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Abstract

It is well-known that subgame-perfect Nash equilibrium does not eliminate incentives for
joint-deviations or renegotiations. This paper presents a systematic framework for studying
non-cooperative games with group incentives, and offers a notion of equilibrium that refines the
Nash theory in a natural way and answers to most questions raised in the renegotiation-proof
and coalition-proof literature. Intuitively, I require that an equilibrium should not prescribe in
any subgame a course of action that some coalition of players would jointly wish to deviate,
given the restriction that every deviation must itself be self-enforcing and hence invulnerable to
further self-enforcing deviations.

The main result of this paper is that much of the strategic complexity introduced by joint-
deviations and renegotiations is redundant, and in infinitely-repeated games with discounting
every equilibrium outcome can be supported by a stationary set of optimal penal codes as in
Abreu (1988). In addition, I prove existence of equilibrium both in stage games and in repeated
games, and provide an iterative procedure for computing the unique equilibrium-payoff set.
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1 Introduction

Over the past two decades, many papers have attempted to define and characterize the set of
self-enforcing agreements among rational individuals that could withstand the possibility of rene-
gotiation: that after some history participants may jointly prefer to scrap the original implicit
contract and set up a new arrangement. Among the first are papers by Farrell and Maskin (1989)
and Bernheim and Ray (1989), who pointed out that the common practice of selecting the Pareto-
optimal perfect Nash equilibria lacks “internal consistency”. They questioned that if individuals
can coordinate on an efficient equilibrium at the beginning of time, why would they submit to
an inefficient equilibrium in some subgames, when an alternative Pareto-improving equilibrium is
available? Their criticism is especially severe in situations where optimal equilibria are supported
by punishments that hurt both the innocent and the guilty.

Since then, several notions of “renegotiation-proof” equilibrium have emerged from the litera-
ture.1 Nevertheless, progress in understanding these equilibria has been impeded by the fact that,
until recently, it is still unclear what constitutes a “credible” group-deviation or renegotiation.
Moreover, many papers in the literature had adopted a non-behavioral approach. Intuitive proper-
ties of “renegotiation-proof” equilibria are first identified and taken as primitives in the construction
of the corresponding solution concept. This obscures the link between the solution concept and
the corresponding restrictions imposed on beliefs and behavior of rational individuals, and makes
comparison between different solution concepts difficult. Finally, existing solution concepts focus
mostly on renegotiations initiated by the grand-coalition. The possibility that members of a sub-
coalition may renegotiate among themselves further complicates equilibrium characterization, and
undermines the applicability of these concepts in games with more than two players.2

This paper presents a systematic framework for studying non-cooperative games with group
incentives, and extends the notion of coalition-stable equilibria presented in Chung (2004) to re-
peated games, where I showed applying forward-induction logic in pre-play communication stage
allows players to correlate their strategies, and exercise a form of coalitional reasoning. The theory
developed here is also related on the seminal work of Bernheim et al. (1987), who argued that the
only credible threats to a self-enforcing agreement are deviations that are themselves self-enforcing.
Intuitively, I require that an equilibrium should not prescribe in any subgame a course of action
that some coalition of players would jointly wish to deviate, given the restriction that every devia-
tion must itself be self-enforcing and hence invulnerable to further self-enforcing deviations.

Despite their similarity in intuitive characterization, coalition-stable equilibria is very different

1See for example Farrell and Maskin (1989), Bernheim and Ray (1989), Pearce (1987), Asheim (1991), DeMarzo
(1992), Bergin and MacLeod (1993), Abreu, Pearce and Stacchetti (1993), Ray (1994) and many others.

2Few exceptions include Bernheim, Peleg and Whinston (1987) and DeMarzo (1992) who defined solution concepts
that account for deviations by sub-coalitions.
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from the solution concept proposed by Bernheim et al. (1987), and is capable of resolving several
conceptual difficulties left unanswered in their work. First, since my theory is motivated by a model
of public pre-play communication, it removes the restriction in Bernheim et al. (1987) that only
members of the deviating coalition could contemplate further deviations.3,4 Second, because players
coordinate their equilibrium behavior as well as any coalitional deviation from equilibrium using the
same pre-play communication mechanism, I am able to prove generic existence of coalition-stable
equilibria in mixed strategies. Finally, as I will focus in this paper, the concept of coalition-stable
equilibria can be easily extended to both finitely and infinitely repeated games.

The main result of this paper is that much of the strategic complexity introduced by joint-
deviations and renegotiations is redundant, and in infinitely-repeated games with discounting, ev-
ery equilibrium outcome can be supported by a stationary set of optimal penal codes as in Abreu
(1988). In particular, I extend the well-known “no-gain-from-one-shot-deviation” principle of Abreu
(1988) and Harris (1985) to the domain of self-enforcing coalitional deviations. Hence to prevent
joint-deviations or renegotiations from equilibrium, it suffices to punish one of the participants
with her worst coalition-stable equilibrium, immediately after the first period of deviation.5 The
incentive structure of coalition-stable equilibrium guarantees both the punishers and the punished
prefer to follow equilibrium recommendation after every history. In section 6, I’ll demonstrate how
to support collusion in an infinitely-repeated model of Cournot duopoly with renegotiation by the
use of optimal penal codes.

Finally, for infinitely-repeated games, this paper generalizes the iterative procedure developed
by Abreu, Pearce and Stacchetti (1990) to calculate the payoff set associated with coalition-stable
equilibria. Let V p be the payoff set associated with strategy profiles that is immune to self-enforcing
deviations by dynamic coalitions of size less than or equal to p.6 Through a succession of propo-
sitions, I show that for each p = 1, ..., n, there exists a monotone set-valued operator Bp(·) such
that, given V p−1, we can successively approximate V p by iterating over Bp until convergence, i.e.
V p = lim

k→∞
Bk

p (V p−1).7 Besides offering computational tractability, this iterative procedure also
leads to an existence proof of equilibrium in infinitely-repeated games.

The paper is organized as follows. Section 2 covers basic setup and notations. Section 3 reviews
the development of the equilibrium concept in stage games. Section 4 motivates and extends the

3Bernheim et al. (1987) justified this restriction on acceptable further deviations by assuming that members of a
coalition can secretly coordinate their moves prior to the play of the game. More importantly, members of a coalition
can commit not to reveal their coalitional agreement to non-members.

4Also see Kaplan (1992) and Milgrom and Roberts (1996) for a related solution concept that partially relaxes the
restriction on acceptable further deviations imposed by Bernheim et al. (1987).

5DeMarzo (1992) called a strategy of this form a “scapegoat” strategy, which he used to characterize his concept
of sustainable social norm for finitely repeated games.

6I use V 0 to denote the payoff profiles associated with all feasible strategies, and V n is the payoff set for coalition-
stable equilibria in an n-player game.

7When p = 1, B1(·) is identical to the B(·) operator in Abreu et al. (1990).
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solution concept to repeated games. Section 5 provides a recursive characterization of equilibrium
in infinitely repeated games. Section 6 applies the equilibrium concept and solves for a simple re-
peated Cournot duopoly model with renegotiation. Section 7 relates the theory with other solution
concepts in the literature and concludes. All proofs are presented in the Appendix.

2 Setup and Notations

2.1 The Stage Game

The stage game is denoted by G = ({Ai}ni=1 ; {ui}ni=1 ), where N = {1, ..., n} is the set of players,
Ai is the strategy set for player i, and ui : A1 × A2 × ... × An → R is player i ’s payoff function.
I assume that Ai is a nonempty compact Euclidean space, and ui is continuous and bounded for
each i.8 Elements of Ai are denoted ai and are referred to as actions. Finally, the space of feasible
strategy profiles is denoted by Σ0 = A ≡ A1 ×A2 × ...×An, and I set a ≡ (a1 × a2 × ...× an), and
u(a) ≡ (u1(a), u2(a), ..., un(a)).

2.2 The Repeated Game

Time starts at t = 0. Let GT (δ) denote the repeated game generated by repeating G for time peri-
ods 0, ..., T , where T is the horizon which can either be finite or infinite. I assume players evaluate
payoffs using a common discount factor δ ∈ (0, 1). More precisely, for any action profile α ≡ {at}T

t=0

where at ∈ A, player i’s average discounted payoff is given by Ui(α) = (1−δ)

(1−δT+1)

∑T
t=0 δtui(at), and

is equal to (1− δ)
∑∞

t=0 δtui(at) when T = ∞.9

Let ht denote a t-history of all players’ actions up to but not including period t, and let Ht be
the set of all t-histories. A strategy for player i, denoted by σi, is a sequence of functions {σi,t}T

t=0

such that σi,0 ∈ Ai and σi,t : Ht → Ai ∀t ≥ 1.10 I write the restriction of σ to ht as σ|ht . The set
of player i’s feasible strategies is again denoted by Σ0

i , and Σ0 ≡ Σ0
1 ×Σ0

2 × ...×Σ0
n is the set of all

feasible strategy profiles.

Given σ ≡ {σi}i∈N ∈ Σ0, let α(σ) denote the action profile induced by σ.11 More generally,

8More generally, I only need to assume that Ai is a nonempty compact Hausdorff topological space for each i.
Hence the results developed here apply to all finite-action normal-form stage games.

9Since ui is continuous and bounded, δ ∈ (0, 1) and A is compact, Ui(·) is uniformly continuous.
10When σ = {σi}i∈N is interpreted as a behavior strategy profile, the notation employed here implies players

can observe ex-post the realization of every player’s private randomization device. Nevertheless, the analysis could
be easily extended to the case where histories consist only of all previous actions taken by players, if attention is
restricted to public perfect equilibria.

