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Abstract

We construct higher order expressions for Wald and Lagrange multiplier (LM) GMM
statistics that are based on 2step and continuous updating estimators (CUE). We show
that the sensitivity of the limit distribution to weak and many instruments results from
superfluous elements in the higher order expansion. When the instruments are strong and
their number is small, these elements are of higher order and result in higher order biases.
When instruments are weak and/or their number is large, they are, however, of zero-th
order and influence the limiting distributions. Edgeworth approximations do not remove
the superfluous elements. The expansion of the LM-CUE statistic, which is Kleibergen’s
(2003) K-statistic, does not contain the superfluous higher order elements so it is robust to
weak or many instruments. An Edgeworth approximation of its finite sample distribution
shows that the bootstrap reduces the size distortion. We compute power curves for tests on
the autocorrelation parameter in a panel autoregressive model to illustrate the consequences
of the higher order.terms and the improvement that results from applying the bootstrap.

JEL classification: C11, C20, C30

1 Introduction

The finite sample distributions of Generalized Method of Moments (GMM) estimators and statis-
tics are affected by the quality and number of instruments, see e.g. Hansen et. al. (1996) and
Stock et. al. (2002). It has therefore become customary to conduct non-identification pre-tests
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on the parameters. Pre-testing for parameter non-identification, however, implies that all sub-
sequent inferential procedures are conditional on the outcome of the pre-test. Stock and Yogo
(2001), for example, show that 2-step GMM estimators are still considerably biased at moderate,
but significant at the 95% level, values of the non-identification statistics. Inferential procedures
have therefore been developped that are robust to many instruments, see e.g. Bekker (1994),
and/or weak instruments, see e.g. Stock and Wright (2000), Kleibergen (2001,2003) and Moreira
(2003).

We construct higher order expressions for LM and Wald GMM statistics that are based on
2step or continuous updating estimators (CUE), see Hansen et. al. (1996). These higher order
expressions indicate the behavior of the different statistics in case of weak and/or many instru-
ments. In case of strong identification, the 2-step Wald and LM statistics, see Hansen (1982)
and Newey and West (1987a), have higher order elements that distort their limit distributions
when the instruments become weak or irrelevant. Edgeworth approximations of the finite sam-
ple distributions of these statistics remain sensitive to these higher order elements. The bias
caused by the higher order elements implies a further distortion of the limit distribution when
the number of instruments gets large. The Wald and LM statistics that are based on the CUE
do not possess these higher order elements. The limit distribution of the Wald-CUE statistic
remains, however, because it uses the estimated parameter value in the covariance matrix esti-
mator, sensitive to weak instruments. The limit distribution of the LM-CUE statistic, which is
Kleibergen’s (2001,2003) K-statistic, is robust to weak and/or many instruments. The absence
of the higher order elements implies that the limit distribution of the K-statistic is also a better
approximation of its finite sample distribution in case of appropriate identified parameters. The
Edgeworth approximation shows that we can further improve upon this approximation by using
the bootstrap.

Tests of misspecification hypothezes can also be based upon the robust K-statistic. The higher
order expression of the resulting misspecification statistic also indicates its robustness to weak
instruments when compared to misspecification statistics that are based on non-robust statistics.
The robustness of this misspecification statistic again results from the improved approximation
of the finite sample distribution by the limiting distribution in case of valid instruments.

The outline of the paper is as follows. The second section discusses GMM and states its
assumptions. The third section constructs the higher order expressions of the 2-step Wald,
LM and CUE Wald, LM statistics under different limit sequences of a GMM concentration
parameter and the number of instruments. It shows that an Edgeworth approximation of the
finite sample distribution of the 2-step Wald and LM statistic does not remove the sensitivity to
higher order elements. The fourth section discusses misspecification statistics. The fifth section
constructs an Edgeworth approximation of the finite sample distribution of the LM-CUE or K-
statistic. It shows that the bootstrap improves upon the limit distribution of the K-statistic as
an approximation of its finite sample distribution. The sixth section shows the consequences
of the higher order expressions and the bootstrap for a size and power comparison that tests
the autoregressive parameter in a panel autoregressive model of order 1. The seventh section
concludes.

Throughout the paper we use the notation: a = vec(A) for the column vectorization of the
n X m matrix A such that for A = (ay - - - a,,), vec(A) = (@} ---al,) and I, is the m x m identity

matrix. Furthermore, “—” stands for convergence in probability and “—” for convergence in
P d



distribution.

2 Generalized Method of Moments

We consider the estimation of the m x 1 dimensional parameter vector § = (6, ...0,,)’, whose
parameter region is the R™, for which the [ x 1 dimensional moment equation
Ep(00,Y1)] =0 (1)

holds, with F the expectation operator. The data vector Y; is observed for observation ¢t. The [ x 1
dimensional vector function ¢ of 6 is finite for finite values of 6, continuous and twice continuous
differentiable. The specific true value of 6, at which (1) holds, is equal to 6y. To estimate the
parameter 6 in (1), we use Hansen’s (1982) GMM framework. We involve a k-dimensional vector
of instruments X, that is such that ky (= kl) exceeds m. The instruments are uncorrelated with

@(007 }/;5)7

E [Xyo(00, Y;)] = 0. (2)
For a data-set (V;, X,, t =1,...,T), the objective function in the GMM framework reads
QO) = fr(0,Y ) Vs (0)7 fr(0,Y), (3)
with fr(6,Y) = 3, fi(0),
£4(8) = vee (X (8, YY) = ((6,Y5) @ Xo), (4)
and Vy;(0) is the covariance matrix of fr(0,Y") with ﬁ(@) = f:(0) — E(f:(0)),
Vis(0) = Ty oo B {1 S0, S0 FO) 50} (5)

while V;;() is a consistent estimator of V}(6o),
Vi (6) — Vi1(00)- (6)

To construct higher order expressions of test statistics, we make an assumption about the
behavior of fi(f) and its derivative with respect to 6, see Kleibergen (2003).

Assumption 1. The ky x 1 dimensional derivative of fi(0o) with respect to 6;,

pia(00) = 28 g < ky x 1, i=1,...,m, (7)

18 such that
Dit(0o) = Aigit(0o) (8)

with p;(00) = pit(fo) — E(pit(00)), ¢ie(0o) = ki X 1, Gie(0o) = ¢ii(0o) — E(qie(00)) and A; a
deterministic full-rank kg x k; dimensional matriz, k; < ky. The behavior of the sums of the
martingale difference series fi(6o) (= fi(0o)) and G (0o) = (q1:(00) - . . Gne(0o)") reads

H 0 (4 = "
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where myg : (ky + ko) x 1, kg = 31" ks and

oz (4 R

( zif ) ~ N(0,V(8)), (11)

0

Vir(0) Vie(0)
V() = ( VZ(Q) V];g(e) ) (12)

with fo(@) : kf X kf, ‘/ef(tg) = Vf@(@)/ . k@ X kf, %9(9) : ke X kg, and
. . 1 T T ft<0> fj(e) ,
V0= e {TZM 2 ( a(0) ) ( 3(9) ) } "

Assumption 1 implies that (f,(0) @(0)'),t =1,...,T, is a stationary series so Assumption
1 is a central limit theorem for stationary series. It is therefore satisfied under weak conditions
for f;(6y) and (o). Sufficient conditions that ensure such convergence are that: 1. the r-th
moment of the absolute value of f;(6y) and G ,(6p), i = 1,...,m, is finite for some r > 2, 2.
V(#) is well-defined and 3. the average value of the outer-product of (f;(fy)" G (6o)’) converges
in probability to V' (6), see e.g. White (1984).

Additional higher order terms can be added to the behavior of (f;(9) ¢:(0)’)" in (9). We did
not add such terms as they obstruct the construction of the higher behavior of the statistics
which we conduct lateron.

The A; matrices in Assumption 1 allow for a degenerate limit behavior of 6%1- f:(0) in which
case A; is equal to zero. For more details on the specification of the A;-matrices, we refer to
Kleibergen (2003).

We use Assumption 1 to determine the convergence rate of the limit behavior of

Dr(60,Y) = [ prr(6o,Y) — AVora(00)Vys(6o) 7 fr(6o,Y) - (1)
P (00,Y) = AnVorm(00) Vi (00) " fr(00,Y) ],

with Y ky X 1, gt kg x 1,

and

with ng,i(é’o) . k’l X kf, 1= 1, .o, ng(ﬁo) = (Vbﬁl(e())/.. .‘/gﬁm(eo)/)/, pi7T(90,Y) . k‘f X 1,

i=1,...,mpr(00,Y) = (p1700,Y)...0m7100,Y)), pir(00,Y) = ZiT:lpi,t(é’o). We are intested
in the behavior of Dy (6p,Y) since the derivative of fr(6,Y) V¢ (0)~ f7(0,Y) with respect to 6
equals 2D7(0,Y)' Vi (0) " fr(0,Y), see Kleibergen (2003).

Lemma 1. When Assumption 1 holds, the behavior of T ’%(””)DT(HO, Y') is characterized by
T30 Dy (00, Y) = Do + Op(T3¢40), (15)

where Dy = T30 E [% ZtT:1pt(90)] + T2 [Ar(mos, — Vara(00)Vir(00) 'moy) -+ Am(mog,, —

AnVorm(0o) fo(90)71m07f)]a mo = (mf),f mf),@)a Mo, = (m6,91 ce m6,9m)/-



Proof. results directly from Assumption 1 when we note that p; (60, Y) = 3. 7:.(8¢) and
Dit(00) = AiGi+(0) in case A; does not equal zero. m

The derivative Dp(6p,Y") is constructed in such a manner that Dy has a number of convenient
properties which we state in the following two corollaries. One of these corollaries deals with the
appropriate choice of the convergence rate v.

Corollary 1. When Assumption 1 holds,
vec [T% (T_%(l_V)Do - Ja(eo))] = Mo,g.f (16)

with
Jo(00) = timr oo B[4 21, pu(60)] (7)

mog.r = Mo,0 — be(&))fo(&g)ilmoj and
mo,0.5 7 A%_f (18)
where A =diag(Ay, ..., An), ¥y = g — ng(QO)fo(Hg)_l"tbf and

Yo.p ~ N(0, Voo.r(00)), (19)

with Vag.§(00) = Voo (00) — Var(00)Vir(0o) " Vie(0o), and vy s is independent of ;.
Proof. see Kleibergen (2003). m

Corollary 1 shows that Dy(6o,Y) is an estimator of the Jacobian Jp(6y) whose limit behavior is
independent of the limit behavior of f(6y,Y).

Corollary 2. Given Jy(0y), the convergence rate v in Lemma 1 is such that:

1. For a fized full rank value of Jp(0o) : v =1 so Dy — Jy(0y) and
p

DyVs(60)~" Do — Jo(00)' V1 (00) ™" Jo(6o)- (20)

2. For a weak value of Jy(0y) such that Jy(0o) = Jor, Jor = %C’, C : kyxm and rank(C) =
m: v =20, Dy - CH+ (A1psy - Antbg pm) and

DyVis(00) ™' Do - [C+ (A1 sy - -Amdjo.f,m)]lvffwo}fl[C"‘(Al%.m o Antbg )] (21)
3. For a zero value of Jy(0y): v =0, Dy — (A sy Amg pm) and

DoVis(00) ' Do - (A pr - Amtbg r) Vir(00)  (Arg s - Amtbg ). (22)



The first case in Corollary 2 is the traditional setting of a fixed full rank value of the expected
Jacobian. In this setting, GMM-estimators have normal limiting distributions, see e.g.Hansen
(1982) and Newey and McFadden (1994), which does not result in the other two cases. Case 2
deals with weak instruments, see e.g. Staiger and Stock (1997) and Stock and Wright (2000),
while the instruments are irrelevant in Case 3. Corollary 2 shows that the convergence rate v is a
function of the strength of the instruments, i.e. v = 1 in case of valid instruments while v = 0 in
case of weak or irrelevant instruments. The convergence rate of Dy (6y,Y’) in Lemma 1 therefore
depends on v. Corollary 1 shows that the limit behavior of Dy is independent of the limit behavior
of my_ s so the higher order expressions of statistics that test Hy : 6 = 6, are polynomials of T-3v.
Rothenberg (1984) constructs the higher order properties of estimators and test statistics in
the linear instrumental variables regression model as a function of the concentration parameter.
The statistic 7 Dr(00,Y)'Vi(6o) > Dr(0o,Y) has a limit behavior that is independent of mq s
and is comparable to the concentration parameter in the linear instrumental variables regression
model. We therefore use it to obtain higher order properties of test statistics.

We specify the test statistics as polynomials of the convergence behavior of Dr(6y,Y), i.e.
T3, see e.g. Nagar (1959). The derivative matrix Dy (6p,Y) does, however, depend on the
covariance matrix V'(6y) which is typically unknown. We therefore replace it with an estimator,
V(@g). We account for the unknown covariance matrix by specifying the test statistics as poly-
nomials of the convergence behaviors of Dy (6, Y) and the covariance matrix estimator V(6) on
which we make the following assumption.

Assumption 2: The convergence of the covariance matriz estimator V(6) is such that
Tatvec(V(0o) — V(60)) = ug 4 O, (T2), (23)

with u the convergence rate of the covariance matriz estimator and uy (=vec(Uy)) converges to
a normal distributed random variable,

Uo 7 ¢u7

where S, 1y, Yy ~ N(0,W(0o)), with S - 7% % [34(j + 1)] a selection matriz that selects the
unique elements of the vectorization of a symmetric j x j matriz and W (0y) is the covariance
matriz.

Assumption 2 does not specify the covariance matrix estimator and therefore allows for para-
metric as well as non-parametric covariance matrix estimators, see e.g. Andrews (1991) and
Newey and West (1987b). These estimators lead to different convergence rates . We indicate
usage of the covariance matrix estimator V(@O) in the specification of Dr(6y,Y") by denoting it
by DT(Q(), Y)

3 Higher Order Properties of Statistics that test Hy: 0 =
6.

We analyze the higher order properties of four statistics that test Hy : 6 = 0,:



1. GMM-Wald statistic evaluated at the 2-step GMM estimator, 923, see e.g. Hansen (1982):!

Wos(60) = (Bas — o)’ [%pT(é%, Y)/fo(ézs)flpT(éQS, Y)] (Aas — 6o)

=+ fr (0o, Y)/fo(éZS)ilpT<é2sa Y) [pT(é%, Y)/fo(éQS)flpT(ézs, Y)]
pT(9257 Y)/fo(QQS)ilfT<90> Y)

-1

(24)

Q

2. GMM-Wald statistic evaluated at the continuous updating estimator (CUE), @Cue, of Hansen
et. al. (1996):

Wcue (90) = cue ) [%ET(écuev Y)/fo<écue)_1ﬁT(écuea Y)] (ecue 00)

N “ N ~ N n N —1
( ) fo<ecue)_1DT<‘90ue7 Y) |:DT(9(31167 Y),fo(ecue)_lDT(ecue; Y)]
<9cue; Y) vff(ecue)_lfT(QOJ Y)

Q

(
l
T
D
(25)
The first order condition for a minimal value of Q(6) is: Dp(6,Y)' Vi (8) ' fr(6,Y) = 0
SO DT(écue, YY) Vf f(@cue)’1 fT(@cue, Y) = 0, see Kleibergen (2001). This explains the second

part of (25), which results from a Taylor approximation, that we use to obtain the higher
order properties of W ().

3. GMM-Lagrange multiplier (LM) statistic, see Newey and West (1987a):

M(6o) = % fr(00,Y)Vy(00) " pr(6o,Y) [pT(QoaY)'fo(QO)_lpT(QO,Y)]1 (26)
pr(00,Y ) Vis(60) ™ fr (6o, ).

4. K-statistic, see Kleibergen (2001):

K(0o) = +fr(00,Y)V;(00)* D (6o, Y) [DT(907Y)'fo(50)1DT(307Y)}1

\ A (1)
Dr(00,Y)' Vi (00) " fr(00,Y).

W, (0p) and LM(6y) are a Wald and LM statistic that are based on the two-step e§timator 925

while W, (0p) and K(6y) are a Wald and LM statistic that are based on the CUE 0.

Under a fixed full rank of Jp(0g), Was(0p), Weue(fo) and LM(6) have a x?(m) zero-th order
limit distribution, see e.g. Newey and McFadden (1994). The zero-th order limit distribution of
K(6p) is x?(m) regardless of the value of Jy(0p), see Kleibergen (2003). Wa,(6y) and LM(6,) are

We construct higher order expressions of Wag(6p), Weue(fo), LM(6y) and K(6y) as polyno-
mials of the convergence rates of Dy (6y,Y ) Vy;(60) *Dr(6p,Y) and V(é’o). We also consider a
convergence process where the number of observations and the number of instruments jointly
converge to infinity as in Bekker (1994).

IThe second expression of Wa, (o) results from a Taylor approximation of fr(6y,Y). We use this expression
to obtain the higher order properties of W, ().



3.1 Fixed number of instruments

Theorem 1 states the higher order expressions that result from Assumptions 1 and 2, of Wy (6y),
Weue(0p), LM(609) and K(6p) in case of a fixed number of instruments. Theorem 1 specifies the
higher order expressions as functions of the parameters v and p that characterize the convergence
rates of Dy (0, Y), T~20) and V(,), T~ 2",

Theorem 1.

