Figure 4 shows that, for example, the price of a 30-year bond would be about 15% higher
if θs(z) is set to zero instead of its estimated value of 0.1438 in Regime 1 or -0.0789 in
Regime 2. On the other hand, the regime-switching risk has almost no effect on short-term
bonds. These result implies that the regime-shift risk mostly affects the long end of the
yield curve as expected. Ignoring the regime-shift risk would lead to underestimation of
long-term interest rates, and therefore flatter yield curves (see Figure 5).

5 Concluding Remarks

Previous studies have provided strong empirical evidence that the joint movement of interest
rates of different maturities can be well described by dynamic term structure models that
incorporate regime shifts. Moreover these studies also show that there is a close link between
the regime shifts and the business cycle fluctuations. Therefore it is very likely that such
large periodic shifts of interest rates across distinct regimes present a systematic risk to
investors. This paper elucidates such regime-switching risk in a general equilibrium model
of the term structure of interest rates. We show that the regime-switching risk premium
depends on the covariations between the discreet changes in marginal utility and bond
prices. This new component therefore introduces an additional source of time-variation in
bond risk premiums and can offer additional econometric flexibility to account for the joint
movements of interest rates with different maturities. Our empirical results suggest that
the regime-switching risk is a significant factor determining bond prices and has a major
impact particular on the long-end of the yield curve.

One caveat of the current paper is that we have to rely on log-linear approximations
to obtain a closed-form solution to the term structure of interest rates. How important
the approximation errors are is a question we are currently investigating. Nevertheless, we
notice that relaxing some of the assumptions (such as regime-dependent factor loadings)
can lead to exact solutions of the yield curve. Another caveat to note is that the estimated
1-factor term structure model has a poor empirical fitting. We do not pretend that the term
structure is fully characterized by this single factor. We use that model mainly to illustrate
the potential impact of a systematic regime-switching risk on the yield curve.

This systematic risk of regime shifts is also likely to have important implications for
pricing bond derivatives (e.g. Singleton and Umantsev, 2002) as well as for investors’

17In Model 3, the estimates of θs(z) are 0.1438 with a standard error of 0.0337 in Regime 1 and -0.0789
with a standard error of 0.0109 in Regime 2 respectively.
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optimal portfolio choice problem (e.g. Campbell and Viceira, 2001). These are left for
future research. Another extension is to estimate the term structure model jointly with
macroeconomic variables under regime shifts. This would provide more direct evidence
regarding the nature of the regime-switching risk.
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A Proof of Proposition 1

Let J(w(t), s(t), x(t)) = sup Et

[∫∞
t e−ρ(τ−t)U(c(τ))dτ

]
. We assume that a solution to the

agent’s problem exists and indirect utility function J(w(t), s(t), x(t)) as well as the optimal
consumption and portfolio choice satisfy the Bellman equation (see the result in Section
3.1.6 of Kushner and Dupuis, 2001)

sup(φ1,φ2,c)DJ(w, s, x)− ρJ(w, s, x) + U(c) = 0 (35)

where

DJ(w, s, x) = (wµw)Jw + µxJx +
1
2
(wσw)2Jww + (wσw)σxJwx +

1
2
σ2

xJxx +
∫

E
∆sJγm(dz)

and
∆sJ = J(w(1 + δw(z)), s + ζ(z), x)− J(w, s, x)

.

In the above equations, Jw = ∂J
∂w , Jx = ∂J

∂x , Jww = ∂2J
∂w2 , Jwx = ∂2J

∂w∂x . µw, σw and δw are
given in (12), (13) and (14) respectively. γm(dz) is defined in (17). µx and σx are the drift
and diffusion terms of the state variable x(t) respectively as defined in (1).

The first order conditions (35) are

U ′(c)− Jw = 0 (36)

w(µy − r)Jw + (wσw)(wσy)Jww + (wσy)σwJwx

+
∫

E
wδy(z)Jw(w(1 + δw(z)), s + ζ(z), x)γm(dz) = 0

(37)

w(µF − r)Jw + (wσw)(wσF )Jww + (wσF )σxJwx

+
∫

E
wδF (z)Jw(w(1 + δw(z)), s + ζ(z), x)γm(dz) = 0

(38)

Note that at equilibrium φ1 = 1 and φ2 = 0, hence Proposition 1 follows from (37).

