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Abstract

We investigate game theoretic models of network formation that are based on
individual actions only. Our approach is grounded in three simple and realistic
principles: (1) Link formation should be a binary process of consent. (2) Link
formation should be costly. (3) The class of network payoff functions should
be as general as possible.

We provide characterizations of stable networks under the hypothesis of
mutual consent for the case of two-sided and one-sided link formation costs.
Furthermore, we introduce a new equilibrium concept based on a limited, realis-
tic form of farsightedness or (myopic) “trust” in network formation. We provide
comparisons of the resulting networks with networks satisfying the well known
stability concepts developed in the literature.
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1 Trust and link formation

Networks impact the way we behave, the information we receive, the communities

we are part of, and the opportunities that we pursue. They affect the machinations

of corporations, the benevolence of non-profit organizations, and the workings of the

state. Two recent overviews of the literature on statistical properties of large scale

networks, Watts [32] and Barabási [4], discuss the relevance of networks for fields as

diverse as physics, sociology, and biology. There has been a similar resurgence of in-

terest in economics to understand the phenomenon of network formation. A number

of recent contributions to the literature have recognized that networks play an impor-

tant role in the generation of economic gains for groups of decision makers. Different

network structures usually lead to different levels of generated gains and network

relationships between individuals have been interpreted in different ways. Among

others, for example, such relationships could represent communication possibilities,

trade relations, or authority relationships between superiors and subordinates.

In this paper we study game-theoretic models of social network formation. Players

in our framework are represented by nodes in the network, and their relationships by

links between nodes. Our approach is based on three simple and realistic principles

that govern most real-world networks: (1) Link formation should be based on a binary

process of consent. (2) Link formation should in principle be costly. (3) The payoff

structure of network formation should be as general as possible.

Consequently, the creation of a link requires the consent of both players involved;

the link between players i and j is only established when player j is willing to accept

the link initiated by player i or vice versa.

Costly link formation is typical in the literature and we consider both one-sided

and two-sided costs of link formation. In the first model both consenting players

bear an individually determined cost of link formation, while in the latter model we

distinguish between an “initiator” and a “respondent” in the link formation process.

Under one-sided link formation costs, only the initiator incurs a cost to link formation.

We consider a very general payoff structure that has two components — an ar-

bitrary benefit function and additive link formation costs. Benefits depend on the

resulting network. Costs depend on the strategies chosen by the player in the link

formation process and are incurred independent of the outcome, i.e, even if a link is
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not established the initiating player still has to pay for it.1

The process of network formation studied here is based on the simple network for-

mation model introduced by Myerson [22], page 448. Following Myerson, we model

the link formation process as a normal form non-cooperative game. It incorporates

the fundamental idea that networks are the result of consensual link formation be-

tween pairs of players. The structure of the model takes account the three realistic

features discussed above. We call this (realistic) generalization of Myerson’s model

the standard model of network formation.

In the literature since Myerson, the standard model has been portrayed as being

problematic since it is believed to have “too many” Nash equilibria. (See for example

Jackson [15].) However, until now there has been no attempt to provide a complete

characterization of the set of these Nash equilibria. We fill this void in the literature

by providing such a characterization. Our characterization reveals that the resulting

networks have some appealing properties.

Second, to abandon such a realistic and elegant model because it is not discerning

enough in terms of its permissible equilibria seems hardly justified. Namely, in this

model links are only established with the consent of both players involved. Hence

costly link formation requires that players must have an implicit trust in each other.

The standard model thereby provides a realistic foundation for studying the role of

trust in network formation. Here, we also enhance the scope of the analysis by en-

dowing the players with a form of sequential rationality based on myopic beliefs about

the other players. This newly introduced equilibrium concept, thus, incorporates a

simple form of farsightedness or “trust” in the process of network formation.

Our model of trust in link formation corresponds well with the literature on rela-

tional trust. A common interpretation of links that applies to much of the networks

literature is the fact that they are best imagined as confirmations of already estab-

lished relationships that occur in a non-modelled process prior to the formulated

game. Insights from research in social networks suggest that this phenomenon can be

described as a form of trust. A large body of literature in sociology has argued that

the process of link formation is not purely random; players establish links with those

they trust. For example, one of the earliest such studies by Wellman, Carrington and

1An arbitrary cost structure would require costs to be dependent on the outcome. The payoff
specification then would become game dependent forcing us to give up generality in the results. We
believe that the chosen payoff structure based on arbitrary benefits and additive link formation costs
has the added advantage of capturing what genuinely occurs in a realistic process of link formation.
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Hall [33] involved a survey of residents in East York, Canada, begun in 1968. They

found that in the East Yorker networks, the majority of “intimate” or “strong ties”

were with kin and neighbors and the majority of “routine” or “weak ties” were with

(more distant) acquaintances ([33], Table 6.1, page 143).

This insight is also at the foundation of Granovetter’s [12] theory on the strength

of weak ties. Granovetter argued that the functioning of our society relies mainly on

the presence of sufficiently many weak ties. Counterintuitively, strong ties can easily

be replaced, since there is a redundancy in relationships among close associates such

as family members. Weak ties, on the other hand, are solitary and as such more

essential in the social network.

The role of trust in the case of strong ties is clearly based on the closeness or

intimacy of the relationship between the two parties creating the link. In fact, trust

is assumed here nearly automatically. For weak ties too, trust plays a central role;

links are mainly established between parties that can trust each other in the sense

that each party is backed by certain other factors such as the party’s reputation, the

party’s socio-economic role, or the party’s position in the established social network.

It can be argued that this latter form of trust derives from the individual’s social

capital. We believe the standard model of network formation involving trust can

provide the basis for exploring the link between social networks and social capital.

Clearly, the trust required for a weak tie is quite distinct from the trust that stems

from intimacy in a strong tie. Yet while trust itself might be manifested in different

forms, it has the same effects on the link formation process. Consequently, regardless

of the kind of link under consideration, trust is a key element of the link formation

process.

Our aim is to provide a game theoretic formulation for the generic form of trust

in link formation discussed in the previous paragraph. We do this by endowing the

decision makers with a modified form of rationality, representing a myopic belief or

“trust” that the other decision makers will respond rationally to their proposals in the

link formation process. Hence, decision makers form beliefs about other individuals

and anticipate their actions. Individual i initiates links with only those individuals

that i thinks will benefit from the links. In doing so the initiating individual assumes

that the respondent will consent to the link and, hence, the incurred link cost will not

be in vain. This form of sequential rationality in network formation is denoted as a

network trust equilibrium. The resulting equilibrium networks are called monadically
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stable.

The first part of our paper examines the properties of the standard model of network

formation and characterizes the Nash equilibria of the model. In order to understand

the importance of the ability to break (or deny) links in the process of network

formation we introduce a stability concept called link deletion proofness. Intuitively,

we say a network is link deletion proof when players get a lower payoff by deleting

one of their established links. A variation called strong link deletion proofness allows

players to consider the simultaneous deletion of multiple links. We then examine the

relationship between the classes of networks satisfying the various stability concepts,

and the set of networks resulting from the Nash equilibria of the network formation

game. The latter class is denoted as the set of individually stable networks.

For the model with two-sided link formation costs — where both players have to

pay a cost (not necessarily equal) for establishing the link — we find that a network

is individually stable if and only if it is strong link deletion proof. This is easily

explained since links require both players to incur a link formation cost, while Nash

equilibrium permits simultaneous deletion of multiple links. We also introduce a

variation of Jackson and Wolinsky’s [19] notion of pairwise stability called strong

pairwise stability. This is an appealing stability concept since it combines (regular)

pairwise stability with strong link deletion proofness by allowing for the deletion of

multiple links but addition of only one link at a time. We find that a strongly pairwise

stable network is individually stable, but the reverse is not true.2 Furthermore, we

provide some comparisons with the class of strongly stable networks introduced by

Jackson and van den Nouweland [17].

Next we study the one-sided cost model where only the link initiating player incurs

a cost. The responding player does not pay for the link but must give her consent to

the link. We find that a network that is individually stable under the two-sided cost

model is also individually stable under one-sided costs of link formation. The reverse

does not hold since link formation costs may differ across players. Under one-sided

link formation the player with the lower costs acts as the link initiator resulting in

networks that may not be individually stable under two-sided link formation costs.

2An example shows that the reverse is not valid since Nash equilibrium only allows players to
delete one or more links at a time. All of this indicates that the opportunities available to players
for establishing links play a crucial role in the process of network formation, suggesting that varying
initial conditions can easily lead to social stratification.
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Moreover, we find that — unlike for the two-sided cost model — only strong link

deletion proof networks are individually stable while the converse does not hold if

link formation costs are one-sided. Further, a simple payoff specification is used to

investigate the relationship between potential maximizers and Nash equilibria for the

standard model. We find that the potential maximizer is an useful refinement for the

model with one-sided link formation costs, but oddly enough it is not helpful for the

two-sided cost formulation.

Since the standard model of network formation is sufficiently general it can incor-

porate a number of existing network models thereby ensuring existence of individually

stable networks.3 For Nash equilibria of the two-sided cost model with consent, it

is possible to find parallels in the literature on pairwise stability. Here, existence of

stable networks for the two-sided cost model is guaranteed for a large class of games;

see Jackson and Watts [18]. For example, every pairwise stable equilibria in the sym-

metric connections model is strongly pairwise stable. For the one-sided cost model,

similar parallels can be drawn with the Nash network formulation developed by Bala

and Goyal [2]. Recall that the flow of benefits is two-way, while only the initiating

player incurs the cost of the link in the one-sided model. Since consent in the game

is costless, and under the Bala-Goyal type of specification always yields positive ben-

efits, the responding player would immediately consent to the link. This implies that

existence is as well guaranteed for a large class of specifications.

