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Abstract

We develop tests of linearity that are consistent against a class of Com-
pound Smooth Transition Autoregressive (CoSTAR) models of the con-
ditional mean. Our method is an extension of the sup-test developed by
Bierens (1990) and Bierens and Plobeger (1997), provides maximal power
against popular STAR alternatives and is consistent against any deviation
from the null hypothesis. Moreover, the test method can be extended to
consistent tests of number of threshold regimes, flexible parametric forms,
conditional homoscedasticity against linear or smooth transition GARCH,
and causality tests of out-of-sample predictive accuracy.

Of particular note, we improve on Bierens’s (1990) test theory by con-
sidering a vector conditional moment that leads to a sup-test statistic that
is never degenerate under the alternative of functional mis-specification.
Moreover, our test is a true test against smooth transition alternatives,
whereas the universally employed polynomial regression test of Luukko-
nen et al (1988) and Teräsvirta (1994) requires the assumption that the
true data generating mechanism is STAR.

A simulation study demonstrates that the suggested STAR sup-statistic
renders a test with superlative empirical size and power attributes, in par-
ticular in comparison to the Bierens (1990) test, the neural test by Lee,
White and Granger (1993), and specifically the polynomial regression test
employed throughout the STAR literature. Finally, we apply the new tests
to various macroeconomic processes.
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1. Introduction Smooth Transition Threshold Autoregressive (STAR)
models have gained significant popularity in the economics and finance litera-
tures as a means to transcend well known explanatory and forecasting limita-
tions of linear models and binary regime/switching models. Suggested by Chan
and Tong (1986a,b) to account for sluggish regime dynamics in many time se-
ries, Teräsvirta (1994) develops a composite theory of estimation, diagnostic
checking and inference for smooth transition processes with exponential and lo-
gistic transition functions. See, also, Luukkonen et al (1988) and van Dijk et al
(2000).
Tests for linearity against STAR alternatives, however, have received almost

no attention in the theory literature, although a standard practice dominates
the applied literature. Detailed below, under the null hypothesis of linearity
several parameters, say γ, unique to the STAR process are unidentified, and
therefore standard Lagrange Multiplier (LM) statistics cannot be directly com-
puted. The approach in the theory literature has been to apply functionals to
the unidentified LM statistics and analyze the non-standard limiting distrib-
ution by numerical integration or bootstrap techniques. For example, Davies
(1977, 1987) suggests a sup-statistic over feasible γ, supγ LM(γ); Andrews and
Ploberger (1994) and de Jong (1996) consider methods of averaging over the
nuisance parameter space; and Hansen (1996) develops a bootstrap technique
for estimating the asymptotic p-value for LM-type statistics when parameters
are present that are undefined under the null hypothesis.
In the applied smooth transition literatures, by comparison, Luukkonen

et al (1988), Saikkonen and Luukkonen (1988), Teräsvirta (1994), Hagerud
(1997), Gonzalez-Rivera (1998), Escribano and Jorda (2000), Madieros and
Veiga (2000), Rothman et al (2001) and others proscribe a truncated Taylor
expansion approximation of the STAR model as a means to transcend the nui-
sance parameter and non-standard distribution dilemma. The technique leads
to a simple polynomial auxiliary regression in the spirit of the RESET tests
by Ramsey and Schmidt (1976) and Keenan (1985), and standard F-tests of
parametric zero-restrictions in order to determine whether the process is linear,
exponential or logistic STAR. The simplicity of the auxiliary regression makes
this method employable in any standard econometrics software and therefore
has appeal for quick applications.
Several fundamental problems associated with polynomial regressions exist,

however, and are well known in the econometrics literature. First, by construc-
tion rejection of the test does not necessarily lead to a STAR model when the
null of linearity is rejected. The polynomial regression technique provides max-
imal power against local polynomial alternatives, and therefore can at most be
weakly associated with STAR nonlinearity. This issue is particularly relevant
if we admit any functional alternative to explain the data provided linearity
is found inadequate: polynomial nonlinearity is known not to be ”generically
comprehensive” (Stinchcombe and White, 1998) in the sense that if a linear
model is mis-specified, additive polynomial terms may not improve the model
fit. This shortcoming of classic weight-based moment condition specification
tests is well known in the inference theory and artificial neural network litera-
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tures: see, e.g., Davies (1977), Holley (1982), Bierens (1990), Kuan and White
(1994) and Stinchcombe and White (1998).
Second, for STAR tests a nuisance ”delay” parameter d (see Section 2) still

exists in the polynomial regression. Teräsvirta (1994) and many others suggest
performing the polynomial regression tests for various delay values, and selecting
that d which generates the lowest test p-value. This is mathematically equivalent
to maximizing an LM sup-statistic over possible d-values, a statistic known to
have a non-standard limit distribution under the null. Nevertheless, in the
applied literature the standard practice is simply to employ p-values derived
from the chi-squared distribution.
Third, a fundamental assumption of the Taylor expansion method is that

the true data generating mechanism is a smooth transition autoregression (see
Teräsvirta, 1994). Thus, the resulting polynomial test is not a true test against
STAR alternatives, per se, because a STAR functional form is assumed a priori.
Rather, under the assumption the process is a STAR, the test is employed to
detect whether the process is exponential, logistic, or simply a linear STAR
process (i.e. identical regimes). Therefore, to date there does not exist a true
test against smooth transition alternatives, without the necessity of a prior.
Provided such a test can be formulated, and once STAR nonlinearity is detected,
we can then exploit the extant procedure (e.g. Escribano and Jorda, 1999) for
determining which type of STAR mechanism prevails.
In this paper, we expand the well established theory of conditional moment

tests, cf. Newey (1985), Bierens (1982, 1990) and Bierens and Ploberger (1997),
to the problem of testing linearity against finite-order STAR alternatives1. We
develop a test in the spirit of Bierens’ (1990) conditional moment sup-test that
leads to a consistent (asymptotic power of one) test of linearity with maximal
power against smooth transition alternatives. In order to make Bierens’ (1990)
theory operable, we need to augment traditionally scalar transition function
variables to allow for multivariate transition processes with multiple thresholds:
the result is a compound STAR model (CoSTAR) with a multiplicative tran-
sition mechanism. We do not require the assumption that the true process is
STAR: our test is a test of whether STAR nonlinearity provides a better func-
tional approximation to the underlying data degenerating mechanism. We do
not consider an Integrated Conditional Moment test, cf. Bierens (1982) and
Bierens and Ploberger (1997), because of the computational burden associated
with numerical integration and the degree of arbitrariness associated with the
choice of weight function. See, also, Corradi and Swanson (2002). Our inten-
tion is the development of a consistent, non-degenerate LM sup-test that can
be relatively easily computed.
Consistent non-parametric moment based tests, however, exist. Zheng (1996)

develops an analogue to the Bierens (1990) test, based on measuring the distance
between the null conditional mean and a kernel estimator of the conditional
mean. Hong and White (1995) similarly measure the distance between a para-

1For compactness, we only consider finite-order scalar autoregressive models in order to
reduce notation and simplify asymptotic theory. However, extensions are straightforward for
smooth transition VARMAX processes and GARCH models of volatiity.
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metric null model and non-parametric general alternative functional form, where
the non-parametric estimators are based on Fourier series and regression splines.
See, also, Lee (1988), Yatchew (1992) and Wooldridge (1992). Non-parametric
methods are suitable for testing whether a particular functional specification
(e.g. AR or STAR) is correct with probability one, but cannot provide a better
parametric specification if the null specification is false. Our test method is
parametric in the sense that we test a null model with a specific class of al-
ternatives (STAR) in mind, although traditional models of smooth transition
nonlinearity asymptotically have a probability one of improving the fit of any
mis-specified model.
It turns out that adjusting the conditional moment test weight to account

for STAR nonlinearity essentially eradicates the set of nuisance parameters γ
for which Bierens’ (1990) test statistic is degenerate, an important improvement
over original results established in Bierens (1990) and de Jong (1996). In their
work, the LM statistic covariance matrix must be assumed to be nonsingular,
and therefore the statistic is assumed to be nondegenerate: in the present work,
no such assumption is required. Moreover, by utilizing LM-test theory, we do
not require estimation of an alternative model. Likelihood Ratio tests, by com-
parison, require estimation of both the linear and STAR models, and it is well
known that sharp estimates of STAR transition function parameters are difficult
to obtain: see Teräsvirta (1994)2. Finally, our methods can be straightforwardly
extended to encompass consistent tests of number of threshold regimes; condi-
tional homoscedasticity against linear or nonlinear GARCH, or linear GARCH
against nonlinear GARCH; and out-of-sample predictor accuracy, a la Corradi
and Swanson (2002).
In a broad simulation study we provide concrete evidence that a STAR

sup-test based on a scalar transition variable, and a CoSTAR sup-test with
compound transition function dominate parametric tests by Bierens (1990), Lee
et al (1993) and Teräsvirta (1994). Moreover, by combining polynomial and
smooth transition weights multiplicatively and randomly selecting all nuisance
parameters, the resulting statistic often dominates all tests, including the STAR
and CoSTAR sup-tests. This demonstrates a multiplicative hybrid of polyno-
mial and smooth transition terms may be a powerful tool for the detection of
arbitrary nonlinearity and specifically for detecting STAR nonlinearity. Finally,
our simulation is less restrictive than previous such studies (e.g. Luukonnen et
al, 1988; Teräsvirta, 1994; Skalin, 1998): we do not fix slope parameters, and
therefore control for the fact that conveniently chosen parameters may bias test
results.
The rest of this paper contains the following topics. In Section 2, we detail

STAR model specifications, and develop the test in Section 3. We compare
the consistent STAR test with existing tests in a simulation study in Section
4. Finally, in Section 5 we demonstrate the use of the methods developed here

2Skalin (1998), by comparison, studies the comparative performances of the polynomial
regression test and a Likelihood Ratio sup-test, where Hansen’s (1996) bootstrap method for
approximating the p-value is employed. From a limited simulation study with fixed STAR
parameters, the auther concludes the polynomial test dominates.
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on money supply, output, prices, the Treasury bill and commercial paper rates,
and conclude with parting comments in Section 6.
Throughout we maintain the following notation conventions. → denotes

convergence in probability; =⇒ denotes weak convergence with respect to finite
dimensional distributions. | · | denotes the Euclidean norm for real-valued vec-
tors, and the matrix norm for real-valued square matrices: |x| = [Tr (x0x)]1/2.
In all cases, mi denote arbitrary weakly positive integers for arbitrary integer
indices i, whose value is understood in context. For arbitrary k-vectors a and
x, vector powers xa are understood to represent (xa11 , ..., xakk )

0.