B Proof of Proposition 2

From (38) above, we have

µF +
∫

E
δF (z)γm(dz)− r =

(
−Jww

Jw

)
(wσw)(wσF )

w
+

(
−Jwx

Jw

)
(wσF )σx

w

+
∫

E

(
−∆sJw

Jw

)
∆sF

F
γm(dz)

(39)
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Apply Ito’s formula to F (t, w, s, x), we have18

dF =
[
Ft + (wµw)Fw + µxFx +

1
2
(wσw)2Fww + (wσw)σxFwx +

1
2
σ2

xFxx

]
dt

+ [(wσw)Fw + σxFx] dB(t) +
∫

E
∆sFm(dt, dz)

(40)

Compare (40) with (7), we have

FµF = Ft + (wµw)Fw + µxFx +
1
2
(wσw)2Fww + (wσw)σxFwx +

1
2
σ2

xFxx (41)

FσF = (wσw)Fw + σxFx (42)

and
δF (z) =

∆sF

F
(43)

Proposition 2 follows after substituting (42) and (43) into (39) and defining µ∗F = µF +∫
E δF (z)γm(dz).

C Proof of Proposition 3

Proposition 2 implies that

µF +
∫

E
δF (z)γm(dz)− r

=
[(
−Jww

Jw

)
V ar(w) +

(
−Jwx

Jw

)
Cov(w, x)

]
Fw

F

+
[(
−Jww

Jw

)
Cov(w, x) +

(
−Jwx

Jw

)
V ar(x)

]
Fx

F

+
∫

E

(
−∆sJw

Jw

)
∆sF

F
γm(dz)

(44)

Using (41), we have

Ft +
1
2
(wσw)2Fww + (wσw)σxFwx +

1
2
σ2

xFxx

+
[
µx −

(
−Jww

Jw

)
(wσw)σx −

(
−Jwx

Jw

)
σ2

x

]
Fx

+
[
(wµw)−

(
−Jww

Jw

)
(wσw)2 −

(
−Jwx

Jw

)
(wσw)σx

]
Fw

+
∫

E

(
1 +

∆sJw

Jw

)
∆sFγm(dz) = rF

(45)

18See Protter (1990) for the generalized Ito’s formula for semi-martingales.
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Note again that at equilibrium, φ1 = 1 and φ2 = 0. Hence (12), (13) and (14) imply
that

wµw = wµy − c (46)
wσw = wσy (47)

wδw(z) = wδy(z) (48)

Moreover, Proposition 1 implies

wr = wµy −
(
−Jww

Jw

)
(wσy)2 −

(
−Jwx

Jx

)
(wσy)σx

+
∫

E

(
1 +

∆sJw

Jw

)
wδy(z)γm(dz)

(49)

Combining (45) – (49), We have the following fundamental partial differential equations
of asset pricing as in CIR

Ft +
1
2
(wσy)2Fww + (wσy)σxFwx +

1
2
σ2

xFxx

+
[
µx −

(
−Jww

Jw

)
(wσy)σx −

(
−Jwx

Jw

)
σ2

x

]
Fx

+
[
wr − c−

∫

E

(
1 +

∆sJw

Jw

)
wδy(z)γm(dz)

]
Fw

+
∫

E

(
1 +

∆sJw

Jw

)
∆sFγm(dz) = rF

(50)

Under logarithm utility function U(c(t)) = log c(t), it is well known that the indirect
utility function is separable in w(t) and x(t) and s(t), i.e. J(w, s, x) can be written as
1
ρ log w + f(s, x) where f(s, x) solve the system of differential equation after substituting
J(w, s, x) and the optimal choice of consumption (c∗) and portfolio (φ∗1, φ

∗
2) into the Bellman

equation (35). This separability implies that Jwx = 0.

Moreover, for default-free discount bonds , Fw = 0, Fww = 0 and Fwx = 0. Therefore
equation (50) can simplified as

Ft +
1
2
σ2

xFxx + (µx − σyσx)Fx +
∫

E

(
1 +

∆Jw

Jw

)
∆sFγm(dz) = rF (51)

Using the fact that Jw = 1
ρw and (48), it can be easily shown

1 +
∆sJw

Jw
= 1− λs(z) (52)
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where λs(z) = δy(z)
1+δy(z) .

