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Abstract

Search engines commonly use “sponsored links”, where certain advertisers’ links are pro-

moted to be placed above others in return for monetary payment. It is natural to assume

that all providers value a higher ranked placement more than lower ranked ones. Then

how should the seller optimally sell these ranked slots is critical for the search engines. In

this paper we study the seller’s (search engine) optimal selling mechanism in the following

setting: buyers (advertisers), each of whom has unit demand, compete for positions offered

by the seller. While each buyer’s valuation for each position is private and independent,

the ranking for these positions is common among all the buyers. However the rate at which

these valuations change might be different. We begin with 4 simplified scenarios specifying

how buyers valuations change for different positions, namely,“parallel”, “convergent”, “di-

vergent”, and “convergent then divergent”. We find that the optimal incentive compatible

allocation mechanism is quite different in determining the “pivot” types and the order to

fill in the positions. Under some conditions, these mechanisms are even efficient in terms of

maximizing the total welfare of the auctioneer and bidders. When the buyers’ valuations

for lower positions decrease at different rates, the seller earns more than the case of simple

second-price sequential auction.
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guidance and support. I also thank Anthony Kwasnica, Tomas Sjostrom, Hemant Bhargava, David Sappington,
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Optimal Allocation Mechanisms When Bidders Ranking for

the Objects is Common

1 Introduction

The rise of “e-business” over the last few years has led to a revival of interest in well-known

economic and strategic problems, such as the design of on line auctions [19], price dispersion

of homogenous goods, [6], online reputation [5], just to give a few examples. Arguably, it

has also generated some qualitatively new problems to which the methods of economic theory

could be brought to bear. This paper addresses one new phenomenon arising in question

with the widespread popularity of search engines such as Google.com. More specifically, this

is one arising from the presence of ”sponsored links” on the output of a key-word search

through internet search engines. In contrast to the results generated through the search engine’s

retrieving algorithm, these links are explicitly sold to firms that have an interest in advertising

their products to the search engine users. The total paid placement market is now worth

some $2 billion a year (2003), and is widely credited for the revitalization of the search engine

business 1.

In allocating the paid slots to advertisers, the order of these links matters – because a

higher placement on a search page leads to higher traffic, and eventually an increased financial

payoff [8, 7]. Therefore the earlier link is more valuable than its successors. However, it is

not clear how much more valuable it is and the difference of valuations could quite evidently

depend on the identities of the advertisers concerned. For example, Walmart might not see

much difference between obtaining the first slot and the second; however a small firm seeking

to use these links to catch the consumer’s eye might find much more value in a higher link than

in a lower one, even though it values each link less than Walmart might do. This gives rise to

a mechanism design problem from the point of view of the seller, where buyers only need one

object, they value objects differently, their rankings of valuations are common, but the rates
1http://www.economist.com/displaystory.cfm?story id=1932434
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at which these valuations change may be different for different buyers.

In practice, most of the search engines use auctions to sell these paid slots[10]. For example,

Overture sells their paid positions mainly through real time pay-your-bid auctions. Goto.com

even showed the current winning prices next to the paid links, like an open auction. Google uses

some variant of a second-price auction through their so called “AdWord Program”. However,

no theoretical research has been done to show the optimal mechanism of selling these ranked

objects. Will a sequential auction that sells one position a time be better than a simultaneous

auction? Should the highest position be auctioned off earlier than a lower position? Is the

highest rejected bid auction optimal? Should the auctioneer leave some positions unfilled?

This paper seeks to design an optimal selling mechanism from the perspective of the seller

(search engine).

This kind of allocation can also be applied to other contexts. An example could be a

scheduling problem where several tasks are waiting in a line for processing, each with a certain

approaching deadline, and tasks bid for the position in the waiting queue. Or the selling of

a set of condos where buyers’ preferences towards the locations of these condos are roughly

ranked in the same way.

The problem of allocating multiple objects to individuals who have different preferences

for the objects has been studied in the matching literature (Roth and Sotomayor (90))[20].

However, the problem we consider here is different in that we focus our attention on Bayesian

mechanism design.

The closest literature related to this paper is optimal (multiple unit) auction design. We

follow very closely Myerson(81) [15], where he studied the optimal mechanism to sell a single

object, and found that it is optimal to sell the object to the bidder with the highest valuation,

given his virtual value 2 is non-negative. As a generalization, Maskin and Riley (1990) [13]

studied the optimal auction of selling multiple identical objects, using a similar approach. For

optimal auctions with heterogeneous objects, many papers consider multi-unit demand. Then

2In Myerson (81), the virtual value is defined as ti − 1−F (ti)
f(ti)
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the question of demand reduction arises [3]; when the objects are complements or substitutes,

or when the number of buyers is small or large, whether or not to sell the items separately or

in bundles, [17], [4], [2]. Menezes (1998) [14] studied a pooled auction in the environment of

identical or perfectly correlated objects where every bidder submits a single bid, and bidders

with higher bids are given the rights to choose their ideal objects earlier. The environment

in [14] is similar to one of the four distinct cases we study in this paper. For efficiency in

multi-unit auctions, Dasgupta and Maskin (2000) [9] and Perry and Reny (1999) [18] show

that when bidders’ values are interdependent, the Vickrey mechanism can be generalized to

achieve efficiency, as long as each bidder’s signal is one dimensional. Jehiel and Moldovanu

(2001) [12] shows that when bidders have multi-dimensional signals, efficiency is usually not

obtained.

The problem we address in this paper is different from the above two streams. We con-

sider the optimal allocation of non-identical objects, where buyers’ values for these objects

are ranked in the same order, and each buyer only needs one object (unit demand). Buyers

have independent private values. We categorize the environment into four cases based on how

bidders’ valuation drops with the rank of the positions, relative to other bidders, namely, “par-

allel”, “convergent”, “divergent”, and “convergent then divergent”. In each case, the optimal

allocation rule and payment scheme is characterized. We find that the optimal allocation is

quite different under these different cases. Thus understanding the buyers’ preference charac-

teristics is vital in determining the optimal mechanism. More specifically, as long as the buyers’

valuations for lower positions decrease at different rates, the seller can extract more buyers sur-

plus than the standard second-price auction can, because the optimal expected payment in our

mechanism is at least as high as the next highest buyer’s valuation for that particular position;

under some conditions these optimal allocation rules maximize the total welfare of the seller

and the buyers, thus they are also socially efficient. We also find that this optimal mechanism

cannot usually be implemented by simple sequential “highest rejected bid” auctions.

This paper is organized as follows. In section 2 we introduce the model and notation. We
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then discuss the optimal mechanism under four different specifications of buyers preferences in

Section 3. Some issues related to the implementation of the optimal mechanism are discussed

in Section 4, and we conclude in Section 5.