When the number of instruments k is fived, Assumptions 1 and 2 imply higher
order expressions for Was(0o), Wewe(0o), LM(0o) and K(0y) under Hy : 0 = 0y that are charac-

terized by:
,
Wo (8 nog+ :zero-th order
_v _ _3
W 255903 T72n, +T "ng, + T 2"n3,+ :Dr(6o,Y")
N -
cuel”0 =< T 2n,+T Fng.+ :V(0o) (28)
LM(QO) —rin —1v+k) —Lw+2k) :
2 n 2 n 2 n 1mixe
K(HO) T vtk + T 2v+K + T 1/+2H+ d
3
-5V
L op(T2"),
where:
1. for Was(6p) : k= min(v, ) and
ng = s,Gy so
! ! —1 1 y—1
n, = $pQ180 + Slu,lGO o+ 50Go S1w,1
! / / —1
Dr(00,Y) Ny = 311,,1@130 + 50Q151,1 + Sly,lGo S1v,1
/
ng, = 511,,1@1811/,1
! -1 / —1
A 0 77% — SIKZ,IGO SO +80G0 81571 2
V( 0) _ / G—l ( 9)
Nox = S1410U0 Sik,l
( _ / -1 ! —1 ! /
Nyt = 51V71G0 S1k,1 T 515711G() S1v,1 +i91,.€71Q130 + 50@131u+/{+
1 — 1 -
(51/+/-c,1 + 31/+/-c,2) G() S0 + S(]G() <Su+/-c,l + Sl/+li,2)
/ / 11—1
mixed Nov+k 811/,1@1811&1 + 31&1621511/,1 + (8V+I€,]. + 31/+/-c,2) G() S].I/,].—"_
’ _
Slu,lGO (Sutr1 + Svtrz2)
11—1 i -1
Nytorx = (51/+/-c,1 + 31/+/-c,2) G() S1k,1 + Sln,lGO (SVJrn,l + Su+n72)+
! -1 /=1 /
\ Su+2n,1G0 so + 850Gy Svs1 t+ 315,162151&1-

2. for Wewe(bo) : K = min(v, p), all terms that result from Dr(00,Y) : n,, nay, N3, and ng,ip
are equal to zero and

1

soGo S0
{ n, = $5Q180 + $1,.1Go 50 + 56Gq s10 (30)
Noy = 8'15,1@61815,1 + 81,1 @150 + 55Q151x,1
Nyt = 3L+n,1G6130 + 36G615V+n,1

1

’ -1 ! — ! -1 /=1
Syir1Go S1e1 1 81.1G0 Svam1 + 8u4001Go S0 + 850Gy Sutan1t

/ /
SOlel/-l—n,l + Sy—‘,—/{,,lQlSO'

Nyt2k =

3. for LM(0y) the elements are identical to those for Was(6p) in (29) but with k = p.
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4. for K(6y) the elements are identical to those for W ...(6p) in (30) but with k =
and for all statistics:
so = mysVir(0)™ Dy
swa = mp Vi) {Fz[pr(0,Y) = Dr(0,Y)]}
A

Dr(6o,Y) = mo Vir(00) [A1Vor,1(0o) - - - A Vosm(0o)]
[Lm @ Vis(0o)™ mo,f]
V(o) = { swa= TEml [Vps(80) ™ = Vis(6)']Dy (31)
(

sviwt = T30 Dmy ;Vip(00) " [Dr(9,Y) = Dr(0p,Y)
= T3%mj Vyr(00) {[A1Vor1(00) - - A Vasgm(00)][ L @ Vy(00) Y]
—[ AV (00) -+ A Vo (00)][Lm @ Vs (60)~ HIm @ mo ]
Svanz = T3mp ([Vi(00) ™ = Vyp(00) Y ][A1Var.1(00) - - A Vs (00)]
L ® Vs (60) "mo.¢] )
[ surana = T2 [Vir(00) 7" = Vip(00) (D1 (00, Y) = Dr(60,Y)],

with Go = DyVy(00) Do and the expressions for the remaining G and @ matrices are given
in the Appendiz.

Proof. see the Appendix. m

The Dr(6y,Y), V(o) and mixed terms in Theorem 1 indicate where the higher order terms
originate from. Unlike the convergence rate i of the covariance matrix estimator, the convergence
rate v of Dr(0,Y) is unknown. The higher order expressions in Theorem 1 therefore depend on
the unknown convergence rate of the concentration parameter. The parameter « in Theorem 1
indicates that the convergence rate of the covariance matrix estimator depends on the involved
value of §. The Wald statistics, Wo,s(0p) and W,.(6p), use the covariance matrix estimator at
the estimated value of 6, 6. The convergence rate of the covariance matrix estimator for the Wald
statistics is therefore equal to the minimum of the convergence rate of 9, T%”, and ‘7(00), T3m
which we indicate by T2% with x = min(u, ). The Lagrange multiplier statistics LM(fy) and
K(6p) use the covariance matrix estimator evaluated at 6. The convergence rate of the covariance
matrix estimator in these statistics is therefore equal to T3*, Hence, k = i for these statistics.

We analyze the higher order expressions from Theorem 2 for both » = 0 and v = 1. We first
discuss v = 1 which, as shown in Corollary 2, corresponds with the traditional case of a fixed
full rank value of Jy(6). Afterwards we discuss ¥ = 0 which leads to a limit distribution of some
of the statistics that depends on nuisance parameters.

3.1.1 Identified parameters or v =1

When v = 1, the zero-th order term and therefore the limit distribution is the same for all
statistics in Theorem 1,
no = spGy ' so - X2 (m). (32)

The higher order elements in Theorem 1 effect the accuracy of the approximation of the finite
sample distribution by the limit of the zero-th order element. Higher order Edgeworth approx-
imations have therefore been proposed to obtain a more accurate approximation of the finite

9



sample distribution, see e.g. Bhattacharya and Ghosh (1978), Sargan (1980), Gotze and Hipp
(1983), Rothenberg (1984) and Phillips and Park (1988). Under a set of regularity conditions,
Rothenberg (1984) states that a statistic S whose higher order properties are characterized by

S= s9+ ﬁsl(é’o,yo) + %32(30,%) + Op(%% (33)

with gy a vector of sample moments that converges to a random variable different from the
random variable where sy converges to, has a second order Edgeworth approximation to its finite
sample distribution that reads

Pr[S<s|~F [3 — =s1(s) + 37 {251(5) [Fs1()] + cls)oi(s) + [Fua(s)] — 232(3)}} . (34)

where F is the distribution function of the limiting distribution of s, ¢(s) = £ log[£ F(s)],
s1(s) = Eyy(s1(s0,50)|s0 = ), s2(s) = Eyy(s2(s0,%0)|50 = ) and vi(s) =vary,(s1(so, yo)|so = ).
The second order Edgeworth approximation (34) removes the approximation errors of the finite
sample distribution up to the second order. Hence, the difference between the finite sample
distribution and the second order Edgeworth approximation is Op(T_%) while the difference
between the finite sample distribution and the approximation by the limit of its zero-th order
element is O, (T~ 2).

When we assume that ¢ = 1 and that the regularity conditions for the second order Edge-
worth approximation are satisfied, which imply that » = 1, we can construct the second order
Edgeworth approximation for the statistics in Theorem 1. For Wy, (6y) and LM(6y), we then need
to obtain the conditional expectation of n,, na,, 1., N2, and n,. . given ng. We just show that the
second order Edgeworth approximation does not perform adequately for Wys(6) and LM(f).
We only need to construct the conditional expectation of n, and ns, for this purpose. We show
that these lead to a unsatisfactory performance of the second order Edgeworth approximation.
In order to construct the conditional expectations of n, and ns,, we adapt Assumption 2.

Assumption 2*. The limiting distribution 1, from Assumption 2 is independent of ;.

In order to determine the properties of the second order Edgeworth approximation, we
first obtain the limit expressions of the conditional expectations of n, and ng, given p =

(DoVis(00) " Do) DVis(6o) b4 s0 limp oo no = p'DyVis(0o) ' Dop. Because of the law of it-
erated expectations,

Ellimy o 1o o/ DyVi(00) ™ Dop = ol = ELEllimg—o n3, o]0/ DyVis(00) ™ Dop = mol.~ (35)

Hence, Elimy_o n,|p] and E[limr_ ng,|p| are involved in the second order Edgeworth approx-
imation.

Lemma 2. When p=v =1 and Assumptions 1 and 2, 2% hold, the conditional expectations of
the limit expressions of n, and ng, given p = (DVis(00) ™ Do) DoVis(0o) "0 = (p1--- )’
read:?

Ellimr_on,|p] =
3221 Pif DoV (00) ™" AiViy,i(00) Vs (60) ™ Dop+ (36)
m kr—m kr—m ’ — !
2 Zi:1 Pi Zjil nle { [(DO,J_fo(QO)DO,L> 1}3'“ [DO,J_AZ‘VGLZ'(QO)DO,L]M} )

2We note that when v =1, Dy — Jp(0o).
P
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with Doy : kg X (ky —m), Dy Do =0, Dy | Doy = I, and [(D(’),Lfo(HO)Do,L)_an and
[Dg.1 AiViy,i(00) Do, 1jn are the jn-th elements of the respective matriz; and

with

a; =

A9 =

a3 —

fii]

Ellimy_o noy|p] = a1 + as + az + ag+

Sy Yot lais + by 4 ey + dig + i) (DoVig(60) " Do)ij', (37)

p'DoVip(00)  [A1Vasa(0o) - - - AmVios.m (00)| [ Im ®fo(90) ' Dopl(DoVif(60) Do) ™"

DV (00) " A1Vas.1(00) - - - AV m(00)][Im @ Vi(60) ' Doplp,

tr([p ® Do 1][>2 ™" (D), 1Vir(60) Do )7 7DV (60) " AViga bo): - -

S (D) 1 Vi#(80) Do, )i 0" Dy Vip(60) ™ A Vg (60)i) (Do Vs (60) ™ Do) " Dy Vi (60) "
[A1Vor1(00) - - - AmVas.m(00)]),

E{tr([p ® Do 1 (Dg , Vis(00) Do) ' Dpy  [A1Vri(00) - - - AmVasm(60)]

(L @ Vi £(00) " Dopl (D Vi (00) Do)~ DoV (60) ' [A1Vay, 1(90) - AmVagm(60)]),

[tr(Do, 1 (Dg, Vi(0o) Do)~ Dy | AiVigpa(6o)) - - - tr(Do, (D Vig(00) Do) Dy | A,
Vorm(00)1DgVys(00) ' Do)~ DoV (00) " [A1Var1(60) - - - AmVagm(00) I ® Vi£(60) ' Doplp,

{[p' DoV (00) = AiVy.i(00) Vi (00) " Dopl[p' DoV £ (00)~ AjVay,;(00) Vs (00) ' Dop)
2[p' DoV (00) 1 AiViay,i(00) Vi (00) ' Dopltr[Do, 1 (Dg | Vi (0o) Do, 1)~ Dy | AjVay,i(0o)]
30" [(Dh, Vip(Bo)Do,L) 3D}y | AVieri(00) Do, (Dp  Vip(00) Do) 213, +

2 Zfilm Zf 1”;1;&“ [(Do 1 Vi7(00) Do, L)_l,Dé 1 AiViyi(60) D, L(Dtl) 1 Vi(00) Do, 1)~
[(Dyg ﬂ/ff(eo)Do 1)7#' D} | AVar(00) Do, L(D 1 Vir(00) Do 1) 3]0+

2 Zzl DD KDO,Lfo(QO)DO,J-) 3Dy | A; Vof,z(QO)Do,LEDo,Lfo(HO)DO,LV
[(Dg Lfo(Qo)Do 1)72' Dy AiVas.5(00) Do, (Dgy  Vig(0o) Do, 1)~ 2 iyj +

2 S 4al(DhViy(60) Do) ¥Dj A, Vira(O0) Do (D Vi (B0) Do)
(D Vy#(00) Do) 2" Dy A;Vos;(60) Do (D) J_fo<00)D0 1) 20

p' DoV 1(00) " AiVar.i(06) Do (Do, V1 (06) Do)~ Do, 1 Vg (00) A; Vi1 (66)~ Dop
20" DoV (00) " AiVi1.4(00) Do, L (Do, Vi(00) Do, 1)~ Do, Vs, (00) A5V (60) ' Dop.

D=

]ilil

=

]iljl

(SIS

]i1j1

Proof. see the Appendix. m

Lemma 2 states the conditional expectation of n, and ny, given p. Because lim,,_.,, ny =
1
' DyVi(600) ' Dop, we can specify p as p = ngh with h : m x 1 and A’ DyV;p(0p) *Doh = 1.
To obtain the conditional expectation for the second order Edgeworth approximation, the law
of iterated expectations (35) then implies that we construct the expectation of the conditional
expectations of n, and ns, from Lemma 2 with respect to h.

Corollary 3. Lemma 2 implies that the limiting expressions of the conditional expectations of
n, and ns, given ng read

Ellimr_oony|no] =  Ep[Elimy_eny|p] =0 (38)
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and

Elimy o 12y [120] = En [Elimr . 12, |p]] = 1
Eh{az + a3+ a4|p = nih] + 27111 Z;n:l(DE)fo(eo)_ng);jl {Cij + E[b” + dl'j + el'j|p = ngh]}
(39)
Proof. Because ng has a x?(m) limiting distribution and p is normally distributed with mean

zero, the first and third order moments of h are zero. The expectations of a; and a;; from Lemma
2 with respect to h are therefore equal to zero. m

The elements of the conditional expectation of ng, given ng (39) are proportional to (DjVys(6o)
Dyg)~! which can be estimated by (7 Dr (00, Y)'Vis(60) ™ Dr(0,Y)) ", The second order Edge-
worth approximation (34) therefore contains, for example, the second order term

. . . -1

T 2ie1 2o [%DT(eovY)'fo(Qo)_lDT(eoaY) y Cij (40)
which is part of “—Zs,(s)” in (34) and that assumes that v = 1. The assumption that v = 1 is
a high level assumption which we can not verify. If v = 0, (40) is of order zero instead of % The
second order Edgeworth approximation does then not remove all second order approximation er-
rors. The second order Edgeworth approximation thus only removes second order approximation
errors when v = 1. We need to assume this a priori so it does not have to hold for the analyzed
data.

Alongside the sensitivity of the second order Edgeworth approximation to the value of v
also the number of instruments k; (= kl) is of importance for the accuracy of the second order
Edgeworth approximation. The ¢;; elements in (39) consist of (k; — m)? components and are
thus proportional to k:]% When k]% is large and proportional to 7T, the second order term of the
Edgeworth approximation (40) becomes a zero-th order term instead of % The second order
Edgeworth approximation does then not remove the second order approximation errors.

The sensitivity to the value of v and the number of instruments k¢ shows that a second order
Edgeworth approximation does not remove the second order approximation error of the finite
sample distribution of Wa,(y) and LM(fy) in all instances. This indicates that the Edgeworth
approximation will not perform satisfactorily for Wa,(6g) and LM(6p) since the improvement of
the distributions depends on unknown nuisance parameters. The n, and n,, elements are not
present in the higher order expressions of We,e(6p) and K(6p). When v = 1, the quality of the
approximation of the finite sample distribution of these statistics by their zero-th order element
is therefore less sensitive to the number of instruments. This corresponds with Brown and Newey
(1998) and Newey and Smith (2004) where it is shown that the bias of the CUE is smaller than
that of the 2-step GMM estimator and is much less affected by the number of instruments. Also
Donald and Newey (2000) show that the bias of the CUE is smaller than that of the 2step
estimator since the CUE works like a jackknife. W ..(0y) and K(fy) are both based upon the
CUE and show that the results of Brown and Newey (1998), Donald and Newey (2000) and
Newey and Smith (2004) extend to such statistics. These statistics thus contain a considerable
part of the corrections that the second order Edgeworth approximation of the distribution of
Was(6p) and LM(6) applies.

Corollary 3 is not only helpful for the analysis of the Edgeworth approximation but also shows
that ng, is proportional to kj% When k; and 7" jointly converge to infinity and k]% is proportional
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to T, ng, therefore becomes a zero-th order term. Hence, in order to preserve the limiting
distributions of Wy4(6y) and LM(6p) in limiting sequences where k; and 7' jointly converge to

2

infinity, limz e koo k—Tf = 0 has to hold. We note that the Edgeworth approximation should
remove this distortion of the zero-th order behavior of Wyy(6y) and LM(fy).

3.1.2 Weak/non-identification or v =0

The higher order elements of We,.(fp) and K(fp) in Theorem 1 are identical when v = 1. When
v = 0, the GMM estimators 65, and 6., converge to random variables, see e.g. Phillips (1989)
and Stock and Wright (2000). The covariance matrix estimators involved in the Wald statistics,
Wys(6o) and We,.(6p), are then evaluated at a random variable and are thus inconsistent. The
convergence rate k£ (= min(u, 7)) in Theorem 1 then equals zero for these statistics and indicates
the inconsistency. The covariance matrix estimators involved in LM(6y) and K(6y) are evaluated
at 0y and still converge to the true covariance matrix with convergence rate p. The convergence
rate £ in Theorem 1 is therefore equal to p for these statistics and we can obtain the limit
expression of the zero-th order term of the higher order expression when v = 0. This expression
is given in Corollary 4.