11Given σ ∈ Σ0, the action profile {at}T
t=0 = α(σ) can be constructed by setting a0 = {σi,0}i∈N and at =

{σi,t(ht)}i∈N ∀t ≥ 1 where ht = (a0, ..., at−1).
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given any strategy profile σ ∈ Σ0 and t-history ht, I define α(σ, ht) to be the action profile that
is equal to ht up to time t − 1, and is determined by subsequent applications of σ thereafter. Let
vi(σ) = Ui(α(σ)) be player i’s value function associated with σ, and let vi(σ, ht) = Ui(α(σ, ht)).12

I use v(σ) and v(σ, ht) to denote {vi(σ)}i∈N and {vi(σ, ht)}i∈N , respectively.

Throughout, I will use the notation that for any n-tuple (x1, ..., xn), xs ≡ {xi}i∈s and x−s ≡
{xi}i6∈s, where s ⊆ N is an arbitrary coalition of players.

3 Review of Coalition-Stable Equilibria in Stage Games

In this section, I briefly summarize the results presented in Chung (2004). Section 3.1 presents a
general critique on theories of rational behavior in games, and motivates the principles behind the
concept of coalition-stable equilibria. Section 3.2 gives a formal definition of the solution concept,
and highlights its key properties.

3.1 Motivation and A General Critique

Most equilibrium theories in games implicitly assume that players can coordinate their behavior by
meaningful pre-play communication. In particular, the Nash theory can be understood as presenting
a necessary condition for any reasonable definition of an agreement in the pre-play communication
process.13 However, it is also well known that some Nash equilibria are more plausible than others
as outcomes of strategic play. Consider, for example, the following simple 2× 2 game:

B1 B2

A1 3, 3 0, 0
A2 0, 0 1, 1

Figure 1: A Common-Interest Coordination Game

Suppose the common prior of both players is focused on (A2, B2). If pre-play communication is
modelled as many stages of cheap-talk games, where on each stage players simultaneously an-
nounce their own intended strategy in the actual play of game. Then the Nash theory concludes
that (A2, B2) is a plausible agreement between the players, since any announcement indicating a
unilateral deviation seems to conflict with individual rationality, and it should not be believed.
Therefore, in the actual play of game, thinking that her opponent is going to play action 2, each

12Since Σ0 is compact and α(·) is continuous in the topology of pointwise convergence, vi(·) is uniformly continuous.
13Otherwise, there is a players who is not playing her best response, and she should be able to convince her

opponents that she wants to do something else.
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player should best response and play action 2 herself, fulfilling the equilibrium prediction of (A2, B2).

Nevertheless, a simple forward-induction logic may break the above Nash argument. Suppose
the row player announces she is going to play A1. This is a “counterfactual” according to the
Nash theory, since the theory predicts no rational player should have an incentive to make such an
announcement.14 But to conclude the row player is irrational conflicts with common knowledge of
individual rationality. Hence, it is highly likely that the column player may search for a rational
explanation of her opponent’s behavior, before concluding the impossible.

In the present situation, it is only reasonable to interpret the counterfactual announcement as
an invitation for the column player to announce B1 in the next round of communication. First,
(A1, B1) is a Nash equilibrium and hence is comfortable with a prediction of the existing rational
theory. Second, if the column player believes in her opponent’s announcement and acts according
to the implicit invitation, there is no incentive for her opponent to cheat and do something else.
Finally, it is reasonable for the row player to send and expect the column player to act on her invi-
tation, since the outcome is mutually beneficial. Therefore, it seems unlikely that (A2, B2) would
become an agreement in the pre-play communication stage and realize as an outcome of the game,
even though it is a Nash equilibrium.

The above arguments indicate that the Nash theory, or any theory of rational behavior in
general, may give rise to “counterfactuals” that are globally destabilizing. Sophisticated rational
players should be able to exploit and manipulate counterfactuals of a given rational theory to their
own strategic advantage. Hence not every prediction of a rational theory may be regarded as a
plausible outcome of play, if the prediction is checked against the implications of counterfactuals
produced by the theory.

The concept of coalition-stable equilibrium attempts to address the problems posed by counter-
factuals by employing an iterated forward-induction argument. It represents a theory of rational
behavior that is “complete”, in the sense that common knowledge of the theory would not under-
mine its predictions through the counterfactuals it produces. In other words, no rational player can
expect to gain by attempting counterfactuals produced by the theory developed here. Moreover, as
evident from the above example, combining forward-induction logic with pre-play communication
allows players to correlate their strategies, and exercise a form of coalitional reasoning. Hence for
the rest of development in this paper, I can treat the present theory as a description of certain
equilibrium behavior that is stable against some form of self-enforcing coalitional deviations, even
though the motivation and the formal analysis of the theory is strictly non-cooperative.15

14Farrell (1993) called this type of counterfactual in the cheap-talk games a neologism.
15Interested readers are strongly encouraged to refer to Chung (2004) for a formal treatment of the theory.

5



3.2 Definition and Properties of Equilibrium

This section presents a construction of the set of coalition-stable equilibria in stage games, and
highlights key properties of equilibrium. Loosely speaking, the set of equilibria can be constructed
by the following successive refinement procedure. Let Σp denote the set of strategy profiles that
is immune to self-enforcing deviations by coalitions of size less than or equal to p. By definition,
Σ0 ⊇ Σ1 ⊇ ... ⊇ Σn, where Σn is the set of coalition-stable equilibria in an n-player game. For
p = 1, ..., n, given that Σp−1 has been previously defined, I can construct Σp as the intersection over
sets of unimprovable strategy profiles in Σp−1, among coalitions of size p.16 Notice that the first
step of this iterative algorithm gives the set of Nash equilibria. Hence by construction, the theory
of coalition-stable equilibrium refines the Nash theory using coalitional incentive in a natural way.17

To present a formal definition of the theory, first we need to develop a couple of mathematical
notations. Given a subset of players s ⊆ N with size denoted by |s|, I can define a strict partial
ordering Âs over the space of feasible strategy profiles:18 for all σ̃, σ ∈ Σ0,

σ̃ Âs σ ⇔
{

ui(σ̃s, σ−s) > ui(σ) ∀i ∈ s

σ̃−s = σ−s

Hence σ̃ Âs σ if and only if σ̃s can be interpreted as a profitable coordinated deviation by every
player in s from σ, taking as fixed the strategic choices of players in the complement coalition −s.
Given the partial ordering Âs defined above, and a closed subset Σ̃ of feasible strategy profiles, we
say σ ∈ Σ̃ is unimprovable in Σ̃ by coalition s, if there does not exist any σ̃ ∈ Σ̃ such that σ̃ Âs σ.
Let Ks(Σ̃) represents the set of unimprovable strategy profiles in Σ̃ for coalition s. Mathematically,
we have Ks(Σ̃) ≡ {σ ∈ Σ̃ : @σ̃ ∈ Σ̃, σ̃ Âs σ}.19

We are ready for a formal definition of equilibrium. It consists of a sequence of intermediate
definitions {Σp}n

p=1, representing successive refinements of Nash as an equilibrium theory of ratio-
nal behavior. When p = 1, define Σ1 =

⋂
i∈N Ki(Σ0), hence Σ1 coincides with the set of Nash

equilibria. Suppose Σm has been defined for m = {1, 2, ..., p− 1}, set Σp ≡ ⋂
s,|s|=p Ks(Σp−1).

16A strategy profile σ is unimprovable in Σp by a coalition s if, taking the choices of the complement coalition as
given, there does not exists a joint-deviation by s that is strictly beneficial for every member of s, and the resulting
strategy profile σ̃ is in Σp.

17Readers are again reminded that the phrase “coalitional incentive” only has descriptive contents. It is a conse-
quence of applying forward-induction reasoning in the pre-play communication process. The primitives consist only
of common knowledge of individual rationality and common prior over the space of strategy profiles. Hence the spirit
of analysis is strictly non-cooperative. Please refer to section 3.1 and Chung (2004) for further discussion.

18A strict partial ordering is a binary relation Â that is asymmetric and transitive, that is, a Â b ⇒ b 6Â a, and
a Â b & b Â c ⇒ a Â c, respectively.

19In other words, Ks(eΣ) is the mathematical core of the abstract system (eΣ,Âs) in Greenberg (1989). Moreover,

since Âs is a strict partial ordering, it also coincides with the von Neuman/Morgenstern stable set of (eΣ,Âs) defined
in Von-Neumann and Morgenstern (1944).
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Definition 1. Σn is the set of coalition-stable equilibria in a n-player stage game.

Beyond the literal interpretation that Σn is a refinement of Nash using incentives of coalitions of
increasing sizes,20 as hinted by the informal discussion in section 3.1, readers should be aware that
each step of refinement from Σp−1 to Σp also corresponds to one application of forward-induction
logic, which refines the rational theory at the previous stage by deleting those predictions of the
theory that are unstable, when checked against the implications of counterfactuals produced by the
theory.21 Hence the current solution concept may be best viewed as a positive theory of strate-
gic play, in an environment where players can coordinate their expectations in an open pre-play
communication process, and they attempt to explain every announcement by each player using the
simplest theory consistent with common knowledge of individual rationality.22

Chung (2004) showed that the equilibrium correspondence is closed, and under weak technical
conditions it is also non-empty. I restate an existence theorem presented there.23

Theorem 1 (Existence in Stage Games). If Σ0 is a nonempty, convex and compact topological
vector space and the payoff profile u(·) is quasi-concave, then Σp is nonempty ∀p ≤ n.24

As an important corollary, since payoff profile u(·) is linear and hence quasi-concave when mixed-
strategies are considered, Theorem 1 implies generic existence of coalition-stable equilibria. This
is both a surprising and a desirable property of the equilibrium theory, since it is well-known that
existing solution concepts that refine Nash using coalitional incentives, such as strong Nash equi-
libria proposed by Selten (1975) and coalition-proof equilibria proposed by Bernheim et al. (1987),
have difficulties with existence in generic normal-form stage games.