2 Model

Assume that a set of risk neutral buyers N = {1, 2, ...n} compete for K < N positions. Buyers

have independent private types. Buyer i′s type ti is distributed over the interval Ti = [a, b]

(a ≥ 0) according to the distribution function Fi with associated density function fi. Let

T = ×n
j=1Tj denote the product of the set of buyers’ types, and for all i, let T−i = ×j 6=iTj .

Define f(t) to be the joint density of t = (t1, t2, ..., tn). Similarly, define f−i(t−i) to be the

joint density of t−i = (t1, ..., ti−1, ti+1, ..., tn). Since the types are independent, f(t) = f1(x1)×

f2(x2)× ...× fn(xn), and f−i(t−i) = f1(x1)× ...× fi−1(xi−1)× fi+1(xi+1)× ...× fn(xn).

Let vk
i (ti) represent buyer i’s valuation for the k’th position, which is non-increasing in k.

For simplicity we write vk
i (ti) and vk

i interchangeably. Let t0 represent the seller’s type, so

his valuation for position k is given by vk
0 . Assume that all buyers’ valuation functions are

either parallel, or there exists a position µ ∈ (−∞,∞) for which all the bidders have the same

valuation and this is common knowledge. Assume for a certain position, we can separate the

expression of the difference between types from the expression of the difference between any

two values. More specifically, assume vk
i (ti)−vk

j (tj) = (ti− tj)S(k), i, j = 0, 1, ...n, where S(k)

is independent of t. For simplicity, in this paper we assume buyers’ valuations are linear in the

rankings.

By the “Revelation Principle” ([1], [11], [16]), without loss of generality, we restrict our

attention to direct mechanisms. Let P : T → 4 represent the allocation rule, where 4 is the

set of positions, and X : T → RN represent the payment rule. Our goal is to identify the

optimal mechanism (P,X) which is incentive compatible and individually rational. Following

Myerson, let pi(t) represent the probability for buyer i to win one position and xi(t) be the

buyer i’s expected payment for his winning position. More specifically, let pk
i (t) represent the
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probability that buyer i wins the kth position, xk
i (t) be buyer i’s expected payment for the kth

position. Then we have pi(t) =
∑

K pk
i (t), and xi(t) =

∑
K xk

i (t).

Suppose the seller uses the direct mechanism (P,X). Then buyer i’s expected utility is:

Ui(p, x, ti) =
∑
K

∫
T−i

[
vk
i (ti)pk

i (ti, t−i)− xk
i (ti, t−i)

]
f−i(t−i)dt−i (1)

The seller’s expected utility is:

U0(p, x) =
∑
K

∫
T

[
vk
0 (t)

(
1−

∑
N

pk
i (t)

)
+
∑
N

xk
i (t)

]
f(t)dt (2)

where

pk
i (t) ≥ 0 ∀i, ∀k, ∀t ∈ T (3)

∑
N

pk
i (t) ≤ 1 ∀k, ∀t ∈ T (4)

∑
K

pk
i (t) ≤ 1 ∀i, ∀t ∈ T (5)

For the buyers, the “Individual Rationality” condition ensures that by not participating, a

buyer can guarantee himself a payment of zero:

Ui(p, x, ti) ≥ 0 ∀i, ∀ti (6)

The “Incentive Compatibility” condition ensures that every buyer reports his true type.

This is written as:

Ui(p, x, ti; ti) ≥ Ui(p, x, si; ti) =
∑
K

∫
T−i

[
vk
i (ti)pk

i (t−i, si)− xk
i (t−i, si)

]
f−i(t−i)dt−i ∀i, ∀ti, ∀si 6= ti

(7)

Thus our goal is to identify the optimal pk
i (t) and xk

i (t) to maximize the expected payoff

of the seller. That is,

max ( 2)

s.t. (3), ( 4), ( 5), (6), and( 7)

Let Qi(p, ti) =
∑

K

∫
T−i

S(k)pk
i (ti, t−i)f−i(t−i)dt−i.
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Proposition 1 When S(k) ≥ 0, an allocation mechanism is feasible if and only if:

if si ≤ ti, then Q(p, si) ≤ Q(p, ti) (8)

Ui(p, x, ti) = Ui(p, x, a) +
∫ ti

a
Qi(p, si)dsi (9)

Ui(p, x, a) ≥ 0 (10)

(3), (4), and (5)

Please refer to appendix A.1 for proof. When S(k) < 0, everything follows through except (9)

now becomes:

Ui(p, x, ti) = Ui(p, x, b)−
∫ b

ti

Qi(p, si)dsi (11)

and (10) becomes

Ui(p, x, b) ≥ 0 (12)

.

We will discuss this further in section 3.3.

Re-arrange the objective function (2):

U0(p, x) =
∑

K

∫
T

[
vk
0 (t)

(
1−

∑
N pk

i (t)
)

+
∑

N xk
i (t)

]
f(t)dt

=
∑

K

∫
T vk

0 (t)f(t)dt +
∑

K

∫
T

∑
N pk

i (t)
(
vk
i (t)− vk

0 (t)
)
f(t)dt

+
∑

K

∫
T

∑
N

(
xk

i (t)− pk
i (t)v

k
i (t)

)
f(t)dt

(13)
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For the last term of Eq.(13), using Eq.(9),

∑
K

∫
T

∑
N

(
xk

j (t)− pk
i (t)v

k
j (t)

)
f(t)dt

= −
∑

K

∑
N

∫ b
a Uk

i (pk
i , x

k
i , ti)f(ti)dti

= −
∑

K

∑
N

∫ b
a

(
Uk

i (pk
i , x

k
i , a

k) +
∫ ti
a Qk

i (p
k
i , si)dsi

)
f(ti)dti

= −N · Ui(p, x, a)−
∑

N

∫ b
a

(∫ ti
a Qi(p, si)dsi

)
f(ti)dti

= −N · Ui(p, x, a)−
∑

N

∫ b
a

(∫ b
si

Qi(p, si)
)

f(ti)dtidsi

= −N · Ui(p, x, a)−
∑

N

∫ b
a (1− Fi(si))Qi(p, si)dsi

= −N · Ui(p, x, a)−
∑

N

∫ b
a

(
(1− Fi(ti))

∑
K

∫
T−i

S(k)pk
i (t)f−i(t−i)dt−i

)
dti

= −N · Ui(p, x, a)−
∑

N

∫
T (1− Fi(ti))

∑
K S(k)pk

i (t)f−i(t−i)dt−i

= −N · Ui(p, x, a)−
∑

K

∫
T

∑
N

(
S(k)1−F (ti)

f(ti)