Corollary 4. For weak and zero values of Jy(0y), for which v = 0, and a fixed number of
instruments, Theorem 1 implies higher order properties for Was(0o) and W eue(0o) under Hy :
0 = 0y that are characterized by:

W, (6 .
2 ( 0) - ’I’Lo —I— ny + nh} —I'_ ny—}—n + n21/ + n2f{ + n21/+l'i + nl/+2l€ —I— n3V7 wlth k= 07 (41)
Wcue(‘90>
for LM(0y) :
LM(0o) = 1o + ny + ngy + 13y + T2 (N + N + Novin) + T (N2k + Nuyon), with k= p,
(42)
and for K(0,) :
K(GO) =MNo + Tﬁ%(nm + nl/+/-c) + T_R(nZi + nV+2K)7 wzth KR = U, (43)

where the different n-elements are defined in Theorem 1. Given Dy, the limiting distribution of
LM (60y), or limiting distribution of ng + n, + ng, + ns,, reads

LM (0o) — ViVi(00) " H{ Do + [A1Ver1(60) - - AmVogm(00)] (I @ Vig(00) "4 ;) H{ Do+

[A1Vas1(00) - -+ AnVagm(00)] (I @ Vi(00) 10 )} Vip(00) " { Do + [A1Var,1(6o) - - - A Vos.m (0o)]
(L ® Vip(60) "0 )} " Do + [A1Vor1(00) - - - A Voy.m (00)] (I @ Vip(00) 00 f) } Vi (00) oy,
(44)
while the limiting distribution of K(0y) is x*(m).
We do not give the expressions of the limiting distributions of Was(6y) and W . (6p) when v =
0. These Wald statistics involve inconsistent covariance matrix estimators, since the covariance

matrix estimators are evaluated at the inconsistent estimator of 6, 0. Hence, we could only
give limit expressions that involve the inconsistent estimators. The limit distribution of LM(6y)
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in (44) is no longer x?(m) and depends on nuisance parameters. The distortion of the limit
distribution of LM(fy), compared to its x?(m) limit distribution when v = 1, is caused by the
higher order terms of the limit distribution when v = 1.The higher order terms of K(6y) when
v = 1 remain higher order terms when v = 0 and do therefore not distort the limit distribution.
The K-statistic is thus a higher order correction of LM(6y) which overcomes the change of the
limit distribution of LM(6,) when v = 0. Unlike higher order Edgeworth corrections as in (34),
the K-statistic does not involve conditional expectations of random variables.

3.2 Number of instruments that goes to infinity

When the number of instruments is proportional to the number of observations, the higher order
expressions from Theorem 1 are invalid. We therefore construct higher order expressions when
both the number of observations and the number of instruments jointly converge to infinity as in
e.g. Bekker (1994). In order to do so, we make an assumption about the convergence behavior
of the number of instruments £ relative to that of the number of observations 7.

Assumption 3. The joint convergence of the number of instruments k and the number of
observations T' is such that
limy, 7o 75 = ¢, (45)

with ¢ a fixed finite constant.

When we construct the higher order expressions with a number of instruments that converges
to infinity, we maintain the property of Assumption 1 that

7175 Dr(00, Y ) Vi(00) ' Dr(00,Y) = DyVi(60)~" Do, (46)

where DyV;;(0p) 1Dy is a finite valued random variable. It implies that v > « and enables us
to determine the convergence rates of the different elements involved in the statistics by means
of a sequential convergence scheme in which we first let 7' converge to infinity and afterwards k.
Given a fixed value of k, we have shown in Theorem 1 that all elements converge appropriately
when T' goes to infinity. Lemma 6 of Phillips and Moon (1999) therefore applies and we can let
T and k converge to infinity sequentially, so first 7" and then k.

Bekker (1994) constructs the limit distribution of the CUE in the linear instrumental variables
regression model under a limit sequence where the number of instruments is proportional to the
number of observations, so & = 1, v = 1 and Jp(0o)'Vy;(60) ' Jp(0o) goes to a constant when k
and T converge to infinity.

Theorem 2 states the higher order expressions of Wag(6g), Weue(6o), LM(0y) and K(6y) when
the number of instruments gets large according to Assumption 3. The proof of Theorem 2 also
verifies the validity of constructing the limits in a sequential manner.

Theorem 2. When the number of instruments k converges to infinity according to Assumption
3 with v > «, Assumptions 1 and 2 imply higher order properties of Was(60), W eue(6o), LM(0y)
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and K(0y) under Hy : 0 = 0y that are characterized by:

p

no+ : zero-th order
_v—2«a (1
T Ny —2a +T v a)n2(ufa)+ DT(907Y)+
Was(00) T~ =290, 90y + T~ Yy, o)+ instruments
W 28(60) T7Vn,+ : DT<60, Y)
i (= 3 T et Tt -V (60) (47)
0 _1 -2 _1
K(9 T 2(V+H a)nu+n—2a +T 2(V+H)nl/+n+
( 0) T*l(l/+2(lifoé))
2 nr/+2(nfa)+ Lo
Tfl(2u+ri72a) Tf(y+nfa) : mixed
2 Noy4rx—2a + n2(zx+nfa)+
—lr2(v—2 - -2
\ T—2rt v Oé)ni{Jr2(1/f2oz) +T (vtr a>”2(u+/172a))
where:
1. for Wys(6p): k = min(u,v), and
! —1
ng = 5,Ggy So
/ -1 1 =1
D00 Y My—20 = 5, 201Go 50+ 850Gy Sv—20,1
r(bo, ¥)+ Now—20) = S_201Go  Sv-201
instruments (v=2e) y=2a,170 “v=2a,
Na(v—a) = 81/—20471Q180 + 30@151/72%1
. _ /
DT(Q(],Y> : { n, = SUQISO
! -1 1 —1
V(o ) Ny = Sll{,lGO so + 580Gy 51,1 48
( 0) . _ ! Gfl ( )
Mok = S14,10U0 Sik,1
( _ =1 / -1
Ny+rk—2a = (Sy+n—2a,1 + SV+K—204,2) GO S0 + Sy—2a71G0 Sln,1+
/G—l( ! G—l
Sobo Sy+m—2a,1 + 5y+/¢—2a,2) + 31,.;71 0 Sv—2a,1
/ /
Nytr = 51,{71Q150 + 50015161
=1 ! -1
Ny42(k—a) = <5u+n—2a71 + Su+m—2a,2) Go S1k,1 + Sy+2;{72a71G0 So+
/ -1 1 —1
mixed . < Sll{,lGO (Sl/+lif2a,1 + Sl/+l<:720172) + SOGO Sy+2k—2a,1
. / /
Nov+rk—2a = (Su+ﬁ72a,1 + Su+n72a,2) QISO + SOQl(Su+/{72a,1 + Su+nf2a,2)
/ /
N2(v+k—a) = 5,/_:,_2(”_04)71@150 + <5V+fs—2a,1 + 5u+m—2o¢,2) leln,l"f’
/ /
815’1Q1(5V+H—2Oé71 + SV—FH—QO(,Q) + SOQ18V+2(I€70¢),1
/
Ngr2(v—2a) = Sy—2a,1Q15V—2a,1
— 'G=
\ n2(y+n—2a) - <5y+ﬁ—2a,1 + Su+m—2a,2) 0 (Sy+m—2a,1 + Sy+n—2a72)

2. for Wee(bo): £ = min(p, V), Ny—2a = Now-20) = Ny = Ny =

n2(1/+/s—o¢) = nlﬁ+2(l/—20¢) - 07

/ —
no = syGptso
/ ! -1 /1 —1
N = SoQ150 + 811Gy S0 + 50Go S1k,1
¥ . _ / -1 / /
V(bo) Noy = Slﬁ,lGo 31/1,1+81,§71le0+50le1/{,1
_ /
N3 = 81,,1Q1816,1
_ ! -1 r =1
Nutr—20 = Syin-20,1Go 0 + oGy Sutr—2a,1
_ ! -1 / -1 !
ixed Ny42(k—a) = Sy-‘m—Qa,lGO Slﬁal—f—slfi,lGO SV+“_20‘71+SV+/€—20471Q180+
mixe /Q + / G—l + /G—l
So 15y+/~c—2ai1 Sv+2k—20,100 S0 T Solap Sv42k—20,1
p Z
n21/+,‘€—20¢ - Sy+[g—2a71G0 SV—FKZ—QO&J'
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3. for LM(0y) the elements are identical to those for Waos(6p) in (48) but with k = p.

4. for K(0y) the elements are identical to those for W .,.(00) in (49) but with k = u

and for all statistics

S — méfof<60) DO A A
sv-a01 = 1My Vir(00) " {I5lpr(0,Y) — Dr(6,Y)]}
= imo]fvff( 0) A 9f1< 0) A Vosm(00)|[Im @ Vi (00) " 'mo s

s = T2my 5[Vi(00)™ = Vip(6o) ™" Do ) A
Stn—20,1 = T,fnm[)fof(QO) {[Alvafl(Qo) AV g.m (00)][Im @ Vi (00) ] (50)
[AIVGJ‘I(HO) “Am efm(eo)][ ® Vi (00) 1} Im @ mo 5]
Svtn-s02 = S ¢ [Vi(00) ™ = Vip(00) M [A1 Va1 (60) - - - AmVigm(6o)]
[ 2®1fo(90) tmo ] )
Sy+2(k—a),l = Tg(;: )mO,f[fo(HO) ' —=Vi#(00) [Dr(00,Y) — Dr(0o,Y)],

with Go = DyV(00) "t Do and the remaining expressions of the G and @ matrices are given in
the Appendizx.

Proof. see the Appendix. m

When o = 0, the higher order expressions in Theorem 2 are identical to those in Theorem
1 that were constructed for a fixed number of instruments. An important difference with the
elements of the higher order expressions in Theorem 1 results from the convergence of

Su—2a1 = M0 Vir(00) 7 [AiVaga(6o) - - AnVosm(00)][Ln ® Vyr(00) = mo ). (51)
When k and T converge to infinity,
Sy—2a,1 — w(€0)7 (52)
P
where w(6y) = (w1(6p) .. .wm(6p)) and
wi(0o) = limy—co tr(Vrs(00) " AiVor.i(0o))- (53)

The convergence of s,_s,1 towards a constant implies that v needs to exceed 2« for the x2(m)
limiting distribution to remain valid for Wy, (6y) and LM(6y). Otherwise, Wy,(6y) and LM(6,)
converge t0 lim x 7—0on2(—24) = W(0)'Gg'w(fo) because 2(v —2a)) < (v—2a) when v < 2av. This
sensitivity to the number of instruments of Wyg(6y) and LM(6y) is also indicated by Corollary
3 where the conditional expectation of higher order elements of Wa,(6y) and LM(6y) depends
on the number of instruments. Theorem 2 further emphasizes this sensitivity to the number of
instruments of Wa,(6y) and LM(6p). Even for values of v that correspond with a well-identified
o, v > 1, the limiting distributions of Wo,(6y) and LM(6y) can be affected by the number of
instruments.

Theorem 2 assumes that v > «a. The number of instruments can therefore affect the limiting
distribution of W,.(6y) and K(6y) when oo > . Corollary 5 states these distortions for a stylized
setting with v = a = o = 1 and which corresponds with Bekker (1994).
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Corollary 5. When v = a = u = 1, the higher order expressions of W (6o) and K(60y) that
result from Theorem 2 read

} = Mo+ Nytr—20 N2(v+r—2a) + T_% (nm + nu+2(/{fa)) + T717’L25 + Op(Til) (54)

where the expressions of the n-elements are stated in Theorem 2.

Corollary 5 shows that additional zero-th order elements, i.e. 1,4x—24 + No@w4r—24), appear
when v = o = p = 1. Both n,, 2, and ngx—24) consists of, alongside sg, 5,4x—2q4,1. We
therefore state the limiting distribution of s,.4,_2,,1 in Lemma 3.

Lemma 3. When k and T converge to infinity, and Assumption 1, 2, 2* and 3 hold, the
convergence of S,4x—2a.1 defined in Theorem 3 is characterized by

Sy+k—2a,1 7 )\7 (55)

where A ~ N(0,%(0o)) and independent of v, with %(0y) = {04;(00) }ij=1

-----

!/

0ij(0o) = limy o0 [ﬁﬂ/f‘/ff(@o)*l ® ﬁ?ﬂ}vff(@o)*lfli] Wi;(60)
[ﬁ?//f‘/ff(@o)_1 ® ﬁw}vff(%)_lflj}

with

Wij(0o) = limy.oo E[vec(Upsi — Var,i(00)Vis(00) " Usp)vec(Uns; — Vayr,j(00)Vi(00) " Usys)'l,
(57)
which expression results from Assumption 2.

Proof. see the Appendix. m

Lemma 3 indicates that the zero-th order term from Corollary 5 does not have a x?(m)
limiting distribution when v = ;1 = a = 1. We can account for the distortion of the x?(m) limiting
distribution by including an estimate of () in the covariance matrix estimators involved in
Weue(6o) and K(6y). Bekker (1994) proposes such a covariance matrix estimator for We,.(6p) in
the linear instrumental variables regression model for a limit sequence with v =y =a = 1.

The elements 0,;(6y) (56), that we need to incorporate in We,.(6y) and K(6y) to preserve
their x%(m) limit distributions in a limit sequence with v = y = a = 1, are of order T?*™#
(= k*T*). In case k is fixed, so a« = 0, v = 0 and p = 1, this order equals 7" and is identical to
the convergence rate of Dr (0, Y)'Vy;(00) ' Dr(6o,Y"). The robustness of the limiting distribution
of Weue(0o) and K(6p) to limit sequences where v = p = a = 1 comes therefore at the price
of non-robustness of the limiting distribution of W,.(0y) and K(fy) to limit sequences where
v = a = 0, see also Bekker and Kleibergen (2003). The limiting distribution of W,,.(6p) is
non-robust to such limit sequences but the limiting distribution of K() is robust to these limit
sequences. Hence, robustifying K(6y) to allow for » = yu = a = 1 means losing the robustness to
v = a = 0. Without adapting the covariance matrix estimator, the limiting distribution of K(6y)
remains x%(m) when p > a.
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4 Higher Order Properties of Statistics that test H,
E(f(0)) = 0.

Alongside tests of hypothezes specified on the parameter 6, like Hy : 6 = 6, it is customary to
test whether Assumption 1 holds so the model is not misspecified at 6y: H : E(f:(6p)) = 0 or
to conduct a joint test of Hy and H.. For the latter kind of joint hypothezes, we can use the
objective function evaluated at 6y, which is Stock and Wright’s (2000) S-statistic:

S(00) = £ fr(00, Y ) Vi1 (00) "L fr (6, Y). (58)

Under Hy and H,, S(6p) has a x*(k;) limit distribution regardless of the value of Jy(6p).

To obtain the elements of S(y) that test H., we can use a J-statistic, see e.g. Hansen (1982),
that results from substracting one of the statistics Ways(6p), Weue(6o), LM(6p) or K(0y) from
S(eo) .

Jas(00) = S(6o) — Was(0o)

que(eﬂ) = S(QO) - Wcue(e(l)

Jrar(0o) = S(0o) — LM(6o) (59)
Jr(00) = S(6o) — K(0o).

Under Hy and H,, all J-statistics in (59) have x*(k; — m) limiting distributions when Jp(6y)
has a fixed full rank value. Only Jx(6p) has a x*(k; — m) limiting distribution for any value of
Jo(0o), see Kleibergen (2003,2002b). The J-statistics that are commonly used, i.e. Jos(fa) and
que(écue), only have a x?(k; —m) limiting distribution under H, when Jy(p) has a fixed full rank
value. Theorem 3 states the higher order expressions of the S and J-statistics for a fixed number
of instruments. Because the S and J-statistics have limiting distributions that depend on the
number of instruments, we do not construct their higher order expressions in a limit sequence

where the number of instruments and the number of observations jointly converge to infinity.

Theorem 3. Assumptions 1, 2 and Theorem 1 imply higher order expressions for the S-statistic
(58) and J-statistics (59) that read:

S(0y) = mno+mno1 + Tﬁ%wu +0,(T%), (60)
with w, = TEmj ([Vi(60)™ = Vis(60) M mog, no = mp Vi(6o) ™ Do(DyVys(60)~ Do)~ Df

Vig(0o)""mo.p and no . = mg (Do 1 (Dy | Vig(00)Do. 1)~ Dfy oy, where Doy @ ky % (kf —m),
Dy Do =0, Dy Doy = Iy and

J2s(60)
Jeue(fo) | _ no . +T 5w, — T 50, +T 50, + T % 1y + T 0oy + T 11+
JLM(QO) 0,1 1% T_%(QV'M)HQ,H_,@ + T—%(u—|—2/-;)ny_~_2)i + T_%Vngl, to, (T_%”),
Jk (0o)

(61)
where the specification of the different n-elements for a specific statistic is given in Theorem 1.