Proposition 3 can be obtained by substituting the above equation into (51). Note that
(51) defines a system of partial differential equations.

D Proof of Proposition 4

Without loss of generality, let the price at time t of a pure-discount bond that will mature
at T be given as

F (t, s(t), r(t), T ) = eA(τ,s(t))+B(τ,s(t))r(t)

where τ = T − t and A(0, s) = 0, B(0, s) = 0.

Proposition 3 then implies

r = −∂A(τ, s)
∂τ

− ∂B(τ, s)
∂τ

r

+ [a0(s) + (a1(s)− θx(s)σ(s))r]B(τ, s) +
1
2
[σ(s)r]B2(τ, s)

+
∫

E

(
e∆sA+∆sBr − 1

)
eηs(z)+θs(z)1(s = i)εz(dz)

(53)

where ∆sA = A(τ, s + ζ(z))−A(τ, s) and ∆sB = B(τ, s + ζ(z))−B(τ, s)

Since r is small, applying log-linear approximation to e∆sB r, we have

e∆sB r ≈ 1 + ∆sBr

Proposition 4 follows by substituting the above equation into (53) and match the coefficients
on r on both side of the equation.
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Table 1 Summary Statistics of the term structure of interest rates 1964 - 2000 (the first column 

indicates the maturities of the interest rates)

mean std corr skew kurt max min

1-month 0.05608 0.025452 1 1.28697 5.17923 0.161376 0.013176

3-month 0.060275 0.026706 0.985712 1.26099 4.91011 0.160332 0.017112

6-month 0.062443 0.026954 0.978383 1.21604 4.69365 0.165168 0.017808

1-year 0.06455 0.026314 0.964593 1.07663 4.21845 0.15812 0.01956

2-year 0.066561 0.025774 0.938704 1.01143 3.93613 0.15639 0.02368

3-year 0.068159 0.025069 0.916046 0.998881 3.84814 0.15557 0.0296

4-year 0.069354 0.024795 0.897531 0.965216 3.74017 0.15824 0.03118

5-year 0.069981 0.024589 0.883406 0.921516 3.57469 0.15001 0.03346

Note: mean = average interest rate; std = standard deviation; corr = correlation coefficient between long rates and 

the 1-month interest rate; skew = skewness; kurt = kurtosis; max = maximum interest rate; min=minimum interest 

rate
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Table 2: Using forward rates to predict excess bond returns. 

3-month 6-month 1-year 2-year 3-year 4-year 5-year

constant 0.0030 0.0116 0.0188 0.0224 0.0236 0.0187 0.0161

(0.0022) (0.0054) (0.0124) (0.0227) (0.0321) (0.0321) (0.0455)

Bus-cycle -0.0074 -0.0167 -0.0313 -0.0495 -0.0619 -0.0694 -0.0773

(0.0021) (0.0050) (0.0111) (0.0199) (0.0272) (0.0272) (0.0371)

f1 -0.2145 -0.5015 -0.1386 -0.8860 -1.4536 -1.9372 -2.2324

(0.0979) (0.2362) (0.5121) (0.8805) (1.1746) (1.1746) (1.7405)

f6 0.1363 0.3895 -0.2358 -0.0988 -0.0620 -0.3291 -0.6753

(0.1039) (0.1963) (0.4121) (0.7022) (0.9602) (0.9602) (1.4695)

f60 0.1935 0.2128 0.5717 1.2403 1.8126 2.6277 3.3306

(0.0694) (0.1458) (0.3320) (0.6012) (0.8451) (0.8451) (1.2642)

Note: The first row indicates maturities of the bonds. The first column includes the explanatory

variables in the regression. Bus-cycle is a business cycle dummy variable according to NBER business dates.