)
pk

i (ti, t−i)f(t)dt

Plug this back to Eq.(13):

U(pi, xi, t0)

=
∑

K

∫
T vk

0f(t)dt−N · Ui(p, x, a) +
∑

K

∫
T

∑
N

[
(vk

i (ti)− vk
0 )− S(k)1−F (ti)

f(ti)

]
pk

i (ti, t−i)f(t)dt

(14)

Maximizing(14) is equivalent to:

max
∑
K

∫
T

∑
N

[
(vk

i (ti)− vk
0 )− S(k)

1− Fi(ti)
fi(ti)

]
pk

i (ti, t−i)f(t)dt−N · Ui(p, x, a) (15)

such that

Ui(p, x, a) ≥ 0

Qi(p, x, si) ≤ Qi(p, x, ti), if si ≤ ti

pk
i (t) ≥ 0 ∀i, ∀k, ∀t ∈ T∑
N

pk
i (t) ≤ 1 ∀k, ∀t ∈ T

∑
K

pk
i (t) ≤ 1 ∀i, ∀t ∈ T

Since buyers’ valuations drop for a lower ranked position, based on how their valuations drop

relative to other’s (they may drop in the same rate, or some may drop faster/slower than the

others), we categorize the situations into four cases, namely, parallel, convergent, divergent,
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and convergent then divergent. We are going to discuss the optimal mechanism for these

different cases in Section 2. Figure 1 shows these 4 cases, where µ represents the position for

which each buyer has the same valuation.

1 2 3 k

iv

(a) parallel

1 2 3 k

iv

µ

(b) convergent

1 2 3 k

iv

µ

(c) divergent

1 2 3 k

iv

µ

(d) convergent and divergent

Figure 1: Different cases of buyers preferences with respect to the ranking of the positions

3 Four Different Cases

3.1 The Parallel Case

First consider the case where every buyer’s valuation for a lower position drops at the same

rate. In the example of search engine advertising (paid placement), if the competing advertisers

have relatively the same taste or budget, the change of their valuation for positions may be

relatively stable, thus we may approximate their valuation function by assuming that their
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valuations drop at the same rate. Let vk
i (ti) = ti − αk, where α > 0 is a constant. Thus

the type of the buyers are characterized by the intersections of their utility functions with the

value axis (vertical axis in the figure). From now on assume that the seller’s valuations for all

the items are 0. Then vk
i (ti)− vk

0 = ti − αk (here S(k) = 1). So Eq.( 15) becomes:

max
∑
K

∫
T

(∑
N

(
ti −

1− Fi(ti)
fi(ti)

− αk

)
pk

i (t)

)
f(t)dt−N · Ui(p, x, a) (16)

This is very similar to Myerson(1981)’s optimal auction design problem. Notice that in the

objective function, the expression of ti and k can be separated. Define c(ti) as the modified

virtual value, which is represented by the ti term in the objective function (in this case,

c(ti) = ti− 1−Fi(ti)
fi(ti)

. If the regularity condition is satisfied that ti− 1−Fi(ti)
fi(ti)

is strictly increasing

in ti, and if we can impose that Ui(p, x, a) = 0, then Eq.(16) is maximized when the objects

are assigned to the K buyers with the highest types (ti), given that their virtual values are

higher than αK. More importantly, as long as the winners are determined, it doesn’t matter

which buyer gets which object. This is because in the objective function, the part containing

ti and the part containing k can be fully separated. Thus the total contribution of the winning

types to the objective function remains the same no matter which position k they are assigned.

Notice the reserve price is a constant for each position according to this allocation rule (r(k) =

solves{c(ti)−αK = 0}). That is to say, as long as a buyer is eligible to win the last position(i.e.,

if the buyer has the K’th highest non-negative virtual value), he is eligible to win every other

position.

To formally state the allocation rule, let Cj(t−i) as the j′th highest virtual value among all

the buyers except i. Then define

zk(t−i) = inf{si|c(si)− αK ≥ 0 and c(si) ≥ Ck(t−i), k = 1, 2, ...,K} (17)

Proposition 2 In the parallel case, the optimal incentive compatible allocation rule is to al-

locate one position to each of the K bidders with the highest modified virtual values, given that

their types (tis) satisfy that c(ti)−αK ≥ 0. The allocation of the positions among the winners
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is inconsequential. In other words,

pi(t−i, si) =

 1 if si ≥ zK(t−i)

0 if si < zK(t−i)
(18)

Please refer to Appendix A.2 for proof.

Now consider the payment scheme x. According to Eq.(9) and Eq.(1), Ui(p, x, a)+
∫ ti
a Qi(p, si)dsi =∑

K

∫
T−i

[
vk
i (ti)pk

i (ti, t−i)− xk
i (ti, t−i)

]
f−i(t−i)dt−i, the optimal expected payment function is

determined by:

∑
K xk

i (t) =
∑

K vk
i pk

i (t)−
∑

K

∫ ti
a S(k)pk

i (s)f(s)ds

=
∑

K vk
i pk

i (t)− S(k)
∫ ti
a S(k)pk

i (s)f(s)ds

=
∑

K vk
i pk

i (t)− S(k)(ti − zK(t−i))

(19)

So if buyer i wins position k, his payment will be xk
i = vk

i −vk
i +Zk

K , where Zk
K is defined as

the K ′th highest type (other than i) buyer’s valuation for the k′th position, or buyer zK(t−i)′s

valuation for position k. This means, it doesn’t matter for a winning buyer which position he

is allocated, as long as he is paying the K + 1’s buyer’s valuation for that particular position.

His utility is the same because of the parallel characteristics of the value functions.

This mechanism can be implemented as a “pseudo-second-price auction”, where every bid-

der bids their type, and the highest K bidders win. The higher their types, the higher the

positions they are allocated. And each one pays the highest rejected bidder’s valuation for his

winning position. To better understand this mechanism, assume that buyers types follow a

uniform distribution between [0, 1]. Then the reserve price for each position is the same, that

is, 1+αK
2 . If there are 3 positions for sale and α is 0.05, the reserve price is 0.575 for each

position . If the realized types are t1 = 0.9, t2 = 0.8, t3 = 0.75, t4 = 0.7, then the positions

1, 2, 3 will be allocated to buyer 1, 2, 3, respectively, with the expected payment for those

position v1(0.7), v2(0.7), v3(0.7), which are, 0.65, 0.6, 0.55. On the other hand, if the realized

types are: t1 = 0.9, t2 = 0.7, t3 = 0.5, t4 = 0.2. Then t1 is allocated to position 1, t2 is

allocated to position 2, while position 3 is not allocated.
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3.2 The Convergent Case

This describes the case that the higher type buyer’s valuation drops faster, while still remain

higher, than a lower type buyer’s valuation for a lower position. In other words, the lower

position means less to a high type buyer than to a low type buyer. For example, if a relatively

unknown company has a big marketing budget to attract search engine user traffic, it may

have a strong incentive to win a higher position, but its valuation for a lower position may

drop much more quickly than its competitors, because the reduced attention from those lower

positions does not serve the company’s strategic goal.