Proof. see the Appendix. m
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Theorem 3 shows that the J-statistics (59) possess similar higher order properties as the
statistics whose properties are stated in Theorem 1. Since

No, L 7 XZ(kf - m)v

all J-statistics converge to a x*(k; —m) distributed random variable when v = 1 but only Jk (o)
converges to such a random variable when v = 0. Identical to the statistics in Theorem 1, the
distortion of the limit distribution when v = 0 results from elements that are of higher order
when v = 1. These elements are not present amongst the higher order elements of Jx (0y) and can
therefore not alter the limit distribution of Jx(6y) when v becomes equal to zero. We conclude
from Theorems 1 and 3 that the statistics whose higher order properties do not depend on v, i.e.
S(6o), K(0p) and Jx(6y), are also optimal from a higher order perspective since they posses less
and “smaller”, in a bias or variance sense, higher order elements. R R

The higher order properties of the commonly used J-statistics, Jos(f2s) and Jeye(Gcue), are
similar to those of Jas(fp) and J..c(fy) in Theorem 3. A x?(k; — m) limiting distribution is
therefore only valid for these statistics when v = 1 and thus for full rank values of Jy(6y). Because
Jos (925) results from Wa,(0g) that can be severly biased when the number of instruments and/or
the correlation is large, we also for other reasons have to be careful when using Jo, (égs).

Theorems 1 and 3 show that the limiting distributions of K(fy) and Jx (o) are robust to the
value of v. Since K(f) is a score or Lagrange multiplier statistic, it suffers from a spurious power
decline around values of # where the objective function is maximal or has an inflexion point.
The J-statistic Jx(fy) has discriminatory power at these values of 6 and is since its limiting
distribution is independently distributed from K(6y) ideally suited to be combined with K(6y), see
Kleibergen (2003,2002b). These statistics can be combined in a unconditional or in a conditional
manner. A unconditional manner implies that we use fixed significance levels for K(f,) and
Jik(00), ax and ay,, that add up to the significance level o by which we want to test, & = ax +
Qg —Qgog, & ag+ay,. A conditional manner implies that we use an additional independently
distributed statistic to combine K(fy) and Jx(6p). The conditional likelihood ratio statistic of
Moreira (2003) in the linear instrumental variables regression model with m = 1 operates in
such manner. Its conditional limiting distribution is the sum of the limiting distributions of
K(0o) and a weighted value of Jk (6p). It uses Dr(6o,Y ) Vi¢(0) " Dr(6p,Y) as the independently
distributed conditioning statistic. When Dy (6o, Y)'Vi(0)*Dr(60,Y) is large, the conditional
limiting distribution is identical to that of K(6y) while it resembles K(6)+Jx (0o) (=S(6p)) when
Dr(00,Y)'V;4(0) 1 Dr(6p,Y) is small. Because we can only approximate Moreira’s conditional
likelihood ratio statistic in GMM, see Kleibergen (2003,2002b), we refrain from constructing its
higher order properties.

5 Bootstrapping robust statistics

Theorems 1 and 3 show that the zero-th order elements of several GMM-statistics depend on
the value of v. For these statistics we can not use the bootstrap to approximate the finite
sample distribution. The zero-th order elements of K(fy), Jk(6p) and S(fp) do not depend on v.
We construct the Edgeworth approximations of the finite sample distribution of these statistics
to determine if we can improve the approximation of the finite sample distribution by using
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the bootstrap, see e.g. Horowitz (2001). For reasons of brevity, we only discuss the case of
independent moments which we reflect in Assumption 4. The case of dependent moment would
make the bootstrap algorithms more involved and imply that we should use parametric or block-
bootstrap procedures, see e.g. Horowitz (2001).

Assumption 4. The moments (fi(00)" ¢(60)") and (f;(60)" q;j(00)") are independent for t # j.

5.1 Edgeworth Approximations of finite sample distributions of ro-
bust statistics and their bootstraps

Assumption 1 implies that E(f;(6p)) = 0. Since Assumption 1 has to hold for the empirical
distribution that we use to obtain the bootstrap distributions of the statistics, we recenter the
realizations of f;(6y) such that E(ﬁ(@g)) = 0, with f;(0y) = fi(6o) — %Zthl f:(6p) and where
E indicates that the expectation is taken with respect to the empirical distribution, see e.g.
Hall and Horowitz (1996). The empirical distribution of (f,(6)'q:(6o)")’) then becomes: F(z) =
+ ST H{(fil00) @(6o)) < x} with I(.) the indicator function. Because of Assumption 4, the
Glivenko-Cantelli Theorem implies that the empirical distribution of ((f;(6o)" ¢:(60)’)" converges
to the true distribution of ((f;(0y)" q:(6o)") when T' goes to infinity.

Corollary 6. For random drawings with replacement ( f1(00) G (0o)) from the empirical dis-
tribution F'(z) = %Z; I{(f:(00)" q:(0p)") < x},it holds that:

E[f(00)] = 0.
A~ 3 7 / A A~ ~ ~
2. E[(gﬁgzgg) (gjgzgg) ] = V(o) so E[f:(0) f:(60)] = Vs (90) with V' (6p) the covariance matrix

estimator that results from {(f:(6o)'¢:(60)')', t =1,...,T}.

3. The higher order behavior for the sum of (f;(6y)’ G (o))’ is characterized by:
0)

A NT ( - M 1
VT Zt:l ( Cjt(eo) (%(90)) ) 0o+ Op(ﬁ)? (62)

where E(q(00)) = T L S™T | ¢1(fo) is such that the i-th column of Dp(6, Y) equals A;[F(q:(8o))—
Vori(00) " Vir(60) " fr(Bo, V)], in case A; is not a zero matrix, and

o — ( j’)g ) with ( zfe” ) ~ N0,V (6)). (63)

Proof. Results directly from the independence of the (f:(0o)'q:(6o)")’)’s and their finite
variance. B

Corollary 6 allows us to construct higher order expressions for the bootstrapped K, Jx and
S-statistics. The higher order expressions can be used to obtain the Edgeworth approximations
of the finite sample distributions of the (bootstrapped) K, Jx and S-statistics. Theorem 4 states
the Edgeworth approximation of the standard and bootstrapped K-statistic. This Edgeworth
approximation can be used as well to obtain the Edgeworth approximation of the finite sample
distributions of the Jx and S statistics.
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Theorem 4. The 2k-th order Edgeworth approzimation of the distribution of K(6y) and boot-
strapped K(0o), K(0o), read

A < 8] = Fy(s) — T_%Rfm(s)[nn(s) - (64)
Pr{K(6o) < s] = Fi,(s) = T72" [ (s)[Ns(s) —
where f4,(s), Fy,(s) are the density, distribution function of the x*(m) distribution and n,(s),
N2x($), Nk(s) and Mok (s) are defined in Appendiz F..

Proof. see Appendix F. m

The Edgeworth approximations in Theorem 4 show that the difference between the limiting
distribution and the finite sample distribution is of order O(T~2%). When Assumption 2* holds,
which implies independence between the limiting distributions of V(6) and (f:(6) ¢:(60)")'),
n.(s) and 7, (s) are equal to zero and the limiting distribution is accurate up to order O(7T~") as
an approximation of the finite sample distribution. To show the improved accuracy that results
from the bootstrap, we substract Pr[K(6y) < s] from Pr[K(fy) < s|, see e.g. Horowitz (2001):

Pr[K(0o) < s] — PrlK(0o) < s] = T75" fy; (5)[ns(5) = Tin(s) = T~2"(naw(s) — fran(s)) — Op(T(“)%-
65
The Edgeworth approximations of K(6y) and K(Qg) are with respect to the unconditional and
empirical distribution of (f;(6o)" ¢:(fo)’). Since the empirical distribution converges to the uncon-
ditional distribution, all higher order elements of the Edgeworth approximation of the distribution
of K(@O) converge to their respective higher order element in the Edgeworth approximation of
the distribution of K(6p). Hence, fig.(s) = nan(s) + Op(T~2%) and fin(s) = n,(s) + Op(T~2%).

Corollary 7. Given Theorem 4, the approzimations of the finite sample distribution of K ()
by the distribution of its bootstrap K (6y) read:
1. When Assumpion 2* holds such that n,(s) = n,(s) =0:

N

Pr[K(fo) < s] = Pr[K(fy) < s] + O,(T~2"), (66)

2. When n.(s) # 0, (s) #0:
Pr[K (o) < s] = Pr[K(f) < s] + O,(T7"). (67)

Corollary 7 shows that the bootstrap leads to an improved approximation of the finite sample
distribution of K(6y) both when n,(s) = n.(s) = 0 and when n.(s) # 0, n.(s) # 0. The
improvement of the approximation of the finite sample distribution is valid in all cases of Jy(6y).

In an identical manner as outlined above for K(fy), it is possible to obtain 2x-th order
Edgeworth approximations to the finite sample distributions of Jx(6y) and S(6y). Hence, also for
these statistics the bootstrap leads to an improvement of the approximation of the finite sample
distribution.

5.2 Bootstrap Algorithms
The bootstrap algorithm to obtain the distribution of K(6y) can be specified by:
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1. Obtain bootstrap sample {[f;(0o)’ G (00)']),t = 1,...,T*} by drawing from {(f,(6)’ ¢:(60)")’,
t=1,...,T} with replacement.

2. Construct: V(6y), Dr(6y,Y) and fr(o,Y) from the bootstrap sample {[f;(6o)" G(60)7] .
t=1,...,T*}.

3. Compute:

K(o) = 2= fr(00,Y)'Vy7(00) " Dr(00, Y )[Dr(0o, Y ) Vys(6o) !
Dr(00,Y)] "' Dr (00, Y)'Viy(00) " fr (0o, Y).

We illustrate the performance of the bootstrap algorithm in Section 6 for a dynamic panel
data model. When [f;(0) ¢:(0)'),t =1,...,T, are dependent, we can use a parametric bootstrap
that results from a statistical model that incorporates the dependence or use block-bootstrap
algorithms, see e.g. Hall and Horowitz (1996). By drawing blocks of the appropriate length, we
incorporate the dependence of [f;(0y)" ¢;(0cue)’]’, t = 1,..., T, into the bootstrap. The bootstrap
algoritms for Jx(0y) and S(6y) are identical to the bootstrap algorithm for K(6y) and only differ
with respect to the computed statistic.

6 Power comparison for Panel AR(1) Model

Panel AR(1) model. We compare power curves of statistics that test a hypothesis on the
autoregressive parameter of a panel autoregressive model of order 1 (AR(1)). For K(6), we use
both critical values that result from the limiting distribution of its zero-th order element and
from the bootstrap from Section 5. An elaborate literature on panel autoregressive (AR) models
exists, see e.g. Anderson and Hsiao (1981), Arellano and Bond (1991) and Arellano and Honoré
(2001). In panel data models the cross-section dimension N exceeds the time series dimension
T'. In line with the literature on panel data models, we therefore indicate the sample size by N.
In the previous sections, the sample size was indicated by 7.

For individual n at time ¢, the panel AR(1) model reads

yt,nzcn—i_eytfl,n—i_gt,n t=1,...., 7, n=1,...,N. (68)

The disturbances ¢;,, are assumed to be independent with mean zero. We take first differences
to remove individual specific constants:

Ayt,n :HAytfl,n—i_Agt,n t:27"‘7T7 n = 17"‘aN7 (69)

with Ay, = ye.n — Yi—1.,. Estimation of the parameter ¢ in (69) by means of least squares leads
to a biased estimator in samples with a finite value of 7', see e.g. Nickel (1981). We therefore
estimate it using GMM. The moment equation (1) for the panel AR(1) reads

E(p(0,ytn)) = E(Acty) = E(Ayen — 0Ayi1,) =0 t=2,...., T, n=1,...,N. (70)

A common choice of the instruments is to use all two period and more lagged level values of v, ,,,
i.e. Xen = (Yt—2n - Y1n), see e.g. Arellano and Bond (1991). This leads to the specification of
the moment equation f,(f),

fa(0) = Xo0,(0) : (T = 1)(T—2) x 1 n=1,...,N, (71)
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with ¢, (0) = (Ays, — 0Aya, ... Ayry, — 0Ayr_1,)" and

Yin 0...0 0
0 0
X, = Yi.n (2(T—1)(T —2) x (T —2). (72)
0 0...0 :
Yr—2.n

Besides the independence of €, ,, and finite fourth order moments, we make no assumptions about
the covariance structure of €;,,. We therefore use White’s (1980) covariance matrix estimator:

Vir(0) = & ny JaO) fu(8) : 5(T = (T —2) x 5(T — 1)(T —2). (73)

We also use White’s (1980) non-parametric covariance matrix estimator for Vp;(f) which is
involved in K(6p) :

Vor(0) = £ 000, [2F(0)] Ful0) : 3(T = 1)(T' = 2) x (T — 1)(T - 2). (74)
The derivative 2¢,(0) = —(Ayap ... Ayr_1,) is a white noise series when 6 = 1. The
parameter 6 is therefore not identified when it is equal to one. Weak identified values of 6 occur

when it is close to one relative to the sample size, i.e. when 1—;,9 is small. It implies that the

statistics in Theorem 1 whose zero-th order elements depend on v become size distorted when
0o is close to one relative to the sample size. We analyze this by computing power curves for the
different statistics for various values of 6, and V.

Power comparison. We use the moment equations and covariance matrix estimators for the
panel AR(1) model to conduct a size and power comparison of the different statistics discussed
previously. We therefore compute power curves for Wys(6g), Weye (o), LM(0g) and K(0y) that
test Hy : 0 = 6y with the covariance matrix estimators (73)-(74) and a 95% asymptotic critical
value that results from the limiting distribution of the zero-th order term. We also compute
the power curve of K(6y) when we use the 95% critical value that results from the bootstrap
algorithm from Section 5.

We compute power curves of the different statistics using a data generating process that has
independent disturbances €, ,, which are generated from a student ¢ distribution with 10 degrees of
freedom and mean zero and variance one. The individual specific constant terms c,, are specified
as ¢, = (1 — 6)p,, where the p,,’s are independent realizations from a N(0,2) distribution. The
initial observations ¥, are simulated such that yo, = p, + o, where the ¢ ,,’s are independent
realizations of standard normal random variables. The bootstrap critical values are computed
using 99 bootstrap realizations from the empirical distribution for each simulated dataset. The
number of simulated datasets equals 1000. Panel 1 shows the power curves when N = 50, Panel
2 when N = 100 and Panel 3 when N = 250. The number of time periods is equal to six in all
three panels, T' = 6. All three panels contain the power curves for hypothezes that test for four
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different values of # : 0.5, 0.7, 0.9 and 0.95.

Panel 1: Power curves of Wy,(6p) (solid with stars), W_ _(6o) (solid with plusses), LM(6y)
(dashed), K(0y) (solid) that test H : 6 = 6, with 95% significance using asymptotic critical
value and bootstrap critical values (dashed-dotted) for K (6y), T'=6, N = 50.
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Panel 1 shows the power curves for data sets with 7" = 6 and N = 50. All statistics in
Panel 1 are size distorted. The size distortion is clearly the smallest for K(fy) both when we use
asymptotic or bootstrap critical values. Panel 1 also shows that the size distortion for K(fy) is
more or less independent of #y; both when we use asymptotic or bootstrap critical values. As
expected from the higher order expressions, the size distortion of Wys(6p), Weywe(6o) and LM(6)
rises when 6, increases. The size distortion of Wys(6y) exceeds that of Weu.(6y) which is in
accordance with the higher order expressions from Theorem 1. The size distortion of LM(6,) is
smaller than that of Wa,(6) and W u(fg). This indicates that a considerable part of the size
distortion results from the covariance matrix estimator V(6) (73). LM(6,) evaluates V() at 6,
while Wy,(6y) and We,.(6y) evaluate it at 0y, and Oupe Tesp.. Hence, a large part of the size
distortion results from evaluating V(f) at an estimate of @ instead of the true value, see also
Bond and Windmeijer (2003).
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Since # is not identified in the moment equations when 6 equals one, the power and size of
the different statistics should coincide when 6 equals one. This property holds for K(6y) both
when we use asymptotic or bootstrap critical values. The power of K(6y) when 6 equals one is
similar for all the different values of 6, that are considered in Panel 1. The power of Wo,(6),
Wewe(fo) and LM(6y) at € = 1 clearly depends on the value of 6.

Panel 2: Power curves of Wy,(6y) (solid with stars), W, _(6y) (solid with plusses), LM(6,)
(dashed), K(0y) (solid) that test H : 6 = 6, with 95% significance using asymptotic critical
value and bootstrap critical values (dashed-dotted) for K (6y), 7= 6, N = 100.
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Panel 2 shows that the size distortions of the different statistics are reduced when N = 100
compared to N = 50 and that the power has increased. The size distortion of K(fy) when we
use a bootstrap critical value is clearly smaller than the size distortion that results from using
the asymptotic critical value. The size distortion is the smallest for K(6y) also when we use the
asymptotic critical value. The size distortion of Wa,(0y), Weue(0o) and LM(6y) is an increasing
function of 0, as expected from Theorem 1.

The power of K(6y) when 6 equals one in Panel 2 is similar to its size both when we use
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asymptotic or bootstrap critical values. This is clearly not the case for any of the other statistics
and the power when 6 equals one clearly depends on 6.

Panel 3 shows that the size distortion of K(#y) with bootstrap critical values has become
neglibible when N = 250. There is still some size distortion when we use K(6y) with the asymp-
totic critical value. For Wog(6p), Weye(6o) and LM(6y), it holds that their size distortion is small
when 6y equals 0.5 and 0.7 but is still considerable for larger values of 0y, i.e. 0.9 and 0.95, as
expected from Theorem 1. Also the power of these statistics when 6 equals one is not equal to
the size.