2. Smooth Transition Threshold Autoregressive Models Consider
a time series process {yt} defined in L2(Ω,Ft, P ), with Ft an increasing σ-field,
regressors xit = (1, yt−1, ..., yt−pi)

0, i = 1, 2, an innovations process {ut}, and
denote by vt a stochastic scalar to be defined below. The class of L-regime
STAR processes is represented as

yt = φ01x1t +
XL

i=2
φ0ixitF (vt−di , γi, ci) + ut, (1)

for some transition function Ft(di, γi, ci) = F (vt−di , γi, ci) : R3 → [0, 1], transi-
tion scale γi > 0, threshold variable vt, threshold ci, and delay parameter di. In
this setting, regressors are not restricted to be identical across regimes, hence
the orders pi need not equate. The transition function is assumed to be twice
continuously differentiable in γi and ci, and bounded 0 ≤ Ft(di, γi, ci) ≤ 1.
Following the Self Exciting Threshold Autoregression (SETAR) literatures

(see, e.g., Tong, 1990), typically the threshold variable vt−di is restricted to be
some lag of yt, say yt−di In order to account for "lower" versus "upper" and
"inner" versus "outer" regimes, Luukkonen et al (1988) and Teräsvirta (1994)
suggests candidate transition functions include the logistic and exponential with
self-exciting threshold variable vt−di = yt−di

Ft(di, γi, ci) =
1

1 + e−γi(yt−di−ci)
, Ft(di, γi, ci) = e−γi(yt−di−ci)

2

. (2)

Other transition functions Ft discussed in the literature include the Gaussian
probability distribution function: see Chan and Tong (1986b) for the so-called
normal STAR model. See Teräsvirta (1994) and van Dijk et al (2000) for de-
tails on the various properties of the above transition functions and details on
estimation.

2.1 STAR Limitations Several deficiencies noticeably persist in stan-
dard STAR representations, both from a forecasting perspective and the per-
spective of test statistic asymptotics. First, the threshold variable vt is typically
assumed to be scalar-valued, even in smooth transition VAR applications (e.g.
Rothman et al, 2001). However, a consistent test of linearity will require all
variables contained in x2t to be included in the transition function: see Section
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3, below. The restriction that only one process be allowed to embody the thresh-
old mechanism essentially amounts to (untested) zero restrictions on embedded
transition function vector-parameters for vector threshold processes.
Second, even if we allow for multiple threshold processes to enter the transi-

tion function, say, vt = x2t = (1, yt−1, ..., yt−p)0 for some p, we are not guaranteed
a set of unique variable-specific thresholds, say cj , for each yt−j . This problem
is particularly acute for non-exponential transition functions. For example, the
LSTAR transition function with multivariate threshold variable would be

Ft(γ) =
1

1 + exp(−γ0vt) =
1

1 + exp(−γ0 −
Pk−1

i=1 γiyt−i)
(3)

where vt = (1, yt−1, ..., yt−p)0, and γ ∈ Γ, a compact subset of Rk, k = p + 1,
where γ = (γ0, ..., γk−1)0. In order to parameterize (3) in a manner similar to
(2), notice that

Ft(γ) =
1

1 + exp(−γ0 −
Pk−1

i=1 γiyt−i)
=

1

1 + exp(−Pk−1
i=1 γi [yt−i − ci])

(4)

where ci is defined by the identity

−γ0 =
Xk−1

i=1
γici. (5)

It is clear from (5) that individual threshold values ci cannot be identified in
general for each threshold variable yt−i. However, restricting ci = c for each i,
a ”universal” threshold c can be uniquely identified from the k-transition para-
meters, c = −γ0/

Pk−1
i=1 γi provided

Pk−1
i=1 γi 6= 0. In practice, however, it may

be difficult to obtain an intuitive environment in which the threshold variable is
the linear combination

Pk−1
i=1 γiyt−i rather than the individual delayed processes

yt−i.

2.2 Compound STAR Model We solve the problems associated
with scalar threshold processes and non-unique thresholds cj by allowing for
multivariate threshold variables and compound (multiplicative) transition func-
tions. The Compound Smooth Transition AR model (CoSTAR) has the general
form

yt = φ01x1t +
XL

i=2
φ0ixitF

(i)(vt, γ
(i)) + ut, (6)

where F (i)(·) denotes the ith-regime’s compound transition function

F (i)(vt, γ
(i)) =

Yp

j=1
F
(i)
j (vt,j , γ

(i)
j ). (60)

The model allows for any sequence F (i)j (vt,j , γ
(i)
j ) of appropriate transition func-

tions to transfer information concerning regime dynamics: because each transi-
tion function satisfies 0 ≤ F

(i)
j (·) ≤ 1, the compound transition function likewise

satisfies 0 ≤ F (i)(·) ≤ 1.

6



For logistic CoSTAR processes, define vt,j = (1, yt−j)0, γ
(i)
j = (γ

(i)
j,0, γ

(i)
j,1)

0, vt
= (1, yt−1, ..., yt−p)0 and γ(i) = (γ

(i)0
1 , ..., γ

(i)0
p )0, a p × 2 matrix. For exponential

CoSTAR processes, define vt,j = (1, yt−j , y2t−j)
0, and γ

(i)
j = (γ

(i)
j,0, γ

(i)
j,1, γ

(i)
j,2)

0,

thus γ(i) = (γ(i)01 , ..., γ
(i)0
p )0, a p × 3 matrix.

Below we establish several representations of the compound transition func-
tion which will be useful in proving consistency of test statistic.
2.2.1 LoCoSTAR
Consider the logistic CoSTAR transition function where each F

(i)
j (vt,j , γ

(i)
j )

is logistic. For simplicity, set L = 2. Then F (1)(vt, γ
(1)) = F (vt, γ) satisfies

F (vt, γ) =
Yp

j=1
Fj(vt,j , γj) =

Yp

j=1

Ã
1

1 + exp(−γ0jvt,j)

!
(7)

=
Yp

j=1

Ã
exp(γ0jvt,j)

1 + exp(γ0jvt,j)

!

=
exp

³Pp
j=1 γ

0
jvt,j

´
Qp

j=1

£
1 + exp(γ0jvt,j)

¤
= h(vt, γ) exp

³Xp

j=1
γ0jvt,j

´
= h(vt, γ) exp

³Xp

j=1
γj,1[yt−j − cj ]

´
,

say, where we define cj ≡ −γj,0/γj,1 provided γj,1 6= 0, and h(vt, γ) ≡
Qp

j=1[1 +

exp(γj,1[yt−j − cj ])]
−1 is [0,1]-bounded. In order for each Fj(vt,j , γj) to satisfy

the assumed interpretive and boundedness assumptions common in the STAR
literature, in general we assume at least one γj,1 > 0. Thus, cj = 0 if and
only if γj,0 = 0, and if γj,1 = 0 then cj is simply not defined. The F (vt, γ)
representation h(vt, γ) exp(

Pp
j=1 γj,1[yt−j − cj ]) will be useful for deriving the

first result, Lemma 1, below.
2.2.2 ECoSTAR
Consider the exponential CoSTAR transition function where each F (i)j (vt,j , γ

(i)
j )

is exponential. Again, set L = 2. Then F (1)(vt, γ
(1)) = F (vt, γ) satisfies

F (vt, γ) =
Yp

j=1
Fj(vt,j , γj) (8)

=
Yp

j=1
exp(−γ0jvt,j)

= exp
³
−
Xp

j=1

£
γj,0 + γj,1yt−j + γj,2y

2
t−j
¤´

= exp
³
−
Xp

j=1
γj,2 [yt−j − cj ]

2
´

= exp
³
−
Xp

j=1
γj,2y

2
t−j
´
exp

³
−
Xp

j=1

£
γj,0 + γj,1yt−j

¤´
= h(vt, γ) exp

³
−
Xp

j=1

£
γj,0 + γj,1yt−j

¤´
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where each γj and cj is restricted to solve cj ≡ −γj,1/2γj,2, γj,0 = γj,2c
2
j ,

provided γj,2 6= 0. Hence, we are effectively restricting each γj = (γj,0, γj,1, γj,2)0
to satisfy γj,0 = γ2j,1/4γj,2. We define h(vt, γ) ≡ exp(−