In the second half of our paper we introduce a simple form of trust in the process

of network formation. As discussed above, the notion of network trust equilibrium

differs from Nash equilibrium in that players play a best response to their beliefs about

others, whereas in Nash equilibrium players select a best response to the actions of the

other players. We consider the network trust equilibrium concept and the resulting

monadically stable networks to be a more appropriate solution concept for studying

network formation. Indeed as Granovetter [12] argued, the functioning of the network

relies very much on the presence of sufficiently many weak ties. We argue that trust

is essential in the formation of these particular links.

Again we consider the two-sided cost model and show that if a network is monadi-

cally stable, it is also strongly pairwise stable. Hence, we find that every monadically

stable network is individually and pairwise stable. Examples are used to show that

3As mentioned it is the abundance of individually stable networks and not the absence of equilibria
which is sometimes a source of criticism for network models.
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monadically stable networks may not always exist and that a strongly pairwise stable

network need not be monadically stable. An interesting insight that emerges from

the examples is the fact that there is no relationship between monadic stability and

strong stability. The reason for this is the fact that strong stability allows coalitions

of players to change their strategies and monadic stability while incorporating beliefs

about other players is still an individually based equilibrium concept.

Finally, we show that for one-sided link formation costs, a network trust equi-

librium might not exist due to coordination problems. In other words, coordination

failure may occur because each player expects the other player to establish the link.

To sum up, myopic trust modelled through the network trust equilibrium concept

leads to a class of very sensible and highly plausible networks under two-sided link

formation costs, but may lead to severe coordination problems when considering one-

sided link formation costs.

Related Literature

Our study of trust in network formation is at the junction of both the noncooperative

and cooperative game theoretic models of network formation. The standard model

of network formation discussed here captures most of the basic, realistic elements of

network formation.

This is in contrast to much of the established literature on directed links.4 The

creation of directed links have been addressed by Bala and Goyal [2, 3] and Dutta

and Jackson [6]. The main objective of these contributions has been to describe the

networks that are formed in games where one player can establish a link without the

consent of the other player. The Nash equilibria in the resulting game are called Nash

networks and are characterized in Bala and Goyal [3] for different payoff structures.

We argue, however, that such Nash networks are quite inadequate since they do

not cover many situations of interest to economists. First, given the absence of con-

sent, at best, they describe situations of information exchange, perhaps like accessing

a player’s web page. In fact, the problem of relevance is already indicated in the

cited papers. Second, the links generated might also be interpreted as confirmations

of already established relationships created in a non-modelled process prior to the

formulated game. This implies however, that the model is incomplete and should be

4The flow of benefits however may or may not be undirected in the different models discussed in
the literature.
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extended to incorporate a first stage of link formation. Finally, the links may be inter-

preted as being purely involuntary, i.e., this might be envisioned as firms linking their

products to those of other firms by making comparisons in advertisements. However,

the payoff structures investigated by Bala and Goyal [3] do not cover situations of

this type. We believe that our approach addresses the two concerns mentioned above.

The single exception in the Nash networks literature that explicitly accounts for

consent issues is the paper by Haller and Sarangi [13]. It is, however, an exploratory

analysis where the consent model is an extension of the main formulation. They find

that costless mutual consent leads to a larger set of equilibria than the model with

no consent. In the variation with link capacity constraints they find that agents have

an incentive to form links with similar agents — highly able agents consent to link

with other highly able agents leaving out lowly able agents. The focus of their paper

is on reliability issues and they use specific payoff formulations.

Slikker et al. [26] also recognize these drawbacks of Nash networks and develop a

different approach to modelling the emergence of directed networks. They arrive at

an alternative foundation of hierarchical networks as the only directed networks in

which certain allocation mechanisms can be implemented. This approach, however,

is not developed within the general payoff structures pursued in our paper.

An alternative, link-wise approach to network formation has been introduced by

Jackson and Wolinsky [19]. They developed a link-based equilibrium concept, denoted

as pairwise stability. The main problem with this approach is that it only considers

the formation of a single link without basing its formation on actions selected by the

individual players. Unlike the Nash network models however, it does require both

players to pay for the cost of a link. (For a substantive survey of this literature we

refer to Jackson [15].) Our notion of strong pairwise stability improves on this by

allowing an individual player to delete multiple links. Indeed strong pairwise stability

is a hybrid concept incorporating elements of Nash networks with pairwise stability.

Next we turn to the literature on reduced formulations of the standard model.

For payoffs based on cooperative games with transferable utilities, besides Nash

equilibrium, other equilibrium concepts investigated include undominated equilib-

ria, coalition proof equilibria and strong Nash. (See for instance Slikker and van den

Nouweland [29].) One of the first papers to use these different concepts was Dutta

and Mutuswami [8]. They investigate the tension between stability and efficiency

using strong Nash and coalition-proof Nash equilibrium. Starting with a given value
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function their goal was to find allocation functions with desirable properties that min-

imize the conflict between efficiency and stability. Slikker and van den Nouweland

[27] introduce link formation costs. Unfortunately, their results do not extend beyond

the four player case.

Another variation of the standard model with TU-based payoffs is developed in

Slikker and van den Nouweland [28]. In their model agents announce what links

they want to form as well as the rewards they wish to obtain from the formation of

different links. Using the above refinements they find that the equilibrium cooperation

structure does not contain any cycles.

A drawback of the models discussed is that they do not consider the standard

model of network formation that we believe is the most realistic and simple descrip-

tion of the process of network formation. One notable exception is Dutta et al. [9],

although their model does not incorporate link formation costs. Another problem

with most of these models based in cooperative game theory is the fact that results

are often obtained by imposing specific conditions on the payoff function. Our paper

addresses this shortcoming by providing a characterization of costly network forma-

tion with arbitrary payoff functions.

Most of the literature discussed until now, including the present one, consider a

normal-form strategic modelling of the process of network formation. A number of

papers however, have also scrutinized network formation as a sequential game. We

discuss the most pertinent ones. The seminal paper by Aumann and Myerson [1]

considers a two-stage game, where the first stage concerns link creation which is

interpreted as the framework for payoff negotiations in the next stage. In the second

stage the Myerson value is used to determine the payoffs of individual players in

the cooperation structure established in stage one. While this approach leads to the

endogenous formation of cooperation structures, it does not permit link deletion in

the network. However, unlike most of the other sequential models they consider non-

myopic players and find that inefficient networks may result, setting the stage for

the stability-efficiency debate. Another interesting finding is the fact that the grand

coalition need not emerge in equilibrium.

As mentioned earlier Slikker and van den Nouweland [28] consider a one stage

version of this game where the payoff division depends on the links the players are

willing to form and not on a pre-assigned imputation. Currarini and Morelli [5] is a

natural extension of the Slikker and van den Nouweland [28] paper to a sequential
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structure. Note that unlike Aumann and Myerson [1], here the distribution of payoffs

is endogenous. Again, they find that if the value function has the property that each

additional link increases the value, i.e., network formation satisfies link monotonicity,

then every equilibrium network is efficient. The criticisms mentioned above also apply

to both these papers.

Finally, Watts [31] considers network formation in a dynamic framework where

myopic self interested individuals can form and sever links. She finds that inefficiency

persists in network formation and points towards the modelling of forward looking

behavior as a possible solution to this problem. The notion of trust introduced in

this paper is a step in this direction, since agents play a best response to their beliefs

about others. This is of course a very simple form of non-myopic behavior since player

i’s beliefs about k are not influenced by j’s beliefs about k.

It is clear that other formulations are possible as well, and that higher levels of

rationality can be modelled through higher stage forms of such trust. For a short

discussion of these other possibilities we also refer to Jackson [15]. A recent paper

by Page et al. [24] considers farsighted behavior by coalitions. In a certain sense this

approach is complementary to the one in Jackson and van den Nouweland [17]. Unlike

our paper, it is coalitions of players rather than individual players that transform

one network to another. Consequently, coalitions form the unit of analysis and are

endowed with ability for farsighted behavior. Recall that in our formulation agents

have very naive beliefs about other players. Full rationality however can be formulated

through an infinite process of reasoning about the anticipated behavior of the other

players.5 The study of such advanced models incorporating trust is developed further

in, for example, Gilles and Sarangi [11].

The remainder of this paper is organized as follows. Section 2 of the paper provides

the model setup. In section 3 we study individual stability of networks and section

4 is about monadic stability. Section 5 has concluding remarks, while several proofs

have been relegated to Section 6.

5For an interesting paper that explores the relationship between common knowledge and incom-
plete information in the context of networks we refer to McBride [20].
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2 Preliminaries and notation

In this section we introduce the basic concepts and notation pertaining to non-

cooperative games and networks.

2.1 Non-cooperative games

A non-cooperative game on the fixed, finite player set N = {1, . . . , n} is given

by a list (Ai, πi)i∈N where for every player i ∈ N , Ai denotes an action set and

πi : A → R denotes player i’s payoff function. An individual action of player i ∈ N

is denoted by ai ∈ Ai and an action tuple is written as a = (a1, . . . , an) ∈ A =

A1 × · · · × An. For every action tuple a ∈ A and player i ∈ N , we denote by

a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i =
∏

j 6=i Aj the actions selected by the players

other than i. In the rest of the paper we will denote a non-cooperative game on N

for short by the pair (A, π), where π = (π1, . . . , πn) : A → RN is the composite payoff

function. A non-cooperative game (A, π) is called finite if for every i ∈ N the action

set Ai is finite.

An action ai ∈ Ai for player i ∈ N is called a best response to a−i ∈ A−i if for

every action bi ∈ Ai we have that πi(ai, a−i) = πi(bi, a−i). A best response ai to a−i

is strict if for every bi 6= ai we have that πi(ai, a−i) > πi(bi, a−i). An action tuple

â ∈ A is a Nash equilibrium of the game (A, π) if for every player i ∈ N

πi(â) = πi(bi, â−i) for every action bi ∈ Ai.

