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The trade-off between incentives and endogenous risk

Abstract

Standard models of moral hazard predict a negative relationship between risk and incentives,

but the empirical work has not conÞrmed this prediction. In this paper, we propose a model

with adverse selection followed by moral hazard, where effort and the degree of risk aversion

are private information of an agent who can control the mean and the variance of proÞts. For

a given contract, more risk-averse agents supply more effort in risk reduction. If the marginal

utility of incentives decreases with risk aversion, more risk-averse agents prefer lower-incentive

contracts; thus, in the optimal contract, incentives are positively correlated with endogenous

risk. In contrast, if risk aversion is high enough, the possibility of reduction in risk makes the

marginal utility of incentives increasing in risk aversion and, in this case, risk and incentives

are negatively related.

1 Introduction

Moral hazard plays a central role in problems involving delegation of tasks. When the principal

cannot perfectly observe the effort exerted by a risk-averse agent, the payment must be designed

taking into account the trade-off between incentives and risk sharing. As the optimal level of

incentives depends on the variance of output, the relationship between risk and incentives is an

important testable implication of incentive models.

Standard models of moral hazard predict a negative relationship between risk and incentives.

The central reference is the model presented in Holmstrom and Milgrom (1987). They analyze the

conditions in which optimal contracts are linear, that is, the agent�s payoff is a Þxed part plus a

proportion of proÞts. In their model, the negative relationship between risk and incentives results

from the interaction between these two variables in the risk premium of the agent. As the agent is

risk averse and incentives put risk in agent�s payoff, incentives incur a cost in utility. At the optimal

incentive, an increase in risk is balanced by a reduction in incentives.

The empirical work does not verify the negative relationship between risk and incentives, and

sometimes Þnds opposite results. Prendergast (2002) presents a survey of empirical studies in

three application Þelds, namely, executive compensation, sharecropping and franchising. Positive

or insigniÞcant relationships are found in the three Þelds and negative relationship is found only
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in studies about executive compensation. The conclusion is that the evidence is weak. Similarly,

in the insurance literature, the monotone relationship between risk and coverage is not veriÞed as

reported in Chiappori and Salanié (2000).

The lack of empirical support has stimulated the search for alternative models, compatible with

the observed facts. Prendergast (2002) suggests a theoretical model that assumes monitoring is

harder in riskier environments. As incentives are a substitute for monitoring, incentives and risk

are positively related. His model departs from Holmstrom-Milgrom structure and risk aversion does

not play any role. Ghatak and Pandey (2000) analyze contract forms in agriculture developing a

moral hazard model with risk neutral agents and limited liability. Their model is related to ours

as the agent controls mean and variance of output; however, as limited liability induces riskier

behavior, they assume it is costly to the agent to increase the risk of the project.

We propose a model with adverse selection, moral hazard and multitask. Principal is risk neutral

and agent is risk averse. Multitask models were Þrst developed in Holmstrom and Milgrom (1991),

but in these models, effort controls exclusively the mean of the proÞts. In our work, we consider

the possibility of manager to control the variance of the proÞts. Note that the resulting variance

is endogenous, and we can deÞne two types of risk: the exogenous risk is the intrinsic risk of the

Þrm, and the endogenous risk is the one resulting from the effort of the agent in reducing variance.

Another feature in our model is the presence of adverse selection before moral hazard. The principal

does not know the risk aversion of the agent and designs a menu of contracts so that self-selection

reveals the type of the agent. Sung (1995) extends the Holmstrom-Milgrom model showing that

linear contracts are optimal in moral hazard problems in which the agent controls risk. Sung (2002)

shows that linear contracts are optimal for mixed models of adverse selection before moral hazard.

His model is close to ours as variance is controllable, however, as he models an observable project

choice, variance is assumed to be a contractible variable, while we assume the principal cannot

observe the choice of variance. Although the optimality of linear contract is not established for our

model, we assume linearity and restrict the analysis to the space of linear contracts.

When the agent cannot control the risk of the project, the marginal cost of incentive is higher

for an agent with more risk aversion. For this reason, more risk-averse agents select lower-powered

incentive contracts. However, when agents can exert effort in risk reduction, the direction of

selection may change. An agent with high risk-aversion may prefer a high incentive contract,

as he can reduce risk and the cost associated with risk. Technically speaking, our model does not
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have the single-crossing property. Consequently, the relationship between the incentive given to the

agent and his risk aversion is ambiguous. We computed the optimal contracts for representative

situations and found that the relationship between endogenous risk and incentives is ambiguous. For

a set of agent types with high risk-aversion, incentives and endogenous risk are negatively related.