Pp
j=1 γj,2y

2
t−j) : this

latter parameterization of the ECoSTAR model will be useful for Lemma 1,
below. By convention, we assume at least one γj,2 > 0, hence h(vt, γ) is [0,1]-
bounded. The identities cj = −γj,1/2γj,2 and γj,0 = γj,2c

2
j , with γj,2 > 0,

implies cj = 0 if and only if γj,0 = γj,1 = 0. If γj,2 = 0, then cj is not defined,
however as a convention we enforce γj,0 = γj,1 = 0.
Notice that from line 5 of equation (7) and line 4 of equation (8), the com-

pound transition function can be written identically as F (vt, γ) = F (vt, γ̃, c)
where γ̃ = γ1 in the logistic model and γ̃ = γ2 in the exponential model. Thus, in
practice the restriction that γj = (γ

2
j,1/4γj,2, γj,1, γj,2)

0 can be straightforwardly
satisfied by considering the more parsimonious parameterization F (vt, γ̃, c): we
simply restrict each γ̃j > 0 and each cj to be within the observable range of
yt−j : see Section 4.
Moreover, we no longer need to define a ”delay” parameter in multivariate

transition functions. The above representations are general enough to include
the scalar-case with the standard scalar threshold variate yt−d, where it is typ-
ically assumed that 1 ≤ d ≤ p (see, e.g., Teräsvirta, 1994). For example, in the
logistic case provided γ1,j = 0, j 6= d, and γ1,d > 0 for some 1 ≤ d ≤ p, then
the LoCoSTAR model reduces to the traditional LSTAR representation where
d then denotes the traditional "delay" parameter.

3. Consistent Tests of Linearity against STAR Alternatives In
this section, we develop the limit theory for consistent tests of linearity. For
simplicity, we assume the CoSTAR model has two regimes (L = 2), and regres-
sors are identical across regimes, x1t = x2t = xt, a k × 1 random vector:

yt = φ01xt + φ2xtFt(γ) + ut, (9)

where Ft(γ) = F (vt, γ) and vt is defined below (6).

3.1 Null Hypothesis of Linearity The specific null hypothesis of
linearity in a STAR framework, cf. (9), states

H0 : φ2 = 0. (10)

Under the null hypothesis, therefore,

yt = φ01xt + t, (11)

where t = ut. In order to fix ideas, we assume the objective model is the
conditional expectations, E [yt|Ft−1] , where Ft denotes an increasing σ-algebra
induced by the information {yt−i, xt−i}∞i=0. In autoregressive settings without
exogenous information, it suffices for Ft−1 to be induced by yt−1, yt−2, .. : Ft−1
= σ(yt−1, yt−2, ...). Under the null of linearity, the best L2-predictor satisfies
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E [yt|Ft−1] = φ01xt, which is tantamount to E [ t|Ft−1] = 0. Consult Appendix
1 for all maintained assumptions.
Denote by Φ a closed compact subset of Rk. We state the fundamental

hypotheses in a useful general format:

H0 : P
¡
E
£
yt − φ0xt|Ft−1

¤
= 0

¢
= 1, for some φ (12)

H1 : supφ∈Φ P
¡
E
£
yt − φ0xt|Ft−1

¤
= 0

¢
< 1.

Under H0 the linear model is almost surely correctly specified such that t

forms a martingale difference sequence. The alternative H1 is simply that the
null model is mis-specified, hence the alternative embraces any deviation from
the null.

3.2 Lagrange Multiplier Framework: Null Score with STAR
Alternatives Employing themean-squared-error criterion, the score sn(φ1, φ2, γ)
associated with (9) is exactly

sn(φ1, φ2, γ) =

 n−1
Pn

t=1 utxt
n−1

Pn
t=1 utxtFt(γ)

n−1
Pn

t=1 utφ
0
2x2t∂Ft(γ)/∂γ

 . (13)

Denoting by sn(0, γ) the score evaluated under the null, φ2 = 0, we obtain

sn(0, γ) =

·
n−1

Pn
t=1 txt

n−1
Pn

t=1 txtFt(γ)

¸
, 2k × 1, (14)

where t = yt − φ01xt, the null innovations. Using the least squares estimator
of φ1 under the null H0 : φ2 = 0, and denoting by ˆt the resulting residuals yt
− φ̂

0
1x1t, the estimated score under the null compactly reduces to

ŝn(0, γ) = n−1
Xn

t=1
t̂xtFt(γ) (15)

= n−1
Xn

t=1
t̂zt(γ), k × 1,

say, due to least squares orthogonality, n−1
Pn

t=1 t̂xt = 0.

3.3 STAR Conditional Moments Denote by F (x, γ) the exponen-
tial eγ

0x or logistic (1 + eγ
0x)−1 function. The following lemma is a direct ex-

tension of Lemma 1 of Bierens (1990) to account for moment condition vector
weights applicable for STAR models. While it is straightforward to extend
Bierens’ (1990) theory to account for STAR moment conditions, the optimal
choice of weight, as it turns out, is non-trivial: a test statistic which is non-
degenerate under all deviations from the null can be generated from specific
weights that precisely coincides with STAR nonlinearity: see Lemma 3.
In the following, define the closed, bounded compact parameter subspaces

Γ ⊆ Rk and ∆ ⊆ Rk. Moreover, assume h(xt, δ) is any bounded, continu-
ous mapping from Rk × ∆ to Rk, measurable with respect to Ft−1, such that

9



P (infδ∈∆ |h(xt, δ)| > 0) = 1 and supδ∈∆ |h(xt, δ)| <∞ with probability one. For
example, h(xt, δ) cannot be δ

0xt because δ0xt = 0 with probability one when δ
= 0; however h(xt, δ) can be exp(−δ0x2t ) for bounded real vectors δ ≥ 0.

Lemma 1 Let be a random variable satisfying E| | < ∞, and let x be an
F-measurable bounded vector in Rk, 0 < k < ∞, P (|x| > 0) = 1, such that
P [E( |x) = 0] < 1. The sets

Si = {γ ∈ Γ : supδ∈∆ |E[ hi(x, δ)F (x, γ)]| = 0}, i = 1...k, (16)

have Lebesgue measure zero, and are not dense in Rk.

Proof. All proofs are contained in Appendix 3.
Remark 1: Conditioning on x in E( |x) is equivalent to conditioning

on any bounded, measurable, one-to-one function of x, say Ψ(x) : Rk → Rk,
since any such functional induces the same σ-field as x: see Billingsley (1995:
Theorem 5.1).
Remark 2: Although we restrict attention to STAR models proper in

which the transition functions are bounded 0≤ Ft(γ)≤ 1 and twice continuously
differentiable in γ, all results in this paper hold for essentially any real analytic
function defined on a compact subset on which γ0Ψ(x) takes it values: see
Stinchcombe and White (1998).
Remark 3: Using arguments similar to Theorem 1 of de Jong (1996),

we may extend Lemma 1 to include any strictly stationary time series process
{yt, xt} with innovations t that are martingale difference sequences under the
null.
Remark 4: If x in (16) is infinite dimensional, as in the case of covari-

ance stationary ARMA processes, further regulatory conditions on the serial
dependence in x must be met: see de Jong (1996).
Remark 5: By setting h(x, δ) = x, Lemma 1 demonstrates a vector

moment condition implied by a STAR process leads to sets Si = {γ ∈ Γ :
E[ xF (x, γ)] = 0}, i = 1...k, with Lebesgue measure zero under H1. Thus,
while the moment condition E[ h(x, δ)F (x, γ)] is sensitive to any deviation from
the null hypothesis, we can arbitrarily direct maximal power toward an implicit
alternative of smooth transition nonlinearity.
Because we only require h(xt, δ) to be an Ft−1-measurable, continuous,

bounded mapping into Rk, Lemma 1 holds for compound transition functions
(7)-(8) with ∆ = Γ, δ = γ. For example, in the 2-regime LoCoSTAR case vt =
xt = (1, yt−1 , ... , yt−p)0 and we define

h̃(xt, γ) ≡ xt

³Yp

j=1

£
1 + exp(γj,1[yt−j − cj ])

¤´−1
(17)

F̃ (xt, γ) ≡ exp
³Xp

j=1
γj,0 + γj,1yt−j

´
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where cj ≡ −γj,0/γj,1, γj,1 > 0, thus

h̃(xt, γ)F̃ (xt, γ) = xt
exp

³Pp
j=1 γj,0 + γj,1yt−j

´
Qp

j=1

£
1 + exp(γj,1[yt−j − cj ])

¤ (18)

= xtF (vt, γ),

which is identically the LoCoSTAR nonlinear term with logistic compound tran-
sition function F (vt, γ), cf. (6) and (7). In the ECoSTAR case, define h̃(vt, γ)
≡ xt exp(−

Pp
j=1 γj,2y

2
t−j) and F̃ (xt, γ) ≡ exp(−

Pp
j=1[γj,0 + γj,1yt−j ]), hence

h̃(xt, γ)F̃ (xt, γ) = xtF (vt, γ), the ECoSTAR nonlinear term, cf. (6) and (8).
The above re-parameterization h̃(xt, γ)F̃ (xt, γ) of xtF (vt, γ) for CoSTAR

models is unavoidably important with respect to Lemma 1, in particular for
the ECoSTAR model. By remark 1 of Lemma 1, the sets Si have Lebesgue
measure zero for any Ft−1-measurable, bounded, one-to-one mapping Ψ(xt) :
Rk → Rk in F (Ψ(xt), γ). For ECoSTAR models, however, we require Ψ(xt)
= (1, yt−1, ..., yt−p, y2t−1, ..., y2t−p)0 in F (Ψ(x), γ)3 , a mapping from Rk to Rk+p.
Such a mapping does not generate the same Borel field as (1, yt−1, ..., yt−p)0

due simply to the dimensionality problem. Likewise, if we simply use Ψ(x)
= (y2t−1, ..., y