Hence, a Nash equilibrium â ∈ A satisfies the property that for every player i ∈ N

the action âi is a best response to â−i. A Nash equilibrium â ∈ A is called strict if

for every player i ∈ N the action âi is a strict best response to â−i.

A function Q : A → R is a potential of the non-cooperative game (A, π) on the player

set N if for every player i ∈ N , action tuple a ∈ A and action bi ∈ Ai:

πi(a)− πi(bi, a−i) = Q(a)−Q(bi, a−i).

The notion of a potential game was introduced by Monderer and Shapley [21] based

on the seminal work of Hart and Mas-Colell [14]. They also introduced the notion

of a potential maximizer being an action tuple a ∈ A such that Q(a) = Q(b) for

every b ∈ A. The set of potential maximizers will be indicated by PM(A, π) ⊂ A.
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It is obvious that each potential maximizer is a Nash equilibrium and, hence, this

notion is a refinement of the Nash equilibrium concept. Monderer and Shapley [21]

also show that PM(A, π) 6= ∅ for every finite potential game (A, π) on N .

An alternative description of a potential game has been introduced by Ui [30] as

follows. A coalition is any subset of players S ⊂ N and for a coalition S we denote

by AS =
∏

i∈S Ai its restricted action tuple set. A set of functions {ΦS : AS → R |
S ⊂ N} is an interaction potential of the game (A, π) if for every i ∈ N and every

a ∈ A it holds that

πi(a) =
∑

S⊂N, i∈S

ΦS(aS).

Ui showed that potentials and interaction potentials are essentially the same:

Lemma 2.1 (Ui [30], Theorem 3) The game (A, π) has a potential Q : A → R if

and only if (A, π) possesses an interaction potential {ΦS | S ⊂ N}. Furthermore, for

the latter case a potential Q of the game (A, π) is given by Q(a) =
∑

S⊂N ΦS(aS).

We will use these insights to analyze properties of certain behavioral models of net-

work formation.

2.2 Networks

In our discussion of the foundations of the theory of networks we use established

notation from Jackson and Wolinsky [19], Dutta and Jackson [7], and Jackson [15].

The reader may refer to these sources for a more elaborated discussion.

We limit our discussion to non-directed networks on the player set N . In these

networks the two players making up a single link are essentially equal. Formally, if

two players i, j ∈ N with i 6= j are related we say that there exists a link between

players i and j. We use the notation ij to describe the binary link {i, j}.6 We define

gN = {ij | i, j ∈ N, i 6= j} as the set of all potential links. A network g on N is

now introduced as any set of links g ⊂ gN . Note that g = gN is called the complete

network and g = g0 = ∅ is known as the empty network.

The set of (direct) neighbors of a player i ∈ N in the network g is given by

Nd(i, g) = {j ∈ N | ij ∈ g} ⊂ N.

6We reiterate that network relationships are non-directed, i.e., in this context ij = ji. However,
in regard to the costs of establishing a link one may distinguish between the costs related to ij and
the costs related to ji, i.e., possibly it holds that for cost levels cij 6= cji.
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For every pair of players i, j ∈ N with i 6= j we denote by g+ij = g∪{ij} the network

that results from adding the link ij to the network g. Similarly, g − ij = g \ {ij}
denotes the network resulting from removing the link ij from network g.

More generally we say that network g′ is obtainable from network g through coali-

tion S ⊂ N if

(i) ij ∈ g′ and ij 6∈ g implies that {i, j} ⊂ S, and

(ii) ij ∈ g and ij 6∈ g′ implies that {i, j} ∩ S 6= ∅.

The notion of obtainability has been introduced in Jackson and van den Nouweland

[17]. It stipulates that deleting links requires that only one of the constituting players

is in the coalition S while creating links requires that both constituting players are

members of S. This reflects that a player can unilaterally sever links, but the creation

of new links involves the consent of the other players involved.

Within a network, benefits for the players are generated depending on how they

are connected to each other. This is represented by a “network payoff function” for

every player.7 For player i ∈ N the function ϕi : {g | g ⊂ gN} → R denotes her

network payoff function which assigns to every network g ⊂ gN a value ϕi(g) that

is obtained by player i when she participates in network g. The composite network

payoff function is now given by ϕ = (ϕ1, . . . , ϕn) : {g | g ⊂ gN} → RN . We emphasize

that these payoffs can be zero, positive, or negative and that the empty network

g0 = ∅ generates (reservation) values ϕ(g0) ∈ RN that might be non-zero as well.

Several examples of standard network payoff functions are reviewed in Jackson

[15, 16]. In van den Nouweland [23], Dutta, van den Nouweland and Tijs [9], Slikker

[25], Slikker and van den Nouweland [27], and Garratt and Qin [10] these network

payoff functions are based on underlying cooperative games.

Here we study network formation using arbitrary (network) payoff functions that

do not rely on specific payoff structures such as those used in cooperative games

satisfying certain properties or even explicit formulations like those used in Nash

7In the literature there has been a discussion regarding the appropriate terminology for describing
values or payoffs generated in networks. In this paper we use the notion of a “payoff function” to
describe individual utilities in non-cooperative games, and a “network payoff function” to denote
individual values generated in the context of a network. In the literature this latter concept is also
described as “value function”, tying it to the “values” literature in cooperative game theory where
a substantial part of the networks literature originated.
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networks. We will also use the following example throughout the paper to illustrate

many interesting properties. It uses the simplest possible link-wise payoff generation.

Example 2.2 (Link-based payoffs)

Let N = {1, . . . , n} be an arbitrary set of players. First, let φ : gN → R+ be a

link benefit function. It assigns to every potential link ij ∈ gN a payoff φ(ij) = 0.

Next we define the network payoff function ϕ̃i : {g | g ⊂ gN} → R+ with ϕ̃i(g) =∑
j∈Nd(i,g) φ(ij), where φ is the link benefit function. The resulting network payoff

function ϕ̃ is called a link-based network payoff function.

We investigate the properties of this link-based network payoff structure to illustrate

the relationships between the different concepts. The link-based payoff structure in

this application reflects in particular the benefits obtained from having links with

direct neighbors. Interestingly this simple payoff structure is shown to have some

remarkable properties. �

We conclude the preliminaries on network theory with the definition and discussion

of several stability conditions. Note that the stability notions introduced below are

based on the properties of the network itself rather than strategic considerations of

the players. This latter viewpoint is also advocated by Jackson [15].

Definition 2.3 Let ϕ be a network payoff function on the player set N .

(a) A network g ⊂ gN is link deletion proof if for every player i ∈ N and every

j ∈ Nd(i, g) it holds that ϕi(g − ij) 5 ϕi(g).

(b) A network g ⊂ gN is strong link deletion proof if for every player i ∈ N

and every M ⊂ Nd(i, g) it holds that ϕi(g \ hM) 5 ϕi(g), where hM = {ij ∈
g | j ∈ M} ⊂ g.

(c) A network g ⊂ gN is pairwise stable if g is link deletion proof and, moreover,

for all players i, j ∈ N : ϕi(g + ij) > ϕi(g) implies ϕj(g + ij) < ϕj(g).

(d) A network g ⊂ gN is strongly pairwise stable if g is strong link deletion

proof and, moreover, for all players i, j ∈ N : ϕi(g + ij) > ϕi(g) implies

ϕj(g + ij) < ϕj(g).

(e) A network g ⊂ gN is strongly stable if for any coalition S ⊂ N and any

network g′ that is obtainable from g through S it holds that for every i ∈ S

with ϕi(g
′) > ϕi(g) there exists a player j ∈ S such that ϕj(g

′) < ϕj(g).
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The two link deletion proofness notions are based on the severance of links in a

network by individual players. In particular, the notion of link deletion proofness

considers the stability of a network with regard to the deletion of a single link.

Strong deletion proofness considers that a player deletes any subset of her existing

links. Clearly, strong link deletion proofness implies link deletion proofness.

Closely related to link deletion proofness is the concept of pairwise stability intro-

duced by Jackson and Wolinsky [19]. Besides the deletion of a single link, it considers

the addition of a single link. The latter only occurs when it is mutually profitable for

both link-constituting individuals.

The notion of strong pairwise stability combines strong link deletion proofness

with pairwise stability. Strong pairwise stability, thus, considers the incentives related

to the removal of multiple links by an individual in combination with the addition

of a single link. The appeal of this stability concept for network formation lies in its

realism: Players consider the creation of one link at time (based on mutual consent)

while they can unilaterally delete one or more of their existing links.

Finally, strong stability allows for arbitrary deviations from a network through

arbitrary deletion and creation of links. It is therefore not tied to the considerations of

a single individual. As Jackson [16] remarks, this concept leads to very well-behaved

networks, but is a very strong requirement. Very few networks satisfy this property.

Example 2.4 We conclude our discussion with an example which delineates the dif-

ferent link-wise stability concepts. Consider the network payoffs given in the following

table:

Network ϕ1(g) ϕ2(g) ϕ3(g) Stability
g0 = ∅ 2 2 4 Ds

g1 = {12} 6 4 2 Ps

g2 = {13} 2 2 2
g3 = {23} 0 3 0
g4 = {12, 13} 1 1 1
g5 = {12, 23} 2 6 2
g6 = {13, 23} 5 5 3 P
g7 = gN 7 4 4 S

In the table Ds stands for strong deletion proofness, P for pairwise stability, Ps for

strong pairwise stability, and S for strong stability. Network g6 is neither strongly
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stable nor strongly pairwise stable because player 3 can sever both her ties and move

to network g0. Finally, there are two pairwise stable equilibria, g1 where player 1 is

better off and g2 where players 2 and 3 are better off. �

3 Individual stability of networks

In this section we present two game-theoretic models of costly network formation.