Conversely, for a set of agents with low risk-aversion, the relationship is positive. With respect

to exogenous risk, the Holmstrom-Milgrom result is preserved: exogenous risk and incentives are

negatively related. In Araujo and Moreira (2001b), a model akin to the one presented here is applied

to the insurance market and an ambiguous relationship between coverage and risk is found.

In Section 2, we present the general model. In Section 3, we give two examples. First, the

single-task model is examined and the traditional relationship between risk and incentives is found.

In the second example, we present a multitask model where the agent can control the risk. In

Section 4, we compute the optimal contracts for relevant cases of multitask model and we Þnd

positive and negative relationships. In Section 5 we state the concluding remarks. In Appendix A,

we discuss, in general terms, implementability and optimality without the single-crossing property,

and, in Appendix B, we examine the technical conditions for computing the optimal contract in

the multitask example.

2 The Model

The principal delegates the management of the Þrm to the agent, whose effort can affect the

probability distribution of the proÞts. Let e be the vector of efforts and z be the proÞts, with

normal distribution N(µ(e),σ2(e)). Let c(e) denote the cost of the effort for the agent. The agent

has exponential utility with risk aversion θ > 0, uniformly distributed on Θ = [θa, θb]. At the time

of contracting, the agent knows his risk aversion, but the principal does not. We will occasionally

refer to θ as the type of the agent. We assume the wage is a linear function of the proÞts, that is,

w = αz + β, 0 ≤ α ≤ 1. The contract parameter α is the proportion of the proÞts received by the
agent and is called the incentive, or the power, of the contract. The parameter β is the Þxed part

of the contract which is adjusted in order to induce the agent to participate.

The timing of the problem is as follows: (1) the agent learns his type, then (2) the principal

offers a menu of contracts {α(θ),β(θ)}θ∈Θ, (3) the agent chooses a contract, and (4) exerts effort
accordingly, (5) the Þrm produces proÞt z and (6) the agent receives w = αz+ β and the principal
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earns the net proÞt, z −w. The certainty equivalence of the agent�s utility is

VCE(α,β, θ, e) = β + αµ(e)− c(e)− α
2

2
θσ2(e),

that is, the expected wage, minus the cost of the effort and the risk premium. The last term is

the origin of the negative relationship between risk and incentives in pure moral hazard models.

The risk premium acts as a cost because the principal must compensate the agent to induce him

to participate. Since the marginal risk premium with respect to α is increasing in both α and σ2,

the principal compensates an increase of σ2 by a reduction of α, and equates the marginal cost and

the marginal beneÞt of incentive. With adverse selection preceding moral hazard, a similar effect

exists: the principal has to compensate the agent for the costs, in order to induce participation and

truth-telling.

Let e∗(α, θ) denote the agent θ�s optimal choice of effort, given α. Note that e∗ is independent

of β. The resulting indirect utility is V (α,β, θ) = β + v(α, θ), where

v(α, θ) = αµ(e∗(α, θ))− c(e∗(α, θ))− 1
2
α2θσ2(e∗(α, θ)) (1)

is the non-linear term. Thus, the problem is reduced to an adverse selection problem where the

agent has quasi-linear utility V (α,β, θ).

We assume the principal is risk-neutral. Her utility, given θ, is the expectation of the net proÞt,

that is, the proÞt after the wage is paid to the agent,

U(α,β, θ) = E[z −w] = (1− α)µ(e∗(α, θ))− β,

where the expectation is taken with respect to the conditional distribution of z, given the effort

choice of the agent θ under the contract (α,β).

The adverse selection problem is to Þnd the functions α(·) and β(·) such that

(α(·),β(·)) ∈ argmaxE[U(α(θ),β(θ), θ)] (2)

subject to

V (α(θ),β(θ), θ) ≥ V (α(�θ),β(�θ), θ), for all θ, �θ ∈ Θ, (3)

V (α(θ),β(θ), θ) ≥ 0, for all θ ∈ Θ. (4)

The expectation in (2) is taken with respect to θ. The constraint (3) is the incentive compatibility

condition (IC). A function α(·) is called implementable, if there is a function β(·) that satisÞes IC.
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The constraint (4) is the participation constraint where the reservation utility is normalized to be

zero.