Let vk
i = β − ti(k − µ), where µ > K is the position for which each buyer has the same

valuation. In this example, µ is the horizontal value of the point where each utility function

crosses. Here ti is no longer the utility function’s intersection on the y axis. It not only affects

the intersection (tiµ part), but also represents the slope of the utility function. This function

guarantees that the higher type buyer (larger ti) has a higher valuation for each position than

a lower valued buyer. Thus vk
i − vk

j = (ti − tj) (µ− k), and S(k) = (µ− k) > 0.

So Eq.( 15) becomes:

max
∑
K

∫
T

[∑
N

(
β +

(
ti −

1− Fi(ti)
fi(ti)

)
(µ− k)

)
pk

i (t)

]
f(t)dt−N · Ui(p, x, a) (20)

Define the modified virtual value c(ti) the same way as in section 3.1. In this case, c(ti)

again is represented by ti − 1−Fi(ti)
fi(ti)

. To maximize this expression, if the distribution function

satisfies the regularity condition, again the positions should be allocated to those buyers with

the largest virtual values, that is, the K buyers with highest tis, whose types also satisfy

β + c(ti)(µ − k) ≥ 0. Notice that the reserve price r(k) = solve{c(ti) · (µ − k) + β = 0} is

decreasing in k. However, different from Myerson (81), the winning modified virtual values

can be negative because of the presence of a positive constant β in the objective function.

How to allocate the positions among the buyers? Similar to Sec. 3.1 (Eq.17), define

zk(t−i) = inf{si|β + c(si) · (µ− k) ≥ 0 and c(si) ≥ Ck(t−i), k = 1, 2, ...,K} (21)

and z0(t−i) equal to b, the upper bound of the buyers’ value distribution. Then
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Proposition 3 The optimal incentive compatible allocation rule when the modified virtual

value ti− 1−Fi(ti)
fi(ti)

is non-decreasing is to allocate the higher positions to the buyers with higher

modified virtual values, as long as β +
(
ti − 1−Fi(ti)

fi(ti)

)
(µ− k) ≥ 0. In other words,

pk
i (t−i, si) =

 1 if zk(t−i) ≤ si ≤ zk−1(t−i) ∀k

0 otherwise
(22)

Please refer to Appendix A.3 for proof of this proposition.

Thus, in this case the allocation rule satisfies the three criteria that Menezes (98) [14]

mentioned: zero expected payoff for the lowest value; the K highest valued bidders win; and

the higher the value, the higher the position allocated. According to this allocation rule, each

position has a reserve price and the reserve prices are decreasing in the ranking of the positions;

at the same time, the tis receiving these positions are also decreasing in the rank of positions.

That means, for a certain position k, if there is no ti that satisfies the reserve price condition,

then that particular position will not be allocated, but a position lower than that may still

be allocated. This unallocated position can occur on the top, in the middle, or the bottom of

the ranking. In practice there are some measures that the seller can take to make a specific

position unavailable. For example, if there are K top paid links in a search engine and the

k′th position is not sold, then the search engine can insert one of its own ads (an ad about

the search engine itself) into that slot or insert a fake web link there; if these K positions

represent the order in a queue where all the jobs are waiting for processing, and the k′th slot

is unallocated, then the seller can deliberately delay the processing for all the jobs after the

k′th. 3

The payment function is determined according to Eq.(9):

∑
K

xk
i =

∑
K

vk
i pk

i −
∑
K

∫ ti

a
S(k)pk

i f(s)ds

3The case when there is a constraint that no lower position can be allocated before a higher ranked one is

filled (that is,
∑

i∈N pk
i ≥

∑
i∈N pk+1

i , ∀k = 1, 2, ..., K − 1) is not considered here. Please see Sec 4.
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Notice that if buyer i is allocated the first object, then Eq.( 19) becomes that:

x1
i = v1

i −
∫ ti

a
S(1)p1

i f(s)ds

Define Zk
j (t−i) as in Sec.3.1 (buyer z′js valuation for the k′th position), then

∫ ti
a S(1)p1

i f(s)ds =

S(1)(ti−z1(t−i) = v1
i −Z1

1 (t−i). Thus the optimal payment for the first object is x1
i = Z1

1 (t−i).

Now consider the second object. The buyer i can win the second object only if his type

is between the first highest and second highest buyers’ type other than his own. Thus we get∫ ti
a S(2)p2

i f(s)ds = S(2)(ti − z2(t−i|z2 ≤ ti ≤ z1)prob(z2 ≤ ti ≤ z1) = (v2
i − Z2

2 (t−i|z2 ≤ ti ≤

z1)) · prob(z2 ≤ ti ≤ z1). Thus the optimal payment for the second object is:

x2
i = v2

i (1− prob(z2 ≤ ti ≤ z1) + Z2
2 (t−i|z2 ≤ ti ≤ z1) · prob(z2 ≤ ti ≤ z1)

= v2
i

(
1−

∫ ti
0

(n−1)!
(n−3)!(1)!

F (y)n−3(1−F (ti))f(y)dy∫ ti
0

(n−1)!
(n−3)!(1)!

F (y)n−3(1−F (y))f(y)dy

)
+

∫ ti
0 y

(n−1)!
(n−3)!(1)!

F (y)n−3(1−F (ti))f(y)dy∫ ti
0

(n−1)!
(n−3)!(1)!

F (y)n−3(1−F (y))1f(y)dy

The optimal payment for the rest of the positions can be obtained in the same way.

In general,

Proposition 4 The optimal payment for the first position is x1
i (t) = Z1

1 (t−i) if p1
i (t) = 1 and

for the k′th position (k > 1) is:

xk
i (ti) = vk

i (1− prob(zk ≤ ti ≤ zk−1)) + Zk
k (t−i|zk ≤ ti ≤ zk−1) · prob(zk ≤ ti ≤ zk−1)

= vk
i

(
1−

∫ ti
0

(n−1)!
(n−1−k)!(k−1)!

F (y)n−1−k(1−F (ti))
k−1f(y)dy∫ ti

0
(n−1)!