Panel 3: Power curves of Wy,(6p) (solid with stars), W_ _(6y) (solid with plusses), LM(6y)
(dashed), K(fy) (solid) that test H, : 8 = 6y with 95% significance using asymptotic critical
value and bootstrap critical values (dashed-dotted) for K (6y), 7'=6, N = 250.
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Panels 1-3 confirm the theoretical findings from Sections 2-5. Panels 1-3 show that the
finite sample distributions of Was(0p), Wewe(6o) and LM(6y) converge at a slower rate than the
distribution of K(6y). This holds especially at larger values of 6. Because the moment equations
do not identify 6 when it is equal to one, the concentration parameter has a different convergence
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rate for larger values of 3. Theorem 1 shows that this leads to a slower convergence of the finite
sample distribution because of the additional lower order terms in the higher order expressions
of Was(0p), Wee(0o) and LM(6y) compared to K(fy). This explains the slower convergence of
the finite sample distributions of Was(0p), Weue(fo) and LM(6y) towards the limiting distribution
compared to K(fp). Panels 1-3 also shows that the bootstrap improves the approximation of the
finite sample distribution of K(6) compared to its limiting distribution as stated in Corollary 7.
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7 Conclusions

Appendix

A. Proof of Theorem 1.

We construct the higher order properties of the statistics (1, 2, 3 and 4) in a sequence of
steps. First, we obtain the higher order properties of the score vectors involved in the different
statistics, step a. Secondly, we obtain the higher order properties of the inverse of the covariance
matrix, step b. We combine the different elements of the score vectors and the covariance matrix
to obtain the higher order properties of the statistics, step c.
la. Higher order properties of fr (0, Y)’fo(é%)*lpgp(@%, Y) used in Wy, (6y). To obtain
the higher order elements for the 2-step Wald-statistic, we use that

(é - 90) ~ [pT(é%a Y)'fo(é%)_lp:r(é%, Y)]_lpT<92s; Y)/fo(@Qs)_lfT<907 Y)-
We specify pT(égs, Y) as
pT(9287 Y) - DT<007 Y) + pT(éQSa Y) - ﬁT(éQ& Y) + -DT<é287 Y) - DT(007 Y)?

with . o
pr(fas,Y) — Dr(025,Y)
= |:A1‘/9f,1(923)fo<92s)_1fT(‘9237 Y) e Am‘/@f,m<92s)fo(‘92s)_1fT(9237 Y)
= [A1Vasa (B2) - AV (02)] [T © V5 (B2) 7 fr(Bs, Y )]
and V(f,) = V(00) + [V (B25) — V(00)] + [V (00) — V(6)] = V(00) + [V (02s) — V (0a)] + [V (0as) —
V(6o)]. The convergence rate of Vi¢(0) — Vir(6o) and Dy(6ss,Y) — Dr(6p,Y) is therefore equal
to 772", with x = min(p, v).
Using Assumption 1, %fT(QO, Y)Y Vi(025) [T 205 pr (B, Y)] then reads

ﬁfT(gm Y)'fo(é%)_l[T_%(HV)]?T(@S, V)= so+T 281,10+ T 2511+
T_%(V—’_ )(Su-i-n 1 + 31/-}—& 2) + T 2(V+2 )5V+2H,1 + Op(T_%)7

with x = min(u, v) and

Sp = ma’fof(Qo)ilDO R o
swa = mpy Vir(0o) H{=lpr(0,Y) — Dr(6,Y)]}
m'o,fvff(QO)_l[Alv 71(00) -+ AV (00)| L @ Vi(00) ' mo ]
Siml = T2mof[fo(90) = Vip(60) 7' Do
Sut1 = Tj” 17”0fof(90) [Dr(0,Y) = Dr(6s,Y)]
= T3"my Vs (00) " {[A1Var1(00) - -+ AV (00)][ I ® Vy(00) "]
—[A1Vas1(00) - - AmVosm (00)][Im @ Vi (60) 1} © mo,s]
Svina = T3" m0f[fo(90) —fo(90) [ALVos1(00) - - AnVogm(00)] L @ Vip(60) " mo ]
3= Vmg Vg (00)™" = Vis(00)[Dr(00,Y) — Dr(6p,Y)),

)

Sv42k,1 =
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We also used that

mp Vi (00) " [Dr(8,Y) = Dr(60,Y)] = ) ) )
mo Vir(00) = pr(8,Y) = pr(Bo, )] +mp Vir(00) ™ {[A1Vora(0) - - AmVagm(0)][m @ Vi (0) )=
[A1Vora(00) -+ AmVosm(00)][Lm @ Vi(00) " [}l © Vis(60) o).

The convergence of pr(0,Y) — pr(fo,Y) is of order T2 and therefore T2 [pp(0,Y) —
pr(0o,Y)] is of a lower order, T-(1+%) than the other elements. We have therefore left it out. The
convergence rate of mf (Vir(6o) " [A1Vas,1(00) - - - A Vosm(00)][Im @ Vis(0o) " mo s] results from

E[hmT_,oo %(fT(Qo, Y), ® fT(Qo, Y),)] = Vec[E(limT_}oo %fT<60, Y)fT(Q(), Y)’] = VeC[fo(go)],
so we obtain the expression for the limiting expectation:

E{limy oo 7 f7(00, Y ) Vi (00) " [A1Var.1(0o) - - - AmVasm(00)][Im @ Vi (00) ' fr(0o,Y)]}
= { I @ {Ellimr—oo 7. fr(00,Y) @ fr(00,Y)]}}
vec[Vyp(00) " [A1Var1(00)Vir(0o) ™" - AnVogm(00) Vi (60)~M])'
= {Ln @ vec[Vi1(00)] yvec[Vif(00) " [A1Vor1(00)Vif(0o) ™" - -+ AmVagm(00) Vip(00) ]
= vec[Viz(00) " [A1Var1(60) - - - AmVosm(00)]];

which shows the appropriate convergence rate. o
2a. Higher order properties of fr(00,Y ) Vif(Oeue) ' Dr(Opue,Y) used in W, (6p).

~ N

%fT(e(b Y)/fo<écue)71[Tﬁ%(l+y)[)T<ecuea Y)] = S0 + Tﬁ%Sln,l + Tﬁ%(y+ﬂ)su+n,l+
Tﬁ%(y+2’{)slj+2l€,l _|_ Op(Tié),

with k£ = min(v, u).
3a. Higher order properties of f1(6o,Y ) V;;(00) 'pr(6o,Y) used in LM(6y).

ﬁfT(Go, Y)/fo<00)7l[T_%(H—V)pT(QOu V)= so+T 281,10+ T 2511 + T_%(V+H)<Su+n,1 + Spir2)t+
Tﬁ%(y+2n)su+2n,l + Op(Tié)a

with k = p since we evaluate all elements in 6y only.
4a. Higher order properties of f(6y,Y ) V;;(00) ' Dr(6o,Y) used in K(6,).

LfT(Qou Y),fo(eo)fl[T_%(HV)DT(@oa Y)] = so+ T_%Sln,l + T_%(V+K)Su+n,1+

VT .
—= 2
T2 (v+2x) Su4+2k,15

with x = u since we evaluate all elements in 6 only. R
1b. Higher order properties of pr(0,Y) Vi (0) 'pr(0,Y) used in Wa,(6p).

(T30 (B, YY) Vig(020) (T30 pr (820, V)] = Go+ T~ 5 Gy + TG+
T7Goy1 + T2V Gy + Guana) + T2 (G%m,g + Govin2)+

—Lwtak —(v+k —2vtde —Lv
T2 G, 1 + T (Gopamn + Gawama) + T 2 Gapggen + Op(T7220 1),
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with £ = min(v, ) and

G(): Défo(Qg)le
G = DyVis(0o)™ [Alvef,l(‘%) - AV sm(00)][Im @ Vi £(00) = mo ¢]+
[[ ® V(o)™ mo,f]’[Alvef,l(QO) - A Vor.m(00)]'Vi£(60) ™" Do
Greg = TEDH[Vis(00) ™ — Vi (60) "' Do
Goi = [In ®fo(90) "mo ) [A1Vaga(6o) - - - AmVarm(00)] Vip(6o) ™"
[A1Vo7.1(00) - - AV (00)] L © Vi (00) " mo ]
Guimr = T2Dy[Vis(00) ™" = Vig(0o) [ A1Vosa(00) - AmVagm(00)|[Lm @ Vig () mo g+
T3 (I @ Vig(00) " mo,s) [A1Vasa (6o) -+ AmVagm (00)) Vg (60) ™ = Vip(60)~'] Do
Guing = T3 V[Dy(0,Y) — Dr(00,Y)|'Vy(00) ™ Do+
=V DGVis(00) 7 Dr(00,Y) — Dr(0o,Y))] )
Ln @ Vi (00) "'mo ¢ [A1Vasa(00) - - - AmVasm(00)]' Vi (00) ™ — Vi (6o) '
0f1(90) - AV rm (00)][Im @ Vi (00) " mo ]

|

Kﬁ.ﬁw
<ﬁ

GQV—H@I -

Govinz = T3 D[Dy(00,Y) — Dr(00,Y)]'Vy(00) [A1Vasa(00) - - A Vogm(00)]
L @ Vi4(80) " mog] + T2 D1, @ Vy1(00) " 'mo s) [A1Vos.1(60) - - AmVogm(60))
Vis(60) " [Dr(00,Y) = Dr (6, Y)]
Gurons = T2 V[Dr(6,Y) = Dr(00, V)| [V(60) ™ = Vi(6o) ™" Do+
T%@”*l)%[vff(@f))_l = Vi1 (00)7'][Dr (00, Y) — Dr (00, Y)]
G2u+2/¢,1 = T%(z’frl {DT<00, Y) DT(HO, Y)] [fo(@g)_ V}f(@o)_l][Al‘/gfl(e ) .. Am%ﬁm(go)]
L ® fo(9o) mo.¢] + T2 DL, @ Vi p(0o) o 1) [A1Vosa (00) - - - AmVosm(60))
[fo(eo) — Vs (60) [Dr(6o,Y) — Dr(6o,Y)]
Goviang = T D[Dr(6y,Y) — DT(QO,Y)]'fo(go)fl[DT(eo,Y) - DT(QQ,Y)]
Govyaet = T2 D(Dr(0,Y) = Dr(6o, V)| [Vir(0)™ = Vis(60) ][Dr(8,Y) — Dr(6,Y)]
Hence,
T [pr(8,Y ) Vip(Bo) ' pr(0,Y)] " = Go' + T2 Qy,
with
Q1=-Gy' (G +T 2H) ' + T‘%G‘l]*lGo‘l,

where H = _%(R_y) (GUJrn,l +GV+I{,2)+T <G21/+/1 1+G21/+/1 2)+T 2'% v) Gl/+2/<;,1+
3K

T_K<G2(V+H)7l + GQ(V+H),2) + T_TGQV—&—&%AJ- ) .

2b. Higher order properties of pr(6,Y)'V;(0) 'pr(0,Y) used in W, ().

(T2 pr (0, Y ) Vi (0) T2 pr(0,Y)] = Go+ T3 Gy + T 309G, gt
T (u+2m G vi2el T- V+H)G2 (),2 4+ T (2y+3m G2u+3n L+ O ( ——(2u+1))’

with x = min(v, ). Hence,
70+ [pT(é7 Y),fo(é)_lpT(éa Y)]_l = Go_l + T_%Qb
with

Q1= —Gi'[(Grea +T 2H) +T72G;'7'Gy,
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where H = T73"Gy o + T "CGhron + T2 2 Gos 0 + T 303Gy, g, ).
3b. Higher order properties of py(6y,Y) Vis(6)~! (GO,Y) used in LM(6,).

[T7%(1+l’)pT<90, Y)],fo(eo):1 [Tﬁ%(l%ﬂ/)pT(eOa Y)] = Go +1T7%G1V’1+
Ti?Gm,l +T1T7"Goy1 + TﬁE(VJrH)(GwH,l +Gryn2) +T72 e (G 1+ G, 2)+
T=30429G, 1 + T~ (Gaimyr + Gawiny2) + T3 439Gy, g1 + Op (T334,

with x = u. Hence,
T [pr(6y, Y),fo(eo)_lpT(Qo, V) =G+ TTEQ,

with
Q1= —Go'(Guea+T 2H) '+ T 2G;'7'Gy Y,

r@2u

where H =T~ Gl,{ 1—|—G2V 1+T G (Gy+;§;’1+Gy+/{’2)—‘I_T_%K/<G2y+/{,1+GU+K/72)+T_%(2R_V)Gy+2;{71+
T_K<G2(y+n),1 + GQ (v+k),2 ) + T__G2uj3/1,17 R R
4b. Higher order properties of Dr(6y,Y ) Vs (00) ' Dr(6p,Y) used in K(6y).

[T_l(HV)DT(QO Y)J f £(00)~ [T_%(HV)DT(QO; V)] =Go+T 2G1 +T~ 3(+w) Guir2 + T_%(V”K)Guwn,ﬁ
~(vn )Gz (tr)2 17 3(20+3r) Goyisna + Op( __(2V+1))7

with k = p. Hence,
N ~ N —1 o
T(1+v) [DT(eo, Y)Y V;1(60)" D (6o, Y)] =Gl T5Q,

with
Qr= —Gy'(Grea +T5H) '+ T73G;71Gy Y,

where H = T2 "G, o+ T72Gyons + T Gopynya + T2 Gopiaes.
lc. The higher order components of Wy, () that result from mg in Assumption 1 can be
specified as:

Waos(0o) = no+T 2n, + T 2n, + T =N “Nype + T 719y + T "ngy
T 2(V+2K)nl/+2rc+0( 3v)

with
ng = shGy'so
n, = slesg —l— 511/ 1G0 S() + s0Gy 131V1
N, = 51% 1G0 S0 + SOGO S1p, !
Nyrw = $1,1Go 101 + 81, 1G0 S1v,1 + 81,1Q150 + 50Q181, 4kt
(SV+K 1 + Sy—s—n 2) Go S0 + SOG() I(Sy—s—ﬁ 1 + Su+)§72)
Noy = 8, 1Q150 + 50Q1515,1 + 81, Gyt S1v,1
Nak = 51V,KG0 S1k,1
Noy+k = Sllu,/leslm,l + S’ll{,llell’71 + (Sy—i—n,l + Su+n,2),Galsly,1 + Slly,lG(;l(Sl/—l—n,l + SV—}—R,Q)
Nyt2rk = (Su—&-ml + 5u+m72),G6151m,1 + Sllm,lGal(SV-i—m,l + 51/-1—5,2) + 5;+2n,1G8150+

! —1 /
$0Go Sutn1 811 @151k,1
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and k = min(v, p).
2c. The higher order components of W,,.(fy) that result from mg in Assumption 1 can be
specified as:

3K

Wcue(HO): n0+T 2nn+T 2 nu+n+T n2/~£+T 2 nl/+2l{+T 2 n3/£+0p(T T)

with
ng = spGg'so

ne = $4Q180 + $1,.1Go 50 + 560Gy s10
Ntk = Syin, 1Go o+ 855Gy Supm

Now = slﬁlGolle +8151Q130+50Q18151
Nytor = 1/+)€ 1Go 181;-; 1+ Slm 1G0 Sv+n 1+ 30G0_15V+2H71

Slesy—&-m 1+ Su—l—m 1@150 + Su+2/-s IG So
N3, = 51;@,1Q151n,1

and £ = min(u, v).
3c. The higher order components of LM(6y) that result from mg in Assumption 1 can be specified
as:
M(6y) = no—l—T Sny 4+ T 50, + T Ny + TNy + T e
4T~ (2V+I'€)n2 . LT 2(1/—1—21'6)71 ion + O ( _§V)

with k = p and

no = spGy'so
n, = 30Q130 + 1. 1Gotso + shGo s
1
Ny = 31,{ 1Gotso+ SOGO S1k,1
1 1
Nygr = Sly 1Go St + 811G S0+ 81,.1Q150 + $6Q151k,1+
1
V+H 2G S0 + SOG Sv+k,2
1
Ny = Sly 1G0 S+ Sll/ 1Q130 + 50Q151u 1
Noy = 51,.; 1G0 S1k,1
Novtr = Sy, 1Q151u 1+ 8, 1@1815 1+ Sy% 2Q150 + Sy 2G Sw.1 + 30@18u+n 2+ 51,1Go S
/
Nu+2k = Spyqax, 1G0 S0 + SOGO Sy42r,1 T Sm 1Q151k,1 + SZ/+I{ 2G0 S1k1 T Slm 1G0 Sv+k,2