Let N = {1, . . . , n} be a given set of players and ϕ : {g | g ⊂ gN} → RN be a fixed,

but arbitrary network payoff function representing the gross benefits that accrue to

the players in a network. For every player i ∈ N we introduce individualized link

formation costs represented by ci = (cij)j 6=i ∈ RN\{i}
+ . (Recall that for some links

ij ∈ gN it might hold that cij 6= cji.) Thus, the pair 〈ϕ, c〉 represents the basic

benefits and costs of network formation to the individuals in N . Finally, in a non-

cooperative game theoretic model of network formation (A, π), we say that a network

ĝ ⊂ gN individually stable if ĝ can be supported through a Nash equilibrium of (A, π).

A simple, fundamental model of network formation has been introduced by My-

erson [22], page 448, and is based on the idea that pairs of players approach each

other on equal footing and both have to consent to form a link. Myerson [22] based

the benefits from network formation on an underlying cooperative game.8 Here we

extend this framework further to incorporate costs of link formation for arbitrary

network payoff functions. We model link formation costs in two ways: Costs can be

two-sided, i.e., both players incur costs while approaching each other to form a link,

or costs can be one-sided. In the latter case costs are only incurred by the initiating

player, not the responding player.

3.1 Two-sided link formation costs

We first address the formalization of the standard model with two-sided link formation

costs. For every player i ∈ N we introduce an action set

Aa
i = {(`ij)j 6=i | `ij ∈ {0, 1} } (1)

8This cooperative benefits model has been extended by Slikker and van den Nouweland [27] and
Garratt and Qin [10] to incorporate link formation costs. Their formulation only allowed them to
develop a complete and exhaustive description of the resulting networks for situations with up to
four individuals.
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Player i seeks contact with player j if `ij = 1. A link is formed if both players seek

contact, i.e., `ij = `ji = 1.

Let Aa =
∏

i∈N Aa
i where ` ∈ Aa. Then the resulting network is given by

ga(`) = {ij ∈ gN | `ij = `ji = 1}. (2)

Link formation is costly. Approaching player j to form a link costs player i an amount

cij = 0. This results in the following net payoff function for player i:

πa
i (`) = ϕi(g

a(`))−
∑
j 6=i

`ij · cij (3)

where c is the link formation cost introduced at the beginning of this section.

The pair 〈ϕ, c〉 thus generates the non-cooperative game (Aa, πa) as described

above. We call this non-cooperative game the standard model of network formation

with two-sided link formation costs.

Theorem 3.1 Let ϕ and c = 0 be given as above. A network g ⊂ gN is individually

stable in the standard model with two-sided link formation costs if and only if g is

strong link deletion proof for the net payoff function ϕa given by

ϕa
i (g) = ϕi(g)−

∑
j∈N, ij∈g

cij.

For a proof of this result we refer to Section 6.

Theorem 3.1 gives a complete characterization of the individually stable networks

in the standard model with two-sided costs of link formation. Note that regardless

of the cost structure, the empty network is always individually stable. The next

corollary strengthens this insight by showing that the empty network is actually

“strictly” individually stable for positive costs.

Corollary 3.2 If c � 0, then the empty network is supported by a strict Nash equi-

librium of the standard model with two-sided link formation costs based on the net

payoff function ϕa given in Theorem 3.1.

Proof. First, for every i ∈ N and ` ∈ Aa we define hi(`) = {ij ∈ gN | `ij =

1 and `ji = 0}. We now show that `∅ is a strict Nash equilibrium in the game
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(Aa, πa), where `∅ij = 0 for all players i, j ∈ N with i 6= j. Now, for every player

i ∈ N and li 6= `∅i :

πa
i

(
li, `

∅
−i

)
= ϕi(∅)−

∑
ij∈hi(li,`

∅
−i)

cij < ϕi(∅) = πa
i

(
`∅

)
since hi

(
li, `

∅
−i

)
6= ∅. Hence, we may conclude that indeed `∅ is a strict Nash equilib-

rium in the link formation game (Aa, πa).

From Corollary 3.2 it should be clear that if players start from the empty network

and link formation costs are positive, then there is no reason to form any links.

Dutta et al. [9] showed that in the cooperative benefits model under costless

link formation, every network is individually stable if the network payoff function is

“link monotonic”. Theorem 3.1 generalizes this insight for situations with arbitrary

network payoff functions. This is stated in the next corollary whose proof is immediate

from Theorem 3.1.

Corollary 3.3 Assume that ϕ is link monotonic in the sense that ϕi(g) < ϕi(g + ij)

for all networks g and players i ∈ N with ij 6∈ g where j 6= i. If c = 0, then every

network is individually stable.

A third immediate and important consequence of Theorem 3.1 is that it allows us to

link the notion of strong pairwise stability to individual stability under two-sided link

formation costs. Namely, strong pairwise stability implies strong deletion proofness

and, thus by Theorem 3.1, individual stability of that network. This is summarized

as follows.

Corollary 3.4 Any strongly pairwise stable network with regard to the (net) payoff

function ϕa is individually stable under two-sided link formation costs.

The reverse of Corollary 3.4 however does not hold as is demonstrated in Example

4.4. This example shows that it is possible to have individually stable networks that

are not (strongly) pairwise stable, since pairwise stability allows pairs to establish

links while individual stability only takes individual decisions into account.

Next we turn to examples of network payoff functions that generate standard models

with two-sided link formation costs with some illustrative properties.
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Example 3.5 Consider a link-based network payoff function ϕ̃ based on the link

benefit function φ : gN → R+ introduced in Example 2.2. Let c = 0 be the link

formation cost parameter. For this network payoff function the individually stable

networks with two-sided link formation costs are given by g ⊂ {ij ∈ gN | φ(ij) =

max{cij, cji} }. In other words individually stable networks consist of links of which

the formation costs are covered by their direct benefits. �

The properties of the link-based network payoff functions also include a relationship

with potential games. This is the subject of our next proposition.

Proposition 3.6 If ϕ̃i(g) =
∑

j∈Nd(i,g) φ(ij) is a link-based network payoff function

founded on the link benefit function φ : gN → R+, then the standard model with

two-sided link formation costs is a potential game. Furthermore, in this game the

potential maximizing individually stable networks are given by g = ĝφ ∪ h, where

ĝφ = {ij ∈ gN | φ(ij) > cij + cji} and h ⊂ {ij ∈ gN | φ(ij) = cij + cji}.

Proof. We proceed by constructing an appropriate interaction potential for the

standard model with two-sided link formation costs. By application of Lemma 2.1 it

then is established that this model has a potential.

Let ` ∈ Aa. We now introduce an interaction potential for every coalition S ⊂ N by

ΦS(`S) =


−

∑
j 6=i `ij · cij if S = {i}

`ij · `ji · φ(ij) if S = {i, j}
0 otherwise

Observe that this is indeed an interaction potential. The function Φ{i}(`i) depends

only on the variables `i. The other parts of the definition above are easily checked as

well. Also, it holds that

πa
i (`) =

∑
j∈Nd(i,ga(`))

(φ(ij)− cij)−
∑

j 6∈Nd(i,ga(`))

`ij · cij =

=
∑
j 6=i

`ij · `ji · φ(ij)−
∑
j 6=i

`ij · cij =

=
∑
j 6=i

Φij(`{i,j}) + Φi(`i) =
∑

S⊂N, i∈S

ΦS(`S).

Now from Lemma 2.1 a potential of the game (Aa, πa) is given by

Q(`) =
∑
S⊂N

ΦS(`S) =
∑

ij∈ga(`)

[φ(ij)− cij − cji]−
∑

ij /∈ga(`)

[`ij · cij + `ji · cji] .
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From this it is clear that Q is maximal if ga(`) = ĝφ ∪ h with h ⊂ {ij ∈ gN | φ(ij) =

cij + cji}.

From Proposition 3.6 and the previous discussion of Theorem 3.1 and Corollary 3.2,

we can draw some important conclusions.

First, in game theory the set of potential maximizers is usually considered to be

an important and useful refinement of the Nash equilibrium concept. Proposition 3.6,

however, shows that for two-sided link formation costs, the set of potential maximizing

networks may not the most interesting class of networks. For link-based network

payoffs, the largest individually stable network is given by g?
φ = {ij ∈ gN | φ(ij) >

max{cij, cji}}. The class of networks identified in Proposition 3.6 does not contain

this network, and, in fact, does not have any significantly distinguishing features. It

is clear that we have to resort to other modifications of the Nash equilibrium concept

in our study of the formation of non-trivial stable networks.

Second, Monderer and Shapley [21] introduced the notion of an “improvement

path” to describe an individually myopic improvement process that results in a Nash

equilibrium for a potential game. In the context of the model addressed in Proposition

3.6 such processes are less useful. In particular, starting from the empty network — as

the most natural starting point — these improvement paths terminate immediately,

thus, rendering the discussion rather pointless. It is apparent that other behavioral

rules besides individually myopic behavior have to be introduced in the analysis to

support the formation of non-trivial stable networks. Nevertheless, we remark that

individual stability of a network remains a basic requirement for the outcome of any

game theoretic network formation process.

3.2 One-sided link formation costs

Next we address the formalization of the standard model with one-sided link for-

mation costs. Here links are formed by mutual agreement, but one player initiates

the formation process and the other player responds to it. The initiator incurs the

formation costs of the link, while the respondent incurs no costs.9 Formally, for every

9We remark that a similar link formation structure has been already discussed by Slikker et
al. [26] and Slikker [25] in the context of the discussion of the formation of directed networks. See
also Dutta and Jackson [6].
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player i ∈ N we introduce an action set

Ab
i = {(`ij, rij)j 6=i | `ij, rij ∈ {0, 1} }. (4)

Player i acts as the initiator in forming a link with player j if `ij = 1. Player j

responds positively to this initiative if rji = 1. A link is established if formation is

initiated and accepted, i.e., if `ij = rji = 1.