(n−1−k)!(k−1)!
F (y)n−1−k(1−F (y))k−1f(y)dy

)
+

∫ ti
0 y

(n−1)!
(n−1−k)!(k−1)!

F (y)n−1−k(1−F (ti))
k−1f(y)dy∫ ti

0
(n−1)!

(n−1−k)!(k−1)!
F (y)n−1−k(1−F (y))k−1f(y)dy

(23)

if p1
i (k) = 1, k = 2, ...K

Lemma 1 In the convergent case, in expectation, if a buyer wins a position, he will pay at

least as much as the next highest type bidder’s valuation for that position.

Please refer to Appendix A.3 for proof.

Thus it is obvious that the seller can extract much more surplus from the buyers than in

the parallel case, where every winner pays K + 1′th highest buyer’s valuation for his winning

position. More importantly, this mechanism performs better than the simple second-price

sequential auction, where in the best scenario the buyers pay the next highest valuation for

13



the winning position. Intuitively, when different buyers’ valuations for lower positions fall at

different rates, the seller has an incentive to optimally match the position to the buyers to

maximize his expected payoff. To charge a higher price for a lower position can prevent a

higher type buyer from shading his bid to win a lower position. This increases the seller’s

expected payoff, comparing to the sequential second-price auction.

To better understand this mechanism, let’s assume that buyers’ types follow a uniform

distribution between [0, 1]. Then for the k′th position, the reserve price is 1
2 −

β
2(µ−k) , which

is decreasing in k. For example, if there are 3 positions available, and µ = 6, β = 1, then the

reserve price for positions 1, 2, 3 are 2
5 , 3

8 , 1
3 , respectively. If there are 4 buyers with realized

types t1 = 0.8, t2 = 0.6, t3 = 0.4, t4 = 0.2, then the position 1, 2, 3 will be allocated to buyer 1,

2, 3, respectively, with the expected payment for those position v1
1(0.6), v2

2(0.467), v3
3(0.333).

On the other hand, if the realized types are: t1 = 0.8, t2 = 0.35, t3 = 0.32, t4 = 0.2. Then t1

is allocated to position 1, t2 is allocated to position 3, while position 2 is not allocated.

3.3 The Divergent Case

This describes the case that the higher type buyer’s valuation drops slower for a lower position

than a lower type buyer’s. For example, Amazon.com is a big player in the paid placement

market. It spends a big amount of marketing money in attracting customers in every search

engine, but it probably doesn’t care which positions it wins. While a small company’s valuation

for a lower position may drop much faster.

Let vk
i = β−ti(k−µ), where µ < 1. Then vk

i −vk
j = (ti − tj) (µ−k), and S(k) = (µ−k) < 0.

We can repeat the analysis of the last section, except that because S(k) < 0, some of the

incentive compatibility conditions ((9) and (10)) should be rewritten as (11) and (12):

Ui(p, x, ti) = Ui(p, x, b)−
∫ b

ti

Qi(p, si)dsi

Ui(p, x, b) ≥ 0

14



Re-arrange the last term of Eq.(13),∑
K

∫
T

(
xk

j (t)− pk
i v

k
j (t)

)
f(t)dt

= −
∑

K

∫ b
a Uk

i (pk
i , x

k
i , ti)f(ti)dti

= −
∑

K

∫ b
a

(
Uk

i (pk
i , x

k
i , b)−

∫ b
ti

Qk
i (p

k
i , si)dsi

)
f(ti)dti

= −Ui(p, x, b) +
∫ b
a

(∫ ti
a Qi(pi, si)dsi

)
f(ti)dti

= −Ui(p, x, b) +
∫ b
a

(∫ si

a Qi(p, si)
)
f(ti)dtidsi

= −Ui(p, x, b) +
∫ b
a (Fi(si))Qi(p, si)dsi

= −Ui(p, x, b) +
∫ b
a

(
Fi(ti)

∑
K

∫
T−i

S(k)pk
i (t)f−i(t−i)dt−i

)
dti

= −Ui(p, x, b) +
∫
T Fi(ti)

∑
K S(k)pk

i (t)f−i(t−i)dt−i

Then the objective function becomes:

max
∑
K

∫
T

(∑
N

(
β +

(
ti +

Fi(ti)
fi(ti)

)
S(k)

)
pk

i (t)

)
f(t)dt−N · Ui(p, x, bi) (24)

Again define c(ti) = ti +
Fi(ti)
fi(ti)

as the modified virtual value. If the modified virtual value is

non-decreasing in ti, (for example, uniform distribution, exponential distribution satisfy this

condition), since S(k) is negative, this objective function will be maximized if the K lowest

types (tis) have been selected, given that β+
(
ti + Fi(ti)

fi(ti)

)
S(k) is non-negative. Notice that the

”reserve price” r(k) = solve{c(ti) · (µ−k)+β = 0} is again decreasing in k, thus the lower the

position, the tighter the reserve price condition. Further more, according to this allocation rule,

the lower tis are allocated the lower positions with tighter reserve price conditions. Thus we

can allocate the positions from the bottom to the top. If for a certain position k we can not find

any buyer’s type lower than the reserve price, then this mechanism just automatically shifts

all the allocated positions up for 1 rank. In other words, after the buyers’ type are realized, we

can identify the number of positions available (K̃) by calculating how many buyer’s types are

lower than the modified virtual value. Then identify the K̃ winners, and allocate the highest

position to the highest ti, and so on. Thus all the unavailable slots (if any) occurs neither in

the top, nor in the middle, but in the bottom.

More specifically, define

dk(t−i) = sup{si|β + c(si) · (µ− k) ≥ 0 and c(si) ≤ Ck(t−i), k = 1, 2, ...,K} (25)
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and d0(t−i) equal to a, the lower bound of the buyers’ value distribution. Then

Proposition 5 The optimal incentive compatible allocation mechanism in the diverging case

is to allocate the lower position to the buyers with lower modified virtual values, given that

buyer’s type satisfies the reserve price condition. In other words,

pk
i (t−i, si) =

 1 if dK̃−k(t−i) ≤ si ≤ dK̃−k+1(t−i) ∀k

0 otherwise
(26)

where K̃ is the number of total available slots.

Proof is in appendix A.4. One thing needs to be noted is, if ti +
Fi(ti)
fi(ti)

is increasing, when β

is large enough, more specifically, when β > −
(
b + 1

f(b)

)
S(K), which means if every buyers’

valuation for the last position is high enough, since the reserve price condition is the tightest

for the last position, each buyer’s type satisfies the reserve price condition for the rest of the

positions (in other words, the reserve price condition becomes ti ≤ b). Thus this mechanism is

automatically efficient and maximize the total payoff of the buyers and the seller.