Guesnerie and Laffont (1984) fully characterize the optimal contract under the assumption of

single-crossing property, that is, the cross derivative vαθ has constant sign. The solution of the

model involves the deÞnition of the virtual surplus

f(α, θ) = µ(e∗(α, θ))− c(e∗(α, θ))− 1
2
α2θσ2(e∗(α, θ)) + (θ − θa)vθ(α, θ). (5)

The four terms represent the costs and the beneÞts considered in the optimization: the average of

proÞts, the cost of effort, the risk premium, and the informational rent. The pointwise maximization

of this function, that is, α1(θ) = argmax f(α, θ), is the relaxed solution. The incentive assignment

of the optimal contract is the best monotone combination of the relaxed solution and intervals of

bunching.

In our model, we may use the envelope theorem to derive the marginal utility of incentive,

vα(α, θ) = µ(e
∗(α, θ))− αθσ2(e∗(α, θ)).

It is the mean of the proÞts minus the marginal risk premium. As agents with higher risk aversion

exert more effort in risk reduction, the marginal risk premium term may increase or decrease

with the agent�s risk aversion. Consequently, the cross derivative vαθ may have any sign. The

characterization of the optimal contracts in adverse selection problems without the single-crossing

property is analyzed in Araujo and Moreira (2001a), and Appendix A presents some results that

are relevant for the solution of our model. When the single-crossing property does not hold, discrete

pooling may occur: a discrete set of agent types may choose the same contract.

3 Two Examples: Single-Task and Multitask

We now examine two cases. In the single-task case, the agent effort affects only the mean of the

proÞt. We show that the degree of incentives in the optimal contract decreases with risk. In the

multitask case, the variance and the mean are under control of the agent. Since the marginal cost

of incentives depends on the endogenous variance, the optimal contract may have a complex shape

that must be found numerically. Optimal contracts were computed for the multitask case and are

presented in Section 4.
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3.1 Single-Task

We Þrst analyze the single-task speciÞcation where agent�s effort controls only the mean of the

proÞts. Let eµ denote the effort and assume the mean of the proÞts is linear in eµ, µ(eµ) = µeµ,

and the cost of effort is quadratic, c(eµ) = e2µ/2.

The Þrst-order condition of the agent�s problem provides the optimal effort, e∗µ = αµ. As

expected, effort increases with the power of incentives. The non-linear term of indirect utility is

v(α, θ) =
α2

2

¡
µ2 − θσ2¢ ,

and the marginal utility of incentive is vα = αµ2−αθσ2. An increase in incentives has positive and
negative effects on the utility of the agent. The positive effect is the increase of the share of proÞts.

The negative effect comes from the increase of risk in the wage. The single-crossing property holds

for this case, since vαθ = −ασ2 < 0. An agent with low risk aversion has high marginal utility of
incentive and may choose a high-powered incentive contract.

The virtual surplus, as deÞned in (5), is a concave function and the solution of the relaxed

problem is given by the Þrst-order condition fα(α1(θ), θ) = 0. Thus,

α1(θ) =
µ2

µ2 + (2θ − θa)σ2 .

The function α1 is decreasing in θ and vαθ is negative. In this case, the optimal contract of the

problem coincides with the relaxed solution. The variance σ2 has also a negative effect on α, since

it increases the marginal cost of incentives present in the risk premium and in the informational

rent.

The relationship between α and σ2 is still negative, given θ. Therefore, adverse selection before

moral hazard is not sufficient to change the traditional risk-incentive trade-off. If agent controls

only the mean of the proÞts, risk does not affect the beneÞt of principal, because she is risk neutral,

but increases the marginal cost, because she has to compensate for the risk premium and has to

pay the informational rent. Consequently, the incentives are lower in riskier projects.

3.2 Multitask

We introduce the possibility for the agent to control the variance of the proÞts. Let eµ and eσ be the

effort exerted in mean increase and in variance reduction, respectively. We assume cost is quadratic

and separable, c(e) = 1
2(e

2
µ + e

2
σ). Let µ(e) = µeµ and σ2(e) = (σ0 − eσ)2, where the exogenous
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variance, σ0, is the variance when no effort is provided to reduce it. Given these functional forms,

the optimal choices of effort are

e∗µ = αµ, and e∗σ =
α2θ

1+ α2θ
σ0 < σ0.

The effort in mean e∗µ is higher, the higher is the incentive. The effort in variance reduction e∗σ

is higher, the higher is the incentive, the risk aversion and the exogenous variance of the proÞts.

This is the expected result, since higher α provides incentive to the agent increase average proÞts,

but, simultaneously, increases the risk of his payoff. The risk-averse agent is induced to reduce

risk increasing e∗σ, and this effect is stronger, the higher is the risk aversion. So, the endogenous

variance, σ2(e∗) =
³

1
1+α2θ

´2
σ20 < σ

2
0, is decreasing in α, for a given σ

2
0 and θ.