2
t−p)

0 in F (Ψ(xt), γ) (i.e. γj,0 = γj,1 = 0), the mapping is not
one-to-one.
However, by Lemma 1 the sets Si have Lebesgue measure zero for any

bounded function h̃(xt, γ), non-zero with probability one. For each CoSTAR
re-parameterized weight h̃(xt, γ)F̃ (xt, γ), the function h̃(xt, γ) is bounded by
the assumptions xt and Γ are bounded, and each F̃ (xt, γ) involves a simple
one-to-one mapping with respect to xt = (1, yt−1, ..., yt−p)0: the LoCoSTAR
F̃ (xt, γ) effectively uses Ψ(x) = −x, and the ECoSTAR F̃ (xt, γ) effectively uses
Ψ(x) = x. Thus, by re-parameterizing the smooth transition weights xtF (vt, γ)
into h̃(xt, γ)F̃ (xt, γ), Lemma 1 applies for compound STAR weights provided
F̃ (xt, γ) incorporates a measurable, bounded one-one mapping with respect to
the argument xt. In the ECoSTAR model, therefore, in order for Lemma 1 to
hold we require γj,0 6= 0 and γj,1 6= 0 for at least one j = 1...p: if γj,0 = γj,1
= 0 for all j, then F̃ (xt, γ) = 1 is degenerate and the weight h̃(xt, γ)F̃ (xt, γ)
reduces to h̃(vt, γ) × 1 ≡ xt exp(−

Pp
j=1 γj,2y

2
t−j) = xtF (Ψ(xt), γ), where Ψ(xt)

= (y2t−1, ..., y
2
t−p)0 is not one-to-one. By requiring γj,0 6= 0 and γj,1 6= 0 for at

least one j, we effectively require at least one threshold cj to be non-zero.
For matters of hypothesis testing, a non-zero restriction cj 6= 0 in and of

itself is not important: we only seek evidence that the null specification is
false and whether some form of smooth transition alternative can be used to
improve the model fit. By Lemma 1 consistency of the smooth transition mo-
ment condition

√
nŝn(0, γ) under the alternative fails to hold for countably

many γ = (γ1, ..., γp)
0, and therefore for only countably many restricted γj =

(γ2j,1/4γj,2, γj,1, γj,2)
0 with γj,1 6= 0 and γj,2 > 0 (hence γj,0 6= 0 and cj 6= 0),

thus the implied restrictions will not diminish asymptotic power. In practice we

3See line 3 of equation (8).
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simply enforce γj,2 > 0, and confine feasible cj to be within some range of yt−j ,
excluding 0: see Section 4.

3.4 Consistent Test of Linearity Against STAR Alternatives
Recall the least squares score under the null with possibly compound transition
weights Ft(γ) = F (xt, γ):

ŝn(0, γ) =
1

n

Xn

t=1
(yt − φ̂

0
1xt)xtFt(γ). (19)

All assumptions are detailed in Appendix 1. Under Assumptions 1-4, the null
score converges in law to a multivariate normal random vector with covariance
matrix V (γ). Define the closed, bounded compact parameter subspaces Γ ⊆
Rm1×m2 , where the dimensions m1 and m2 depend on the compound case of
logistic (m1 = p, m2 = 2) or exponential (m1 = p, m2 = 3).

Theorem 2 Assume Assumptions 1 − 4 hold, and denote by Ft(γ) the logistic
or exponential function with the nuisance vector γ ∈ Γ defined accordingly.
Then, (i) under H0

√
nŝn(0, γ) =

1√
n

Xn

t=1
(yt − φ̂

0
1xt)xtFt(γ) =⇒ N(0, V (γ)), (20)

point-wise in γ ∈ Γ where
V (γ) = E

£
2
t

©
Ft(γ)Ik − b(γ)A−1

ª
xtx

0
t

©
Ft(γ)Ik −A−1b(γ)

ª¤
(21)

b(γ) = E [Ft(γ)xtx
0
t]

A = E [xtx
0
t] ,

and Ik denotes a k-dimensional identity matrix. Moreover, (ii) under H1 there
exists a subset S of Rm1×m2 with Lebesgue measure zero such that for each γ ∈
Γ/S

ŝn(0, γ) =
1

n

Xn

t=1
(yt − φ̂

0
1xt)xtFt(γ)→ η(γ) 6= 0 (22)

with probability one for some vector-functional η(γ), ηi(γ) 6= 0, i = 1...k.

For test purposes, by Assumptions 1-4 the covariance matrix can be consis-
tently estimated for each γ as

V̂ (γ) =
1

n

Xn

t=1
ˆ2t

h
Ft(γ)Ik − b̂(γ)Â−1

i
xtx

0
t

h
Ft(γ)Ik − Â−1b̂(γ)

i
(23)

t̂ = yt − φ̂
0
xt

b̂(γ) =
1

n

Xn

t=1
Ft(γ)xtx

0
t

Â =
1

n

Xn

t=1
xtx

0
t.

Notice that V̂ (γ) is robust against an unknown form of heteroscedasticity in the
innovations series t.
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There exist cases in which V (γ) is singular: in particular, for γ = 0, Ft(γ)
is a constant (and the STAR model reduces to a linear AR) thus ŝ(0, γ) = 0
by the least-squares first-order conditions implying V (γ) = 0, a zero-matrix. It
is interesting to point out that in Bierens (1990) the dilemma of a degenerate
score variance occurs when γ = 0 only provided a constant term is included in
xt: in our case, V (γ) = 0 for any xt when γ = 0.
For a consistent test statistic with non-degenerate limit distribution, we

must therefore analyze the set of all γ for which V (γ) is non-positive definite.
Consider the following assumption and result. Define the set

S∗ = {γ ∈ Γ : r0V (γ)r ≯ 0, r ∈ Rk, r 6= 0}. (24)

Assumption 5 For each t, E[ 2t ] > 0, P (E[ 2t |xt] > 0) = 1 and P (|xt| > 0) =
1.

For compound transition functions, recall γ = (γ01, ..., γ0p)0 where each γj is
2 × 1 for the logistic (3 × 1 for the exponential) model. In either case, the first
column of γ is identically (γ1,0, ..., γp,0)

0, the lag-specific intercepts.
For the following result, initially assume xt does not contain a constant term

such that γ = γ1 = (γ1,1, ..., γp,1)
0 for the logistic and γ = γ2 = (γ1,2, ..., γp,2)

0

for the exponential, each p-vectors4.

Lemma 3 Under Assumption 5 the set S∗ has Lebesgue measure zero. In par-
ticular, S∗ = {0}.
Remark 1: If xt (and therefore vt) contains a constant term, then γ =

0 is only one element of S∗: the "intercepts" need not be zero. Consider the
LoCoSTAR model, assume xt,1 = 1 by convention, denote by γ̃ the second
column of γ, and denote by S̃∗ and Γ̃ the relevant sets associated with γ̃:

S̃∗ = {γ̃ ∈ Γ̃ ⊆ Rm1 : r0V (γ)r ≯ 0, r ∈ Rk, r 6= 0}. (25)

Then S̃∗ = {0} follows from the line of proof of Lemma 3. In particular, we
deduce S∗ = {γ = (γ0, γ̃) = (w, 0): w ∈ Rm1 , 0 ∈ Rm1}. Thus, a score test based
on
√
nŝ(0, γ) will be non-degenerate for any γ-vectors such that the "slopes" γ̃

are non-zero. This can be easily enforced, as detailed in the subsequent sections:
test statistics may be derived by selecting γ̃ from, e.g., any positive, bounded,
subset of Rm1 , since all such subsets will result in a non-degenerate test statistic
with non-singular asymptotic covariance matrix V (γ).
In the ECoSTAR case, denote by γ̃ the third column of the matrix γ, hence

S∗ = {γ = ([γ0, γ1], γ̃) = (w, 0): w ∈ Rm1×2, 0 ∈ Rm1}. In this case, because we
enforce γj,0 = γj,1 = 0 when γ̃j ≡ γj,2 = 0, we therefore only need to restrict
γj,2 > 0 for at least one j = 1...p in order to ensure a non-degenerate test.
While non-degeneracy requires at least one γj,2 > 0, recall that consistency, cf.
Lemma 1, requires γj,0 6= 0, γj,1 6= 0 and γj,2 > 0 for at least one j.