The payment scheme can be worked out accordingly as in section 3.2. That is, the optimal

payment for the lowest position (K) is DK
1 (t−i); and the optimal payment for the position

1 ≤ k < K is:

xk
i (ti) = vk

i (1− prob(dK−k ≤ ti ≤ dK−k+1) + Dk
k(ti|dK−k ≤ ti ≤ dK−k+1)

·prob(dK−k ≤ ti ≤ dK−k+1)

= vk
i

(
1−

∫ 1
ti

(n−1)!
(n−1−k)!(k−1)!

F (ti)
k−1(1−F (y))n−1−kf(y)dy∫ 1

ti

(n−1)!
(n−1−k)!(k−1)!

F (y)k−1(1−F (y))n−1−kf(y)dy

)
+

∫ 1
ti

y
(n−1)!

(n−1−k)!(k−1)!
F (ti)

k−1(1−F (y))n−1−kf(y)dy∫ 1
ti

(n−1)!
(n−1−k)!(k−1)!

F (y)k−1(1−F (y))n−1−kf(y)dy

(27)

Thus other than the buyer with the lowest modified virtual value (the buyer with the least

steep slope), all the other winners are paying higher than the next buyer’s valuation for that

winning position. It is obvious that this mechanism works better than an simple second-price

sequential auction, in which the lower positions are up for sale first, where the best scenario is

to earn the next highest buyer’s valuation for a winning position.

On the other hand, if ti + Fi(ti)
fi(ti)

is decreasing in ti, then to allocate the lower posi-

tion to the buyers with lower modified virtual value actually means the higher the ti, the
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greater probability to win an item. This violates the incentive compatible constraint (8) that

Q(pi, xi, si) ≤ Q(pi, xi, ti), if si ≤ ti. In this case, randomization is one way to allocate the

position. This is incentive compatible, but so far we do not have any results for optimality.

Again, if we assume that buyers’ types follow uniform distribution between [0, 1], then the

reserve price condition for position k is: ti ≤ β
2(k−µ) , where the reserve price is decreasing

in k again, and the reserve price condition is tighter with the increase in the ranking. Thus

the unallocated position will only be in the bottom. But if β is large enough such that

β ≥ 2(K − µ), then every type satisfies the reserve price condition and this mechanism is

automatically efficient.

For example, if there are 3 positions available, and µ = 0, β = 3, then the reserve price

for positions 1, 2, 3 are 1, 0.75, 0.6, respectively. If there are 4 buyers with realized types

t1 = 0.8, t2 = 0.6, t3 = 0.4, t4 = 0.2, then the position 1, 2, 3 will be allocated to buyer 2, 3,

4, respectively, with the expected payment for those position v1
2(0.7102), v2

3(0.5333), v3
4(0.4),

which are 0.8694, 0.8668, 1, respectively, while their values for their winning positions are 1.2,

1.4, 2, respectively. On the other hand, if the realized types are: t1 = 0.9, t2 = 0.85, t3 = 0.8,

t4 = 0.2. Then t3 is allocated to position 1, and t4 is allocated to position 2, while position 3

is not allocated. As we showed, the unallocated positions are always be in the bottom.

3.4 Convergent then Divergent

This is the extreme case of the convergent case, where if a buyer has a higher valuation for a

top position, his valuation for a lower position may be lower than his competitors. This means

different buyers utility functions are allowed to cross in the middle. Again in the example of

search engine advertisers, a small company’s willingness to pay for a top position may be higher

than an established big company like Amazon.com. But because a small company often has

a tight budget, its valuation for a bottom position may be much lower than Amazon. Write

the utility function as vk
i = β − ti(k − µ), where (k − µ) > 0 before a certain k̃ ∈ [1,K] and

after that k̃, (k− µ) < 0 is the point where each utility function crosses. Analyzing the utility
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function in the same way, vk
i − vk

j = (ti − tj) (µ− k), and S(k) = (µ− k) > 0 when k ≤ k̃ and

S(k) < 0 when k > k̃.

Again one of the incentive compatibility conditions (9) should be rechecked because the

sign of S(k) changes before and after k = k̃.

More specifically, there exists a w ∈ (a, b) such that we can rewrite the expression of Eq.

(9) into

Ui(p, x, ti) = Ui(p, x, w) +
∫ ti
w Qi(p, si)dsi if ti ≥ w

and

Ui(p, x, ti) = Ui(p, x, w)−
∫ w
ti

Qi(p, si)dsi if ti < w

(28)

and we have

Ui(p, x, w) ≥ 0

The objective function becomes:

∑
K

∫
T

(
xk

j (t)− pk
i (t)v

k
j (t)

)
f(t)dt

= −
∑

K

∫ w
a Uk

i (pk
i , x

k
i , ti)f(ti)dti −

∑
K

∫ a
w Uk

i (pk
i , x

k
i , ti)f(ti)dti

= −
∑

K

∫ w
a

(
Uk

i (pk
i , x

k
i , w)−

∫ w
a Qk

i (p
k
i , si)dsi

)
f(ti)dti

−
∑

K

∫ b
w

(
Uk

i (pk
i , x

k
i , w) +

∫ b
w Qk

i (p
k
i , si)dsi

)
f(ti)dti

= −Ui(p, x, w) +
∫ w
a Qk

i (p
k
i , si)dsif(ti)dti −

∫ b
w Qk

i (p
k
i , si)dsif(ti)dti

= −Ui(p, x, w) +
∫ w
a

(∫ si

w Qi(p, si)
)
f(ti)dtidsi −

∫ a
w

(∫ si

w Qi(p, si)
)
f(ti)dtidsi

= −Ui(p, x, w) +
∫ w
a (F (si))Qi(p, si)dsi −

∫ a
w (1− F (si))Qi(p, si)dsi

= −Ui(p, x, w) +
∫ w
a

(
F (ti)

∑
K

∫
T−i

S(k)pk
i (ti, t−i)f−i(t−i)dt−i

)
dti

−
∫ a
w

(
1− F (ti)

∑
K

∫
T−i

S(k)pk
i (ti, t−i)f−i(t−i)dt−i

)
dti

where
∑

K

∫ w
a Uk

i (pk
i , x

k
i , ti)f(ti)dti can be written as

∑
K

∫ w
a

(
Uk

i (pk
i , x

k
i , w)−

∫ w
a Qk

i (p
k
i , si)dsi

)
f(ti)dti,

which implies that
∫ w
a Qk

i (p
k
i , si)dsif(ti)dti is negative.