The non-linear term of indirect utility is

v(α, θ) =
1

2
α2µ2 − α2θσ20

2(1+ α2θ)
.

More intuitive expressions are obtained by the use of the envelope theorem:

vα = µe
∗
µ − αθ(σ0 − e∗σ)2,

vθ = −α
2

2
(σ0 − e∗σ)2 < 0.

The former states that the utility increases with α due to the mean of the proÞts, but decreases due

to the risk premium. The latter states that informational rent decreases with risk aversion. From

the former, the cross derivative is

vαθ = µ
∂e∗µ
∂θ| {z }
=0

− α(σ0 − e∗σ)2| {z }
<0

+2αθ(σ0 − e∗σ)
∂e∗σ
∂θ| {z }

>0

.

The Þrst term is zero, that is, the marginal utility is not affected by the effort in the mean of the

proÞts. The other two terms stem from risk premium. The direct effect, −α(σ0 − e∗σ)2, has an
interpretation similar to the one in the single-task case: the higher is the risk aversion, the higher

is the effect of incentive on risk premium. The effect via effort, 2αθ(σ0 − e∗σ)∂e
∗
σ

∂θ , acts in opposite

direction; marginal utility increases with θ because more risk-averse agents exert more effort in risk

reduction. In our example,

vαθ = −α(1− θα
2)σ20

(1+ θα2)3
(6)

and the function α0(θ) = 1/
√
θ deÞnes a decreasing border between vαθ > 0 and vαθ < 0 regions,

with vαθ > 0, for α > α0. For less risk-averse agents, the direct effect dominates and the marginal
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utility of incentive decreases with risk aversion. For more risk-averse agents, the effort produces a

stronger effect, such that the second term dominates and vαθ > 0. This changes the self-selection

direction, that is, an agent with a higher degree of risk aversion has a higher marginal utility of

incentive, and chooses contracts with more power in incentives.

The next step is to deÞne the virtual surplus and Þnd the solution of the relaxed problem,

α1(θ). The incentive schedule of the optimal contract is α1(θ), whenever the incentive compati-

bility constraint is satisÞed. As the single-crossing property does not hold, two points have to be

observed: Þrst, the incentive compatibility cannot be trivially checked; and, second, if α1(θ) is not

implementable, the computation of optimal contract must follow the procedure presented in Ap-

pendix A. The optimal incentive schedule may have a complex form, resulting from a combination

of α1(θ), discrete pooling and continuous bunching.

We restrict the analysis to parameters values that satisfy the conditions in Araujo and Moreira

(2001a), as explained in Appendix B. For given σ0, µ and [θa, θb], we compute the optimal contract

α∗(θ) and the endogenous risk σ2(e∗(α∗(θ), θ)), then we plot the function α∗(θ), and the risk-

incentive curve. In Section 4, the results for three representative cases are reported.

The relationship between incentives and endogenous risk is connected to the relationship between

incentives and risk aversion. Note that

σ2(e∗(α(θ), θ)) =
µ

1

1+ θα2(θ)

¶2
σ20.

When vαθ > 0, α(θ) is increasing and, consequently, risk is decreasing in θ. Therefore the relation-

ship between endogenous risk and incentives is negative. On the other hand, when vαθ < 0, α(θ)

is decreasing and risk and incentives may be positively related if θα2(θ) is increasing in θ. That is,

the endogenous risk decreases with risk aversion, provided that α(θ) does not decrease too fast.

We show in Appendix B that the incentive in the relaxed solution is decreasing in σ0, therefore

the relationship between incentives and exogenous risk is negative when optimal contract coincides

with relaxed solution. For more complex contract schedules, the relationship is obtained numeri-

cally.

4 Results

The equations above for the multitask example were numerically implemented for three cases that

generate increasing, decreasing and mixed relationship between incentives and risk aversion. The
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parameter values, σ0 = 0.91 and µ = 1, are the same for the three cases, and the values of θa and

θb change for each case. These values were chosen in order to generate functions that are tractable

by the procedure detailed in Araujo and Moreira (2001a).

In Figure 1, for θ ∈ [2.5, 3.5], the dotted line α0(θ) is the border between the vαθ < 0 region to
the left, and the vαθ > 0 region to the right. The relaxed solution α1(θ) is increasing in Θ, and

coincides with the optimal contract. Figure 2 is the corresponding plot for risk and incentives. An

agent with higher risk aversion exerts more effort in risk reduction and this behavior reduces the

marginal cost from risk premium. This effect more than compensates the increase in marginal cost

due to higher risk aversion. The net effect is that more risk-averse agents choose higher-powered

incentive contracts and the relationship between risk and incentives is negative as in Holmstrom

and Milgrom (1987).