4 Equilibria in Repeated Games

This section extends the theory of coalition-stable equilibria to situations where players are engaged
in repeated interactions. Besides the initial pre-play communication, I assume players also have
opportunities to communicate and revise their strategies at the beginning of each round of actual
play. Section 4.1 uses several simple two-period examples to highlight the strategic complications

20We say a profitable joint-deviation from eσ to σ by a coalition of size p is self-enforcing if and only if σ ∈ Σp−1.
21Successive refinement by incentives of coalitions of increasing sizes corresponds to the progressively sophisticated

ways that rational players can manipulate counterfactuals in a given rational theory to their strategic advantage, since
every coalitional proposal can be viewed as a chain of individual proposals in the pre-play communication process.
Details are presented in Chung (2004).

22Similar behavioral assumptions also appear in the formulation of extensive-form rationality in Pearce (1984) and
Battigalli (1997).

23The proof is reproduced in the Appendix.
24A payoff profile u(·) = {ui(·)}i∈N is quasi-concave if and only if ∀σ, σ̃ ∈ Σ0 and ∀λ ∈ [0, 1], u(λσ + (1− λ)σ̃) ≥

u(σ) ∧ u(σ̃) = {min[ui(σ), ui(σ̃)]}i∈N .
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introduced by the possibility of renegotiation. Section 4.2 introduces the concept of dynamic coali-
tions and presents a formal definition of equilibrium.

4.1 Simple Two-Period Examples

This section uses several two-period examples to illustrate how the possibility of renegotiation
would change the strategic consideration of the players, and hence the solution concept used to
predict the outcomes of the game. For simplicity, we consider only pure-strategy equilibria and
assume no discounting in this section.

The first example concerns with the issue of dynamic consistency at the collective level. Con-
sider the extended Prisoner’s Dilemma game in figure 2.25 There are two Nash equilibria, (D1, D1)
and (D2, D2), in the stage game. Imagine a single repetition of this game. If the players can
meet and coordinate their strategies only before the play of the game, then there is a perfect Nash
equilibrium in which players initially cooperate (C, C), and play (D1, D1) in the terminal period,
with any first period deviation punished by reversion to (D2, D2). This strategy profile gives each
player a total payoff of 5. Moreover, since this equilibrium is Pareto-efficient among the class of
Nash equilibria, it is also coalition-stable in the normal-form representation of this two-stage game.26

Player 2
C D1 D2

C 3, 3 0, 4 0, 0
Player 1 D1 4, 0 2, 2 0, 0

D2 0, 0 0, 0 1, 1

Figure 2: Extended Prisoner’s Dilemma Game

If players can reconvene and reconsider their options after play in the first period, then the
strategy profile described above is no longer immune to strategic manipulation. According to our
discussion in section 3, the prescription to play (D2, D2) in the second period is highly implausi-
ble, since players can use the communication opportunity before the second period to coordinate
on a mutually preferable outcome (D1, D1). Knowing the “punishment” to revert to (D2, D2) is
incredible, a player will deviate even in the first period, rendering cooperation in the first period
untenable. Hence in the presence of renegotiation, the only reasonable prediction of this game is to
play (D1, D1) in both periods, which gives a total payoff of only 4 to each player. In the present
example, renegotiation decreases ex-ante utility of each player, because players cannot commit to

25This example is borrowed by Table 1 of Bernheim and Ray (1989).
26For 2-player normal-form games, the concept of coalition-stable equilibria coincides with the solution concept of

Pareto-undominated Nash.
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a more severe off-equilibrium punishment ex-post.

B1 B2

A1 3, 1 0, 0
A2 0, 0 1, 3

Figure 3: Battle of Sexes

The second example illustrates how re-opening communication before play at each stage help
to discipline the forward-induction logic across different periods. Consider a single repetition of the
Battle of Sexes game in figure 3. Suppose players originally agree to play (A1, B1) in both periods.
If players cannot communicate after play in the first period, then the column player (she) may have
an incentive to deviate to B2 in the first period, even if she is rational. It is because if she knows
that the row player (he) uses a forward-induction logic to interpret her deviation, then she can
effectively use the deviation to signal her intention to play B2 in the second period, and also her
expectation that the row player will cooperate by playing A2. Even if the row player prefers their
original agreement to this new suggestion by the column player, he no longer has any opportunity
to communicate to the column player and reiterates his intention to adhere to the old agreement.
Hence the row player may submit to this signal sent by his opponent, and best responds to it by
playing A2 in the second period, which in turn justifies the first-period deviation by the column
player.

The above forward-induction argument is, however, fragile if players can communicate after
play in the first period. This essentially turns the implicit one-way communication channel into an
explicit two-way pre-play communication process in the subgame following the first-period moves.
More importantly, it takes away the last-mover’s advantage of the column player. Upon observing
the first-period deviation by the column player, the row player can now reiterate his adherence
to their original agreement and announce his intention to play A1 in the second period. Such an
announcement is credible, since it is consistent with their original agreement, and since there is no
reason why the row player should sacrifice his own interest for the interest of the column player.
Hence in this case, the possibility of further communication before the second stage undermines the
signalling effect of deviations in the first stage, and discourages the column player from first-period
deviation. In other words, by arguing that players should adhere to their previous agreement in
the subgame unless there is a mutually beneficial adjustment, we let the backward-induction logic
overrides the forward-induction logic for intertemporal agreements.27

The third example challenges the conventional wisdom that renegotiation leads to agreements
whose payoffs are Pareto-frontier of some admissible set.28 Consider a single repetition of the game

27See van Damme (1989) for a similar advocation.
28This requirement is labelled as weak renegotiation-proofness by Farrell and Maskin (1989) and as internal con-
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Player 2
L M R

L 5, 5 0, 0 0, 0
Player 1 M 0, 0 4, 4 2, 6

R 0, 0 6, 2 0, 0

Figure 4: A Simple Game Challenging WRP

in figure 4. The Nash equilibria of the stage game are (L,L), (M, R) and (R,M), all of them
are also coalition-stable in the stage game. Obviously, the strategy profile σ that specifies playing
(L,L) in both periods is a perfect Nash equilibrium. Moreover, we can verify that {(M,M), (L,L)}
is also a perfect Nash equilibrium outcome supported by the following strategy profile σ̃:

First Period: play (M, M)

Second Period: play





(L,L) if no player deviates
(M,R) if player 1 deviates alone
(R, M) if player 2 deviates alone or jointly with player 1

Since payoffs associate with σ Pareto dominates those of σ̃, the conventional wisdom suggests that
players would collectively renounce σ̃ in favor of σ, if they can communicate and coordinate their
strategies prior to the play of the game.

However, this argument by the conventional wisdom presumes that players can make binding
commitment to switch from their original agreement σ̃ to the new agreement σ. Equivalently, it
assumes players cannot reconvene and reconsider their strategies after play in period one. Other-
wise, player 1 may not want to go along with σ in the second period, since adherence to σ only
gives her a second-period payoff of 5, while the original agreement σ̃ promises her a payoff of 6
under such contingency. Furthermore, knowing that player 1 would not participate in the second-
period deviation, player 2 would not deviate in the first period, since doing so yields her a total
payoff of 5 + 2 = 7, while the original agreement σ̃ gives her a total payoff of 4 + 5 = 9 > 7. In
the current scenario, renegotiation fails to increase ex-ante utility of both players, because players
cannot commit to a particular course of action, and because they cannot prevent themselves from
further reneging their current agreement in future.

4.2 Dynamic Coalitions and Definition of Equilibria

This section introduces the idea of dynamic coalitions, which embeds our intuition given in section
4.1, and extends our construction of coalition-stable equilibria to repeated games with discounting.
I’ll take as primitive the successive refinement procedure described in section 3, and modifies the
construction in a minimal way to incorporate additional strategic considerations introduced by re-

sistency by Bernheim and Ray (1989).
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peated interactions and negotiations.

The notion of dynamic coalitions incorporates the idea that players may be able to formulate
an elaborate intertemporal scheme to deviate from an existing agreement. Moreover, since players’
behavior is dynamically consistent, and since no binding commitment to any particular course of
action is available, every side-agreement to deviate must give strict incentive to those who partici-
pate, at every contingency when the participant’s action is called upon.

To describe a mutually beneficial deviation by a subset of players s ∈ 2N at a particular
contingency ht,29 I generalize the strict partial ordering defined in section 3.2 to the following: for
all σ̃, σ ∈ Σ0,

σ̃ Âht
s σ ⇔

{
Ui(α((σ̃s, σ−s), ht)) > Ui(α(σ, ht)) ∀i ∈ s

σ̃−s|ht = σ−s|ht

Definition 2. A dynamic coalition S is a sequence of history-dependent functions {St}T
t=1 such

that St : Ht → 2N ∀t.

Let C be the space of non-empty dynamic coalitions.30 Given a dynamic coalition S ∈ C, I can
construct a strict partial ordering ÂS corresponding to S by defining

σ̃ ÂS σ ⇔ σ̃ Âht

St(ht)
σ ∀ht ∈ Ht,∀t < ∞31

Intuitively, σ̃ ÂS σ if and only if at every finite history ht, σ̃|ht is a profitable coordinated devia-
tion from σ|ht for all players in coalition st = St(ht), taking as fixed strategies of players in the
complement coalition −st. Hence σ̃ fits in our description as an elaborate intertemporal scheme
to deviate from an existing agreement σ, since at every contingency ht, the players who are called
upon to act by the scheme, St(ht), have a strict incentive to carry on the prescribed deviation.