Thus the objective is:

max
∑

K

∫ w
a

[∑
N

(
β +

(
ti + Fi(ti)

fi(ti)

)
(µ− k)

)
pk

i (t)
]
f(t)dt

+
∫ b
w

[∑
N

(
β +

(
ti − 1−Fi(ti)

fi(ti)

)
(µ− k)

)
pk

i (t)
]
f(t)dt−N · Ui(p, x, w)

(29)
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Assume that both the virtual value ti − 1−Fi(ti)
fi(ti)

and the modified virtual value ti + Fi(ti)
fi(ti)

are non-decreasing (for example, the uniform distribution satisfies these two conditions). To

maximize this objective function, if we make Ui(p, x, w) equal to 0, notice that when ti ≥ w,

µ − k ≥ 0, thus it is optimal to allocate the highest bk̃c − k positions to the buyers with the

highest virtual values ti − 1−Fi(ti)
fi(ti)

; when ti < w, µ − k < 0, thus it is optimal to allocate the

lowest K − dk̃e positions to the buyers with the lowest modified virtual value of ti + Fi(ti)
fi(ti)

.

More specifically, proposition 6 describes this allocation rule.

Proposition 6 If the distribution of ti satisfies the regularity conditions and ti + Fi(ti)
fi(ti)

is

non-decreasing, the optimal allocation mechanism is: for each k < µ, allocated the highest

remaining position to the buyers with the highest remaining ti, as long as ti ≥ w and β +(
ti − 1−Fi(ti)

fi(ti)

)
(µ− k) ≥ 0, until k = bµc, otherwise leave that particular position unassigned;

for each k > µ, allocate the remaining lowest position to the buyers with the remaining lowest

ti, as long as ti < w and β +
(
ti + Fi(ti)

fi(ti)

)
(µ − k) ≥ 0; otherwise shift the allocation up for 1

rank.

Proof. Follow the cases when µ− k ≥ 0 and µ− k < 0, which follow the proof in section

3.2 and 3.3. 3

The above gives the optimal mechanism given a specific w ∈ (a, b). Let this value be V (w).

Now the problem is how to identify that optimal w? Our objective function now becomes:

max
w

V (w) (30)

Obviously w∗ is a function of µ, n, and K. For example, the ideal w∗ should have the

property that there are at least dK − µe buyers whose types are below w, and at least bµc

buyers whose types are above w. And this indicates that, given K, the optimal w should be

non-increasing in µ. But to complete this mechanism, w should be preannounced. So there is

positive probability that the above condition can not be satisfied, thus this mechanism is not

efficient in addition to the existence of reserve price for each position, because there is positive

probability that a certain buyer whose type satisfies the reserve price, will give the seller higher
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profit if he wins, but can not win because its type falls on the a “wrong” side of w. Figure

2 shows one example of how the optimal w changes with µ, assuming that bidders’ types are

uniformly distributed between [0,1], and β is large enough so the reserve price condition is

always satisfied. (In this example n = 7, k = 4, and µ can be anywhere between 1 and 4.)

1 1.5 2 2.5 3 3.5 4
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

 

µ

w

Figure 2: How the optimal w changes with µ

From Figure 2 we can see that when the reserve price condition is satisfied, w is decreasing

with µ. Intuitively, the larger the µ, the more types should be above w, thus the smaller the

w. But one thing needs to be noted is that once k and n are fixed, the only determinant of w

is between which two positions µ is located, while the exact position of µ between those two

positions does not matter.

Also in the example of uniform distribution between [0, 1], the reserve price condition for

position k < µ is ti ≥ 1
2−

β
2(µ−k) ; for position k ≥ µ is ti ≤ β

2(k−µ) . Combining with the choice of

w, then the necessary condition to allocate a position k before µ is ti ≥ max{w, 1
2−

β
2(µ−k)} and

for a position after µ is ti < min{w, β
2(k−µ)}. For example, let K = 3, µ = 1.5, β = 0.5, w = 0.5.

Then we have the actual reserve price for position 1 before k̃ is max{0.5, 0} = 0.5, and the actual

reserve price for position 2 and 3 (after k̃) are: min{0.5, 1} = 0.5, and min{0.5, 0.333} = 0.333.

If the realized types are: t1 = 0.8, t2 = 0.6, t3 = 0.4, t4 = 0.2, then the position 1, 2, 3
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will be allocated to buyer 1, 3, 4. On the other hand, if the realized types are: t1 = 0.45,

t2 = 0.4, t3 = 0.3, t4 = 0.2. Then the first position is not allocated, while the second position

is allocated to buyer 3, and the third position is allocated to buyer 4.

4 Implementation

Here we present an example of the optimal allocation and payment mechanism under the four

different cases in figure 3.

1 2 3 k

iv

(a) parallel

1 2 3 k

iv

µ

(b) convergent

1 2 3 k

iv

µ

(c) divergent

1 2 3 k

iv

µ

(d) convergent and divergent

Figure 3: Optimal allocation and payment schemes under the four different cases. (where ◦

represents the allocation, and 4 represents the payment.)
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Notice that in the mechanisms we discussed above, we assumed that the seller can commit

to leave a position unfilled if no buyer’s type satisfies the reserve price condition. We’ve

discussed such examples in Sec 3.2. In reality this practice of leaving a position unfilled is

commonly observed . For example, in the airline industry, passengers in the coach class are

not allowed to sit in the first class without paying extra, even when the first class is not full.

It’s also observed in some competitions, sometimes the highest award given is the second prize,

while the first prize remains un-assigned. This guarantees that those who can pay for first

class don’t understate their values, or high competition standard. In our model, this makes

sure that buyers do not reduce their bids, hoping to win a more desirable position when there

is lack of competition.

On the other hand, if the seller cannot commit to leave a position unfilled, that is, the

k′th position has to be filled first in order to fill the k + 1′th position, then we have an extra

constraint, ∑
i∈N

pk
i ≤

∑
i∈N

pk−1
i k = 2, ...K (31)

We find that this constraint is binding only in two cases: convergent, and the converging portion

of the “convergent then divergent” case, because only in these two cases will a higher ti be

assigned to a higher position, with a higher reserve price. However this constraint changes the

maximization problem. Now the reserve price should guarantee the summation of each term

in the
∑

to be non-negative, instead of making sure each term in the
∑

to be non-negative.

However we will not discuss this problem in detail in this paper.

5 Conclusion

In this paper we show how the earlier work about optimal auctions ([15], [13]) can be extended

and applied to the allocation of non-identical objects where every buyer only has unit demand,

and their preferences for these objects are ranked in the same order. We find that the optimal

way to sell these non-identical objects is quite different when buyers preferences for different

objects change in different way. Thus to understand the buyers preference characteristics is
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vital in determining the optimal mechanism. We find that our mechanism works better than

simple second-price sequential auction. More specifically, when buyers’ valuations for a lower

position drop at different rates, the seller can extract more surplus from the buyers than when

they drop at the same rate. Compare to the single unit or multiple identical unit case, besides

the inefficiency created by the reserve price (under the assumption of symmetric buyers), this

optimal allocation mechanism can be inefficient because of the choice of the “pivot” type in

the fourth case.