The contract for a set of types with lower risk aversion, θ ∈ [0.5, 1.4], is shown in Figure 3. The
relaxed solution is implementable as vαθ(α1(θa), θb) < 0. The optimal contract coincides with the

relaxed solution, but this time the relationship is reversed. More risk-averse agents have higher

marginal cost of incentives, thus they prefer lower-powered incentive contracts. At the same time,

more risk-averse agents exert more effort in risk reduction and the variance is lower. As is seen in

Figure 4, the risk and incentives are positively related.

For a broader interval of types, that encompasses vαθ of both signs, the discrete pooling is

possible and the optimal contract presents a U-shaped form. In Figure 5, the optimal contract

for θ ∈ [0.7, 3.0] is plotted.1 Computational procedures found the optimal contract that combines
relaxed solution, discrete pooling and continuous bunching. Incentives and risk aversion are pos-

itively related for more risk-averse agents and negatively related for less risk-averse agents. The

U-shape of the optimal contract is also present in risk-incentive graph, as we can see in Figure 6.

The results above are concerned with the endogenous risk. The relationship between exogenous

risk and incentives is negative for the Þrst two cases, since the optimal contracts coincide with the

relaxed solutions. For the third case, the sensitivity dα/dσ0 was numerically calculated and plotted

in Figure 7. Note that the sensitivity is negative, which suggests that the incentives decrease with

exogenous risk.
1As prescribed in Appendix B, the validity of assumptions A2 and A3 were checked numerically.
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5 Conclusion

The negative relationship between risk and incentives, found in standard models of moral hazard,

is not preserved in the presence of adverse selection, if the agent can control the variance. A more

risk-averse agent exerts more effort in reduction of risk. The relationship between risk and incentives

is positive if more risk-averse agents select lower-powered incentive contracts. This is true when

the marginal utility of incentive is decreasing with respect to the agent�s risk aversion. However,

if risk aversion is high enough, the possibility of risk reduction may reverse this effect and the

traditional negative relationship between risk and incentives may be found. The optimal contract

may also be U-shaped, such that agents with intermediate degrees of risk aversion choose contracts

with low incentives, and agents with extremely high or extremely low degree of risk aversion choose

high-powered incentive contracts. These conclusion holds for endogenous risk. With respect to the

exogenous risk, the numerical calculations suggest that the relationship between incentives and risk

remains negative.

Apendix A

A Adverse Selection without the Single-Crossing Property

The general model presented in Section 2 reduces to the maximization problem (2) subject to in-

centive compatibility and participation constraints. It differs from the traditional adverse selection

model because the objective function does not have the single-crossing property. We present be-

low the main steps toward the solution, stressing the peculiarities that arise when single-crossing

property is absent. Most of the results are developed in Araujo and Moreira (2001a).

A.1 Incentive Compatibility and Participation Constraint

When α(·) and β(·) are differentiable, the incentive compatibility may be locally checked by the
Þrst and second order conditions. These conditions are necessary but not sufficient for incentive

compatibility. The Þrst order condition gives

vα(α(θ), θ)α
0(θ) + β0(θ) = 0, (7)
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which states that indifference curves of type θ agent must be tangent to an implementable contract

on α× β plane, at point (α(θ),β(θ)).
The second order condition gives

vαα(α(θ), θ)[α
0(θ)]2 + vα(α(θ), θ)α00(θ) + β00(θ) ≤ 0, (8)

and, after differentiating (7) with respect to θ, the expression (8) simpliÞes to the condition

vαθ(α(θ), θ)α
0(θ) ≥ 0, (9)

which implies the monotonicity of α(θ), in the single-crossing context.

Given the menu of implementable contracts {α(θ),β(θ)}θ∈Θ, the level of utility achieved by the
agent with risk aversion θ is his informational rent and denoted r(θ), that is, r(θ) = v(α(θ), θ)+β(θ).

Using (7), we get

r0(θ) = vθ(α(θ), θ), (10)

and applying the envelope theorem on equation (1), we have vθ(α, θ) = −1
2α

2σ2(e∗) < 0. Con-

sequently, the agent with the highest the risk aversion has the lowest informational rent and the

participation constraint is active for him, that is, r(θb) = 0.

Thus, the Þxed component of the wage can be isolated by integration of r0(θ),

β(θ) = −
Z θb

θ

vθ(α(�θ), �θ)d�θ − v(α(θ), θ), (11)

which allows us to eliminate β(·) from the problem and focus on the characterization of α(·).