4c. The higher order components of K(6y) that result from mg in Assumption 1 can be specified

as:
_3 _3x
K(0y) = no+T 2n,+T~ N Nyir + T 0o + T~ =5 “Nyroe + T 203, +0,(T~2)
with k = p and
_ /G—l
_ / -1 1 =1 !
n, = Slfi,lGO So + SOGO 81571 + SOleo
_ / —1 /1 —1
Nytr = Sy-m 1G0 50 + SOGO Sv+ik,1
Noy = 51,.i 1Go Sm 1+ 515 1@150 + 5@@151m 1
-1
Nyt2r = l/+2n 1G0 So + SOGO Sy42r,1 T Squn 1G0 S1k,1 T Sln 1Go Sunat
S()ley—s—ﬁ,l + SU+H’1QISO
_ /
N3k = 31,@,1@151;@,1-
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B. Lemma 2. We construct the conditional expectation of the limit expressions of n, and ns,
given p when the number of observations converges to infinity. We begin with n, which consists
of two parts: 7, Gy " so and sjQ1so :

st,1Gg 'so : We specify 1, as

Vip(00) 720, = Vis(00) "2 Dop + Vis(60)2 Do,

with p = (D{)fo(90)71D0)71D6‘/ff(90)71¢f and \ = (D()’J_fo(80)D07L)71D6’J_77/}f and D(),J_ : ]{ff X
(kf=m), Dy Do = 0, Dy | Do, = Iy;—m 50 p and X are independent and p ~ N (0, (DoVy(6o) " Do) ™1),
A~ N(0,(Dg Vis(Bo)Do,.)~"). This implies that limT_ms’ly’lGalso can be specified as:

limp_ o S/1V71G6150

= Vir(00) " [A1Vora(60) - - - A Vasm (00)][Im @ Vip(0o) " bylp

= [N'Dg .+ p'DoVip(00) M [A1Vasa(0o) - - - AmVarm(00)llp @ {Vi5(00) " Dop + Do 1 A}

= tr{[p @ {Vy7(00) "' Dop + Do N[N DGy | + ' DoVis(6o)[A1Vosa(6o) - - - AmVarm(60)]},

since [, @ djc = [d'c; ... d¢y) = [c ® d] with c and d m x 1 and ky x 1 vectors. Because

E{[p @ {Vy;(00) "' Dop + Dot N[N Do, + 0 DyVis(60) |0}

= E{p @ Vi;(00) " DopX' Do, L|p} + E{p @ V;(00) ' Dopp' DoV (60) | p}+
E{p® Do 1 AN Dy _1|p} + E{p ® Do 1 \p' DtV (60) " p}

= E{p @ V;1(00) " Dopp’ DoVis(00) ' p} + E{p ® Do AN Dy | |p}

= [p® Vy(00) ™ Dopp' Dy Vi (00) ] + [p @ Do, (Dy 1 Vi(00) Do) D 1]

where we used that E(\) = 0, E(p|p) = p and E(AX') = (Dgy  Vi(00)Do,1 )", we obtain that

Ellimy o 3/11/,1G0_150’p]
= tr{[p ® Vi;(00) " Dopp’ DoV (00) " 1[A1Vor1(0o) - - - A Varm(0o)]}+
tr{[p ® Do, (Dfy , Vi§(0o)Do,1) " Df | [[A1Vas1(00) - - - AnVas.m(00)]}
= > tr{p;Vis(00) " Dopp’ DyVis(00) L AiVari(6o) }+
;211 tr{p; Do, (Df  Vif(0o)Do, 1) ' Dy | AiVayi(0o)}
= i PiP’DB‘k/ff(90)_k114i‘/bf,z'(90)fo(90)_1170/)+
P ol (Do Vi (B0) Do), (D6, 1 AiVer.i(80) Do, L]ng,

where [(D(J,LVJ‘J‘(QO)DO,L)ALH and [Dfy | A;iVyyi(00) Do, 1]jn are the jn-th element of the respective
matrix.
spQ1sp: We assume that v = p =1,

My oo Q1 = limy oo G (Gru1 + G1e1)Gy " = (DyVy4(00) "1Do) H[DyVy4(0) "
[A1Vor1(00) - - - A Vasrm(00)][Im @ {Vi£(60) " Dop + Do 1 A} + L @ {Vi£(60) " Dop + Do 1 A}
[A1Var1(00) - - - A Vasm(00)]' Vi (00) ™ Do + Dy, Do) (Do Vs (6o) Do)~

and

limTHoo S6Q1$0 =

P{IDVr(00) " [A1Vora(0o) - - - AV (00)] [Lm @ {Vif(00) " Dop + Do L A+

[T @ {V£(60) " Dop + Do i AH'[A1Vir1(6o) - - - AnVagm(00)]' Vi (00) ' Do + Dy ¥, Do} p

= p' DoV (00) " [AiVas1(00){Vi(00) " Dop + Dot A} - - AnVorm(00){Vi1(00) "' Dop + Do i Ap+
P 1AV (00){Vis(00) ™ Dop + Dot A} -+ A Vosm(00){Vi s (60) " Dop + Do L A}|'Vyf(00) ™ Dop+
p' DoV Dop.
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The conditional expectation of p' DV, Dyp, given p equals zero because, by Assumption 2, ¥,
is independent of ;. The conditional expectation of the remaining part of s;Q15o,

E[p'{DuVis(00) " [A1Var1(60) - - - AmVogm(00)|[Im @ {Vy£(60) " Dop 4 Do, L A} }plp]
= ' DVis(00) " [A1Vasr1(00) - - - AmVagm(60)l[p @ Vif(00) ™' Dop]
= > PP Do Vi (00) " AiVayi(00) Vi (60) " Dop,

which we have shown for the expression of s}, G sg so

limy o0 E[sqQ150lp] = D ity pi’ DoV (00) 7 AiVzi(00)Vis(0o) ™ Dop
and

limr_.o Elny|pl = 3327, PiP’lzf)fo(on)flAz‘Vef,z’(Qo)fo(Qo)leonL
23 i i L (Do Vi (B0) Do)t (D5, 1 AiVari(00) Do, g

ng, consists of 51, Q150 and s, ;G 's1,.1. We construct the limit expressions of the conditional
expectations of both of these expressions given p.
$1,1Qi80. We assume that v = p =1,

liInT—>c><> Ql - 11InT—>c><> Gal(Gly,l + Gln,l)Gal

= (DoVis(00) " Do)~ [Dy Vi £ (00) " [A1Vas.1(00) - - - AmVasm (00)][Im @ { Vi (60) " Dop + Do L A}]
I @ {Vi£(00) " Dop + Dot A} [A1Vesa(0o) - - - AmVogm(00)]' Vi (60) ' Do+

Dy, Dol (DyVyf(00) ™ Do)~

SO

1iII1T_>OO 8/1%162180 =

= 4 Vi(00) M ALVor1(00) - - - AV s (00)][Tm @ Vi(00) " 0 5] (DgVi£(60) =" Do)~ { DoV (60) ™"
[A1Var1(00) - -+ A Varm(00)] [Im @ Vip(00) ™ b 4] 4 [In @ Vip(0o) by

[A1Vasa(0o) - -+ AnVasm(00)]'Vi¢(00) " Do + DyW, Do} p.

Because of the independence of ¥, and p, the conditional expectation of the part of s}, Q150
that contains ¥, equals zero and can be left aside. We construct the conditional expectation of
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the remaining two parts of s}, ;@150 given p:

E{sVi(00) " [A1Vos.1(00) - - - A Vorm (00)] I @ Vig(00) = 1) (Do Vi (60) ™" Do) ™"
DoV (00)  [A1Vas,1(00) - - AmVasm(00)][Im @ Vis(00) b lplp}

= E{p' DoV (00) " A1 Visa(0o) - - - AV gm (00)][Lm @ Vi (00) " 0 (] (Dg Vi (00) Do)~
DV (00) ' [A1Vas1(00) - - - A Vasm(00)][Im @ Vip(0o) b lplp}+

E{NDg  [A1Visa(0o) - - AnVogm(00)][Im @ Vi (00) = 4 (] (D Vi (00) = Do)~ Do Vi (600)
[A1Var1(00) - -+ A Vosm(00)][Im @ Vip(60) " b 4] plp}

= E{p' DoV (00)  A1Visa(0o) - - AV gm (00)][Im @ Vi (00) "' Dopl (D Vi (60) ' Do)~
DoV (00)  [A1Vs,1(00) - - AmVasm(00)][Im @ Vis(00) "0 lplp} + E{p' DyVi(0o) !
[A1Var1(00) -+ - A Vs (00)][Im © Dot AJ(DoVi(60) ™ Do)~ DoV (60)

[A1Vor1(00) - - AnVosm(00)][Im @ Vip(00) " 4lplp} + E{N Dg , [A1Vora(0o) - - - AmVosm(60)]
[ @ Vi(00) " Dopl (Do Vis(00)~ Do)~ DoVip(00) " [A1Vasa(6o) - - - AmVigsm(60)]

[ @ Vi (00) ¢l plp} + E{NDg | [AiVora(00) - - - A Vipr.m(00)][In © Do 1 A
(DVi(00) " Do) DoV (00) " [A1Vas1(00) - - - A Vosm(00)] [Im ® Vi (00)~ 0] plp}

= p'DoVip(00)  [A1Vasa(0o) - - - AV rm (00)] I @ Vip(00) " Dopl(Dg Vs (00) " Do)~
DoVis(00)~H A1Vas1(60) - - - A Vasm(00)][Im @ Vir(6o) " Doplp + E{p' DV (0o) ™
[A1Var1(00) - - - AnVagm(00)][Im @ Do L A|(DoVis(00) Do)~ DoVi(6o) !

[A1Vor1(00) - AnVosm(00)][Im @ Dot N plp} 4+ E{N Dj | [A1Vosa (o) - - - AmVasm(60))
[Im @ Vi £(00) ™ Dopl (D V5 (00)~ Do)~ DoV (00) " [A1Vasa(6o) - - - A Vogm(00)]

[Im ® Do 1 Alplp} + E{N Dg | [A1Vera(00) - - AV gm(00)][Im ® Do 1 A]
(DV5(00) Do) DoV (00) " [A1Vas,1(00) - - - A Vasm(00)] [Im ® Vi (00) = Doplplp}
:CL1+G2+CL3+G4,

because all other elements contain first and third order moments of A which are equal to zero.
The expressions for different a-terms read:

a1 = p'DyVis(0o) M A1Vos1(00) - - - A Vasm(00)][Im @ Vi(00) ™ Dopl(DgVis(6o) Do)~
DyVi(0o)~ A1Vas1(00) - - - A Vagm(00)][Im @ Vi (00) " Doplp,

ay = E{p'DoVis(00) " [A1Vara(0o) - - - AmVogm(00)[Im ® Do L N(DVis(00)~ Do)~
DoV (00)  [A1Vas.a(00) - - - AnVarm(00)][p @ Do 1 Nl p}
= E{tr([p ® Do Al[p' DoVis(0o) " ArVasa(00) Dot A -+ o' DoV (60) ™ A Vogm(60) Do, L ]
(DgVi£(00) " Do) DoVif(00)~ [A1Vosa(6o) - - - AmVisr.m(00)]) |0}
= E{tr([p ® Do ][\’ DoVis(0o) "  ArVis,1(00) Dot A= A" DoVi(00) ™ A Vo g.m (00) Do L ]
(DgVis(00) ™" Do)~ DoV (00) " [A1Vosa(6o) - - - AmVarm(60)]) |0}
= tx([p @ Do ][50 " (Do, Vy4(09) Do, 1); 9" DV 4(00) ™ AyVg 1 (0o)s -+
" 40 {( Do, Vi (00) Do, )7 0" DyVi1(00) ™ AV (00)i] (D Vi (80) Do)~ DV (8)
[A1Var1(0o) - -+ AV ym(6o)])
since

EQVA) = EAYLE b)) = X7 " (Do, Vs (60) Do )i b
with b; the i-th element of the (k; —m) x 1 vector b and (Dg  V;7(60)Do1); " the i-th column of
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(Do, . Vys(00) Do, 1)~

= E{)\/D(l),L[Alvé'f,l(HO) - A Vos.m(00)][Lm @ Vi(00) " Dopl(DyVis(0o) ™ Do)~
DyVi(00) " [A1Vas.1(00) - - - A Vasam(00)][In ® Do 1N plp} = E{tr([p @ Do AN Dj |
[A1Vag(00) - - AnVasm(00)] T © Vi (60) =" Dopl (D Vi (60) " Do)~ DV 1(8) "
[A1Vos1(0o) - AmVarm(00)])p} = E{tr([p @ Do, 1 (Do, L Vi(00) Do) ' Dy 1 [A1Vis.a(00) - - - AmVigm(0o)]
[ @ V5 (00) = Dopl (D Vi (00) = Do)~ DoV (00) H [A1Vasa(6) - - - AmVagm(00)]),

and

as = E{N' D | [A1Vora(00) -+ AnVosm(00)][Im @ Do, L A|(DyViy(00) ™ Do) ™

DV (60)" 1A1Vor1(6o) -+ - A Vo (00)][Lm © Vi (60) " Doplplp} =

E{[NDg y AiVos.1(00) Do A -+ N'Djy | A Vg (00) Do L (Do Vi (60) ™ Do)~ Dy Vi (60) ™
[A1Vopa(fo) - A Vefm(eom ® Vi1(80) " Doplplp} =

[tr(Do, 1 (Do, Vif(0o) Do)~ Dy 1 AV (60)) - - - tr(Do 1 (Do, Vif(00) Do) Dy AV (o))
(DoVi£(00) " Do)~ DV (00) A1 Vr.a(00) - - AmVi.m(00)][Im @ V£ (60) = Doplp,

s /
80 limy oo E(s),1Q150|p) = a1 + az + a3 + as.
/ -1 .
SllIJGO Sll/,l .

limy oo 81,1Go 's101 = E{Y)Vi(00)  [A1Vora(00) - - - AmVigm(00)][ I ®fo(90) "]
(DVi£(00) " Do) I @ Vi (00) b4 [A1Vir.a(00) - - - AmVarm(00)]' Vi (00) sl p}

We construct the conditional expectation given p by substituting V;;(6g) 21 1=V #(00)"2Dop+
Vi (80)2 Do, 1),

{1/1}‘/ff(‘90)_1[141‘/bf,1(90) < AV pm (00)][Im © Vip(60) 40 ) (DGVyp(00) ™ Do) ™"

(L ® Vip(6o)~ ¢f] [A1Vas1(00) - - - AnVogm(00)' Vi (00) "l p} =

E{W}fo(go) PAL V1 (00)Vig(60)~ ¢f W Vi(00) " A Vasrm(00) Vi (00) =011 (Do Vs (00) = Do)~
(W Vip(00) P ArVisa(00)Vip(00) by - - 0 Vi (00) " AmVogm(00) Vip(00) "4 Ip} =

=2 im > E{[Y fof(eo) 1Aiv9f,i<60)v}f(‘90)_lwf][wlfvff(eo)_lAijﬁj(HO)Wf(QO)_lwf]|:0}
(DoVys(6o) ' Do)t

=D i1 2 E{[( "DyVip(00) ™ + NDg 1 )AiVasi(00) (Vi (60) " Dop + Do L N)]

[(p"DGVip(00) ™" + N Dgy | )A,; VOfJ(QO)(fo(QO) 'Dop + Do, 1 A)]|p}(Dg fo(go) 'Do);;'

= >y 2 [P DoV (00) = AiVisi(00) Vi (00) ~ Dopl [ Do Vi (6) ' A; %fy(%)vff(@o)_lDopH
2[' DoV (00) ™ AiVay,i(00)Vis(00) " Dopltr[ Do, (Df | Vig(0o) Do) Dpy | AjVay;(6o)]+
E{tr[Do,l)\XD{)yLAngf,i(90)]tr[DO,L)\XD{)?LAJ-ngJ(90)]—|—

[0 DoV (00) " AiVari(00) Do, L [0 Dy Vs (60) ~H A; Vefa(QO)Do,L)\] + 20" Dy Vi (00) " AiViy,i(00) Do, L \]
(N'Dfy | AjVoy.i(00)Vis(00) "  Dopl|p} (Do Vis(0o) "' Do),

= Zz_l Z; 1laij + bij + ¢ + dij + €3] (Dg Vi (6o)~ DO)zg )
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ai; = {[P/D()fo(eo)flAibe,z’(90)fo(90)71Doﬂ][ﬂ'D()fo(HO)*lAjVef,j(90)‘/ff(90)71D0P]
bij = 2[p’ Dy VJ‘f(HO)_lA Vefz(eo)fo(eo)_lDoﬂ]tl"[Do 1(Dg 1 Vi#(00) Do, 1) " Dgy 1 AjViy (60)]
cii = 30" (D, Vip(Bo) Do) 2Dy | A; Vefz(Qo)Do 1(Dg, 1 Vi(00) Do, 1)~ %]mﬁr
2 Y (Db Vi (00) Do) ¥'Dh  AiVigi(60) Do, (Dj Vi (60) Do)
[(Df 1 Vip(00)Do,1) "' D} A;Vayi(00) Do, L(Dé,Lfo(QO)Do,l)fé]jljl +
2 zlfilm Zflf 1”;1;&“ [(Do vaf(QO)DO L) ,DE) J_A V6’fz(90)D0 L(Dtl) vaf(QO)DO,L)_
[(Do ﬂ/ff(eo)Do 1)7#' D} | AVr(00) Do, L(Do L Vip(00) Do,1) %)+
2211 1 2= &;ﬁzl[(Do,Lfo(QO)Do,L) 3Dy | A; Vof,z(QO)Do,LEDo,Lfo(HO)DO,LV
(Do, Vi£(00) Do, 1) 2" Dy | AjVay,i(00) Do, 1 (Dg 1 Vir(00) Do, 1)~ 2 i
dij = p'DyVip(00) " AiVayi(00) Do, (Do, 1 Vis(00) Do, 1)~ Do, 1 Voy,j(60) A5V (00) " Dop
eij = 20" DoVip(00) = AiVis.i(00) Do, (Do, Vif(00) Do)~  Do,1 Vi, (00) A5V (00) " Dop.