Let Ab =
∏

i∈N Ab
i . Given the link formation procedure described, for any (`, r) ∈

Ab, the resulting network is now given by

gb(`, r) = {ij ∈ gN | `ij = rji = 1}. (5)

When player i initiates the formation of a link with player j she incurs a cost of

cij = 0. Responding to the initiative by another player however, is costless. This

results in the following net payoff function for player i:

πb
i (`, r) = ϕi(g

b(`, r))−
∑
j 6=i

`ij · cij (6)

where c denotes the link formation costs.

Analogous to the previous model with two-sided link formation costs, the pair

〈ϕ, c〉 generates the non-cooperative game (Ab, πb) introduced above. This game

represents the standard model with one-sided link formation costs. We now illustrate

the defined notions by returning to the case of link-based network payoffs.

Example 3.7 Consider a link-based network payoff function ϕ̃ based on the link

benefit function φ : gN → R+ introduced in Examples 2.2 and 3.5. Also, let c = 0 be

a link formation cost structure.

For this network payoff function the individually stable networks with one-sided link

formation costs are given by g ⊂ {ij ∈ gN | φ(ij) = min{cij, cji} }. From this it

follows immediately that with link-based network payoffs the class of individually

stable networks under two-sided link formation costs is usually a strict subset of the

class of individually stable networks under one-sided link formation costs. �

The next result generalizes the insight of Example 3.7. For a proof of the theorem

refer to Section 6 of the paper.

Theorem 3.8 Let ϕ and c = 0 be given. Any individually stable network through

the standard model with two-sided link formation costs is individually stable through

the standard model with one-sided link formation costs.
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Example 3.7 shows that the assertion stated in Theorem 3.8 cannot be reversed. In

Theorem 3.1 we characterized the class of individually stable networks under two-

sided link formation costs. However, such a complete characterization is not possible

with one-sided link formation costs. As usual, a proof of this theorem is contained in

Section 6.

Theorem 3.9 Let ϕ be arbitrary and let c = 0 be such that cij 6= cji for all potential

links ij ∈ gN . If a network g ⊂ gN is strong link deletion proof for the net payoff

function ϕb given by

ϕb
i(g) = ϕi(g)−

∑
j∈Nd(i,g): cij<cji

cij,

then g is individually stable through the standard model with one-sided link formation

costs.

The next example demonstrates that Theorem 3.9 cannot be reversed.

Example 3.10 Consider N = {1, 2}. There are only two feasible networks on this

set of players, namely g∅ = ∅ and g = {12} = gN . Consider ϕ1(g0) = ϕ2(g0) = 0,

ϕ1(g) = 1
2
, and ϕ2(g) = 10. Finally, we let c12 = 1 < c21 = 2. A Nash equilibrium

for the standard model with one-sided link formation costs is given by `12 = 0,

r12 = 1, `21 = 1, and r21 = 0. Indeed, gb(`, r) = g, πb
1(`, r) = 1

2
> 0 = ϕ1(g0), and

πb
2(`, r) = 8 > 0 = ϕ2(g0). However, ϕb

1(g) = −1
2

< ϕb
1(g0), which implies that g is

not link deletion proof with respect to ϕb for player 1. �

Next we return to the example of link-based network payoffs. In Proposition 3.6

we discussed the class of potential maximizing networks for two-sided link formation

costs. Here we present an analogue of that case for one-sided link formation costs.

Proposition 3.11 If ϕ̃i(g) =
∑

j∈Nd(i,g) φ(ij) is a link-based network payoff function

founded on φ : gN → R+, then the standard model with one-sided link formation costs

is a potential game. Moreover, in this case the potential maximizing individually

stable networks are given by g = g̃φ ∪ h, where g̃φ = {ij ∈ gN | φ(ij) > min{cij, cji}}
and h ⊂ {ij ∈ gN | φ(ij) = min{cij, cji}}.

Proof. Again we proceed by constructing an appropriate interaction potential. By

application of Lemma 2.1 it is then established that this model has a potential.
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Let (`, r) ∈ Ab. We now introduce an interaction potential for every coalition S ⊂ N

as follows

ΦS(`S, rS) =


−

∑
j∈Nd(i,g) `ij · cij if S = {i}

mij(`, r) · φ(ij) if S = {i, j}
0 otherwise,

where mij(`, r) = max{`ij · rji, rij · `ji}. It is obvious that this defines an interaction

potential. Indeed, we have

πb
i (`, r) =

∑
j∈Nd(i,g)

(φ(ij)− `ij · cij) =

=
∑
j 6=i

mij(`, r) · φ(ij)−
∑

j∈Nd(i,g)

`ij · cij =

=
∑
j 6=i

Φij(`{i,j}, r{i,j}) + Φi(`i, ri) =
∑

S⊂N, i∈S

ΦS(`S).

Using Lemma 2.1, a potential of the standard model with one-sided link formation

costs is now given by

Q(`, r) =
∑
S⊂N

ΦS(`S) =
∑

ij∈gb(`,r)

φ(ij)−
∑

ij∈gN

[`ij · cij + `ji · cji].

From this it is clear that Q is maximal if ga(`) = g̃φ ∪ h with h ⊂ {ij ∈ gN | φ(ij) =

min{cij, cji}}.

Compared to the conclusion in Proposition 3.6 the assertion of Proposition 3.11 is

much more interesting. It identifies exactly the class of networks that result from

the formation of each profitable link, i.e., when link formation is profitable for the

individual with the lowest link costs, the link is always formed. Hence, we conclude

that the refinement of potential maximizer is a much more useful tool in explaining

the formation of non-trivial networks in the context of one-sided link formation costs.

4 Modelling trust: Monadic stability

Let 〈ϕ, c〉 be given. In the previous section it has been shown that behavior of players

represented by individual stability and the underlying Nash equilibrium of the game

theoretic models (Aa, πa) and (Ab, πb), leaves a lot to be desired in terms of realism
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for explaining the formation of non-trivial networks. The Nash equilibrium concept

does not take account of any cooperative elements such as trust in the process of link

formation.

In this section we discuss an alternative equilibrium concept for these specific

network formation models that introduces the concept of “trust” into link formation.

This alternative equilibrium concept, called monadic stability, incorporates a rather

modest form of trust into the behavioral principles governing individual decision

making. Players are assumed to take into account that other players are likely to

respond affirmatively to a proposal to form a link if the addition of this link is

profitable for them. Since further consequences are not taken into account, this

modification of behavior underlying the Nash equilibrium concept introduces a myopic

element of farsightedness. This limited form of farsightedness thus represents a simple

form of trust that other players will do the “correct” thing when asked whether to

form a link or not.

We discuss the case of two-sided link formation costs separately from the case of

one-sided link formation costs.

4.1 Two-sided link formation costs

Formally, consider the standard model with two-sided link formation costs (Aa, πa).

Definition 4.1 Let ` ∈ Aa be an arbitrary action tuple. For every player i ∈ N we

define his myopic belief system `i? ∈ Aa based on ` by

(i) for every j 6= i we let

• `i?
ji = 0 if ϕj(g(`) + ij)− cji < ϕj(g(`)) and

• `i?
ji = 1 if ϕj(g(`) + ij)− cji = ϕj(g(`)),

(ii) and for all j, k ∈ N with j 6= i and k 6= i we define `i?
jk = `jk.

An action tuple ˆ̀∈ Aa is a Network Trust Equilibrium under two-sided link

formation costs if for every player i ∈ N : ˆ̀
i ∈ Aa

i is a best response to ˆ̀i?
−i ∈ Aa

−i

for the payoff function πa.

In a Network Trust Equilibrium (NTE) player i anticipates — as captured by her

belief system — that other players will respond “correctly” to her if i approaches
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them to form a link. Hence, a player will agree to form a link with i when it is

myopically profitable to form this link. Similarly, unprofitable links initiated by i

will be turned down. In this sense an NTE indeed incorporates a one-stage form of

farsightedness into the behavior of a player. (See also the discussion in Section 1.1.)

A network g on N is now called monadically stable under two-sided link formation

costs if there exists a Network Trust Equilibrium ˆ̀ in (Aa, πa) such that g = ga(ˆ̀).

The following result gives a (partial) characterization of monadically stable networks

under two-sided link formation costs. For a proof we again refer to Section 6.

Theorem 4.2 Let 〈ϕ, c〉 be given. Every network g that is monadically stable under

two-sided link formation costs, is strongly pairwise stable for the (net) payoff function

ϕa given in Theorem 3.1.

Combining Theorem 4.2 with Corollary 3.4 we arrive at the following:

Corollary 4.3 Every monadically stable network under two-sided link formation costs

is individually stable under two-sided link formation costs as well as pairwise stable

for the (net) payoff function ϕa.

Theorem 4.2 and Corollary 4.3 provide an overview of the properties satisfied by

monadically stable networks. It is clear that these properties are desirable.

The stated results however do not address the issue of existence of monadically

stable networks under two-sided link formation costs. Although individually stable

networks are plentiful — as shown by Corollary 3.2 — and pairwise stable networks

exist in many situations, this cannot be claimed for monadically stable networks. The

next example provides a simple case in which such networks do not exist.

Example 4.4 In this example we show that under two-sided link formation costs

monadically stable networks may not exist for certain network payoff functions.

Consider three players N = {1, 2, 3} and assume that cij = 0 for all ij ∈ gN , i.e.,

there is costless link formation. Let the network payoff function ϕ be given by the

table below. This table identifies whether the network in question is individually

stable or strongly pairwise stable, respectively indicated by I and Ps.
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Network ϕ1(g) ϕ2(g) ϕ3(g) Stability
g0 = ∅ 2 2 2 I
g1 = {12} 3 3 0 I
g2 = {13} 5 2 3 I
g3 = {23} 2 3 5 Ps

g4 = {12, 13} 4 1 3
g5 = {12, 23} 1 4 3
g6 = {13, 23} 1 3 6
g7 = gN 3 0 0

The network payoff function given in this table has no monadically stable network. In

fact by Theorem 4.2 there is only one candidate, namely the unique strongly pairwise

stable network g3.
10 However, in g3 both players 2 and 3 have direct incentives to

agree to forming a link with player 1, i.e., `1?
21 = `1?