We say σ̃ is a subgame-preferable deviation from σ if ∃S ∈ C such that σ̃ ÂS σ. Given the
partial ordering ÂS constructed above, and a closed subset Σ̃ of feasible strategy profiles, I can
define σ ∈ Σ̃ to be an unimprovable strategy profile in Σ̃ for dynamic coalition S, if there does not
exist any σ̃ ∈ Σ̃ such that σ̃ ÂS σ. Again, I’ll denote by KS(Σ̃) the set of unimprovable strategy
profiles in Σ̃ for dynamic coalition S.32

The construction of coalition-stable equilibria in repeated games parallels its construction

29Notice that mathematically, the notion s ∈ 2N includes the possibility that s is an empty set of coalition.
30S ∈ C if and only if ∃ht ∈ Ht such that St(ht) 6= ∅.
31When St(ht) = ∅, eσ Âht

St(ht)
σ if and only if eσ|ht = σ|ht .

32Mathematically, KS(eΣ) ≡ {σ ∈ eΣ : @eσ ∈ eΣ, eσ ÂS σ} is the unique von Neuman/Morgenstern stable set of

system (eΣ,ÂS), and inherits its mathematical properties such as compactness and non-emptiness.
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for stage games. It also consists of a sequence of intermediate definitions {Σp}n
p=1, represent-

ing successive refinements of perfect Nash as an equilibrium theory of rational behavior. Let
|S| ≡ |⋃ht∈Ht,∀t St(ht)| denote the size of a dynamic coalition S, and define C(p) ≡ {S ∈ C : |S| = p}
to be the set size-p dynamic coalitions. It is straight forward to verify that the set of subgame-
perfect Nash strategy profiles can be represented by Σ1 =

⋂
i∈C(1) Ki(Σ0).33 Moreover, suppose Σm

has been previously defined for m = {1, 2, ..., p− 1}, I can then set Σp ≡ ⋂
s∈C(p) Ks(Σp−1).

Definition 3. Σn is the set of coalition-stable equilibria in a n-player repeated game.

First note that since the definition of equilibria is non-recursive, it applies equally well to both
finitely and infinitely repeated games. Moreover, when attention is restricted to 2-player repeated
games, this definition of equilibrium shares many common intuition laid out in the renegotiation-
proof literature:34 a perfect Nash equilibrium σ is coalition-stable, if there does not exist another
perfect Nash equilibrium σ̃, such that after some contingency ht, players would jointly prefer to
renounce σ for σ̃. Finally, because the construction of equilibria in repeated games parallels its
construction in stage games, it shares the same intuition that motivates this solution concept as
previously discussed in section 3. Hence the solution concept in repeated games may be best viewed
as a positive theory of strategic play, in an environment where players can openly communicate
prior to each stage of action, and that players can effectively coordinate their behavior via coun-
terfactuals implied by the simplest rational theory.

5 Recursive Characterization in Infinitely Repeated Games

From our definition of equilibrium and subgame-preferable deviations, it is obvious that for finitely
repeated games, we can use the standard backward-induction procedure and characterize the set
of equilibria recursively starting from the last period. However, this approach fails in infinitely re-
peated games, since there is no last period. Nevertheless, in this section, I show the set of equilibria
has a surprisingly simple intertemporal structure, and its payoff set can be characterized recursively
using an iterative procedure extending the algorithm pioneered by Abreu et al. (1990).

Since our construction of equilibria involves a sequence of intermediate definitions {Σp}n
p=1,

from sections 5.1 to 5.3, I’ll take Σp−1 as given and focus on developing a procedure to obtain
Σp from Σp−1. Section 5.4 makes use of these developments and proposes an iterative algorithm
to fully characterize the equilibrium payoff set. Section 5.5 further simplifies equilibrium charac-

33Sketch of proof: (⇒) Suppose σ 6∈ ∩i∈C(1)Ki(Σ
0), then ∃j ∈ C(1) such that σ 6∈ Kj(Σ

0). Hence ∃σ̂ ∈ Σ0 such
that σ̂ Âj σ, i.e. ∃ht such that Uj(α((σ̂j , σ−j), ht)) > Uj(α(σ, ht)). Hence σ is not subgame perfect. (⇐) Suppose
σ is not subgame perfect, then ∃ht such that Uj(α((σ̂j , σ−j), ht)) > Uj(α(σ, ht)), and hence ∃j ∈ C(1), σ̂ ∈ Σ0 such
that σ̂ Âj σ. Obviously, σ 6∈ Kj(Σ

0) ⇒ σ 6∈ ∩i∈C(1)Ki(Σ
0).

34See for example Farrell and Maskin (1989), Bernheim and Ray (1989) and Abreu et al. (1993).
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terization by optimal penal codes. Section 5.6 uses the recursive characterization to prove existence.

5.1 Equivalence Between One-Step Deviations and Finite-Step Deviations

This section marks the first step in simplifying our characterization of equilibrium, and prepares
ourself for the recursive procedures developed in later sections. In particular, I show that to refine
Σp from Σp−1, it suffice to check one-step and infinite-step deviations from size-p coalitions, because
a version of “no-gain-from-one-shot-deviation” principle holds for all finite-step coalitional moves.

The proof of this version of “no-gain-from-one-shot-deviation” principle follows directly from
our definition of subgame-preferable deviations and the usual intuition. Loosely speaking, for a
group of players to participate in an elaborate intertemporal scheme of deviation from an existing
agreement, we require each participant has a strict incentive to carry out the scheme, at every
contingency when her action is called upon. If this intertemporal scheme of deviation involves only
finitely-many step, then there is a last group of players who participate in the scheme, and each of
them must strictly prefers to deviate at the last step than to revert to the original arrangement.
Since participants at the “last step” essentially carry out an one-step deviation, immunity to one-
step deviations is sufficient for immunity to every finite-step of deviation.

To formally develop the above intuition, we need some new mathematical notations. Given
a strategy profile σ ∈ Σ0, let Up,k(σ) denote the set of subgame-preferable deviations from σ

carried out by some size-p dynamic coalitions that are active for at-most k periods.35 Define
Σp,k ≡ {σ ∈ Σp−1 : Σp−1 ∩Up,k(σ) = ∅}. In other words, Σp,k is the set of strategy profiles in Σp−1

that are immune to subgame-preferable deviations in Σp−1 by all size-p dynamic coalitions that are
active for at-most k periods. By construction, we have Σp = Σp,∞ ⊆ Σp,k ∀k < ∞.

Proposition 1. Σp,1 = Σp,k ∀ 1 ≤ k < ∞

It is important to note that Proposition 1 is invalid when k = ∞. When considerations are
restricted to the set of unilateral deviations (p = 1), the standard approach is to approximate every
infinite deviation by its τ -period truncation for some large finite τ . This can be done because, with
discounting, the payoff from every infinite-period deviation can be arbitrarily well approximated
by its finite-period counterpart, and hence this finite-period truncation is still a profitable unilat-
eral deviation for the individual player. Hence the standard approach shows Proposition 1 can be
extended to k = ∞ for the set of unilateral deviations.

The standard argument, however, does not work when the deviation involves more than a sin-
gle player. To see why, consider an infinite repetition of the Prisoner’s Dilemma game in figure 5.

35Hence Up,k(σ) = {eσ ∈ Σ0 : ∃S ∈ C(p), τ ≥ 0 s.t. eσ ÂS σ, eσt = σt ∀t < τ and Sk+t(hk+t) = ∅ ∀hk+t, t ≥ τ}.
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C D
C 3, 3 0, 4
D 4, 0 1, 1

Figure 5: A Standard Prisoner’s Dilemma Game

When players are sufficiently patient (δ ≈ 1), the strategy profile σ̃ that specifies playing (C, D) in
odd periods and (D, C) in even periods, is a subgame-preferable deviation from the strategy profile
σ, that corresponds to the infinite repetition of static Nash (D, D).36 Nevertheless, no finite-step
truncation of σ̃ is a subgame-preferable deviation from σ, since the player who plays C at the last
step necessarily wants to play D instead. As a result of this potential “discontinuity at infinity”,
we’ll first move on to develop a generalization of the powerful decomposition techniques of Abreu
et al. (1990) in section 5.2, and then come back for a more general proof of “no-gain-from-one-shot-
deviation” principle in section 5.3.

5.2 Self-Generation and Factorization

Since every continuation of a strategy profile that is immune to finite-step deviations is itself im-
mune to finite-step deviations, we can recursively characterize the set of payoffs associated with
Σp,1 in the spirit of Abreu et al. (1990). Let the set of payoffs associated with Σp−1 and Σp,1 be
denoted by V p−1 and V p,1, respectively.37 I begin with the construction of a set-valued operator
Bp(·) that captures the relationship between the set of promise utilities, and the set of payoffs
associated with admissible strategies with these promises.

Definition 4. Given an action profile q ∈ A, and a promise function ρ : A → <n, an action-
promise pair (q, ρ) is p-admissible w.r.t. a closed set W ⊆ V p−1 if and only if

1. ρ(q) ∈ W ∀q ∈ A

2. ∀s ⊆ N , |s| ≤ p, and ∀q̃s ∈ {Ai}i∈s s.t. (1− δ)u(q̃s, q−s) + δρ(q̃s, q−s) ∈ V p−1,

∃i ∈ s s.t. (1− δ)ui(q) + δρi(q) ≥ (1− δ)ui(q̃s, q−s) + δρi(q̃s, q−s)

Let Ei(q, ρ) ≡ (1 − δ)ui(q) + δρi(q) be the payoff for player i associated with the pair (q, ρ), and
use E(q, ρ) = {Ei(q, ρ)}i∈N to denote the vector of payoff profile for all players. I can define the
set-valued operator Bp(W ) ≡ {E(q, ρ) : (q, ρ) is p-admissible w.r.t. W}38.

Definition 5. W ⊂ <n is p-self-generating if and only if W ⊆ Bp(W ).