[N

]i1i1

D=

]i1j1

=

]iljl

since all first and third order moments with respect to A are equal to zero and

E{tf[Do,MXDé,LAi%f,i(90)]tr[Do,u\XD6,LAJVef,j(30)]|P} =
E{)\ D{ | A, ngz((%)Do J_)\)\ Do LA; ngJ(QO)DO LA} =
E{C (Dfuvff(‘go)DoL) ’D/o J_A bez(HO)DOMDquff(eO) 0,1 )%C
C(Déﬂ/ff(@o)Do 1) Dy AjVay,i(00) Do L (Dj  Vyf(0o) Dy, L)%C} =
S S S S € Cial(Dh 1 Vip(80) Do) D L AViga(60) Do
(Dy Lfo(Qo)Do 1)? ]%112[(D6J_fo<60)D0 1) D}y | A;jVor,;(00) Do, 1 (D, J_fo(QO)DO 1)2)5ij =
32“ L [(D()vaf(eO)DOL) 2Dy | A %fz(QO)DOL(DMfo(@o)DOL) 22+
23S 177317&11[(17 L Vi7(00) Do, 1)3' D}y | AiVgy.i(00) Do, L(D LVi(00) Do 1)% i,
[(Dé)lvff<60)D0 1) D} | A;jVpz(00) D, L(Do L Vi(00) Do 1)3)5,5,+

2 Y2 (Dl Vi (00) Do) ¥ Dy, AVigi(9) Do.1 (D Vs (00) Do) i
[(Doigj_vfwa)DO,J-) "Dy AjVay,i (0o )DOL( 0.1 Vir(00) Do )2+
2 nfilm Zflf 1m]1¢11[<D0 lfo(ﬁo) ) D6 J_A %fl(QO)DO%(DO,J_fo<60)D0,l)%]iljl
[(Df, Vy(00)Do,1)2' Dy | A; ‘/bfy(eo)Do 1(DG, 1 Vis(00) Do, 1)2 1

where we used that ( = (D/07Lfo(90)D07L)’%)\ ~ N(0,I;_p). Only second and fourth order
moments of the same elements of ( are therefore non-zero.

E{[p'DyVy(80) ' AiVay,i(00) Do, 1 N[ Dy Vi (00) AV ;(80) Do, 1 Al p}
= E{[p"DyVy£(00) " AiVos.i(00) Do, L ][N Do, 1 Viy,(00) A3V 4 (00) =" Dopl p}
= p'DyVi1(00) " AiVay,i(00) Do, L (Do, Vi (00) Do, 1)~ Do, 1 Vayj(00) A3Vis (60) ~ Dop

and

E{[0' DV (00) " AiViz,i(00) Do, L N[N Dj L A;Vir,i(00) Vi (60) ' Dopllp} =
= p' DV (00)~ AiVigs,i(00) Do, (Do 1 Vi (00) Do, ) Do, 1 Vi, (00) A5V (00) ™ Dop.

The conditional expectation of ny, given p therefore reads:

E[limTﬂoo 77,2,,|p] = a1 + (05} -+ as -+ Q4 + ZZ’;I Z;.n:l[aij -+ bij -+ Cl'j —+ dij -+ eij]-
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C. Proof of Theorem 2.
In order to apply Lemma 6 from Phillips and Moon (1999), we verify the conditions for Lemma
6 to hold. When £ is fixed,
7m0 Ver(0) "t mo s — F(1,F)

where F'(1,k) indicates a Fisher distributed random variable with 1 and & degrees of freedom.
The convergence of £mj 7Vip(0)""mo s is identical for all values of k and is therefore uniform
such that Lemma 6 from Phillips and Moon (1999) implies that

5o Ves(0)"tmoy — 1,
when k converges to infinity. Also when k is fixed,
mi Vip(6)~! [T*%(””)DT(HO, Y)] — N(0, DyVys(69) " Do),

since T~ Dy(6y, Y)' Vi (00) " Dr(6p,Y) = DyVi1(00) "t Dy. Since we assume that 7= D6, V) V(0o

DyVy5(6o) =" Do which is finite, mf ;Vj,(6)~" [T’%(H”)DT(HO, Y)} converges also uniformly when
k converges to infinity and we can apply sequential limits.
la. Wy (o). Because my is stochastically bounded and converges to i, when T goes to
infinity, the results of Lemma 6 of Phillips and Moon (1999) apply and we can let T and k
converge to infinity sequentially, so first 7" and then k. We construct the order of the differ-
ent elements of Woys(6y) when T and k jointly converge to infinity for which we assume that
Dr(00,Y)'Vi;(00) 1 Dr(60,Y) is of the order T** and Dz (00,Y)' Vi (600) ™' fr(60,Y) is of order
T3(+),

When k£ goes to infinity proportional to 7% and v > «,

ﬁf (6o, Y)'fo(é2 ) [T_%(H")pT(é%? Y)=s0+T" En Sy—aa1 + T 72811+

T30 20 (5 4 aa1 + Sugnzag) + T 30H2Dg, 00 0,
with £ = min(v, ) and

S0 = mOfof(QO)f o

mo fof(eO) 1{ [pT(9 Y) = Dr(6,Y)]}

—mo #Vir(o)™ [AlVef 1(00) -+ A Vo g.m (00) I ® Vi(00) " mo ]
st = T3%mf ([Vis(0)~1 — Vi(00) ] Do

Sytr—20,1 = Tgnmofof(Qo) {[AWVora(6o) -+ AV pan (00)] L ® V7 (60) 7]

~[A1Vas1(00) - - - AnVorm(00)l[Im @ Vi (00) "} Im @ meo f]

Sy—2a,1

W ——

Svtn-s02 = Lemp ¢ [Vr(00) ™" = Vip(00) M [A1Vasa (o) - - - AmVigm(00)][Im ® Vip(60) " mo 4]
$(2r—1) , ~ . _ ~
Sv+2(k—a),l = TTmo,f[fowt)) b Vi#(0o) [Dr(00,Y) — Dr(6o,Y)],

which we obtained by fixing the convergence rate of fr(0o,Y ) Vi¢(0o) ' Dr(6o,Y) to T —3(2+y),
with v > «, and use the results that £mq ;Vis(00) 'mo s — 1.
’ p
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2a. Wcue (00) .

%fT(HOa Y),fo(é)_l[Tﬁ%(lw)DT(é, Y)| = so+ Tﬁ%é’lm + Tﬁ%(y+K72a)5u+n—2a,1+

Tﬁ% (V+2(Hia))3y+2(m—a),17

with x = min(v, u) > a.
3a. LM(eo)

fT(007 Y)Y Vi (00) T2 ) pr(00,Y)] = s+ T~ % sysan + T Fs101+
T"(VJFH 29 (84 n—201 + Svin_202) + T3 +20- a))swr?(ﬁ*a)vl’
with k = p.
4a. K(go).
T304 f(00, V) Vi (00) T2 Dp(00,Y)] = s+ T 351,01 + T 307205, o1+
jﬁ__(y—%Q("'i Oé))<91/—|—2(m—oz),la
with k = p.
1b. Wy, (6o).
(T2 pp (B2, V) Vi (02) M T30y (B0, Y)] = Go + T8 Gy + T 3G+
1/+/£ @
TGy o)1 + T2 (Gt + Going) + T (Govtrn—201 + Govrrn-202)+

75" Guioe1 + T_(V%_a)(Gz (tr—a)1 T Gawin—a)2) + T-3(v+3n-a G2u+3l€72a,l

with x = min(v, u) and
G(): D/Ofo(QO)le

G, = D6fo(90)*1[141‘/9f,1(90) AV gm (00)][ I @ Vi £(60) o g]+
(I ® Vi (00) " mo,f]' [A1Vos.1(60) - - - AV sm (00)]' V£ (60) = Do

Gisa = TSD ol V()1 = Vip(0o) '] Do

Gao-ayg = FlIm @ Vyp(0o) "o s) [A1Vopa(0o) - - - A Vefm(HO)]'fo(GO)_l

[Al‘/bf,l(@ol + AnVagm(00)][Lm @ Vi (00) " mo ]

Guina = T2DHVip(0)™ = Vip(00) M [A1Vara(00) - - - AmVogm(00)] I @ Vip(60) " mo ]+
T3 [y @ Vig(00) " mo ) [A1Vaga(6o) -+ AmVagm(00))' Vi (60) ™ Do

GV+N72 = TE(K 1) [DT(Q Y) DT(Q(),Y”/V}JC(G())ilDo—{—
T2 DyVy(60) " [Dr(8,Y) — Dr(6o,Y)]

Gavin 2o = T (I, ®fo(90) tmo,g) [A1Vora(0o) -+ AnVosm (60))
[Vir(0) ™ = Vip(00) ™ [A1Vag1(00) - - - AuVagm(00)] I @ Vi (00) ~ o]
Gavir—2a2 = 1T%(”*D[DT@ Y') = Dr(6,Y)'Vi(60) " [A1V9f1(90) = AmVogm(0o)]
[ ® Vi (B0) "o g] + §T2 DLy @ Vip(B0) o]
[A1Vas.1(00) - - AnVasm(00))Vis(B0) " [Dr(8,Y) = Dr (6o, Y)]
Grrony = T2 V[Dp(6,Y) — DT(907Y)]/[fo(92_1 — Vi1(00) ™' Do+
T30 Dy Vi (0) ™ = Vi (60) ][ D (0, ) Dr(6o,Y)]
Gopin-ayr = T3 D[Dp(0,Y) = Dr(0o, V) [Vyr(0) ™t — Vip(60) "]
[A1Vera(6o) - - - AV gm (00)] [ I @ fo(ﬁo) mo.g] + T2 V(L @ Vis(0o) ‘g s
[A1Vora(00) - - AVosm (00)) [Vig (0) ™1 = Vi (00) M[Dr(8,Y) = Dr(0o,Y)]
Gogin-ayz = TV VDr(0,Y) = Dr(00,Y))'Vis(00)  [Dr(0.Y) — Dr(6o,Y)]
Gavyansan = 122 [Dr(0,Y) = Dr(00,Y) [Vip(0) ™" = Vip(00) [Dr(8,Y) = Dr(6o,Y)]
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Hence, R R R
T pr(0,Y ) Vig () pr(0,Y)] ™ = Go ' + T72Qy,
with
Q1= —Gi'(Gu,+H) ' +T72G;"'Gy?
where H = T~ =N Glnl + 71" (2U @ GQ(V—a),l + Tﬁ%H(Gu+/{,1 + Gy+n,2) + 71 G21/+/1 2a,1 +

Govin—202) + T "Gyionws + 1~ (gutn— a)(GQ(V-i—H—a),l + Govir—a)2) + T-3+dr—a )Gayi3k—201-
2b. W_,..(0).

u+n 2a (

[T=204) Dp(0, V)V (0) T2 ) Dyp(8, V)] = Go + T~ 5 G+
T‘%(’H‘”) GV_,'_,,G o+ T u+2~ Gy+2m,1 + Ti(V+K7Q)G2(V+H—Oé),1 + T_%(2V+3H_Q)G2y+3ﬁ—2a,1a

with x = min(u, v). Hence,
T Dr(0,Y) Vi (0) " Dr(0,Y)] ™ = Go' + T72Qx,

with
Q1= —G'[Gri+ H) '+ T72G; "Gy

V4K

where H =T"2 Gy—|—)<.', 9o+ T 2
3b. LM(d):

Guiomr + T~ 0F3 DGy + T 3BH20Gy, o o0

(T2 pr (00, Y)Y Vi (00) (T2 pr(60, Y)) = Go + T 5Gryn + T 3Gt
1/+/£ @
Ti(yia)G2(V—Oé),1 + T_i(y—'_n) (GV+/€ 1+ Gu—i-m 2) +1 (GQV‘H’? 2a,1 + G2V+"€ 201 2)+

T V+22N Gu+2n,1 + T_(V+R_a)(G2 (v+K—a),l + GQ (v+r—a),2 ) + Tﬁ§(2y+3’{ “ G2V+3l€*26¥,1

with k = pu. Hence,
T(1+U) [pT(QO’ Y)/fo(eo)ilpT(QO’ Y)]il = Gal + Tﬁ%le

with
Q1 = —G*W(Glyl +H)'+ T72G Gy

u+n 2a

with H = G2(l/ a),1 + T 2 (Gu+/-c,1 + Gll+l€,2) + 7" (G2u+n 20,1 +

G2y+/172a,2) +T Gu+2/1,1 + T V_Hi @ (GQ(V—FR—O( ),1 + GQ(V—H;—a),Q) + T_%(V+3l€ @ G2u+3nf2a,1-
4b. K(&O)

([T=20) Dy (60, V) 'V (60) 7 [T~204) Dp(6y, V)] = Go + T 5 Gy a+
T_%(V_Hi) GV—‘,—K,,? + T_ﬁ—;_nGy-&-Qn,l + T_(V+H_Q)G2(V+n—a),2 + T_%(2V+3K_Q)G2V+3K—2a,1’

with k = u. Hence,

-1

T | Dp(0o, Y)Y Vip(60) ' D60, Y)| =Gl +T75Q,

and
Q1= —Gy'[(Gra+H) P+ T2G Gy,
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v+K

with H = T=3/Gyyypn + T3
lc. Wy (6):

Guiong + Tﬁ(”%'ﬁa)G%wm—a)a + Tﬁ%<2u+2nia)G2u+3H72a,l-

Wog (90) = no+71" e Ny—2a + T_(V_Q)TLQ(V a) T T_(V_ZQ)HQ(V 20) T T_%n” + T_%Tl,.g Tt
T_%(V_'_R_Qa)ny-}—m 90 + T (z/—l—m)n pir T+ T (v— a)n2(1/ ) + T~ z(l/+2(/-c a))n v4+2(k— a)‘f’
T3 =20 g0+ T g ey + T3 207200 o o0y + T=0F" 2000, 4 0,

with x = min(u, v),

ng = S/OG_ISO
1
Ny—sa = S 201Go " 5 + 50Go Sv—2a,1
_ !/
71,2(,,,20‘) = Su- 2a, IG Sy— 2a,1
n, = 30@130
N, = 31,{ 1G So + SOG 5141
= + )Gy tso + s4G ! ( + )+
Nyt k—2a = Sl/—i—n 2a,1 Sy4k—2a,2 50 Sobo (Sv+k—2a,1 Sv+k—2a,2
l
51/ 20, 1G S1r,1 515 1Go Sv—20,1
Mok = 815 1Go Y511
Ny+r = 81!{ 1Q180 + SOleln 1
Now—a) = Sy_9a1Q150 + 56Q15, 24,1
—1
Ny42(k—a) = (51/+/-s—2a,1 + fu+m—2a,2) Go S1k,1 T Sl,ﬁ 1G0 (51/-1—5—204,1 + Sy+m—2a,2)+
/ — /
Syion—201Go S0 + SoGo Sy42r—2a,1
n2y+/¢—2a - (Sl/+/~s—2a,1 + Sy+/~c—2a,2) QISO + 50Q1<Sy+/§—2a71 + Sy+n—2a,2)
/ / /
N2(v+k—a) = Sy+2(,§,a)71Q180 + SOQISV—I—Q(H—Q),I + (Sl/—f—m—Qa,l + Sy+/§—2a72) Q1515,1+
!/
315’1Q1(Su+n—2a,1 + Su+n—20¢,2)
_ !/
nn+2(uf2a) — Sy—2a,1@lsl/—2a,1
1—1
N2(v+k—2a) = (Su+n—2o¢,1 + 5V+n—2a,2) Go (SV—H@—Qa,l + Su+n—2a,2)

2c. Wcue (90)2

Wcue(QO) = ng+ Tﬁ%nn + Tﬁn”Qn + Tﬁ%ﬁn&ﬁ + Tﬁ%(y+ni2a)nu+n—2a+
Tfé(u+/{f2a)ny+n_2a + Tf%(u+2(nfa))ny+2(nia)

with k£ = min(u, v),

ng = shGy'so

Ny = 30Q130 + $1.1Go s+ $Gy ' s1m

Nok = 81,i 1G0 S1k,1 Sln 1@150 + 30Q181/{ 1

N3k = Sll‘{ 1Q151n1

Nytr—2a = V_HQ 20, 1G() So + SOG 81/+I€ 2a,1
Myt2(h—0) = Syipn— 20, Gy 1Slrfl + Sln 1G0 Swm 20,1 T Sppree 2a, 1 Q150+
30Q13u+n 201 + 8} 1 9n—2a, 1Golso + s4Gy Sy 20,1

n2(u+/~c72a) - ;/+/§—2a71G0 Sv4+k—2a,1

3c. LM(6,) :