31 = 1. The best reply of player

1 to `1? is to play `12 = `13 = 1 and deviate to network g7. Thus, as a consequence

network g3 is not monadically stable. �

Example 4.4 also shows that the reverse of Theorem 4.2 does not hold. Namely, in

the example we identified a strongly pairwise stable network that is not monadically

stable under two-sided link formation costs. The intuition for this is quite simple.

Under monadic stability, in equilibrium, every pair of players correctly anticipates

the response of their partner. Hence initiated links are always accepted and links

that will not be accepted are never initiated in equilibrium. This pairwise nature of

beliefs regarding link formation makes monadically stable networks strongly pairwise

stable. On the other hand a network like g3 in the above example is strongly pairwise

stable but not monadically stable since players 2 and 3 do not form beliefs about

each other’s actions when considering links to player 1. Higher order belief systems

are necessary to capture this type of reasoning. This is investigated further in Gilles

and Sarangi [11].

The next example provides an insight on the existence of monadically stable net-

works. It is shown that these networks can co-exist with strongly pairwise stable

networks that are not monadically stable.

Example 4.5 Again consider three players N = {1, 2, 3} and assume that cij = 0

for all ij ∈ gN . Let the network payoff function ϕ be given by the table below. In this

10That g3 is strongly pairwise stable is obvious because player 1 has no incentive to form links
with either players 2 or 3.
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table, individual stability is indicated with I, pairwise stability by P , strong pairwise

stability by Ps, monadic stability by M , and strong stability by S.11

Network ϕ1(g) ϕ2(g) ϕ3(g) Stability
g0 = ∅ 3 2 2 Ps

g1 = {12} 2 3 2
g2 = {13} 2 2 3
g3 = {23} 1 3 1
g4 = {12, 13} 4 1 1
g5 = {12, 23} 5 5 5 S, M
g6 = {13, 23} 4 4 4 M
g7 = gN 0 0 0

This particular network payoff function shows that different classes of stable networks

might emerge. Observe that g0 is strongly pairwise stable, but not monadically stable.

Indeed, in network g0 we have that `1?
21 = `1?

31 = 1 since both player 2 and 3 want to

deviate profitably to g1, respectively g2. Now player 1 has a best response to `1? by

creating links with both 2 and 3, arriving at network g4. Note that g5 is efficient,

strongly stable as well as monadically stable. Finally, g6 is monadically stable, but

not strongly stable since the grand coalition consisting of all players in N would want

to deviate to g5. �

The above example shows that monadically stable networks can be strongly stable

as well. Our final example explores the relationship between monadic stability and

strong stability in greater detail. One would expect that strong stability implies

monadic stability, but this is not the case. In fact it turns out that these concepts

can be mutually exclusive due to the fact that strong stability does not account for

beliefs, while monadic stability incorporates the expectations of the two partners

making up a pair considering the formation of link between them.

Example 4.6 Again consider three players N = {1, 2, 3} and assume that cij = 0

for all ij ∈ gN . Let the network payoff function ϕ be given by the table below.

11Here we recall that Ps implies I as well as P . Indeed, this follows from Corollary 3.4. Moreover,
from Theorem 4.2 we recall that M in turn implies Ps.
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Network ϕ1(g) ϕ2(g) ϕ3(g) Stability
g0 = ∅ 0 0 0
g1 = {12} 0 0 0
g2 = {13} 0 0 0
g3 = {23} 1 1 1 S, not M
g4 = {12, 13} 0 0 0 M , not S
g5 = {12, 23} 0 2 0
g6 = {13, 23} 0 0 2
g7 = gN 2 0 0 M , not S

In this case network g3 is strongly stable, but not monadically stable. Indeed any

coalition of players that deviates contains at least one member for whom the value

reduces from 1 to 0. On the other hand, g3 is not monadically stable since player

1 deviates to g7 as a best response to the belief system in which player 2 wants to

deviate to g5 and player 3 to g6. Furthermore, g4 is monadically stable, but not

strongly stable. Indeed all players in the grand coalition N will re-configure the

network into g3. Finally, the complete network gN is also monadically stable, but not

strongly stable. In this case the coalition {2, 3} wants to deviate to network g3 by

deleting their links with player 1. �

Next we return to the case of link-based network payoffs and show that the Network

Trust Equilibrium concept indeed achieves the desired objective. This is contrary

to the outcome achieved by the potential maximizer refinement of Nash equilibrium

discussed in Proposition 3.6.

Proposition 4.7 If ϕ̃i(g) =
∑

j∈Nd(i,g) φ(ij) is a link-based network payoff function

founded on φ : gN → R+, then the monadically stable networks under two-sided link

formation costs are given by g = g?
φ ∪ h, where g?

φ = {ij ∈ gN | φ(ij) > max{cij, cji}}
and h ⊂ {ij ∈ gN | φ(ij) = max{cij, cji}}.

Proof. Let ` ∈ Aa be a network trust equilibrium for the network payoff function as

described in the assertion and let ga(`) be the resulting network.

From the definition of ϕ̃ it follows that ϕ̃j(g
a(`) + ij)− cji = ϕ̃j(g

a(`)) if and only if

φ(ij) = cji. Hence, `i?
ji = 1 if and only if φ(ij) = cji.

Furthermore, `ij = 1 is a best response to `i?
ji = 1 if and only if φ(ij) = cij. Moreover,

`ij = 0 is a best response to any value of `i?
ji if and only if φ(ij) 5 cij.

These facts imply that ij ∈ ga(`) if φ(ij) > cij as well as φ(ij) > cji, i.e., if φ(ij) >
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max{cij, cji}. Also, if φ(ij) = max{cij, cji} — implying that φ(ij) = cij or φ(ij) = cji

— the link ij might be present in ga(`) or not. This proves the assertion of the

proposition.

We now provide some intuition as to why the network trust equilibrium performs

well in the above example while the potential maximizer does not. The potential

expresses the change in payoffs from unilateral deviations by using the same function

for all players, and the potential maximizer achieves the maximum for this function.

Now, under individual stability, a player loses the costs incurred in trying to form

the link, if the other player refuses to form the link. Hence, when considering the

formation of a link, a player will only initiate a link if its benefits exceed the sum

of costs incurred by both players since that guarantees participation of both players

in the formation process. As already shown in the previous section, this makes the

potential maximizer an unappealing refinement. Under monadic stability however,

players correctly anticipate the responses of their partners when initiating a link.

Consequently player i initiates a link with j only if it exceeds j’s net benefit. Hence,

the NTE selects networks that will be formed when the benefit of a link is at least as

much as the maximum link costs for the pair of players involved.

4.2 One-sided link formation costs

Next we address the introduction of myopic trust in the model with one-sided link

formation costs. Surprisingly the results are very different from the ones obtained

for two-sided link formation costs. The presence of one-sided link formation costs

leads to the persistence of coordination failures, in particular because players trust

the other players to do the myopically rational thing.

Consider the standard model with one-sided link formation costs (Ab, πb). The

analogue of Definition 4.1 is now as follows:

Definition 4.8 Let (`, r) ∈ Ab be an arbitrary action tuple. For every player i ∈ N

we define his myopic belief system (`i?, ri?) ∈ Ab based on (`, r) by

(i) For every j 6= i we define

• `i?
ji = ri?

ji = 0 if ϕj(g(`) + ij) < ϕj(g(`)),

• `i?
ji = 0 and ri?

ji = 1 if ϕj(g(`) + ij)− cji < ϕj(g(`)) 5 ϕj(g(`) + ij), and
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• `i?
ji = ri?

ji = 1 if ϕj(g(`) + ij)− cji = ϕj(g(`)),

(ii) and for all j, k ∈ N with j 6= i and k 6= i we define `i?
jk = `jk and ri?

jk = rjk.

An action tuple (ˆ̀, r̂) ∈ Ab is a Network Trust Equilibrium under one-sided

link formation costs if for every player i ∈ N : (ˆ̀i, r̂i) ∈ Ab
i is a best response to

(ˆ̀i?−i, r̂
i?
i ) ∈ Ab

−i for the payoff function πb.

A network g is now called monadically stable under one-sided link formation costs if

there exists a Network Trust Equilibrium (ˆ̀, r̂) ∈ Ab in (Ab, πb) such that g = gb(ˆ̀, r̂).

From the definition of the myopic belief system under one-sided link formation

costs, it is clear that if both `i?
ji = ri?

ji = 1 and `j?
ij = rj?

ij = 1, coordination problems

can arise quite easily. Indeed if both cij > 0 and cji > 0, then in their best response

both players i and j will consent to forming a new link, but will be unwilling to pay

for it. This is a classic coordination problem since both players rationally believe

that the other player will bear the link formation costs. Hence, the most profitable

links might not be formed in the Network Trust Equilibrium under one-sided link

formation costs.

The following proposition summarizes this particular weakness of our concept of

myopic trust with one-sided link formation costs. It discusses the monadically stable

networks for link-based network payoffs.

Proposition 4.9 If ϕ̃i(g) =
∑

j∈Nd(i,g) φ(ij) is a link-based network payoff function

founded on φ : gN → R+, then the monadically stable networks under one-sided link

formation costs are given by g = gmm ∪ h with

gmm = {ij ∈ gN | min{cij, cji} < φ(ij) < max{cij, cji} }

and

h ⊂ {ij ∈ gN | min{cij, cji} = 0 and φ(ij) = max{cij, cji} }.