36The payoffs corresponds to repeated static Nash σ is (1, 1) ∀t, while the payoffs from σ̃ is approximately (2, 2) ∀t.
37Hence V p−1 = v{v(σ) : σ ∈ Σp−1} and V p,1 = {v(σ) : σ ∈ Σp,1}.
38When p = 0, we define B0(W ) ≡ {E(q, ρ) : ρ(q̃) ∈ W ∀q, q̃ ∈ A}.
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Our set-valued operator is a generalization of the B(·) operator defined in Abreu et al. (1990),39

and hence it has similar mathematical properties such as monotonicity and upper hemicontinuity.40

Finally, the following lemmas show that we can extend their self-generation and factorization tech-
niques, and relate each p-self-generating set to payoff profiles of a strategy in Σp,1, and associate
the largest fixed point of Bp(·) with the set V p,1.

Proposition 2 (p-Self-Generation). If W is p-self-generating, then Bp(W ) ⊆ V p,1.

Proposition 3 (p-Factorization). V p,1 = Bp(V p,1)

Intuition and proof of these propositions follow closely to the development in Abreu et al. (1990)
and are left to the Appendix.

5.3 A Generalized No-Gain-From-One-Shot-Deviation Principle

We are now ready to show that the “no-gain-from-one-shot-deviation” principle also applies to
infinite-step coalitional deviation, and hence we can formally associate the largest fixed point of
Bp(·) with the set of payoff profiles obtained from Σp. The intuition of the proof is as follows: if
σ ∈ Σp,1 is immune to every self-enforcing finite-step deviations, but σ̂ ∈ Σp−1 is an infinite-step
subgame-preferable deviation from σ, then σ̂ is necessarily a Ponzi-scheme in promise utilities along
the deviation path. Hence no such σ̂ is feasible.

Theorem 2. Σp = Σp,1

Sketch of Proof Given σ ∈ Σp,1 and suppose ∃σ̂ ∈ Σp−1 representing an infinite-step subgame-
preferable deviation by some size-p dynamic coalition S ∈ C(p). W.l.o.g., we can assume the
deviation starts at t = 0, i.e. σ̂0 6= σ0.41 Then for all histories ĥt = (q̂0, q̂1, ..., q̂t−1) along the
deviation path induced by σ̂,42 by definition of subgame-preferable deviation we have vst(λ

t(σ̂|ĥt
)) >

vst(λ
t(σ|ĥt

)) ∀t, where st = St(ĥt), and λt(σ̂|ĥt
) and λt(σ|ĥt

) are the continuation strategies at ĥt

for σ̂ and σ, respectively.43 Since σ ∈ Σp,1, no τ -step deviation along ĥt is profitable. Hence

∀t, ∃i ∈ st vi(λt(σ|ĥt
)) ≥ (1− δ)[

τ−1∑

ν=0

δνui(q̂t+ν)] + δτvi(λt+ν(σ|ĥt+ν
))

39Bp(·) is equivalent to the B(·) operator in Abreu et al. (1990) when p = 1.
40See Lemmas 2 and 3 in the Appendix.
41If the infinite-step deviation starts at ht 6= h0, then we can consider the continuation strategy profile of σ̂ at ht,

λt(σ̂|ht) ∈ Σp−1, as an infinite-step deviation from the continuation strategy profile of σ at ht, λt(σ|ht) ∈ Σp,1.
42{ĥt}∞t=0 can be obtained recursively by ĥ1 = q̂0 = σ̂0 and ĥt+1 = (ĥt, q̂t) where q̂t = σ̂t (ht) ∀t ≥ 0.
43λt(σ) ≡ {στ}∞τ=t is the shift operator that deletes the first t elements of σ.
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Since v(λt(σ̂|ĥt
)) − v(λt(σ|ĥt

)) = (1 − δ)[
∑τ−1

ν=0 δν(u(q̂t+ν) − v(λt(σ|ĥt
)))] + δτ [v(λt+τ (σ|ĥt+τ

)) −
v(λt(σ|ĥt

))] + δτ [v(λt+τ (σ̂|ĥt+τ
))− v(λt+τ (σ|ĥt+τ

))], we have:

max
i∈st

{
δτ [vi(λt+τ (σ̂|ĥt+τ

))− vi(λt+τ (σ|ĥt+τ
))]− [vi(λt(σ̂|ĥt

))− vi(λt(σ|ĥt
))]

}

= max
i∈st

{
(1− δ)[

∑τ−1
ν=0 δν(vi(λt(σ|ĥt

))− ui(q̂t+ν))] + δτ [vi(λt(σ|ĥt
))− vi(λt+τ (σ|ĥt+τ

))]
}

= max
i∈st

{
vi(λt(σ|ĥt

))− (1− δ)[
∑τ−1

ν=0 δνui(q̂t+ν)]− δτvi(λt+ν(σ|ĥt+ν
))

}
≥ 0

Hence ∀t, τ < ∞, ∃i ∈ st such that

vi(λt+τ (σ̂|ĥt+τ
))− vi(λt+τ (σ|ĥt+τ

)) ≥ 1
δτ

[
vi(λt(σ̂|ĥt

))− vi(λt(σ|ĥt
))

]

In particular, for t = 0, since mini∈s0{vi(λ0(σ̂|ĥ0
)) − vi(λ0(σ|ĥ0

))} = mini∈s0{vi(σ̂) − vi(σ)} > 0
and δ < 1, ∃τ̂ < ∞ such that maxi∈s0 vi(λτ̂ (σ̂|ĥτ̂

)) > M ∀M < ∞. But this is impossible since the
set of feasible utility V 0 is compact and hence bounded in each dimension.

5.4 A Recursive Characterization of Equilibrium Payoffs

This section summarizes the developments in sections 5.1 - 5.3 by providing an iterative algorithm
which completely characterizes the equilibrium payoff set V n. Therefore, we can use the tracing
procedure outlined in the proof of Proposition 2, and recover every equilibrium outcome of a given
infinitely repeated game.

Our algorithm consists of n stages of set-valued iterations, where on each stage we take the limit
set of the previous stage, and iterate “downwards” until convergence using a fixed Bp(·) operator.
Hence each stage of our iterations is akin to the computational procedure described in Abreu et al.
(1990). To start the chain of iterations on each step, we need the following proposition:

Proposition 4. V p−1 ⊇ Bp(V p−1) ⊇ V p,1 ∀ p ≥ 1

Theorem 3. Define W p
0 = V p−1 and W p

k = Bp(W
p
k−1). Then W p

k ⊇ W p
k+1 and V p = ∩kW

p
k =

lim
k→∞

W p
k . Moreover, lim

k→∞
W p

k is compact.

Theorem 3 suggests the following algorithm to characterize the equilibrium payoff set V n: Start
with V 0 and iterate downwards using B1(·) until convergence to approximate V 1. Given that V p−1

has been previously characterized, compute V p by iterating downwards from V p−1 using Bp(·) until
convergence, and successively calculate V p for each p until p = n.
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5.5 Optimal Penal Codes

The set-valued iteration procedure outlined in section 5.4 may be difficult to implement in practice.
Fortunately, in this section I show that a version of Abreu (1988)’s optimal penal codes exists for
our solution concept. Hence every equilibrium outcome can be easily characterized, given these pe-
nal codes have been found. In section 6, I’ll show how to support collusion in an infinitely repeated
Cournot duopoly game with renegotiation using the idea of optimal penal codes.

As in Abreu (1988), each optimal penal code αi corresponds to one of the worst equilibrium
outcome paths for each player i ∈ N . Notice that we do not need to tailor an optimal penal code
for any coalition of players. The insight is that to discourage a coalition of players from deviating,
it suffices to punish one of its member very harshly immediately after a group deviation has been
observed. Again, the stick-and-carrot structure of these codes guarantees the punished player has
an incentive to voluntarily participate in her own punishment.

Let ρi,p ∈ argmin{wi|w ∈ V p,1} denote the payoff-profile associated with the most severe pun-
ishment in Σp,1 for player i ∈ N . We first present a general proposition that leads to the existence
of optimal penal codes.

Proposition 5. w ∈ V p if and only if there exists (q, ρ) p-admissible w.r.t. V p such that (1 −
δ)u(q) + δρ(q) = w and ρ(q̃) ∈ {ρi,p}i∈N ∀q̃ 6= q.

Proof We only need to prove the only-if part. Since Σp = Σp,1 ⇒ V p = Bp(V p), given
w ∈ V p, ∃(q, ρ) p-admissible w.r.t. V p such that (1− δ)u(q) + δρ(q) = w. Hence ∀q̃s, |s| ≤ p, with
(1− δ)u(q̃s, q−s)+ δρ(q̃s, q−s) ∈ V p−1, there exists i ∈ s such that (1− δ)ui(q̃s, q−s)+ δρi(q̃s, q−s) ≤
(1 − δ)ui(q) + δρi(q) = Ei(q, ρ). Since ρi,p ≤ ρi(q̃s, q−s) ∀i ∈ s, we have maxi∈s{Ei(q, ρ) − (1 −
δ)ui(q̃s, q−s)− δρi,p

i } ≥ 0. Define ρ̂ by ρ̂(q) = ρ(q), and ∀q̃ = (q̃s, q−s) 6= q,44 ρ̂(q̃s, q−s) = ρî,p where
î ∈ argmaxi∈s{Ei(q, ρ) − (1 − δ)ui(q̃s, q−s) − δρi,p

i }. It is straight forward to verify that (q, ρ̂) is
p-admissible w.r.t. V p and E(q, ρ̂) = w.

Let σi ∈ Σn with v(σi) = ρi,n be the worst equilibrium strategy profile for player i, and let
αi ≡ α(σi) be the outcome path associated with σi. Proposition 5 implies that we can use {αi}i∈N
as the set of optimal penal codes to support every equilibrium outcome. Moreover, these codes are
“simple” in the sense that the set of penal codes is history-independent, and that every deviation
is punished by restarting one of the codes in this set.