We use linear value function in this paper, and assume that there exists some position

for which all utility functions give the identical value. This assumption may seem special

but it only says that there exists a position (probably very far away) such that every buyer’s

valuation for that position is the same (like a position in the very bottom of the result page).

Many commonly used utility functions when dealing with heterogeneous consumers have this

property (for example, U(θ) = θq where q is the quality of a product). In future research,

we hope to study more general settings of bidders preferences than the one discussed in this

paper. The case when the auctioneer can not commit to leave a position open (the addition

of constraint (31) is another interesting extension.
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A Appendix

A.1 Feasibility of an Allocation Mechanism

Proposition 1. To show the “only if” part,

U(p, x, si; ti)

=
∑

K

∫
T−i

[
vk
i (ti)pk

i (t−i, si)− xk
i (t−i, si)

]
f−i(t−i)dt−i

=
∑

K

∫
T−i

[
(si + (ti − si)S(k)) pk

i (t−i, si)− xk
i (t−i, si)

]
f−i(t−i)dt−i

= Ui(p, x, si) +
∑

K

∫
T−i

((ti − si)S(k)) pk
i (t−i, si)f−i(t−i)dt−i

= Ui(p, x, si) + (ti − si)Qi(p, si)

The incentive compatibility constraint implies that:

Ui(p, x, ti; ti) ≥ Ui(p, x, si; ti) + (ti − si)Qi(p, si) ∀si (32)

Use (32) twice we get:

(ti − si)Qi(p, si) ≤ Ui(p, x, ti)− Ui(p, x, si) ≤ (ti − si)Qi(p, ti) (33)

So

Qi(p, si) ≤ Qi(p, ti) (34)

when si ≤ ti

Let ti − si = δ, then ( 33) can also be written as:

δQi(p, si) ≤ Ui(p, x, si + δ)− Ui(p, x, si) ≤ δQi(p, si + δ) (35)

Since Qi(p, si) is increasing in si, thus this equation is integrable and can be written as:∫ ti
a Qi(p, si)dsi = Ui(p, x, ti)− Ui(p, x, a), so

Ui(p, x, ti) = Ui(p, x, a) +
∫ ti

a
Qi(p, si)dsi (36)

From the other direction (the “if” part), to show (32), assume si ≤ ti, then using (8) and

(9) we get:

Ui(p, x, ti) = Ui(p, x, si) +
∫ ti
si

Qi(p, ri)dri

≥ Ui(p, x, si) +
∫ ti
si

Qi(p, si)dri

= Ui(p, x, si) + (ti − si)Qi(p, si)
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If si > ti, then

Ui(p, x, ti) = Ui(p, x, si)−
∫ si

ti
Qi(p, ri)dri

≥ Ui(p, x, si)−
∫ si

ti
Qi(p, si)dri

= Ui(p, x, si) + (ti − si)Qi(p, si)

So when S(k) ≥ 0, (pi, xi) is an optimal mechanism if it satisfies (8), (9), (10), (3), (4),

and (5) and maximizes (2). 3

A.2 The Parallel Case

Proposition 2.

The optimality of this allocation rule is obvious because ( 16) will be maximized if we pick

the buyers with the K highest virtual values (c(ti)), given ti − 1−Fi(ti)
fi(ti

is non-negative.

To check for the incentive compatibility constraint that Qi(p, x, si) ≤ Qi(p, x, ti) when

si ≤ ti, notice that if c(ti) ≥ max{CK(t−i), αk}, j ∈ n, where CK(t−i) is the K ′th highest

virtual value among all the other buyers, then he wins. Since S(k) = 1, this equation purely

means the conditional probability of winning 1 item given type ti is higher than type si (si ≤ ti).

Since the highest K buyers win, and c(ti) is increasing, we know that the probability that

c(si) ≥ Ck(t−i) is increasing in si. So whenever buyer i could win by submitting si, he could

also win by submitting ti where ti > si. So Q(p, x, ti) is indeed increasing in ti. 3

A.3 The Convergent Case

Proposition 3. Since S(k) = µ−k is positive, the objective function will be maximized if the

seller allocates the higher position (larger µ−k) to the buyers of higher type (larger ti− 1−Fi(ti)
fi(ti)

.

To see this, let yj be the j
′
th highest value of ti− 1−Fi(ti)

fi(ti)
, comparing yj(µ−k)+yj+1(µ−k−1)

and yj+1(µ − k) + yj(µ − k − 1). Note that the difference between these two expression is

that:yj −yj+1 > 0. This can be generalized to the case where there are more than 2 values. 3

Lemma 1. We only need to show for a specific position k, vk
i − Zk

k (ti) is no less than
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(vk
i − Zk

k (ti|zk ≤ ti ≤ zk−1)) · prob(zk ≤ ti ≤ zk−1). This is obvious because:

vk
i − Zk

k (ti)

= (vk
i − Zk

k (ti|zk ≤ ti ≤ zk−1)) · prob(zk ≤ ti ≤ zk−1)

+(vk
i − Zk

k (ti|zk ≤ ti & zk−1 ≤ ti)) · prob(zk ≤ ti & zk−1 ≤ ti)

and both of the terms to the right of “=” are non-negative. 3

A.4 The Divergent Case

Proposition 5. First we want to show that to allocate a lower position to a lower modified

virtual value (lower type) is optimal. Let 0 < A1 < A2 < A3 and 0 < B1 < B2 < B3. The

objective is to minimize
∑

i,j AiBj . And A1B3 +A2B2 +A3B1 < A1B2 +A2B3 +A3B1 because

it is equivalent to A1(B3−B2)+A2(B2−B3) < 0; A1B3+A2B2+A3B1 < A1B1+A2B2+A3B3

because it is equivalent to A1(B3 −B1) + A3(B1 −B3) = (A1 −A1)(B3 −B1) < 0. This result

can be generalized to the case where i ≥ 3.

To check whether this allocation rule is incentive compatible, revisit the constraint (8) that

Q(pi, xi, si) ≤ Q(pi, xi, ti), ifsi ≤ ti. Notice that here Q(pi, xi, ti) =
∑

K

∫
T−i

S(k)pk
i f−i(t−i)dt−i ≤

0. Thus the higher ti, the less likely that the buyer is going to win, and the less negative S(k),

thus constraint (8) is indeed satisfied. 3
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