Bus-cycle=1: expansion; Bus-cycle=0: recession. f1 = 1-month rate , f6 = 6-month forward rate, f60 =

5-year forward rate. Numbers in parentheses are Newy-West standard errors.
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Table 3: SNP specifications
Lµ Lr Lp Kz Iz Kx Ix lθ sn(θ̂) BIC
1 0 1 0 0 0 0 9 -.82698 -.76277
2 0 1 0 0 0 0 13 -.85153 -.75897
3 0 1 0 0 0 0 17 -.85784 -.73656
1 1 1 0 0 0 0 11 -1.02082 -.94234
1 2 1 0 0 0 0 13 -1.05923 -.96648
1 3 1 0 0 0 0 15 -1.10226 -.99525
1 4 1 0 0 0 0 17 -1.15356 -1.03228
1 5 1 0 0 0 0 19 -1.17153 -1.03598
1 6 1 0 0 0 0 21 -1.17394 -1.02412
1 7 1 0 0 0 0 23 -1.18247 -1.01839
1 5 1 2 1 0 0 23 -1.18124 -1.01716
1 5 1 2 0 0 0 24 -1.22077 -1.04956
1 5 1 3 2 0 0 25 -1.18248 -1.00413
1 5 1 3 1 0 0 26 -1.22941 -1.04393
1 5 1 3 0 0 0 28 -1.23006 -1.03030
1 5 1 4 3 0 0 27 -1.22163 -1.02901
1 5 1 4 2 0 0 28 -1.25705 -1.05729
1 5 1 4 1 0 0 30 -1.26133 -1.04703
1 5 1 4 0 0 0 33 -1.28814 -1.05272
1 5 1 5 4 0 0 29 -1.22625 -1.01936
1 5 1 5 3 0 0 30 -1.25837 -1.04435
1 5 1 5 2 0 0 32 -1.26270 -1.03441
1 5 1 5 1 0 0 35 -1.29353 -1.04383
1 5 1 5 0 0 0 39 -1.29058 -1.01235
1 5 1 4 2 1 0 48 -1.32073 -.97829
1 5 1 4 2 2 1 68 -1.36002 -.87490
1 5 1 4 2 2 0 78 -1.37679 -.82033

Note: Lµ is the number of lags in VAR conditional mean. Lr is number of lags in ARCH conditional

standard deviation. Kz is the degree of the square Hermite polynomial that captures the deviation of the

standardized innovation z from conditional Gaussian distribution. The interaction polynomial term above

the Iz degree is suppressed as zero. The degree of x-polynomial Kx is fixed at 0, and by convention Lp is set

to be 1. lθ is the number of coefficients in the SNP model. sn(θ̂) is the negative sample mean log-likelihood.

BIC is the Bayesian Information Criterion. According to BIC, the preferred SNP specification is 10514200.
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Table 4: Parameter Estimates of SNP density
Parameter Estimates Standard Error

a(0,0) 1.00000 0.00000
a(0,1) -0.05179 0.06782
a(1,0) 0.07111 0.06689
a(0,2) -0.10675 0.05547
a(1,1) 0.22368 0.06511
a(2,0) -0.23111 0.08141
a(0,3) 0.01787 0.01269
a(3,0) -0.01448 0.01384
a(0,4) 0.01470 0.00595
a(4,0) 0.02222 0.00684
µ(2,0) -0.00079 0.00704
µ(1,0) -0.00531 0.01195
µ(2,2) 0.98033 0.01447
µ(2,1) 0.00659 0.01593
µ(1,2) 0.01049 0.01401
µ(1,1) 0.97699 0.01507
R(1,0) 0.04068 0.00901
R(2,0) 0.04830 0.00820
R(3) 0.08870 0.01251

R(1,1) 0.33931 0.07707
R(2,1) 0.18582 0.05988
R(1,2) 0.22569 0.07642
R(2,2) 0.11341 0.05650
R(1,3) 0.16133 0.06670
R(2,3) 0.25376 0.07700
R(1,4) 0.12867 0.05434
R(2,4) 0.03708 0.05448
R(1,5) 0.09542 0.05642
R(2,5) 0.00238 0.06357

This table reports point estimates as well as their standard errors of the parameters in the SNP model

(10514200). a(i, j) are parameters of the Hermit polynomial function. µ(i, j) are parameters of the VAR

conditional mean. R(i, j) are parameters of the ARCH standard deviation of the innovation z. See Gallant

and Tauchen (2001) or Bansal and Zhou (2002) for more detailed interpretations of these parameters.
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Table 5: Parameter Estimates of the Term Structure Models
Model 1 Model 2 Model 3