Proof. Let (`, r) ∈ Ab be an arbitrary action tuple. Then for every j 6= i we have

(i) `i?
ji = ri?

ji = 0 if φ(ij) < 0,

(ii) `i?
ji = 0 and ri?

ji = 1 if 0 5 φ(ij) < cji, and

(iii) `i?
ji = ri?

ji = 1 if φ(ij) = cji.
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The first case is impossible since φ(ij) = 0 for all ij ∈ gN .

From the second case it immediately follows that ij is formed through the best re-

sponse structure to (`?, r?) if φ(ij) < max{cij, cji} as well as φ(ij) > min{cij, cji}.
Hence, all links in gmm are formed.

However, from the third case it follows that ij is not formed through the best re-

sponse structure (due to coordination failure) if φ(ij) = max{cij, cji}, cij > 0 as well

as cji > 0.

Finally, suppose φ(ij) = max{cij, cji} and min{cij, cji} = 0. Without loss of gener-

ality suppose that cij = 0. Then player i has two best responses to `i?
ji = ri?

ji = 1,

namely `i
ij = ri

ij = 1 as well as (`i
ij = 0 and ri

ij = 1). This implies that ij might be

formed (if `i
ij = 1) or it might not be formed (if `i

ij = 0). This is formulated through

the h-part given in the assertion.

5 Concluding remarks

In this paper we study the standard model of network formation where agents can

establish costly links only with the consent of the other agent. The payoff function

is kept as general as possible and a natural stability concept called strong pairwise

stability has been introduced. Additionally, a simple form of trust is incorporated in

network formation through the notion of a network trust equilibrium.

We find that results from the two sided link formation cost model differ substan-

tially from those obtained under one-sided link formation costs. On the one hand,

in general, all equilibria of the two-sided model are also equilibria in the one-sided

model. On the other hand, however, our example of the link-based model (Proposi-

tions 3.6, 3.11, 4.7 and 4.9) in which all benefits are derived only from direct links,

provides interesting additional insights. Under two-sided costs we find that the po-

tential maximizer is not a useful solution concept since it takes into account costs of

pair of agents in a link, while considering individual actions. Yet for one-sided costs

the potential maximizer is able to select the right Nash equilibria since it takes into

account the actions and costs of individual players.

Furthermore, the network trust equilibrium concept, where these actions are cor-

rectly anticipated through the beliefs of the agents, performs very well for the two-

sided model. Interestingly, however, this equilibrium concept does not prove to be

very helpful in the context of one-sided link formation costs. We find that although
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agents may correctly anticipate those who will accept proposals to form links, there

emerge situations with severe coordination failure. Recall that only direct links are

beneficial in this link-based model. Consequently, each agent expects the other agent

to initiate the link, and this can prevent the formation of networks. Incorporat-

ing higher orders of trust in the beliefs as suggested in Gilles and Sarangi [11] or

heterogeneity in the model can help in circumventing these coordination problems.

6 Proofs of the main results

6.1 Proof of Theorem 3.1

If. Suppose that g ⊂ gN is strong deletion proof with respect to the given payoff

function ϕa. Define `g ∈ Aa by `g
ij = 1 if and only if ij ∈ g. Now ga(`g) = g. We now

show that `g is a Nash equilibrium in (Aa, πa). Indeed, from equation (3),

πa
i (`

g) = ϕi(g
a(`g))−

∑
j 6=i

`g
ij · cij = ϕi(g)−

∑
j 6=i, ij∈g

cij = ϕa
i (g) (7)

Let li 6= `g
i and define hi = {ij ∈ gN | `g

ij = 1 and lij = 0}. Then it follows that

hi = {ij ∈ g | lij = 0} and ga(li, `
g
−i) = g \ hi. From this, equation (7), and strong

link deletion proofness of g it now follows that

πa
i (li, `

g
−i) = ϕa

i (g \ hi) 5 ϕa
i (g) = πa

i (`).

Only if. Suppose that g is individually stable. Then, with the definitions above, `g

is a Nash equilibrium in (Aa, πa). Let M ⊂ Nd(i, g) and let hM = {ij ∈ g | j ∈ M}
be the set of all links connecting i to the players in the set M . Define Li ∈ Aa

i by

Lij =

{
1 if ij ∈ g \ hM ;

0 otherwise.

Then with the above it can be concluded that

πa
i (`

g
−i, Li) = ϕi(g \ hM)−

∑
j 6=i, ij∈g\hM

cij =

= ϕa
i (g \ hM) 5 πa

i (`
g) = ϕa

i (g).

From this it can be concluded that g is indeed strong link deletion proof.

This completes the proof of Theorem 3.1.
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6.2 Proof of Theorem 3.8

Let ̂̀∈ Aa be a Nash equilibrium strategy tuple in the standard model with two-sided

link formation costs. We construct with ̂̀a strategy tuple in the standard model with

one-sided link formation generating exactly the same network ga(̂̀) and show that

this is a Nash equilibrium in that model.

First we remark that by the Nash equilibrium requirements on ̂̀ without loss of

generality we may assume that for any ij ∈ gN either ̂̀
ij = ̂̀

ji = 1, or ̂̀
ij = ̂̀

ji = 0.

In the first case we have that ij ∈ ga(̂̀) and in the second case we have that ij /∈ ga(̂̀).
For ̂̀we define (`, r) ∈ Ab such that

(A) `ij = 1 and rij = 0 if and only if ̂̀
ij = ̂̀

ji = 1 and

• cij < cji, or

• cij = cji and i < j.

(B) `ij = 0 and rij = 1 if and only if ̂̀
ij = ̂̀

ji = 1 and

• cij > cji, or

• cij = cji and i > j.

(C) `ij = rij = 0 if and only if ̂̀
ij = ̂̀

ji = 0.

So, (`, r) ∈ Ab describes that the lowest link formation cost is paid for the formation

of every link ij ∈ ga(̂̀) = gb(`, r).

We now show that (`, r) is indeed a Nash equilibrium of the standard model with

one-sided link formation costs.

Let (Li, Ri) ∈ Ab
i be such that (Li, Ri) 6= (`i, ri). Now we define L̂ij = 1 if and only

if Lij = 1 or Rij = rij = 1. Otherwise L̂ij = 0.

Now it holds that ij ∈ ga(̂̀−i, L̂i) if and only if ̂̀
ij = L̂ij = 1 if and only if

1. `ij = Lij = 1,

2. rji = Lij = 1, or

3. rij = Rij = `ji = 1.
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Case 1 implies that ij /∈ gb(`−i, r−i; Li, Ri), while cases 2 and 3 imply that ij ∈
gb(`−i, r−i; Li.Ri). This in turn implies — together with the construction that rij = 0

implies that `ji = 0 — that

gb(`−i, r−i; Li, Ri) ⊂ ga(̂̀−i, L̂i) ⊂ ga(̂̀). (8)

Hence, we may conclude from this that

πb(`−i, r−i; Li, Ri) = ϕi(g
b(`−i, r−i; Li, Ri))−

∑
j 6=i

Lij · cij

= ϕi(g
b(`−i, r−i; Li, Ri))−

∑
ij∈gb(`−i,r−i;Li,Ri)

cij +
∑
j 6=i

Rij · rij · cij

5 ϕi(g
a(̂̀))− ∑

ij∈ga(̂̀)
cij +

∑
j 6=i

Rij · rij · cij

= ϕi(g
a(̂̀))−∑

j 6=i

`ij · cij −
∑
j 6=i

rij · cij +
∑
j 6=i

Rij · rij · cij

5 ϕi(g
b(`, r))−

∑
j 6=i

`ij · cij = πb
i (`, r),

where the first inequality follows from Theorem 3.1 and (8). The second inequality

follows from the fact that
∑

j 6=i rij · cij =
∑

j 6=i Rij · rij · cij.

The above shows that (`, r) indeed is a Nash equilibrium with regard to the payoff

function πb. Thus, ga(̂̀) is supported as a individually stable network in the standard

model with one-sided link formation costs.

This completes the proof of Theorem 3.8.

6.3 Proof of Theorem 3.9

Let g be a strong link deletion proof network under the net payoff function ϕb.

With g we define the strategy tuple (`g, rg) ∈ Ab as follows: `g
ij = rg

ji = 1 if ij ∈ g

and cij < cji, and `g
ij = rg

ji = 0 otherwise.

It is clear that (`g, rg) describes the cost minimizing link formation scheme that

supports g, i.e., gb(`g, rg) = g. We proceed by showing that (`g, rg) ∈ NE(Ab, πb).

First, remark that

πb
i (`

g, rg) = ϕi(g
b(`g, rg))−

∑
j 6=i

`g
ij · cij

= ϕi(g)−
∑

j∈Nd(i,g): cij<cji

cij = ϕb
i(g).
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Let (Li, Ri) ∈ Ab
i such that (Li, Ri) 6= (`g

i , r
g
i ). We now define

M = {j ∈ Nd(i, g) | Lij = rg
ij = 0} ∪ {j ∈ Nd(i, g) | Rij = `g

ij = 0} 6= ∅.

Then for hM = {ij ∈ g | j ∈ M} it is clear that gb(`g
−i, r

g
−i; Li, Ri) = g \ hM .

From the properties of (`g, rg) and the above it follows that j ∈ Nd(i, g \ hM) if and

only if [Lij = `g
ij = 1 and rg

ij = 0] or [Rij = rg
ij = 1 and `g

ij = 0]. In the first case

cij < cji and in the latter cij > cji.

From this it follows that∑
j∈Nd(i,g\hM )

Lij · cij =
∑

j∈Nd(i,g\hM ): cij<cji

cij (9)

Hence,

πb
i (`

g
−i, r

g
−i; Li, Ri) = ϕi(g

b(`g
−i, r

g
−i; Li, Ri))−

∑
j 6=i

Lij · cij 5

5 ϕi(g \ hM)−
∑

j∈Nd(i,g\hM )

Lij · cij 5

5 ϕi(g \ hM)−
∑

j∈Nd(i,g\hM ): cij<cji

cij 5

5 ϕb
i(g) = πb

i (`
g, rg),

where the second inequality follows from (9) and the third inequality from the hy-

pothesis that g is strong link deletion proof with respect to ϕb.