4Recall in the ECoSTAR case the intercepts satisfy γj,0 = γj,1/4γ
2
j,2, γj,2 > 0, hence γj,0

= 0 if and only if γj,1 = 0. Whenever γj,2 = 0, then γj,0 = γj,1 = 0 by convention.
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Lemma 3 differs in important ways from results derived by Bierens (1990:
Lemma 2) and de Jong (1996: Lemma 2) for the variance of their associated
scalar-valued null scores. Under the auxiliary assumptions that E[ 2t |xt] > 0
with probability one, and some measurable function µ : Rk → Rk exists such
that (µ(xt), xt) has a nonsingular covariance matrix, they prove the set of γ
for which scalar variance functionals V (γ) = 0 is countable and therefore has
Lebesgue measure zero. Of course, µ(xt) = xt will work in general. For com-
putational purposes, however, because γ will have to be arbitrarily selected in
practice, Bierens (1990) and de Jong (1996) each simply assume V (γ) > 0. Us-
ing the vector weight xtFt(γ) rather than a scalar weight Ft(γ), however, under
the minimal Assumption 5 a non-degenerate test statistic is available for any
parameter vector γ̃ chosen from any bounded compact subset of Rm1 that does
not include the zero sub-vector γ̃ = 0.
Consider general weighted moment conditions of the form

√
nŝn(0, γ) =

√
n
1

n

Xn

t=1
(yt − φ̂

0
1xt)h(xt, δ)Ft(γ). (26)

Bierens (1990: p. 1449) incorrectly claims the asymptotic covariance matrix
V (γ) will have to be assumed to be non-singular because the subset Γ will have to
be chosen somewhat arbitrarily in practice, and γ ∈ Γ could be chosen such that
V (γ) is singular. Lemma 3, however, proves that for some weights, in particular
xtFt(γ), V (γ) is non-singular by construction for every γ̃ 6= 0. In this regard,
we may well argue that a moment condition test of functional form with weights
implied by smooth transition models dominates standard parametric tests with
classic (e.g. exponential or logistic) neural network interpretations. Indeed,
LoCoSTAR and ECoSTAR structures are simply generalized versions of artificial
neural networks, and as such conventional smooth transition nonlinearity is
"totally revealing" in the sense of Kuan and White (1994) and Stinchcombe
and White (1998). Moreover, a nondegenerate, consistent pointwise LM test is
available where smooth transition nonlinearity, rather than feedforward neurons
(exponential or logistic), are used to improve model fit.
Consequently, by Lemmas 1 and 3, and Theorem 2, and by standard asymp-

totic theory, the test statistic

Tn(γ) = nŝn(0, γ)
0V̂ (γ)−1ŝn(0, γ) (27)

converges in law under H0 to a random variable which is χ2(k) distributed
point-wise in γ, except for γ̃ = 0.
Next, define the sup-statistic,

gn = supγ∈Γ Tn(γ). (28)

The subsequent corollary follows immediately. Recall γ̃ denotes the last ("far
right") column of γ.

Corollary 4 Under Assumptions 1 − 5 and under H0,

Tn(γ) =⇒ χ2(k), (29)
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pointwise in γ except for γ̃ = 0. Moreover, under H1, there exist a subset S of
Rm1×m2 with Lebesgue measure zero such that for every γ ∈ Γ/S

Tn(γ)

n
→ η̃(γ) a.s. (30)

for some real-scalar η̃(γ) > 0. In particular, for arbitrarily large N > 0, and
for every γ ∈ Γ/S,

P
³
lim
n→∞Tn(γ) > N

´
= 1. (31)

Remark 1: It follows immediately that the sup-statistic gn has the consis-
tency property P (limn→∞ gn > N) = 1 for any deviation from the null. Under
H0, the limit distribution of gn depends, in general, on Γ and S, and there-
fore on the distribution of {yt, xt}. Hence, p-values will have to be derived by
simulation and/or bootstrap.

4. Simulation Study We now investigate the empirical size and power
properties of the sup-statistic gn and an associated randomized statistic Tn(γ)
under a null of linearity, and under LSTAR, ESTAR and bilinear alternatives.
Our simulations are based on the following models:

H0 : yt = φ01xt + t

HL
1 : yt = φ01xt + φ02xt (1 + exp(−γxt,2))−1 + t

HE
1 : yt = φ01xt + φ02xt exp(−γx2t,2) + t

HBL1
1 : yt = φ01xt + φ2yt−1 t−1 + t, |φ2| < 1

HBL2
1 : yt = φ01xt + yt−1 t−1 + t

HBL3
1 : yt = φ1yt−1 t−1 + t, |φ1| < 1

where t are iid standard normal, and xt = (1, yt−1, ..., yt−p)0 for some p ≥ 1.
Notice that the transition parameters γ are scalar-valued, only xt,2 = yt−1 is
employed in the transition functions and c = 0 for all simulations. Under H0

the true data generating process is linear; under HL
1 and H

E
1 the true process is

a 2-regime LSTAR and ESTAR, respectively; and under each HBLi
1 , the process

is bilinear.

4.1 Set-up We consider sample sizes n = 100, 500, and 1000: in each
case, we generate 3n observations, and retain the last n in order to reduce
dependence on starting values. For each simulated series, the order p is randomly
chosen from the set {1, ..., 10}, and the vectors φi, i = 1, 2, are randomly chosen
from the hypercube [−.95, .95]p+1. For all simulations we fix γ = 3. Because
we require the null model to be covariance stationary, only vectors φ1 with
characteristic polynomial roots outside the unit circle are considered.
We generate 1000 replications of each series above. For each series a linear

model is estimated and the resulting residuals are tested. In order to specify
the null model, we employ both a minimum AIC model selection criterion for
the order p, as well as the true order for benchmark comparisons.
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4.2 CoSTAR Tests In order to test for linearity, consider a general
CoSTAR model

yt = φ01xt + φ02xtF (vt, γ) + ut (32)

F (vt, γi) =
Yp

i=1
F (vt,i, γi),

Using a traditional STAR parameterization, for logistic processes define ci =
−γi,0/γi,1 and γ̃ ≡ γi,1 > 0; and for exponential processes ci = γi,1/2γi,2 and
γ̃ ≡ γi,2 > 0:

yt = φ01xt + φ02xtF (vt, γ̃, c) + ut (33)

F (vt, γ̃, c) =
Yp

i=1
F (vt,i, γ̃i, c,i).

Define the sets Γ = {.10, .11, ..., 10} and Ci = {y(i)[.15n], ..., y(i)[.85n]}/0 5 , where y(i)[j]
denotes the jth order statistic of the ith lagged series yt−i. We maximize the
test statistic Tn(γ̃, c) over γ̃i ∈ Γ and ci ∈ Ci, i = 1...p 6 .
Clearly, computation time will be burdensome for large p and n. We reduce

the complexity of the maximization problem by searching over a subset of γ̃i ∈
Γ. In particular, we maximize Tn(γ̃, c) under two separate sets of restrictions:
(i) for γ̃i ∈ Γ and γ̃j = 0, i = 1...p, j 6= i; and (ii) for γ̃1 = γ̃2 = ... = γ̃i ∈
Γ and γ̃j = 0, i = 1...p, j > i. In the former case, we compute a simple, non-
compound STAR test statistic based on using only one lag yt−i at a time as
the transition variable: this is precisely how the standard polynomial regression
method is performed. In the latter case, we compute CoSTAR test statistics
by incrementally adding threshold information. Denoting by γ̃∗ and c∗ the
nuisance vectors that maximize Tn(γ̃, c) over the grid search in either case, the
sup-statistics satisfy gn = Tn(γ̃

∗, c∗).
Once the statistic gn is generated, we employ Hansen’s (1996) paramet-

ric bootstrap method for approximating the asymptotic p-value. For Hansen’s
method we simulate J iid standard normal random n-vectors (ut,j)nt=1, j =
1...J , generate J scores ŝn,j(0, γ) = n−1

Pn
t=1 ˆtut,jxtFt(γ), J test statistics,

Tn,j(γ̃, c), and J statistic functionals gn,j = Tn,j(γ̃
∗
j , c
∗
j ). The p-value is the per-

cent frequency of the event gn,j > gn
7 . Under our Assumptions 1-4, Hansen’s

(1996) Assumptions 1-3 and Theorems 1-2 hold8, and therefore the approximate

5Thus, the set Ci contains a middle range of lag values yt−i, except for the value 0.
6The restriction that ci be fixed to order statistics between the 15th lower and upper

quantiles was suggested by Luukonnen et al (1988) and Teräsvirta (1994), a standard used
throughout the STAR literature.

7The bootstrap p-value p̂ satisfies

p̂ =
1

J

XJ

j=1
I (gn,j > gn)

where I(A) = 1 if the event A is true, and 0 otherwise.
8 Specifically, Hansen’s (1996) Assumption 1 defines the process {yt, xt} as strictly station-

ary and absolutely regular, which holds by our Assumption 1. Hansen’s Assumption 2 bounds
the nonlinear component, which holds for STAR models given the boundedness condition, 0
≤ Ft(γ) ≤ 1. Finally, the author’s Assumption 3 details asymptotic bounds of various sample
moments essentially identical to our Assumption 4.
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p-value converges in probability to the true p-value. For all simulations, we set
J = 500. These are the STAR and CoSTAR tests.
Randomized STAR Tests
As an experimental means to improve small sample power, we also perform a

point-wise randomized test of linearity against a STAR alternative with hybrid
polynomial-smooth transition terms. In particular, we include one "neuron"
φ2Ft,2, where φ2 is a scalar, one STAR term φ03xtFt3, and one randomized
polynomial term φ04xatFt,4:

yt = φ01xt + φ2Ft,2 + φ03xtFt,3 + φ04x
a
tFt,4 + ut, (34)

where the k-vector components ai are randomly selected from the integer set
{0, 1, 2, 3}. Each Ft,i denotes a non-compound transition function Ft(yt−di , γ̃i, ci).
The nuisance parameters ci, di and γ̃i are randomly selected from the respective
sets {y[.15n], y[.85n]}, {1, 2, 3} and Γ = [.1, 10]. The test is a standard LM test
of the zero restrictions φ2 = φ3 = φ4 = 0. This is the PSTAR test.
Polynomial Regression Tests, Neural Tests, etc.
For comparisons, we also perform the standard Bierens test both by imple-

menting Bierens (1990) criterion (BIER) and by using Hansen’s (1996) method
for evaluating the asymptotic distribution of the Bierens sup-statistic (BIER_han).
In this manner, we control for the possibility that differences between the STAR
sup-test and the Bierens test is merely due to the use of Hansen’s (1996) method,
rather than due to use of the vector weight xtFt. The model implied by the
Bierens test is a neural network model with one feedforward layer,

yt = φ01xt + φ2F (xt, γ) + ut, (35)

where γ denotes a k-vector, and F (xt, γ) denotes the logistic (1 + exp(γ0xt))−1

or exponential exp(γ0xt). The test is an LM test of the hypothesis φ2 = 0, and
test statistics are maximized over γ ∈ Γk.
Similarly, we perform the neural test of neglected nonlinearity, cf. Lee et

al (1996), which is equivalent to a randomized Bierens test over the nuisance
parameter space. For each test we include two scalar neurons, hence the implied
ANN model is

yt = φ01xt + φ2F (xt, γ1) + φ3F (xt, γ2) + ut, (36)

where each γi denotes a k-vector, and F (xt, γi) denotes the logistic (1 + exp(γ
0
ixt))