Notice that, however, our penal codes are different from Abreu (1988)’s original proposal in one
crucial aspect: the choice of punishment may depend on the deviation. In particular, the player

44When q̃ 6= q has multiple representations as q̃ = (q̃s, q−s), pick the s with the smallest size |s|.
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i ∈ s who is punished after deviation q̃s from an equilibrium outcome path α = (q0, q1, ...) is chosen
by maximizing over i ∈ s:

Ui(α)− (1− δ)ui(q̃s, q0,−s)− δUi(αi)

Hence the player selected to be punished is the player who has the most to lose from the coalitional
deviation, and therefore is “weakest link” of the coalition.45,46

5.6 Existence of Equilibrium

This section uses the recursive characterization developed in section 5.4 to prove existence of equi-
librium in infinitely repeated games. The approach to existence proof is complicated by the fact
that, in general, infinite repetition of an equilibrium in a stage game need not be an equilibrium in
the corresponding infinitely repeated game. Fortunately, I can show that existence of equilibrium
in stage game is sufficient for existence in infinitely repeated game.47 Moreover, since Theorem 1
implies generic existence of equilibrium in stage games, existence of our solution concept is guar-
anteed in behavior strategies in repeated games.48

In this section, let {Σp
stage}n

p=0 denote the corresponding concepts {Σp}n
p=0 in the stage game.

Our existence proof is implied by the following proposition:

Theorem 4. Σp
stage 6= ∅ ⇒ V p 6= ∅

Idea of Proof Notice that q ∈ Σp
stage ⇒ (1 − δ)u(q) + δw ∈ Bp({w}) ∀w ∈ V p−1, since

players are induced to play the stage game if promise utilities do not vary with current action.
Since V p is the limit of the decreasing sequence {Bm

p (V p−1)}∞m=0 and Bp(·) is monotonic, we have
Bm+1

p (V p−1) = Bp (Bm
p (V p−1)) ⊇ ⋃

w∈Bm
p (V p−1) Bp({w}) 6= ∅ ∀m ⇒ V p 6= ∅.

6 An Example of Repeated Cournot Duopoly with Renegotiation

This section uses an example of repeated Cournot duopoly game to illustrate the idea of optimal
penal codes developed in section 5.5. In particular, I’ll demonstrate how these penal codes, which
essentially represent a stick-and-carrot strategy on the individual level but a divide-and-conquer
strategy on the group level, can be used to support collusion even in the presence of renegotiation.
It is also interesting to note that since infinite repetition of Cournot-Nash is the only perfect Nash

45I thank Jonathan Levin for suggesting this descriptive phrase to me.
46DeMarzo (1992) used a similar idea to support his solution concept for finitely repeated games.
47With minor modifications, our approach can also be used to prove existence in finitely repeated games.
48Please also refer to footnote 10 for a remark on the observability of players’ private randomization device in

repeated games.
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equilibrium that is also “weakly renegotiation-proof”,49 our theory gives a very different prediction
compared to the solution concepts developed by Farrell and Maskin (1989) and Bernheim and Ray
(1989), who both predict that collusion is impossible in the current environment if renegotiation is
allowed.

Consider an infinite repetition of the two-player stage game in Figure 6.50 Roughly speaking,
the game can be thought of as a symmetric, discrete, quantity-setting duopoly game played by two
firms, each of them may choose a low (L), medium (M), or high (H) output level. The unique
Nash equilibrium of the stage game is (M, M). Let δ be the discount factor. It could be easily
verified Cournot-Nash reversion can be used to support the “collusive” outcome {(L,L), (L,L), ...}
if and only if δ ≥ 4/7.

Firm 2
L M H

L 10, 10 5, 14 0, 6
Firm 1 M 14, 5 7, 7 -5, -2

H 6, 0 -2, -5 -15, -15

Figure 6: Repeated Cournot Duopoly with Renegotiation

Let δ = 1/2, so that Cournot-Nash reversion is not severe enough to support the “collusive”
outcome. Nevertheless, Abreu (1988) showed that {(L, L), (L, L), ...} can still be supported by the
following pair of optimal penal codes:

Q1 = {(M, H), (L,M), (L, M), ...}, Q2 = {(H,M), (M,L), (M, L), ...}51

His idea is that the collusive outcome can be attained if each firm {i = 1, 2} is threatened with
the worst perfect Nash equilibrium outcome Qi in case of an unilateral deviation. Moreover, the
stick-and-carrot structure of these codes guarantees each firm has an individual incentive to follow
equilibrium recommendation at all histories. However, since these codes hurt both the innocent
and the guilty, and joint-deviations are not punished, firms jointly prefer to skip the “stick” phase
and jump directly to the “carrot” phase, whenever these penal codes are called for. It can easily be
checked that the resulting paths Q̂

1
= {(L,M), (L,M), ...} and Q̂

2
= {(M,L), (M, L), ...} cannot

serve as penal codes, since the guilty does not have an incentive to participate in his own punish-
ment.

49A perfect Nash equilibrium is “weakly renegotiation-proof”, if it is not possible to find two different histories, ht

and h′t, such that the continuation utilities given by the equilibrium strategy profile at these two contingencies are
Pareto-ranked. Bernheim and Ray (1989) use the term “internal consistency” to represent essentially the same idea.

50This game is a modified version of the example given in Abreu (1988).
51Notice that Q1 and Q2 are the worst subgame-perfect Nash equilibrium outcomes for firm 1 and firm 2, respec-

tively, with the corresponding equilibrium payoff profile of (0, 6) and (6, 0).
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In the presence of renegotiation, I show that collusion can still be supported, if we adopt a
strategy of “divide-and-conquer” on the group level. This can be done by adopting a pair of less
aggressive simple penal codes, and by making joint-deviations punishable:

Q1∗ = {(L,H), (L,H), (L,M), (L,M), ...}, Q2∗ = {(H,L), (H, L), (M, L), (M,L), ...}

As in Abreu (1988), I require every unilateral deviation by firm i be punished by restarting Qi∗.
In addition, every joint-deviation along the path of Qi∗ is punished by restarting Qj∗ with j 6= i.52

Notice the way I punish joint-deviations is first to divide the interest of the group on such devia-
tions, and then to conquer them by punishing at the “weakest link” of the group, i.e. the firm who
has the most to lose if it participates in the group deviation. Finally, these penal codes are optimal
in the sense that Qi∗ corresponds to the worst coalition-stable equilibrium outcome for firm i = 1, 2.

We can easily verify that no firm has an incentive to deviate from collusion if {Qi∗}i=1,2 are
used as punishments. To see if firms have an incentive to deviate from either Q1∗ or Q2∗, Theorem
2 shows that we only need to check for one-shot deviations. First note that all unilateral deviations
can be checked in the usual manner. Moreover, the “stick-and-carrot” structure of each of these
penal codes implies joint-deviation from Qi∗ reduces promise utility of firm j 6= i. Hence we only
need to check the joint-deviation to (M, M), the only group deviation that is jointly profitable in
the current period.

Suppose equilibrium recommends restarting Q1∗. If both firms follow the recommendation,
the payoff-pair they received is (5

4 , 8). If both firms jointly deviate in the first period, then the
payoff-pair they receive is 1

2 · (7, 7) + 1
2 · (8, 5

4) = (15
2 , 33

8 ). Since firm 2 is made worse off by this
joint-deviation (33

8 < 8), she will not participate in the first period. Now suppose both firms follow
equilibrium recommendation in the first period, and they enter the second period with a promised
utility-pair of (5

2 , 10). If these firms jointly deviate in the second period, the utility-pair they re-
ceive is again (15

2 , 33
8 ). But then obviously firm 2 would not like to participate since (33

8 < 10).
Moreover, there is no mutually beneficial one-shot joint-deviation from {(L,M), (L, M), ...}, and
hence Q1∗ is immune to coalitional deviation starting from the third period. Finally, since the game
is symmetric, arguments for “renegotiation-proofness” of Q2∗ is analogous.

7 Conclusion

This section concludes by relating our theory to other solution concepts in the literature. We start
by comparing the theory to two benchmark notions of renegotiation-proofness – the concept of weak

52In this example, I can punish all joint-deviations from {(L, L), (L, L), ...} by either Q1∗ or Q2∗. In general,
however, the punishment path chosen can depends on the particular joint-deviation, even though the set of punishment
paths remains the same over all contingencies. Please refer to section 5.3 for a more precise statement.
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renegotiation-proofness proposed by Farrell and Maskin (1989) and Bernheim and Ray (1989),53

and a different idea of renegotiation-proofness advocated by Pearce (1987) and Abreu et al. (1993).
As we shall see below, while each of these benchmark notions represents quite an extreme but
different view over the power of current-period players in influencing the course of strategic play,
the view adopted by our theory is quite balanced, and is guided completely by the dynamically
consistent behavior of players. As such, our theory contributes to the literature by reconciling the
difference between these two benchmark notions of renegotiation-proofness, and by presenting a
coherent framework to analyze the problem of renegotiation.

The notion of weak renegotiation-proofness, first introduced by Farrell and Maskin (1989) and
Bernheim and Ray (1989), represents a rather optimistic view concerning the renegotiation power
of current-period players in repeated games. This notion requires that no two points in the equilib-
rium payoff set should be Pareto-ranked.54 The intuition is that if both σ and σ̃ are candidates for
an equilibrium, but the payoffs associated with σ strictly Pareto-dominate those associated with
σ̃, then collective rationality of players should lead them to jointly abolish σ̃ in favor of σ, even if
σ̃ is recommended. Hence σ̃ cannot be a candidate for a “renegotiation-proof” equilibrium.