Since this holds for all i ∈ N we conclude that (`g, rg) is indeed a Nash equilibrium

in (Ab, πb).

This completes the proof of Theorem 3.9.

6.4 Proof of Theorem 4.2

Suppose that ˆ̀∈ Aa is an NTE under two-sided link formation costs. Let g = ga(ˆ̀).

The proof now proceeds with two intermediate results.

Lemma 6.1 If cij > 0 and ˆ̀i?
ji = 0 then ˆ̀

ij = 0.

Proof. Clearly, if ˆ̀
ij = 1 is selected, i incurs only costs cij > 0 and no benefits. Since

ˆ̀ is a best response to ˆ̀?i, it therefore is concluded that ˆ̀
ij = 0.
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Lemma 6.2 If ˆ̀j?
ij = 0 then ˆ̀

ij = 0.

Proof. Note that ˆ̀j?
ij = 0 means that ϕi(g

a(`) + ij)− cij < ϕi(g
a(`)).

Thus, irrespective of whether ˆ̀i?
ji = 0 or ˆ̀i?

ji = 1, player i has a net gain of

ϕi(g
a(`))− ϕi(g

a(`) + ij) + cij > 0

by selecting ˆ̀
ij = 0. This implies that indeed ˆ̀

ij = 0 is a best response.

From Lemmas 6.1 and 6.2 it now follows immediately that

Corollary 6.3 If cij > 0 and ˆ̀
ij = 1, then ˆ̀j?

ij = ˆ̀i?
ji = 1.

We proceed the proof of Theorem 4.2 with the assumption that cij > 0. The case of

cij = 0 requires only a simple modification of the arguments that follow below.

From Corollary 6.3 it can be derived that g = ga(ˆ̀) = ga(ˆ̀i, ˆ̀i?
−i). Hence, we conclude

from this that

πa(ˆ̀) = ϕi(g)−
∑
ij∈g

cij = πa(ˆ̀i, ˆ̀i?
−i).

We proceed the proof of Theorem 4.2 in two steps: First we show that g is strong

link deletion proof. Subsequently we show that g is pairwise stable.

Let M ⊂ Nd(i, g) and let hM = {ij ∈ g | j ∈ M}. Define Li ∈ Aa
i by

Lij =

{
1 if j ∈ M

0 otherwise.

Then

ga(Li, ˆ̀i?
−i) = ga(ˆ̀i, ˆ̀i?

−i) \ hM = ga(ˆ̀) \ hM = g \ hM .

This implies that

πa
i (

ˆ̀
i, ˆ̀i?

−i) = ϕi(g \ hM)−
∑
j 6=i

Lij · cij = ϕa
i (g \ hM) 5 πa

i (
ˆ̀) = ϕa

i (g).

This indeed shows that g is strong link deletion proof.

Next we show that g is pairwise stable for the net payoff function ϕa by confirming

that adding a link ij 6∈ g is not beneficial for either i or j or both given the payoff
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function ϕa.

Suppose that adding the link ij 6∈ g is beneficial for player i under ϕa, i.e.,

ϕa
i (g + ij) = ϕi(g + ij)−

∑
ih∈g

cih − cij > ϕa
i (g) = ϕi(g)−

∑
ih∈g

cih.

Then it follows that ϕi(g)− cij > ϕi(g). This in turn implies the following:

1. Firstly, this implies that ˆ̀j?
ij = 1.

2. Secondly, from the previous combined with the hypothesis that ˆ̀ is an NTE,

it follows that ˆ̀i?
ji = 0. Namely, if ˆ̀i?

ji = 1, since adding the link ij is strictly

beneficial for player i, it should be that ˆ̀
ij = 1, since that would then be the

best response to ˆ̀i?
ji = 1.

3. Finally, Since ˆ̀
j is a best response to ˆ̀j?

−j and ij 6∈ g = ga(ˆ̀), it has to follow

that ˆ̀
ji = 0.

From these conclusions — in particular the second conclusion — we arrive at:

ϕj(g + ij)− cji < ϕj(g) or ϕa
j (g + ij) < ϕa

j (g).

This in turn implies that g is indeed pairwise stable.

This completes the proof of Theorem 4.2.

References

[1] Aumann, R.J., and R.B. Myerson (1988), “Endogenous Formation of Links be-
tween Coalitions and Players: An Application of the Shapley Value,” in A.E.
Roth (ed.), The Shapley Value, Cambridge University Press, Cambridge.

[2] Bala, V., and S. Goyal (2000), “A Strategic Analysis of Network Reliability,”
Review of Economic Design 5, 205–228.

[3] Bala, V., and S. Goyal (2000), “A Non-Cooperative Model of Network Forma-
tion,” Econometrica 68, 1181–1230.

[4] Barabási, A-L. (2002), Linked: The New Science of Networks, Perseus Press,
Cambridge MA.

36



[5] Currarini, S., and M. Morelli (2000), “Network Formation with Sequential De-
mands,” Review of Economic Design 5, 229–249.

[6] Dutta, B., and M.O. Jackson (2000), “The Stability and Efficiency of Directed
Communication Networks,” Review of Economic Design 5, 251–272.

[7] Dutta, B., and M.O. Jackson (2003), “On the Formation of Networks and
Groups,” B. Dutta and M. Jackson (eds.), Models of the Strategic Formation of
Networks and Groups, Springer Verlag, Heidelberg.

[8] Dutta, B. and S. Mutuswami (1997), “Stable Networks,” Journal of Economic
Theory 76, 322–344.

[9] Dutta, B., A. van den Nouweland and S. Tijs (1998), “Link Formation in Coop-
erative Situations,” International Journal of Game Theory 27, 245–256.

[10] Garratt, R., and C-Z. Qin (2003), “On Cooperation Structures Resulting from
Simultaneous Proposals”, Economics Bulletin, 3(5), 1–9.

[11] Gilles, R.P., and S. Sarangi (2003), “Rationalizing Trust in Network Formation,”
typescrpt , Department of Economics, Virginia Polytechnic Institute and State
University, Blacksburg.

[12] Granovetter, M.S. (1973), “The Strength of Weak Ties”, American Journal of
Sociology, 78, 1360–1380.

[13] Haller, H., and S. Sarangi (2003), “Nash Networks with Heterogenous Agents,”
typescript, Virginia Polytechnic Institute and State University, Blacksburg, VA
24061, USA.

[14] Hart, S., and A. Mas-Colell (1989), “Potential, Value, and Consistency,” Econo-
metrica 57, 589–614.

[15] Jackson, M.O. (2003a), “A Survey of Models of Network Formation: Stability
and Efficiency,” typescript, California Institute of Technology, Pasadena.

[16] Jackson, M.O. (2003b), “Allocation Rules for Network Games,” typescript, Cal-
ifornia Institute of Technology, Pasadena.

[17] Jackson, M.O., and A. van den Nouweland (2002), “Strongly Stable Networks,”
typescript, California Institute of Technology, Pasadena, CA 91124, USA.

[18] Jackson, M.O., and A. Watts (2002), “The Existence of Pairwise Stable Net-
works,” typescript, Humanities and Social Sciences, CalTech, Pasadena, CA.

[19] Jackson, M.O. and A. Wolinsky (1996), “A Strategic Model of Social and Eco-
nomic Networks,” Journal of Economic Theory 71 (1996), 44–74.

37



[20] McBride, M. (2002) “Position-specific Information in Social Networks”, type-
script, Department of Economics, UC Irvine, Irvine, CA 92697, USA.

[21] Monderer, D., and L. Shapley (1996), “Potential Games,” Games and Economic
Behavior 14, 124–143.

[22] Myerson, R.B. (1991), Game Theory: Analysis of Conflict, Harvard University
Press, Cambridge.

[23] Nouweland, A. van den (1993), Games and Graphs in Economic Situations,
Ph.D. Dissertation, Tilburg University, Tilburg, the Netherlands.

[24] Page, F.H., M.H. Wooders and S. Kamat (2002), “Networks and Farsighted Sta-
bility,” Warwick Economic Research Paper 621, University of Warwick, Warwick,
UK.

[25] Slikker, M. (2000), Decision Making and Cooperation Structures, Ph.D. Disser-
tation, Center for Economic Research, Tilburg University, Tilburg, The Nether-
lands.

[26] Slikker, M., R.P. Gilles, H. Norde and S. Tijs (2001), “Directed Networks, Payoff
Properties, and Hierarchy Formation,” Center for Economic Research Discussion
Paper 2000-84, Tilburg University, Tilburg, the Netherlands.

[27] Slikker, M., and A. van den Nouweland (2000), “Network Formation Models
with Costs for Establishing Links,” Review of Economic Design 5, 333–362.

[28] Slikker, M., and A. van den Nouweland (2001a), “A One-Stage Model of Link
Formation and Payoff Division” Games and Economic Behavior 34, 153–175.

[29] Slikker, M., and A. van den Nouweland (2001b), Social and Economic Networks
in Cooperative Game Theory, Kluwer Academic Publishers, Boston.

[30] Ui, T. (2000), “A Shapley Value Representation of Potential Games,” Games
and Economic Behavior 31, 121–135.

[31] Watts, A. (2001), “A Dynamic Model of Network Formation,” Games and Eco-
nomic Behavior 34, 331–341.

[32] Watts, D.J. (2003), Six Degrees: The Science of a Connected Age, W.W. Norton
& Company, New York.

[33] Wellman, B., P.J. Carrington and A. Hall (1988), “Networks as Personal Com-
munities”, in B. Wellman and S.D. Berkowitz (Editors), Social Structures: A
Network Approach, Cambridge University Press.

38