A.2 Implementability without the Single-Crossing Property

Since the single-crossing property is not ensured, the Þrst and the second order conditions are

necessary but they are not sufficient. The following points must be observed:

1. The function α(θ) may be non-monotone. The same contract may be chosen by a discrete set

of agents. We call this situation as discrete pooling. In this case, the pooled types follow the

conjugation rule

vα(α(θ), θ) = vα(α(θ
0), θ0), (12)

whenever α(θ) = α(θ0), which states that the indifference curves of θ and θ0 are both tangent

at the same point to the menu of contracts on α× β plane.
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2. The incentive compatibility must be globally checked. When the single-crossing property

holds, local incentive compatibility implies global incentive compatibility, that is, if types

in the neighborhood of θ is not better with the contract assigned to θ, no other type will

be better. This means that the Þrst and second order conditions are sufficient for incentive

compatibility. On the other hand, when the single-crossing property is violated, types out

of the neighborhood of θ may prefer the contract assigned to θ. In this case, the Þrst and

second order conditions are not sufficient and further conditions must be imposed to obtain

implementability.

3. The function α(θ) may be discontinuous. The possibility of discrete pooling creates jumps

in the optimal assignment of contracts, so we allow the contract to be piecewise continuous.

Where jump occurs, the agent must be indifferent between the start and the end point of the

jump. If, for example, the agent θ were strictly better with the end point than the start point,

then, for a small ε > 0, the agents with type in [θ − ε, θ] would strictly prefer the end point,
and no jump could exist in θ.

The following deÞnition will be useful for global analysis of incentive compatibility. For a given

contract α(θ) deÞne the integral Φ(θ, �θ) as

Φ(θ, �θ) =

Z �θ

θ

"Z α(�θ)

α(�θ)

vαθ(�α, �θ)d�α

#
d�θ. (13)

It can be shown, using (10), that Φ(θ, �θ) = V (α(θ),β(θ), θ) − V (α(�θ),β(�θ), θ), thus Φ(θ, �θ) is the
difference for agent θ between the utility of the contract assigned to himself and the one assigned

to �θ. The incentive compatibility constraint can be stated as

Φ(θ, �θ) ≥ 0, for all θ, �θ ∈ Θ,

that is, the agent with risk aversion θ is not better pretending to be an agent with risk aversion �θ.

The function Φ(θ, �θ) is appropriate for a graphical analysis, since the signal of vαθ is known and

the integration is performed in the region between the constant α(�θ) and the curve α(�θ).

A.3 Virtual Surplus and the Principal�s Problem

We follow the standard procedure and deÞne the social surplus,

S(α, θ) = µ(e∗(α, θ))− c(e∗(α, θ))− 1
2
α2θσ2(e∗(α, θ)), (14)
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and virtual surplus,

f(α, θ) = S(α, θ) + (θ − θa)vθ(α, θ). (15)

The maximization of social surplus for each θ gives the Þrst best of the model. The virtual surplus

is the social surplus plus the informational rent term. This term is negative and represents a cost

that takes into account the rent that is paid to the agents with risk aversion in [θa, θ], in order to

preserve implementability when agent θ receives α(θ).

As types are uniformly distributed, the expectation of integral term in (11) may be simpliÞed by

Fubini�s theorem to, E
hR θb
θ
vθ(α(�θ), �θ)d�θ

i
= E [vθ(α(θ), θ)(θ − θa)]. Thus, β(θ) can be eliminated

from the principal�s objective function, which can be rewritten as E[f(α(θ), θ)]. After the optimal

incentive, α∗(θ), is found, the Þxed part of optimal contract, β∗(θ), can be calculated using (11).

The maximization problem of principal without the constraints is called relaxed problem. Its

solution, denoted α1(θ), satisÞes

fα(α1(θ), θ) = 0 and fαα(α1(θ), θ) < 0.

Since fα(α1(θ), θ) = Sα(α1(θ), θ)+(θ−θa)vαθ(α1(θ), θ), the relaxed solution provides less incentive
than the Þrst best when vαθ < 0, and more incentive when vαθ > 0. This distortion occurs because

the cross derivative is associated with the marginal cost of informational rent. For example, when

vαθ < 0, the cost of informational rent is increasing with respect to α, therefore the principal pays

less incentive.

A.4 Optimality without the Single-Crossing Property

In the standard adverse selection model, the single-crossing property ensures that α1(θ) is the

optimal contract if (9) is satisÞed, that is, α1(θ) is non-increasing when vαθ < 0, or non-decreasing

when vαθ > 0. When α1(θ) is non-monotone, the optimal contract is the best combination of α1(θ)

and intervals of bunching so that (9) is satisÞed. Such procedure is not suitable in the absence of the

single-crossing property. As before, α1(θ) is the optimal contract if it is implementable. However,

monotonicity condition (9) is no more sufficient for implementability and global incentive condition

must be checked.