While the argument for weak renegotiation-proofness is valid in stage games, as we have dis-
cussed in the third example (Figure 4) of section 4.1, it is in general invalid even in two-period
games. The problem is that the joint-deviation from σ̃ to σ may require participation of players in
future periods. Since dynamic consistency implies players cannot commit themselves to a partic-
ular course of action, and since the usual Pareto-criterion compares only the utilities of players in
the current period but ignores the promises to players in the future periods, Pareto-dominance in
current-period utilities is in general not a sufficient condition for renegotiation. Hence players may
not be able to renegotiate to a better outcome in the current period, because the current agreement
to deviate may be further reneged in future.

As a consequence, even though weak renegotiation-proofness is an intuitively appealing re-
quirement, it implies players can make intertemporal binding commitment when renegotiating a
side-contract to deviate. Since an equilibrium agreement is required to be self-enforcing precisely
because we assume no commitment technology is available, the requirement of weak renegotiation-
proofness may not be appropriate in general.

On the other end of the spectrum, the notion of renegotiation-proofness adopted by the theories
of Pearce (1987) and Abreu et al. (1993) represents a rather pessimistic view over the renegotiation

53Bernheim and Ray (1989) labels the same idea internal consistency. This idea is also closely related to the
concept of internal stability advocated by Asheim (1991), and the idea of internally renegotiation-proofness proposed
by Ray (1994). Please refer to footnote 49 for a definition of weak renegotiation-proofness.

54When the game is only finitely repeated, this criterion is sometimes called Pareto dominance refinement, which
says no two points in the equilibrium payoff set in any subgame are Pareto-ranked.
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power of players.55 Embedded in their theories is the idea that, for a joint-deviation from one
perfect Nash equilibrium σ̃ to another perfect Nash equilibrium σ to be credible, not only should
such a deviation give a strictly higher payoff to every players in the current period, but it is also
required that under no circumstance would this deviation result in a lower payoff to any player
in future. In essence, their theories give all future-period players a veto power to reject every
joint-deviation proposed by players at present, even though the joint-deviation may be one-shot
and therefore require no participation of players in future periods. Obviously, their requirement for
credible renegotiation may be too stringent.

Our theory adopts a balanced view on the renegotiation power of players, and is guided com-
pletely by concerns over their dynamically consistent behavior. Our theory neither allows players
to commit to strategic choices made in future, nor let future-period players who are uninvolved in
a deviation to block the strategic changes made by players at present. As such, our theory escapes
the difficulties associated existing benchmark notions of renegotiation-proofness discussed above,
and in a sense embraces different conflicting views in the literature in a single coherent framework.

Our theory is related to the concept of Perfectly Coalition-Proof Nash equilibrium of Bernheim
et al. (1987), which described strategic outcomes in finitely repeated games where coalitional plans
to deviate could be kept secret from other players. The theory is also related to the concept of
Sustainable Social Norms proposed by DeMarzo (1992), who extended Strong Nash equilibrium
of Aumann (1959) to repeated games by considering strategy profiles that are not “sequentially
blocked”, a concept which is closely related to our notion of subgame-preferable deviations. Finally,
the idea developed here is also related to Osborne (1990), who considered how the signalling effect
of an individual deviation can be used to refine predictions in finitely repeated games.

The theory developed here proposed a solution to the problem of renegotiation, in an environ-
ment with no nature moves and with no private information. Extending the current theory to a
more general environment is a challenging but rewarding exercise and will be taken in future works.
Recently, Ambrus (2002) and Ambrus (2003) extends the concept of rationalizability of Bernheim
(1984) and Pearce (1984) to incorporate incentives of coalitions. It would also be interesting to
explore the relationship between our equilibrium concept and his rationalizability concept in future
works.

55Readers should note that the exact definition of “renegotiation-proof” equilibrium in Abreu et al. (1993) is slightly
different from that of Pearce (1987), even though the general idea is the same.
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A Existence of Equilibrium in Stage Games

Given σ, σ̃ ∈ Σ0, we say σ Âp σ̃ if and only if ∃s ⊆ N , |s| = p, such that σ Âs σ̃. Define 4p(σ) ≡ {σ̃ ∈ Σ0 :
σ Âp σ̃} and 4s(σ) ≡ {σ̃ ∈ Σ0 : σ Âs σ̃}.56 Obviously, 4p(σ) =

⋃
s,|s|=p4s(σ) and define the nonempty

compact correspondence ψp : Σp−1 → co(Σp−1) by ψp(σ) = co(Σp−1) \ 4p(σ).57

Lemma 1. If Σ0 is a nonempty, convex topological vector space and the payoff profile u(·) is quasi-concave,
then i.) σ 6∈ co{σ̂ ∈ Σp−1 : σ̂ Âp σ}, and ii.) ψp is a KKM correspondence, i.e. co{σ1, ...σm} ⊆ ⋃m

i=1 ψp(σi)
for every finite subset {σ1, ...σm} of Σp−1.

Proof i.) Obviously σ 6Âp σ since Âp is irreflexive. Suppose ∃σ1, σ2 ∈ {σ̂ ∈ Σp−1 : σ̂ Âp σ} and λ ∈ [0, 1]
such that σ = λσ1 + (1 − λ)σ2. This implies ∃s ⊆ N , |s| = p such that σ1 Âs σ and σ2 Âs σ.58 However,
by quasi-concavity of u(·), us(λσ1 + (1 − λ)σ2) ≥ us(σ1) ∧ us(σ2) > us(σ) ⇒ σ 6= λσ1 + (1 − λ)σ2, a
contradiction. ii.) Fix an arbitrary finite subset {σ1, ..., σm} of Σp−1 and pick σ̃ ∈ co{σ1, ..., σm}. Assume
to the contrary that σ̃ 6∈ ⋃m

i=1 ψp(σi). Then σ̃ ∈ co(Σp−1)/
⋃m

i=1 ψp(σi) =
⋂m

i=14p(σi) ⇒ σi Âp σ̃ ∀i. But
σ̃ ∈ co{σ1, ..., σm} implies σ̃ ∈ co{σ̂ ∈ Σp−1 : σ̂ Âp σ}, a contradiction.

Theorem 1 If Σ0 is a nonempty, convex and compact topological vector space and the payoff profile u(·)
is quasi-concave, then Σp is nonempty ∀p ≤ n.

Proof It is sufficient to show Σp−1 nonempty ⇒ Σp nonempty given quasi-concavity of the payoff
profile u(·). Fix an arbitrary σ̂ ∈ Σp−1 and define ψ̃

p
: co(Σp−1) → co(Σp−1) by setting ψ̃

p
(σ̂) =

Σp−1 ∩ ψp(σ̂), ψ̃
p
(σ) = ψp(σ) ∀σ 6= σ̂, σ ∈ Σp−1 and let ψ̃

p
(σ) = co(Σp−1) ∀σ ∈ co(Σp−1) \ Σp−1. Since

ψp is a KKM correspondence by lemma 1, ψ̃
p

is a KKM correspondence by construction.59 Moreover, Âs is
transitive ∀s ⊆ N implies Σp =

⋂
{s,|s|=p} {Σp−1\4s(Σp−1)} = Σp−1\4p(Σp−1) =

⋂
{σ∈Σp−1} Σp−1\4p(σ) =

Σp−1 ∩ {⋂{σ∈Σp−1} ψp(σ)} =
⋂
{σ∈co(Σp−1)} ψ̃

p
(σ). Hence we can prove non-emptiness of Σp by showing

that {ψ̃p
(σ) : σ ∈ co(Σp−1)} is a collection of compact sets with finite-intersection property. Pick an arbi-

trary finite subset {σ1, ..., σm} of co(Σp−1). Let M be the finite dimensional space spanned by {σ1, ..., σm}
and define {Fi}1≤i≤m by Fi = ψ̃

p
(σi) ∩ co{σ1, ..., σm}. Since ψ̃

p
is a KKM correspondence, {Fi}1≤i≤m

is a collection of compact subsets of M satisfying co{σi : i ∈ A} ⊆ ∪i∈A Fi for every subset of indexes
A ⊆ {1, ..., m}. Therefore ∩m

i=1 ψ̃
p
(σi) ⊇ ∩m

i=1 Fi 6= ∅ by KKM lemma. Since {σ1, ..., σm} is arbitrary, the col-
lection {ψ̃p

(σ) : σ ∈ co(Σp−1)} has finite-intersection property which implies Σp =
⋂
{σ∈co(Σp−1)} ψ̃

p
(σ) 6= ∅.

B Other Proofs

Let λt(σ) ≡ {στ}∞τ=t be the shift operator that deletes the first t elements of σ, and write λt(Σ̃) =
⋃

σ∈eΣ λt(σ).
Since G∞(δ) is isomorphic to each of its own subgame, by construction we have λt(Σp|ht) = Σp ∀ht, 0 ≤
p ≤ n, where Σp|ht ≡ {σ|ht : σ ∈ Σp} is the restriction of Σp to history ht.