Regime 1 a0 0.0058 0.0027 0.0036
(0.0007) (0.0002) (0.0003)

a1 -0.0907 -0.1501 -0.1488
(0.0096) (0.0036) (0.0006)

σ 0.0025 0.0024 0.0025
(0.0002) (2.6e-5) (0.0003)

θx -10.7774 -15.7689 -15.5444
(1.7709) (0.0070) (0.0053)

θs 0.1438
(0.0337)

Regime 2 a0 0.0086 0.0102
(0.0004) (0.0004)

a1 -0.0735 -0.0916
(0.0022) (0.0005)

σ 0.0030 0.0034
(1.4e-5) (1.4e-5)

θx -17.6468 -16.9962
(0.4841) (0.0975)

θs -0.0789
(0.0109)

Transition ηs(1, 2) -1.2040 -1.1655
Intensity (0.0097) (0.0263)

ηs(2, 1) -1.4706 -1.4457
(0.0505) (0.0130)

χ2 213.34 109.70 60.38
Z-value 27.33 15.28 7.85
d.o.f. 24 18 16

This table reports EMM estimates of the term structure models. Model 1 refers to the standard 1-factor CIR

without regime shifts. Model 2 refers to the 1-factor CIR model with regime shifts, but the risk of regime

shifts is not priced. Model 3 is the 1-factor CIR model developed in Proposition 4 where the risk of regime

shifts is priced. a0, a1 and σ0 are the coefficients in the diffusion process of x(t): dx = (a0 +a1x)dt+
√

σxdw.

θx is coefficient on the market price of diffusion risk, which is given by θx
√

σx. θs is the coefficient that

determines the market price of regime-switching risk λs(z), which is parameterized as 1−eθs(z) in the model.

The transition intensity of the Markov chain is given by eηs(z). Numbers in parentheses are the standard

errors. The table also reports the χ2 statistics and its degree of freedom (dof) from the EMM estimation.
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Figure 1: Different Regimes of the Yield Curves
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The figure plots the estimated average yield curves (Model 3) in Regime 1 (s(t) = 1 and Regime 2 (s(2) = 2)).

When computing the yield curves, we fix the short-term interest rate r(t) at the sample average of the 1-

month rate of 5.6%.
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Figure 2: Business cycle and the interest rate regimes
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The figure plots the implied regimes by the term structure model (Model 3 in table 5) together with the

business cycle. NBER business cycle recessions are indicated the shaded area. The dashed line indicates the

regimes implied by the interest rates. We also plot the 6-month (the thinner solid line) and 5-year interest

rate (the thicker solid line) in the graph.
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Figure 3: Decompositions of the Term Premiums
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The above two figures report the decompositions of the term premiums for bonds of various maturities (from

3-month to 30-year). The upper panel plots the bond term premiums as the sum of two components due to

the diffusion risk and the regime-shift risk respectively. The lower panel plots these two risk components as

percentages of the total term premiums.
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Figure 4: The Impact of Regime-shift Risk on Bond Prices
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The figure reports the impact of regime-shift risk on bond prices. The price differential is obtained as
P∗(τ)−P (τ)

P (τ)
, where P (τ) is the estimated price of the bond of maturity τ in Model 3. P ∗(τ) is the price of

the same bond obtained using the same model and the same parameter values except holding the market

price of regime-shift risk at zero (θs(z) = 0). In calculating the bond prices, we fix the short-term interest

rate r(t) at the sample average of the 1-month rate of 5.6%. The line with diamonds is the bond price

differential in regime 1. The line with crosses is the bond price differential in regime 2.
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Figure 5: The Impact of Regime-shift Risk on the Yield Curve
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These two figures illustrate the impact of regime-shift risk on the yield curve in Regime 1 (the upper panel)

and Regime 2 (the lower panel) respectively. The solid line is the estimated yield curve from Model 3. The

dashed line is the yield curve obtained using the same model and the same parameter values except holding

the market price of regime-shift risk at zero (θs(z) = 0). In calculating the yields, we fix the short-term

interest rate r(t) at the sample average of the 1-month rate of 5.6%.
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