When vαθ changes its sign, the discrete pooling is possible and α1(θ) is not the optimal contract

for the pooled types. The assignment of contracts to the discretely pooled types must take into
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account the conjugation of types according to the constraint (12). Let αu(θ) denote the optimum

assignment of contracts with discrete pooling. Then the joint maximization of pooled types results

in the condition

fα(αu(θ), θ)

vαθ(αu(θ), θ)
=
fα(αu(θ

0), θ0)
vαθ(αu(θ0), θ0)

. (16)

where θ0 is given by vα(αu(θ), θ) = vα(αu(θ0), θ0) and αu(θ) = αu(θ0). The optimal contract will be

a combination of α1(θ), bunching and αu(θ).

We follow Araujo and Moreira (2001a) and restrict the solution α∗(θ) to the closure of the

continuous functions. It means that when there is a jump in α(θ) all the intermediate contracts in

the jump is offered to the agent. The optimal contract with discrete pooling can be characterized

under the following assumptions:

A1. vαθ(α, θ) = 0 deÞnes a decreasing function α0(θ), vαθ is positive above and negative below

α0(θ), for all θ ∈ Θ.

A2. α1 is U-shaped, crosses α0 in an increasing way, α1(θa) ≤ α1(θb), fα(α, θ) is negative above
and positive below α1(θ), for all θ ∈ Θ.

A3. For each �θ, the equations vα(α1(·), ·) = vα(α1(·), �θ) have at most one solution in the decreasing
part of α1, on vαθ < 0 region.

Under these assumptions, the optimal contract, α∗(θ), will have one of the following forms:

α∗(θ) =


αu(θ), if θ < θ1,

α1(θ), if θ ≥ θ1,
(17)

where θ1 is deÞned by αu(θ1) = αu(θa), 2 or

α∗(θ) =


α1(θ), if θ < θ2,

min{ᾱ,αu(θ)}, if θ ≥ θ2,
(18)

2To be rigorous, we should consider the case in which the jump transition from αu-segment to α1-segment takes

place in θj < θ1. In this case, the contracts for [θa, θ̂j ], where θ̂j is the conjugate of θj , are the conjugates of the

contracts in the vertical line, at the jump. For the examples worked in this paper, the characterization above suffices.

For further details see Araujo and Moreira (2001a)
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where ᾱ is the incentive of the continuous bunching and θ2 is deÞned by α1(θ2) = ᾱ. The set of

bunched types, J = {θ ∈ Θ : α(θ) = ᾱ}, satisÞesZ
J

fα(ᾱ, θ)p(θ)dθ = 0.

Apendix B

B Optimal Contract in the Multitask SpeciÞcation

The following expression is the virtual surplus of the problem,

f(α, θ) =
α(2− α)

2
µ2 − α

2(α2θ2 + 2θ − θa)
2(1+ α2θ)2

σ20 .

The derivative with respect to α is

fα(α, θ) = (1− α)µ2 − α[θ(1+ α
2θa) + (θ − θa)]

(1+ α2θ)3
σ20

and the relaxed solution α1(θ) is given by fα(α1(θ), θ) = 0 and fαα(α1(θ), θ) < 0. Note that

fα(0, θ) > 0 and fα(1, θ) < 0, so relaxed problem has an interior solution and fα(·, θ) has at least
one root in the interval [0, 1]. If f(·, θ) is not concave in α, the incentive that maximizes the virtual
surplus must be correctly chosen among solutions of the Þrst order condition.

Writing fα as a function of σ0, it is ease to see that ∂fα/∂σ0 < 0, and, as fαα(α1(θ), θ) < 0, the

application of the theorem of implicit function on fα(α1(θ), θ) = 0 gives dα1/dσ0 < 0. That is, for

a given θ, an increase of exogenous risk reduces incentives on relaxed solution.

When vαθ(α1(θ), θ) has ambiguous sign, the optimal contract must consider the possibility of

discrete pooling. When θ and �θ are discretely pooled at incentive α, the conjugation rule (12)

relates the pooled types by �θ(α, θ) = 1/θα4. Then, working on condition (16), we obtain the

discrete pooling segment αu(θ) as the solution of the equation

(1− α)(1+ θα2)2(1+ θ2α4) = 2θ2α3 σ
2
0

µ2
.

The numerical examples presented in Section 4 correspond to three cases for which we can

characterize the optimal contract.