56For every Σ̃ ⊆ Σ0, we denote 4p(Σ̃) = ∪σ∈Σ̃4p(σ) and we define 4s(Σ̃) analogously.
57Notice that σ ∈ ψp(σ) since Âp is irreflexive.
58If ∃σ1, σ2 ∈ Σp−1 with σ1 Âs σ and σ2 Âs̃ σ but s 6= s̃, it can be easily shown that λσ1

ŝ + (1− λ)σ2
ŝ 6= σŝ, where

ŝ = (s\s̃) ∪ (s̃\s).
59Notice that ∀σ ∈ Σp−1 with σ 6= σ̂, ψ̃

p
(σ̂) ∪ ψ̃

p
(σ) = (Σp−1 ∩ [4p(σ̂)]c) ∪ ψp(σ) = {Σp−1 ∪ ψp(σ)} ∩ {[4p(σ̂)]c ∪

ψp(σ)} = {co(Σp−1) ∪ ψp(σ)} ∩ {[4p(σ̂)]c ∪ ψp(σ)} = ψp(σ̂) ∪ ψp(σ).
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Proposition 1 Σp,1 = Σp,k ∀ 1 ≤ k < ∞

Proof Since Up,k(σ) ⊇ Up,1(σ) ∀σ ∈ Σ0, p ≥ 1, σ ∈ Σp,k ⇒ σ ∈ Σp,1. Hence Σp,k ⊆ Σp,1. Suppose
σ 6∈ Σp,k, then ∃σ̂ ∈ Σp−1∩Up,k(σ). W.l.o.g. we can assume the chain of subgame-preferable deviations starts
at t = 0. Therefore we have ˆ̂σ ≡ λk(σ̂|hk

) ∈ λk(Σp−1|hk
)∩λk((Up,k(σ))|hk

) = Σp−1∩Up,1(λk(σ|hk
)). Finally,

suppose σ ∈ Σp,1, then by definition of Σp,1 we have λk(σ|hk
) ∈ Σp,1, but then ˆ̂σ ∈ Σp−1 ∩ Up,1(λk(σ|hk

)) 6=
∅ ⇒ λk(σ|hk

) 6∈ Σp,1.

Lemma 2. Given W0,W1 ⊆ V p−1. If W0 ⊃ W1, then Bp(W0) ⊇ Bp(W1).

Proof Obvious from the definition of Bp(·).

Lemma 3. W is compact ⇒ Bp(W ) is compact.

Proof Consider the pair (q, ρ) ∈ A × A ×W, W ⊆ V p−1. Define Rw(V p−1) ≡ {(q, ρ) : E(q, ρ) ∈ V p−1}.
Given s ⊆ N , |s| ≤ p, construct a strict partial ordering Às on Rw(V p−1) as follows:

(q1, ρ1) Às (q2, ρ2) ⇔
{

Ei(q1, ρ1) > Ei(q2, ρ2) ∀i ∈ s

q1
−s = q2

−s, ρ1 = ρ2

Let K̂s ≡ {(q, ρ) ∈ Rw(V p−1) : @(q̂, ρ̂) ∈ Rw(V p−1), (q̂, ρ̂) Às (q, ρ)}. Since both A×A×W and V p−1 are
compact, and E(q, ρ) = (1− δ)u(q) + δρ(q) is continuous in (q, ρ), we have both Rw(V p−1) and K̂s compact
subsets of A × A ×W . Moreover, (q, ρ) is p-admissible w.r.t. W if and only if (q, ρ) ∈ ∩s,|s|≤p K̂s. Hence
{(q, ρ) ∈ A×A×W : (q, ρ) is p-admissible w.r.t. W} = ∩s,|s|≤p K̂s is compact. Therefore Bp(W ) is compact
by continuity of E(q, ρ).

Proposition 2 If W is p-self-generating, then Bp(W ) ⊆ V p,1.

Proof By the axiom of choice, ∀w ∈ Bp(W ), ∃Q̂ : Bp(W ) → A, and P̂ : Bp(W ) → A × W such that
(Q̂(w), P̂ (w)) is p-admissible w.r.t. W and E(Q̂(w), P̂ (w)) = w. Hence for any w ∈ W ⊆ Bp(W ), we can
construct σw ∈ Σp,1 with v(σw) = w as follows. First, recursively define P̂ t

w : Ht → <n so that P̂ 0
w = P̂ (w)

and P̂ t
w(ht) = P̂ (P̂ t−1

w (ht−1))(qt−1) ∀t ≥ 1. Since P̂ (w) ∈ A ×W whenever w ∈ Bp(W ), and W ⊆ Bp(W ),
by induction, we have P̂ (w) ∈ A × W ⇒ P̂ t

w(ht) ∈ W ⊆ Bp(W ) ∀ht ∈ Ht, t < ∞. Let σw = {σw,t}∞t=0

be defined by σw,0 = Q̂(w), σw,t = Q̂(P̂ t−1
w (ht−1)) ∀t ≥ 1. By construction, v(σw) = w. Moreover, given

{P̂ t
w}∞t=0, p-admissibility w.r.t. the p-self-generating set W ⊆ V p−1 implies there does not exist profitable

and self-enforcing one-step deviation σ̂w ∈ Σp−1 by any dynamic coalition of size ≤ p. Hence σw ∈ Σp,1.
Since this is true for ∀w ∈ Bp(W ), therefore Bp(W ) ⊆ V p,1.

Proposition 3 V p,1 = Bp(V p,1)

Proof We only need to prove V p,1 ⊆ Bp(V p,1). Given w ∈ V p,1, ∃σ ∈ Σp,1 such that v(σ) = w.
Let (q, ρ) be such that q = σ0, ρ(q) = v(λ1(σ|h1=q)). Obviously, E(q, ρ) = (1 − δ)u(q) + δρ(q) =
(1− δ)u(σ0) + δv(λ1(σ|h1=σ0)) = v(σ) = w. Also, σ ∈ Σp,1 ⇒ λ1(σ|h1) ∈ Σp,1 ∀h1 ∈ H1 ⇒ ρ(q) ∈ V p,1 ∀q.
Moreover, by definition of Σp,1, (q, ρ) is p-admissible w.r.t. V p,1. Hence w ∈ Bp(V p,1).
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Proposition 4 V p−1 ⊇ Bp(V p−1) ⊇ V p,1 ∀ p ≥ 1

Proof When p = 1, it is obvious that V 0 ⊇ B1(V 0) since V 0 = {v(σ)|σ ∈ Σ} is the set of payoff profiles
from all feasible strategy profiles. When p > 1, given w ∈ Bp(V p−1), ∃(qw, ρw) p-admissible w.r.t. V p−1 such
that (1−δ)u(qw)+δρw(qw) = w. If w 6∈ V p−1, since ρw(q) ∈ V p−1 ∀q ∈ A, ∃s, |s| ≤ p−1, and q̃s ∈ {Ai}i∈s

such that (1 − δ)u(q̃s, q
w
−s) + δρw(q̃s, q

w
−s) ∈ V p−1 and Ei((q̃s, q

w
−s), ρ

w) > Ei(qw, ρw) ∀i ∈ s. This implies
(qw, ρw) is not p-admissible w.r.t. V p−1, a contradiction. Hence Bp(V p−1) ⊆ V p−1 ∀p ≥ 1. Moreover, since
V p−1 ⊇ V p,1, monotonicity of the Bp(·) operator implies V p−1 ⊇ Bp(V p−1) ⊇ Bp(V p,1) = V p,1.

Theorem 3 Define W p
0 = V p−1 and W p

k = Bp(W
p
k−1). Then W p

k ⊇ W p
k+1 and V p = ∩kW p

k = lim
k→∞

W p
k .

Moreover, lim
k→∞

W p
k is compact.

Proof By iterating on the monotone operator Bp(·) and applying Proposition 4, we have

V p−1 ⊇ Bp(V p−1) ⊇ ... ⊇ Bn
p (V p−1) ⊇ ... ⊇ V p,1

Then by definition of W p
k , we have W p

k ⊇ W p
k+1 and W p

∞ ≡ ∩kW p
k ⊇ V p,1. Moreover, since Bp(·) maps

a compact set to a compact set, W p
k is compact ∀k, and therefore W p

∞ is also compact. Also, because the
graph of Bp(·) is compact, by closed graph theorem, Bp(·) is upper hemi-continuous, hence W p

∞ ⊆ Bp(W p
∞).

Then by Proposition 2, W p
∞ ⊆ V p,1 ⇒ W p

∞ = V p,1. Finally, Theorem 2 implies V p,1 = V p, hence W p
∞ = V p.

Lemma 4. Given q ∈ A, q ∈ Σp
stage ⇔ (1− δ)u(q) + δw ∈ Bp({w}) ∀w ∈ V p−1

Proof The lemma is obviously true when p = 1. Suppose the lemma is true for p − 1, and fix some
w ∈ V p−1. If q ∈ Σp

stage, then ∀s, |s| ≤ p, and ∀q̃s ∈ {Ai}i∈s with (q̃s, q−s) ∈ Σp−1
stage, there exists i ∈ s such

that ui(q) ≥ ui(q̃s, q−s). This implies ∀s, |s| ≤ p, and ∀q̃s ∈ {Ai}i∈s with (1−δ)u(q̃s, q−s)+δw ∈ Bp−1({w}),
there exists i ∈ s such that (1− δ)ui(q) + δwi ≥ (1− δ)ui(q̃s, q−s) + δwi. Hence (1− δ)u(q) + δw ∈ Bp({w}).
The proof in the other direction is completely analogous.

Theorem 4 Σp
stage 6= ∅ ⇒ V p 6= ∅

Proof Since repetition of a Nash equilibrium for the stage game is a subgame perfect Nash equilibrium
for the infinitely repeated game, the statement is true when p = 1. Suppose the statement is true for
p − 1. Therefore Σp

stage 6= ∅ ⇒ Σp−1
stage 6= ∅ ⇒ V p−1 6= ∅. Hence Bp(·) is well defined and by Theorem 3,

V p = B∞
p (V p−1). Suppose V p = ∅. Since the sequence {Bk

p (V p−1)}∞k=0 consists of non-increasing compact
sets having finite intersection property, V p = ∅ ⇒ ∃m < ∞ such that Bm

p (V p−1) 6= ∅ but Bm+1
p (V p−1) = ∅.

However, by lemma 4, Σp
stage 6= ∅ ⇒ Bp({w}) 6= ∅ ∀w ∈ V p−1. Hence monotonicity of Bp(·) implies

Bm+1
p (V p−1) = Bp (Bm

p (V p−1)) ⊇ ⋃
w∈Bm

p (V p−1) Bp({w}) 6= ∅ since Bm
p (V p−1) ⊆ V p−1, a contradiction.

Hence V p 6= ∅.
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