−1

or exponential exp(γ0ixt). The vectors γi, i = 1, 2, are randomly selected from
the set Γk.
We also employ the polynomial regression method of Luukonen et al (1988)

and Teräsvirta (1994), the RESET test, and the McLeod-Li test. For the STAR
polynomial test, we estimate models of the form

yt = β00xt +
XL

i=1
β0ix̃ty

i
t−d + ut, (37)

where x̃t = (yt−1, ..., yt−p)0. Under a null of linearity against an LSTAR al-
ternative, L = 3 and (37) implies βi = 0, i = 1..3. Under a null of linearity
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against an ESTAR alternative, L = 4 and (37) implies βi = 0, i = 1..4. In order
to decide between LSTAR and ESTAR alternatives based on the polynomial
regression, Teräsvirta (1994) suggests a test of βi = 0, i = 1..4 first in order to
substantiate concern for STAR nonlinearity at all, then a sequence of F -tests
on parameter sub-sets from (37). Because we are interested in whether the test
procedure can find any deviation from the null of linearity, we do not pursue
the test sequence approach and simply report null rejection frequencies based
on tests of (37) with L = 3 or 4. Rejection in either case is consistent with
evidence in favor of polynomial nonlinearity and STAR nonlinearity. The test
is performed for d ∈ {1, ..., p}, where p is either assumed known or selected by
minimizing the AIC of linear models, and the statistic with the smallest p-value
is selected. These are the POLY tests.
For the McLeod-Li test, we perform a standard portmanteau test on the

squared null residuals for lags 1...5. For the RESET test, we follow the procedure
detailed in Thursby and Schmidt (1977) by estimating the auxiliary regression
based on the null residuals ût,

ût = β00xt +
XL

i=2

Xk

j=2
βi,jx

i
t,j + wt, (38)

where we set L = 3. A standard LM test for the linearity hypothesis H0 : βi,j
= 0 is performed.
For all LM tests employed in this study, covariance estimators robust to

unknown forms of conditional heteroscedasticity are used (e.g. (23) for STAR
tests).

4.3 Results Results for H0 are contained in Tables 1-2, and Tables
3-4 contain empirical powers for the various alternatives. See Appendix 2.

Linear AR

For linear processes, the STAR, CoSTAR and PSTAR tests compare well
with the popularly used neural and polynomial regression tests. The polyno-
mial test tends to under-reject the null for any process (i.e. low empirical size
and power). The STAR and CoSTAR sup-tests over rejects the null for small
n and substantially under-rejects the null for large n. This suggests the boot-
strap p-value method may not capture the exact distributional dynamics of the
proposed test statistics, although the complex nature of distortion favors the
test’s performance, in particular when the test is studied under the various
alternatives, below.
We control for the possibility that it is merely Hansen’s (1996) method for

evaluating the asymptotic p-value that differentiates the simple STAR test from
the Bierens test. In general, however, even when Hansen’s p-value is used with
the Bieren’s sup-statistic, the null hypothesis is still over-rejected for all sample
sizes when the exponential is used. Thus, it appears the vector-weights them-
selves augment the test statistic’s performance, and not merely the method of
analyzing the p-value.
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LSTAR

Under the alternative of LSTAR, the STAR and CoSTAR sup-tests dominate
all tests, particularly for small samples n ≤ 500. The randomized PSTAR test
performs well, particularly for large n, however in the bench-mark tests where
the true AR-order is known the neural test generates larger empirical powers
based on either logistic or exponential tests. In the realistic case where the
AR-order is selected by minimizing the AIC, however, the PSTAR tests out-
perform the neural tests with noticeable improvements in the mid-sample size
range. In all cases, the polynomial regression test based on a Taylor expansion of
the STAR model performs reasonably well, but never rejects more than 60% of
the false null hypotheses, and is dominated (often substantially) by the neural,
STAR and PSTAR tests.

ESTAR

Under the alternative of ESTAR, the STAR, CoSTAR, PSTAR and neural
tests fared equally well. The STAR, CoSTAR and PSTAR tests dominate the
polynomial regression tests.
The randomized PSTAR test performed well for large n, generating a re-

jection frequency in par with the two STAR sup-tests: this suggests that the
randomized, non-compound polynomial term xatFt(γ) included in the PSTAR
test can absorb the nonlinear structure contained in the null residuals as well
as the compound or non-compound terms xtFt(γ) with an optimally selected
nuisance parameter γ. While interesting in its own right, in practical terms
this implies that the computational burden of generating a sup-statistic may be
reasonably by-passed in favor of a randomized test.
Comparatively, however, the neural test always performs better than the

three STAR tests in the bench-mark tests of known AR order, although the
margin of improvement diminishes to about 2% for the STAR (under 1% for
the CoSTAR) for large samples. When the AR order is selected by minimizing
the AIC, however, the STAR, CoSTAR and PSTAR tests out-perform the neural
tests for large n, and the PSTAR test can detect nonlinearity more often than
the STAR and CoSTAR sup-tests for n = 500 or 1000.
The Bierens tests performed well, in particular when the exponential is used.

However, given the size distortions encountered above, evidently these tests are
dominated by the extremely low test sizes and the ample empirical power of the
STAR, CoSTAR and PSTAR tests. Indeed, the Logistic STAR and CoSTAR
sup-tests substantially dominate the Bierens test for small samples.

Bilinear

For all remaining hypotheses, we focus only on tests of residuals from mini-
mum AIC models. The pecking order essentially continues for bilinear processes.
The polynomial regression performs well for large n in 2 out of 3 bilinear models,
although the randomized PSTAR test is better. For for n = 500 or 1000, the
PSTAR test out-performs the STAR and COSTAR sup-tests, and out-performs
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the neural test for large n. The improvement in rejection accuracy is particularly
noticeable for the standard bilinear process under HBL3

1 . In this case, the ran-
domized PSTAR test provides a large improvement over the STAR, CoSTAR,
neural and polynomial tests, detecting nonlinearity in up to 11% more simulated
series than the other tests.
Overall, for small samples the neural test seems to provide the best proba-

bility of detecting nonlinearity, however for medium-to-large samples the point-
wise PSTAR and logistic Bierens tests typically dominate all other tests (recall,
the exponential Bierens test over-rejects the null). Indeed, under HBL2

1 the
PSTAR test dominates for large n, with rejection frequencies near 60% for n =
1000 , while the polynomial test is only able to detect non-linearity in under 2%
of all simulated series, a dismal performance.
Finally, the McLeod-Li test, created essentially for bilinear nonlinearity de-

tection, works particularly well for each bilinear model simulated here, how-
erver is sub-optimal for STAR processes. Moreover, it is interesting to point
out that the RESET test performed better than the polynomial regression test
for LSTAR processes, and for the stationary bilineary processes.
In summary, the STAR and CoSTAR sup-tests and PSTAR randomized test

dominate the polynomial regression test for all STAR and bilinear processes
considered, and in general dominates the Bierens test under the null and under
STAR and non-stationary bilinear alternatives (HBL2

1 ). The logistic Bierens test
works particularly well for conventional bilinear processes, HBL1

1 and HBL3
1 .

Hansen’s (1996) bootstrap technique does not appear to be the fundamental
reason why the simple STAR test performs so well relative to the Bierens test:
evidence suggests the implied CoSTAR or STAR moment condition weights help
to smooth out null hypothesis rejection frequencies, and provide a significant
power lift under the studied alternatives. Moreover, application of a CoSTAR
test with compound transition function does not significantly improve the per-
formance of the class of STAR tests developed here. Based on simulated simple
STAR and bilinear processes, evidence suggests we can safely implement a ran-
domized STAR test with simple transition functions, or a simple STAR sup-test,
without affecting test performance.