(a) α1(θ) is increasing and vαθ(α1(θ), θ) > 0.

Since α0(θ) is decreasing, the integral in Φ(θ, �θ) takes values in vαθ > 0 region. Therefore

Φ(θ, �θ) > 0 and α1(θ) is the optimal contract.
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(b) α1(θ) is decreasing and vαθ(α1(θ), θ) < 0.

A sufficient condition for implementability is vαθ(α1(θa), θb) < 0. As α0(θ) is a decreasing

function, the integral in Φ(θ, �θ) takes values in vαθ < 0 region. Then Φ(θ, �θ) > 0 and α1(θ) is

the optimal contract.

(c) vαθ(α1(θ), θ) changes sign only once.

In this case, the optimal contract can be computed by the procedure in Appendix A, if

assumptions A1, A2 and A3 hold. Assumption A1 holds since, from equation (6), the function

α0(θ) = 1/
√
θ deÞnes a decreasing border between vαθ > 0 and vαθ < 0 regions, with vαθ > 0,

for α > α0. The following lemma shows that the Þrst part of assumption A2 holds.

Lemma 1 Let θx be defined by α1(θx) = α0(θx). If θx exists, α01(θx) > 0.

Proof: By deÞnition, α1(θ) satisÞes fα(α1(θ), θ) = 0. Using the implicit function theorem,

α01(θ) = −
fαθ(α1(θ), θ)

fαα(α1(θ), θ)
,

and, as second order condition states that fαα(α1(θ), θ) < 0, α01(θ) has the same sign as

fαθ(α1(θ), θ). Differentiating fα with respect to θ,

fαθ(α, θ) =
−2α[1− 2α2(θ − θa)− α4θθa]

(1+ α2θ)4

and manipulating this expression, we conclude that α01(θ) has the same sign as

h(α, θ) = θ − 1+ 2α2θa
α2(2 + α2θa)

.

On α0(θ), α = 1/
√
θ. Then, h(α0(θx), θx) = θx(1 − θa/θx)(2 + θa/θx), which is positive for

θx > θa. Therefore α01(θx) > 0. ¥

However, the second part of A2, and A3 is not valid for every value of parameters and must

be checked before the application of the procedure in Appendix A.

References

Araujo, A., and H. Moreira, 2001a, �Adverse selection problems without the Spence-Mirrlees

condition�, EPGE Ensaios Econômicos, n. 425.

16



Araujo, A., and H. Moreira, 2001b, �Non-monotone insurance contracts and their empirical

consequences�, mimeo, EPGE.

Chiappori, P.-A., and B. Salanié, 2000, �Testing for asymmetric information in insurance

markets�, Journal of Political Economy, 108(1), 56�78.

Ghatak, M., and P. Pandey, 2000, �Contract choice in agriculture with joint moral hazard in

effort and risk�, Journal of Development Economics, 63(2), 303�326.

Guesnerie, R., and J.-J. Laffont, 1984, �A complete solution to a class of principal-agent prob-

lems with an application to the control of a self-managed Þrm�, Journal of Public Economics,

25, 329�369.

Holmstrom, B., and P. Milgrom, 1987, �Aggregation and linearity in the provision of intertem-

poral incentives�, Econometrica, 55(2), 303�328.

Holmstrom, B., and P. Milgrom, 1991, �Multitask principal-agent analyses: incentive contracts,

asset ownership, and job design�, Journal of Law, Economics & Organization, 7, 24�52.

Prendergast, C., 2002, �The tenuous trade-off between risk and incentives�, Journal of Political

Economy, 110(5), 1071�1102.

Sung, J., 1995, �Linearity with project selection and controllable diffusion rate in continuous-

time principal-agent problems�, Rand Journal of Economics, 26(4), 720�743.

Sung, J., 2002, �Optimal contracts under moral hazard and adverse selection: a continuous-

time approach�, mimeo, University of Illinois at Chicago.

17



0 0.5 1 1.5 2 2.5 3 3.5 4
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

θ

α
α 0 

α 1 

α * 

Figure 1: Optimal contract. Θ = [2.5, 3.5].
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Figure 2: Risk × incentives. Θ = [2.5, 3.5].
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Figure 3: Optimal contract. Θ = [0.5, 1.4].
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Figure 4: Risk × incentives. Θ = [0.5, 1.4].
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Figure 5: Optimal contract. Θ = [0.7, 3.0].
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Figure 6: Risk × incentives. Θ = [0.7, 3.0].
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Figure 7: Exogenous risk × incentives. Θ = [0.7, 3.0].
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