M(0o) = o+ T2 Ny 20+ T~y 0y + T~y o) + T~ 5n, + T~ 5n, + T ngyt
Tﬁi(wmiza)nzﬂmf%é -+ T72(V+K)nu+n + T_(V_a)n2(ufa) + Tﬁ%(y+2(ﬁfa))ny+2(nfa)+
T*%(2y+nf2a)nzy+,$72a + T—(l/+m—a)n2(y+nia) + T*%n+2(u72a)n’{+2(yi2a) + OP(T_(V_FH_O[))
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with kK = p,

no = s,Gg's0
Ny_—9q = 82/720416(6150 —+ 36G615u72a,1
n2(y—2a) = S;/fza,lGalSl/an,l
ny = 55Q150
n, = 81,,1Go " s0 + 56Gg St
ny—&—ﬁ—Qa - (Sl/—i—fs 2a,1 + SV+I€ 2a 2)IG6150 + 56G61(5V+n—2a,1 + Sy+m—2a,2)+
S/y 201G 's151 + 81,1 Go Su—2a,1
N2k = Slﬁ 1G S1k,1
Nyt = SIH,IQISO + SOQISIH,I
N2(v—a) = S;/72a,1Q150 + S{)QISV—QO(,I
nu+2(n—o¢) - (Su+nf2a,1 + Su+/172a,2),G6151/£,1 + Sllﬁ’lGal(Squanl,l + Su+/172a,2)+
S:/+2n72a,1G6180 + S/OG[;18V+2H7201,1
_ / /
Noyt+k—2a = (3u+nf2a,1 + Sl/+/172a,2) QISO + 30Q1<Sy+nf2a,1 + Su+n72a,2)
N2(v+k—a) = S:,+2(H_a)71Q180 + S{)Ql&/—l—?(n—a),l + (5u+nf2a,1 + Sy+nf2a,2),leln,1+
SIL%,IQl(SV—&-/i—QaJ + Sutn-20,2)
nn+2(l/—2a) - S;j72a71Q18V—2O¢,1
4c. K(eo) :
K(0o) = no+T 5n, + T "ngy + T 2%ng, + T30 H20p, o 4
Tfé(u+ﬁf2a)ny+ﬁi2a + Tf%(u+2(nfa))ny+2(nia)
with k = p,
ng = shGy'so
n, = syQ150 + $1,.1Gg 0 + 4Gy 's1k
Noy, = 8'1,.C 1Go 'Stk + S151Q150 + 55Q 15141
N3k = Sln 1@181r@ 1
Ny+k—2a = 1/+/§ 20, 1G SO + SOG SVJrn 2a,1
My42(h-0) = Syir—2a, 1Go st + S, ern 3u+n 20,1 T 84 p20,1Q150F

1
30Q18u+n 20,1 + 51490 20, 1Golso + s6Go Syt 20,1

D. Lemma 3. Convergence of

Sutr—20,1 = TT%Hmé,fof(QO)*l{[Al%f1(90) + AV (00)][Im © Vi1 (60) "]
~[AiVor1(00) -+ AnVagm(00)][ I @ Vi (00) '} Iim @ mo ]

- (3u+nf2a,1,1 e 3u+nf2a,1,m)

with
Sutn—201i = T,?mo Vir(00) Ai[Vari(00)Vir )7t = Vira(00)Vig (00) Yo s
= T;; m Vir(0o) ™ AilVag.i(00) — Vari(00)] Vi (60)~mo j—
= m0fvff(90) YAVari(00)Vip(00) Vs (60) — fo(eo)]vff(@o) mo, f

mp (Vir(0o) " AilUgpi — Vefz(eo)fo(‘)o)*lUff]Wf(Qo) mo,y + 0p(1)
mp (Vir(6o) AUy, szff<90) mo,s + 0p(1)
T Vip(00) ™' @ Z=mp ;Vip(00) =  Ai)vec(Up.zi) + 0p(1).

[—a= =

|
~
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where Up r; = Upsi — Vir.i(00)Uys. Because of Assumption 2%,

Susn-zai = (=M Vir(0o) ™ @ g (Vip(00) "' As)vec(Us.g.i) + 0p(1)

7 )‘i7

with \; ~ N(0,0'u(eo) and O'ij(eo) = hmk_)m(ﬁm{)’f‘/ff(eo)fl X ﬁm{),fof(eo)ilAi)/mj<90)
(o, Ves(00) ™t ® —Zzmg ;Vip(0) 1 A;), where

Wij(6o) = limg oo Elvec(Ugzi — Vazi(00)Vir(00) ' Usp)vec(Uss; — Vori(00)Vip(0o) " Uss)'],
= El(Yu0,5— bevi(QO)‘/ff(00>715kf(m+1)77/}u,ff)(¢u,9¢f - ‘/efﬂ;(Qo)vff(00)715/€f(m+1)77bu,ff>/]7

which expression can be further constructed using Assumption 2*.

E. Proof of Theorem 3. The convergence of S(6) is characterized by
S(0p) = wo+ T 5w, + 0,(T7%),

with wo = mf, ;Vi(6o) " mo.g, w, = T%m’o'f[fo(éo)_l—fo(eo)_l]mo.f. By decomposing fo(«%)’%mo,f
as
Vis(60)"2mo s = Vis(60)~2 Dopy + Vi(6o)2 Do 1 Ao
with py = (DgVys(00)~ Do)~ Dy Vs (00) = mo.p and Ao = (Dg , Viy(00) Do, )~ Dfy  mo.y and Do,y -
kr x (ky —m), Dy Do =0, Dy Doy = Ir;—m; we can specify the higher order properties of
S(6p) also by
S(0o) = no+ngL + T’%wu +0,(T~%),
with
no = mq ;Vyp(00) " Do(DyVis(6o) ™" Do)~ DoV s (Bo) ~'mo. s,
no.L = my ;Do (Dy 1 Vyp(00) Do)~ Dy 1 mo.s-
The higher order properties of the J-statistics result from substracting the higher order properties
from Theorem 1 from the S-statistic. Consequently,

JQS(QO)
que(e()) =N + Tigw — T_%ny + T_%n“ + T_%ny-‘rm + TﬁVTLQl/ + Tﬁﬁnms_’_
JLM(QO) 0,L M T_%(2V+H)n2y+,§ + T_%(V+2H)nl/+2)<, + T_%Vngl, + OP(T_%V),
ik (0o)

where all the components for the respective statistics are defined in Theorem 1.

F. Proof of Theorem 4. When we condition on %ZA)T(HO, Y)= %DT(QO, Y)

the higher order expansion of K(fy) can be specified as

+—= | Dr(00,Y) = Dr(0o,Y

K(0o) = no + T2 (ny + nyrr) + T (o + Nyran) + 0,(T7),
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where

no = syGytso
U (6) n, = syQ150 + $1,.1Gg 0 + 4Gy 's1k
0 Nok = 8'1,i 1G6151/{1 + 3/1,@ 1Q150 + 55Q151k1
Nytr = 1/+/s IG S0 + SOG’O SV+H 1
mixed Nyiog = VJFHJGO S1k1 + SIH 1G0 Sytr1 T+ SH% 1G5150 + 56G515V+2K,1+
S{)lev—f—m,l + 51/+H,1Q1‘90
and
0-th order { so=miy_;Vy;(85) ! [ﬁDT(éo,Y)}
Vo) = { sia= TEmp[Vi(00) ™ = Vip(60) '] [ JrDr(60. V)]
v = THm, Vig(00) " { Fe[Dr(00.Y) = Dr(0o. V)] |
mixed = T2%my  Vip(00) " H{[A1Vos1(00) - AnVopm(00)] I © Vs (60) 7]
~[AVopa(00) - -+ AV (00)][Lin @ Vy(60) ™ 1}HIim @ 1o, ]
Sysana = T7mh [Vyp(60) ™" = Vig(60) 7 {%{ r(00,Y) = Dr(6o, V)] }
with
Q1= —Go'(Grua + G +T5H) T+ T75G | 1Gy Y,

where H = G y2x,1 + Goin)2 + T_%“G2u+3n,1 and

Go = [% (00, Y ] Vip (o)~ [%DT(H()’Y)}

Grea = T# [JeDr (eo,y)] [V7(60)™ = Vi (00) ) [ D00, )]
Gyina = T {H[Dr(00,Y) = Dr(00,Y)] | Vis(00) ™ | J=Dr(00, V)| +
Ta" [% (0o, )] Vip(0o)™ {ﬁ[DT(HOa Y') = Dr (6o, )]}
Gueans = T {FglDr(00.) = Drlo. I} Vi 00) = Vig(00) ) [ Dr (00, ¥)] +
7 [0 00 ¥)] 135 00) ™ = VigOo) | { oDt V) - DTwo,Y)]}
Gon)2 = T”{%[DT(QO, Y) = Dr(bo, Y }fo (6o) 1{%19 (6, Y DT(90>Y)]}

Gausns = T {JglDr(00,Y) = Dr(00, Y )|} 1V3500) ! = Vyy0o)
-

r(00,Y) = Dr(00,Y)]}

The higher order approximation of K () conditional of %DT(HO, Y’) can be used to construct
the higher order approximation of the bootstrap realizations of K(¢). The bootstrap samples are
obtained by independent draws with replacement ((f;(#)" ¢:(6o)) from the population {(f:(6o)’

q@(0o)), t=1,...,T}.
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The expressions of the bootstrap realizations of K(y) read:
- - - . . . . -1
R(00) = $.Jr(60,Y)Vis(60) " Dr(60.Y) | Dr60,Y)Vy(60) " Dr(6y., Y )|
Dr(60,Y) Vs (60) " fr (6o, Y),
with JET(907 Y)= Zle fT<90)>

Dr(60,Y) = [Y,_; r4(6o) — Al%j,l(QO)WZ(@O)flfT@o, Y)...
> Bmt(00) = A Vorm (80)Vi5(80) ™ fr(60, Y )]
and Vj(fo) and Vj(6y) are covariance matrix estimators that are based on the bootstrap re-
alizations ((f:(6o) @(60)')', t = 1,...,T). Because Vpri(6o) — Vori(6o), Vif(6o) — Vir(6o), we
P P
obtain that

7 [0 G (00) = Vaga00)Vys (00) (00, Y) = Elaia(00))] = mo.pi + Op(Fr),

with mo. s = (Mo.g1-.-Mo.f.m),
mo.f 7 ¢9.f7

with ¢y, ~ N(0, Vag.r(60)), Vao.s(00) = Vao(0) — Var(00)V;1(60) Vs (o), and independent from
Oy

Given DT(QO, Y'), the higher order expansion of the bootstrapped K(Qo) directly results from
the higher order expansion of K(6,) :

K(0o) = 7o + 1% (it + Tlyin) + T (Fia + ivsan) + 0p(T7),

where
fio = 3,Go'50
70 _ Ty = sleso —l— 31,@ 1G0 So + SOG 5141
( 0) . ~ o G
Nox = 515 1Go S1k1 + 51,{ 1Q180 + Slesm 1
Nyt = u+n IGO 50 + SOGO SV—H@ 1
mixed Nytox = V+H 1G S1k1 + 51,{ 1G Syt + SH_QH 1G0 So + SOG Sytor1+
SOQl‘SVJrle + SZ/+H,IQ1‘90

and

0-th order : { §0=mg,fl7ff(00)*1 [%ET(HO,Y)}

VO0) = { Sua= Thig f[Vs(60) " = Vys(00) "] | Jr Drl0o. Y]

Sutnl = T%“mo,fvff(eo)_l{%[DT(%,Y) — Dr(0,,Y)]
mixed = T Vip(fo) 1{[141‘/?%1(90) An}%f,m( 0)][Im ® Vir(60) "]
~[A1Vo1.1(00) -+ AV gm(00)] L © Vi (00) " THIm © o.]
Spraes = T f[Vy5(00) ™ = Vys(00) ] { FelDr (0. Y) = Dr60, V)]
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with 3 3 3 3 3 )
Q1= —Go'[(Gien + Goyna+ T 3H) '+ T73G, ' 1Gy Y,

where H = G901 + Gopinyo + T-3%Glyi3s, and

Go = | FxDr(00, Y)]/fo(Qo)_l [LﬁT(Ho, Y)}
Chor = T# [ D000, Y)] [Vr(00) " = Vy(00) [ L Dr(60,Y)]
Gying = T%N{%[ (00, Y) — Dr(65,Y) }fo (60)~ [ (0o, Y ]

T3 [% 7(0o, )] Vi(0) {W[DT(Hoa Y) = Dr(fo, )]}

Coyony = T”{%[ r(0o,Y) — DT(HoaY)]}/Wff(QO)I—fo(‘%)l] [%DT(‘%,Y)]JF

T [ Dr(00, )] 1V31(00) " = Vis(00) ) { ZlDr 0y, > Dr(00, )]}
Copimya = T" {ﬁ[DT(Qm Y) = Dr(6o,Y) }fo 0o)~ l{ﬁ [Dr(60,Y ﬁT(90>Y)]}
Courswr = T {J[Dr(00,Y) = Dr(6o, Y)]} [Vy(80) ™ = Vis(60)

{ﬁ[DT(QO,Y) — Dr (6, Y)]} :

Identical to the limit behavior of the zero-th order term of the higher order approximation of
K(6,), the zero-th order term of K(fey.) converges to a x2(m) distributed random variable for
all possible values of £(¢(fy)) whenever the number of instruments is fixed.

The higher order approximations of K(fy) and K(f.u.) can be used to obtain the 2x-th order
Edgeworth approximations of the distribution of these statistics by using, see Rothenberg (1984),

Pr[K(fy) < s = Fuls — T 2"n,.(s) + T "na(s) + O,(T %),
Pr[K(0p) < 8] = Figls — T7#5(s) + T "iaa(s) + Op(T737)],
with
ne(s) = limy_ o E(ng + nyiw|ng = )

Nok(s) = limp_ oo {%{an(s) [%nk(s)] + [% log(fno(s))} var(ng 4+ Nytr|no = $)+
[ Zvar(n, + nysslng = s)| — 2E(na, + nysaxlno = 5)}}

ﬁH(S) = limT_,oo E(’fLH + 7~I,,_|_,.€|77L0 = S),

Nok(s) = limp_ o {%{Zﬁk(s) [%ﬁk(s)} + [% 1Og(fﬁ0(8)):| var (Mg 4+ Nyyw|fo = $)+
[%var(ﬁ,{ + Ny w |0 = s)} — 2E (N + Mysax|fio = s)}} ,

and F,,, fnos Fros [, are the distribution and density function that belong to the limit behavior
of ny and 7y resp., i.e. the distribution and density function of a x?(m) distributed random
variable.

Depending on if n,(s) = 0 or not, which is identical to independence of the limit behavior
of T ’%"‘(V(Qg) — V(6y)) and my, we can construct two different Taylor approximations of the
distribution of K(6y) and K () :

1. ng(s) =0:

Pr[K(0,)
Pr[K(6,)

Fg(8) + 17" fng (8) [n2(s) + Op(T
Fg(8) 17" fng (8) P2 () + Op(T

5]

IA A

J
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2. ng(s) #0:
8] = Fyy(s) = T73% f,o (5)[na(s) —
s] = Fyy(s) = T72% fo () [ (s) —

where we used that Fl,(s) and Fj,(s), fu,(s) and fz,(s) are identical.
We subtract Pr[K(6y) < s| from Pr[K(6y) < s] to obtain:
1. ny(s) =0:

PI[K(QO)
Pr[K(0,)

IN A

Pr[K(fo) < s] — Pr[K(0o) < 5] = T~ fuy ()2 (5) — Tiz(s) + Op(T~27)],
2. ng(s) #0:
Pr([K(fp) < s] — Pr[K(00) < s] = T 3" o, (8)[ns(s) — fin(s) = T 2" (nag(s) — fias(s)) — Op(T )],

The Edgeworth approximation of the finite sample distribution show that the limit distribu-
tion of K(6) converges to the limit distribution of K(6,) in all instances. Because the empirical
distribution

The empirical counterpart of Hy : 6 = 6y for which E(Dr(0o,Y ) Vis(00) ' fr(00,Y)) =
E(hmT_)OO[\/TJQ(Qo) + (Almgl_f c. Ammgm,f)]/fo(Ho)’lmf) = 0 is HS 0 = 90 for which
E(Dr(80,Y)'Vis(60) ' f1(8o,Y)) = 0. The empirical distribution of (f,(6y)’ ¢ (o)') is therefore
{(f:(00) G(o)), t =1,...,T} and converges to the unconditional distribution of (f(6o)" ¢ (6o)’).-
The Edgeworth approximations of K(fy) and K(f,) are with respect to the unconditional and
empirical distribution of (f;(69)" ¢:(6o)’). All higher order elements of the Edgeworth approxima-
tion of the distribution of K(fy) therefore converge to the respective higher order elements of the
Edgeworth approximation of the distribution of K(fy) and their converge speed is T-2". Hence,
far(5) = Nge(s) + Op(T~2%) and 7y (s) = ny(s) + O,(T~2%) and we obtain the approximations of
the finite sample distribution of K(6y) :

1. ng(s) =0:

Pr[K(0y) < s] — Pr[K(fy) < s] = O,(T~

Nlw

I{)7

2. ng(s) #0: .
Pr[K(y) < s] — Pr[K(6y) < s] = O,(T"),

which shows the improved approximation of the finite sample distribution of K(6y) that results
from the bootstrap compared to the approximation that results from the limiting distribution.
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