5. Empirical Applications In this penultimate section, we briefly ex-
emplify the information content of the STAR, CoSTAR and PSTAR tests when
applied to macroeconomic processes considered in Stock and Watson (1989),
Friedman and Kuttner (1993) and Rothman et al (2001). We consider the log-
arithm of nominal, seasonally adjusted M1 (m), the logarithm of unadjusted
output measured by the industrial production index (y), the logarithm of the
producer price index (p), the commercial paper rate (rp), the 90-day Treasury
bill rate (rb), and the rate spread rb − rp. All data were taken from the Saint
Louis Federal Reserve data base, are monthly for the period Jan. 1959 - Aug.
20039, and seasonally adjusted at the source when applicable.
All variables, except for the rate spread, are differenced in order to control

9The sample size is 536 months, before lag and differencing adjustments.
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for the likely presence of one positive unit root in each series, as evidenced by
standard augmented Dickey-Fuller tests. Evidence suggests the Treasury bill
and commercial paper rates are cointegrated of order one such that the spread
is I(0).We also consider annual growth rates of all series except the rate spread,
yt − yt−12, in order to control for noisiness frequently encountered in monthly
macro-time series. In any case, annual growth rates are a fundamental measure
of long-run economic growth and stability, and therefore demand investigation
for properties of regime nonlinearities.
Results are contained in Tables 5 and 6. For monthly growth series, the

STAR and CoSTAR sup-tests and randomized PSTAR test suggest highly sig-
nificant (below the 1%-level) evidence exists for nonlinearity in money growth,
inflation, and fluctuations in the commercial paper rate and the rate spread.
The strongest evidence points to LSTAR nonlinearity. The STAR, CoSTAR and
PSTAR test were demonstrated to be particularly useful in detecting LSTAR
nonlinearity, specifically for the STAR and CoSTAR sup-tests for a sample size
of 500 (roughly the size we have in this study), thus the empirical evidence here
seems noteworthy. Based on Lemma 1, even if the above macro-processes are
not driven by a STAR data generating mechanism an LSTAR model appears to
provide a better approximation to the true structure than a linear AR model.
By comparison, the polynomial regression tests provide weaker evidence of

STAR nonlinearity, and do not detect a smooth transition structure in the rate
spread series. The exponential tests suggests nonlinearity in money, and the
logistic test suggests nonlinearity in the price series. Moreover, at the 5% level
the neural test only finds nonlinearity in the commercial paper rate (the logistic
test) and in the rate spread (the exponential test). The RESET test fails to
detect nonlinearity in any series.
For the annual growth series, however, the tests portray a somewhat dif-

ferent nature of linearity. The exponential and logistic STAR tests strongly
suggest output and the commercial paper rate are nonlinear, respectively, and
specifically fail to reject tests of linearity in money and inflation. The neural
tests sharply split for the rate spread, favoring the exponential. The PSTAR
test never detects STAR nonlinearity: because both tests are consistent against
any deviation from the null, it difficult to explain the divergence between the
STAR and PSTAR tests. The standard polynomial tests never reject the null of
nonlinearity at any conventional level of significance, except for the exponential
test on the Treasury bill rate.

6. Concluding Remarks In order to improve on the test currently es-
poused in the STAR literature, we develop a new STAR model that accounts for
multiple transition variables. In particular, we extend the transition function to
include vector processes and multivariate, multiplicative transition functions,
and we experiment with hybrid polynomial-smooth transition weights. Aug-
menting consistent moment condition test weights to optimize power against
STAR alternatives has the advantage of generating a test statistic which is
never degenerate under the alternative, a property that the Bierens test does
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not have.
Each STAR and randomized PSTAR statistic performs well under the null of

linearity, and under various STAR and non-STAR alternatives. Our simulations
suggest that it is not merely Hansen’s (1996) p-value method that enhances test
performance. Of particular note, Hansen’s (1996) method neither uniformly
nor sufficiently improves the performance of Bierens’ (1990) original test sup-
statistic in either the exponential or logistic case under the null, and a random-
ized non-compound PSTAR tests with polynomial terms performs particularly
well under all hypotheses, and by construction is much easier to derive.
In our small sample study, it is particularly revealing that the much dis-

cussed Taylor expansion method and subsequent polynomial regression test is
demonstrably sub-optimal relative to the tests developed here. We allow for
the linear component of each model to be randomly constructed, including AR
orders and coefficient magnitudes. Previous simulations, by comparison, are
rather limited by virtue of fixing the null and alternative structures. In our
"double-blind" environment in which we know neither the AR order nor the
coefficient magnitudes in advance, the polynomial tests perform well against
STAR alternatives, but cannot detect true STAR nonlinearity as frequently as
the tests developed here, where typically the new tests provide a substantial
margin of improvement. Moreover, and not surprisingly, the polynomial tests
proved to be particularly bad at detecting some forms of bilinearity, and the
RESET test is more adept at detecting logistic smooth transition nonlinearity
than the traditional test method.
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Appendix 1: Assumptions
Assumption 1 The data-generating process {yt, xt} exists on L2 (Ω, P,Ft)where

Ft denotes a strictly increasing σ-algebra induced by (yt−i, xt−i), i =
0, 1, ..., such that Ft−1 ⊂ Ft. The process {yt, xt} is strictly stationary,
ergodic, governed by non-degenerate joint distribution function with non-
degenerate marginal distributions, and for some r > 1, E|yt|2r < ∞. The
regressors xt are k-vectors, measurable with respect to Ft−1. The innova-
tions t form a (0, σ2)-martingale difference sequence with respect to Ft−1
under H0. Under H1, t is a (0, σ2)-white noise process for each t. The
function h(xt, δ) is any bounded, continuous mapping from Rk × ∆ to Rk,
measurable with respect to Ft−1, such that P (infδ∈∆ |h(xt, δ)| > 0) = 1,
and supδ∈∆ |h(xt, δ| < ∞ with probability one.

Assumption 2 The conditioning vector xt = (1, yt−1, ..., yt−p)0 is bounded in
probability element-wise: for each i = 1...k, there exists some 0 < M <
∞ such that P (|xt,i| < M) = 1.

Assumption 3 Let Φ denote a compact, convex subset of Rk. There exists a
unique element φ0 = arg infφ∈ΦE(yt − φ0xt)2 where φ0 is in the interior
of Φ.

Assumption 4 The following uniform moment bounds hold for each t:

sup
γ∈Γ

E
¯̄
2
tFt(γ)

2xtx
0
t

¯̄
< ∞; sup

γ∈Γ
E| 2tFt(γ)xtx01| <∞

sup
γ∈Γ

E|Ft(γ)xtx01| < ∞; E|xtx0t| <∞

where the bounds are understood to be element-wise. Define the proba-
bility limits

b̂(γ) =
1

n

Xn

t=1
Ft(γ)xtx

0
t → b(γ); Â =

1

n

Xn

t=1
xtx

0
t → A.

where Â, for all n > 1, and A are nonsingular. Observe that each matrix
is symmetric, k × k.

Assumption 1 is standard and essentially restricts dependence, and defines
the skeleton φ01x1t as the best L2-predictor by the martingale difference property
under H0. Assumption 2 allows for a non-degenerate test statistic by bounding
the transition function through xt. Assumptions 3 and 4 guarantee uniqueness
of the underlying parameters, and the existence of the asymptotic covariance
matrix for an LM statistic.
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Appendix 2: Tables

Table 1
Null, True Order, 5%-levela

n 100 500 1000
CoSTAR_Lc .0780b .0240 .0100
CoSTAR_E .0790 .0240 .0110
STAR_L .0770 .0120 .0090
STAR_E .0770 .0160 .0080
PSTAR_L .0240 .0350 .0410
PSTAR_E .0290 .0360 .0420
NEURAL_L .0440 .0380 .0560
NEURAL_E .0500 .0370 .0430
BIER_han_L .0280 .0220 .0320
BIER_han_E .0690 .0580 .0590
BIER_L .0670 .0610 .0630
BIER_E .1180 .1090 .1100
POLY_L .0040 .0000 .0010
POLY_E .0040 .0000 .0010
RESET .0380 .0480 .0410
ML-1d .0450 .0540 .0500
ML-2 .0390 .0490 .0540
ML-3 .0510 .0530 .0480

Notes: a. All tests in this study are performed at the 5%-level;
b. Values denote rejection frequencies at the 5%-level;
c. "L" denotes a test against an LSTAR alternative;
"E" denotes a test against an ESTAR alternative;

d. ML-h denotes the ML-test with h-lags.
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Table 2
Null, p∗ = argmin(AIC a)

n 100 500 1000
CoSTAR_L .0680 .0260 .0150
CoSTAR_E .0750 .0320 .0220
STAR_L .0650 .0170 .0100
STAR_E .0680 .0150 .0090
PSTAR_L .0250 .0340 .0390
PSTAR_E .0290 .0460 .0460
NEURAL_L .0320 .0500 .0420
NEURAL_E .0370 .0630 .0350
BIER_han_L .0190 .0340 .0290
BIER_han_E .0730 .0620 .0660
BIER_L .0620 .0720 .0600
BIER_E .1090 .1190 .1200
POLY_L .0010 .0030 .0020
POLY_E .0010 .0030 .0020
RESET .0450 .0380 .0490
ML-1 .0520 .0700 .0860
ML-2 .0570 .0880 .0910
ML-3 .0640 .1050 .0950
p-differentialb .3890 .2230 .1720

Notes: a. AR-orders p∗ are selected my minimizing the AIC;
b. Sample average of order differential p - p∗.
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Table 3.1
H1, True Order , n = 100

HL
1 HE

1 HBL1
1 HBL2

1 HBL3
1

CoSTAR_L .5120 .2020 .1030 .1380 .1350
CoSTAR_E .5240 .2010 .1510 .1390 .1420
STAR_L .5070 .1110 .1030 .1320 .1290
STAR_E .5200 .1450 .1400 .1360 .1390
PSTAR_L .2320 .0620 .0560 .0560 .0520
PSTAR_E .2040 .0580 .0650 .0600 .0590
NEURAL_L .3880 .2270 .2230 .2200 .1980
NEURAL_E .3610 .2100 .2360 .2250 .2270
BIER_han_L .3890 .0820 .1070 .0240 .1220
BIER_han_E .4910 .3540 .1610 .2010 .1730
BIER_L .4480 .2380 .1900 .1080 .2260
BIER_E .5000 .4170 .2380 .2040 .2510
POLY_L .1030 .0040 .0060 .0190 .0010
POLY_E .1030 .0040 .0060 .0190 .0010
RESET .2850 .0460 .0560 .0110 .1360
ML-1 .1490 .0350 .1640 .7750 .1180
ML-2 .1700 .0520 .1550 .8140 .1100
ML-3 .1730 .0700 .1460 .8250 .1110

Table 3.2
H1, True Order , n = 500

HL
1 HE

1 HBL1
1 HBL2

1 HBL3
1

CoSTAR_L .7750 .3710 .3280 .3690 .3810
CoSTAR_E .7780 .4510 .4160 .4700 .4390
STAR_L .7740 .3590 .3280 .3450 .3770
STAR_E .7750 .4420 .4150 .4200 .4350
PSTAR_L .6750 .4670 .4360 .4300 .4420
PSTAR_E .6370 .4870 .4400 .4380 .4540
NEURAL_L .7420 .5190 .4910 .4680 .5010
NEURAL_E .7060 .5300 .4760 .4600 .5000
BIER_han_L .6840 .5660 .4900 .0250 .6040
BIER_han_E .7640 .6070 .5900 .2060 .6310
BIER_L .6630 .4340 .5970 .0690 .6770
BIER_E .7140 .6460 .6290 .1960 .6860
POLY_L .5050 .2160 .2260 .0200 .1960
POLY_E .5050 .2160 .2260 .0200 .1960
RESET .6610 .2230 .4930 .0080 .6290
ML-1 .3550 .0840 .4710 .9680 .3490
ML-2 .3960 .1140 .4420 .9830 .3250
ML-3 .4120 .1460 .4220 .9930 .2850
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Table 3.3
H1, True Order , n = 1000

HL
1 HE

1 HBL1
1 HBL2

1 HBL3
1

CoSTAR_L .8600 .5280 .5170 .5520 .5300
CoSTAR_E .8620 .5810 .5790 .5860 .6100
STAR_L .8510 .5270 .5130 .5210 .5270
STAR_E .8610 .5750 .5740 .5790 .6000
PSTAR_L .7570 .5750 .5980 .5990 .6010
PSTAR_E .7310 .5750 .5880 .5990 .6110
NEURAL_L .8030 .6088 .5940 .6040 .6050
NEURAL_E .7540 .5962 .5940 .5900 .5960
BIER_han_L .7764 .3980 .6540 .0400 .7390
BIER_han_E .8310 .7140 .7050 .2530 .7400
BIER_L .7100 .5420 .7190 .0500 .7760
BIER_E .7590 .7590 .7470 .2380 .7790
POLY_L .6750 .4600 .4890 .0220 .4090
POLY_E .6750 .4600 .4890 .0220 .4090
RESET .7410 .3400 .6680 .0060 .7670
ML-1 .4290 .1050 .5830 .9910 .5070
ML-2 .4880 .1420 .5690 .9970 .4700
ML-3 .5090 .1910 .5590 .9970 .4450

Table 4.1
H1, p∗ = argmin(AIC ), n = 100

HL
1 HE

1 HBL1
1 HBL2

1 HBL3
1

CoSTAR_L .5690 .1230 .0950 .1480 .1010
CoSTAR_E .5630 .1620 .1250 .1820 .1500
STAR_L .5670 .1020 .0950 .1170 .0980
STAR_E .5600 .1480 .1240 .1560 .1390
PSTAR_L .3700 .0710 .0470 .0640 .0660
PSTAR_E .3370 .0710 .0360 .0580 .0640
NEURAL_L .3860 .2150 .1980 .2140 .0960
NEURAL_E .3440 .2050 .1940 .2150 .0910
BIER_han_L .3820 .0710 .0850 .0280 .1190
BIER_han_E .4740 .3340 .1350 .2020 .1970
BIER_L .4060 .1980 .1840 .0990 .2360
BIER_E .4580 .3670 .2060 .2170 .2710
POLY_L .0910 .0070 .0190 .0190 .0010
POLY_E .0910 .0070 .0190 .0190 .0010
RESET .3850 .0410 .1220 .0130 .1330
ML-1 .1270 .0490 .5230 .7730 .1140
ML-2 .1490 .0710 .5390 .8210 .1040
ML-3 .1780 .0850 .5530 .8430 .0940
p-differential .3120 .3340 .3600 .3530 -.1430
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Table 4.2
H1, p∗ = argmin(AIC ), n = 500

HL
1 HE

1 HBL1
1 HBL2

1 HBL3
1

CoSTAR_L .7730 .3210 .3400 .3420 .3100
CoSTAR_E .8100 .3760 .4140 .4230 .4010
STAR_L .7700 .3150 .3400 .3110 .3030
STAR_E .8020 .3660 .4100 .3840 .3970
PSTAR_L .7480 .4450 .4410 .4290 .4320
PSTAR_E .7110 .4550 .4590 .4420 .4400
NEURAL_L .7260 .5090 .4940 .4760 .3630
NEURAL_E .6770 .4920 .5070 .4860 .3750
BIER_han_L .6990 .2530 .4440 .0320 .6080
BIER_han_E .7570 .5950 .5220 .2230 .6400
BIER_L .6460 .4370 .5550 .0630 .6770
BIER_E .7040 .6540 .5870 .2150 .6870
POLY_L .4350 .2290 .2290 .0170 .2070
POLY_E .4350 .2290 .2290 .0170 .2070
RESET .6320 .2030 .4920 .0040 .6360
ML-1 .3250 .0890 .4620 .9720 .3460
ML-2 .4010 .1440 .4480 .9840 .3230
ML-3 .4310 .1690 .4520 .9930 .3080
p-differential .0030 .0770 .1590 -.0140 -.1350

Table 4.3
H1, p∗ = argmin(AIC ), n = 1000

HL
1 HE

1 HBL1
1 HBL2

1 HBL3
1

CoSTAR_L .7930 .4720 .4900 .5480 .4810
CoSTAR_E .8100 .5390 .5690 .5710 .5690
STAR_L .7910 .4660 .4890 .5050 .4800
STAR_E .8070 .5300 .5680 .5650 .5670
PSTAR_L .7800 .5840 .5960 .5900 .5840
PSTAR_E .7440 .6220 .6080 .5990 .5940
NEURAL_L .7680 .5720 .5760 .5840 .4960
NEURAL_E .7090 .5700 .5660 .5660 .4780
BIER_han_L .7430 .4040 .6250 .0420 .7350
BIER_han_E .7970 .7170 .6800 .2160 .7410
BIER_L .7160 .5560 .7120 .0690 .7800
BIER_E .7700 .7350 .7260 .2200 .7830
POLY_L .5840 .4860 .5240 .0140 .4000
POLY_E .5840 .4860 .5240 .0140 .4000
RESET .6990 .3680 .6660 .0020 .7600
ML-1 .3820 .1190 .5850 .9910 .4640
ML-2 .4490 .1850 .5740 .9980 .4340
ML-3 .5160 .2280 .5670 .9980 .4240
p-differential -.0280 -.0030 .0950 -.2000 -.1220
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Table 5
Monthly Growth Series

∆m ∆y ∆p ∆rb ∆rp rb−rp
CoSTAR_L .0000a,b 1.000c .0000 .4200 .0150 .0000
CoSTAR_E .0000 1.000 .0000 .8700 .0080 .0000
STAR_L .0000 1.000 .0000 .6700 .0200 .0000
STAR_E .0000 1.000 .0000 .9500 .0100 .0000
PSTAR_L .0082 .4481 .0784 .3745 .0139 .0295
PSTAR_E .0676 .3890 .4117 .5400 .0500 .1688
NEURAL_L .0921 .5621 .4432 .3444 .0076 .0327
NEURAL_E .2154 .2715 .1108 .5181 .0695 .5619
BIER_han_L .3800 .2800 .4400 .1400 .0500 .1700
BIER_han_E .4800 .1900 .3900 .1100 .6600 .1000
BIER_L .0106 .0439 .0362 .1115 .0027 .0137
BIER_E .0012 .0136 .0227 .0225 .7061 .0440
POLY_L .0793 .4401 .0525 .1143 .0144 .5239
POLY_E .0019 .3310 .1059 .2018 .0090 .1277
RESET .3933 .3103 .2875 .2953 .9339 .2066

Notes: a. Values denote p-values;
b. p-values less than .00005 are imputed as .0000;
c. p-values greater than .99995 are imputed as 1.000.

Table 6
Annual Growth Series

∆m ∆y ∆p ∆rb ∆rp
CoSTAR_L .8600 .8900 .9100 .5600 .0120
CoSTAR_E .9700 .0000 .8700 .0900 .1080
STAR_L .9400 1.000 1.000 .8700 .0300
STAR_E 1.000 .0000 1.000 .1200 .1100
PSTAR_L .7992 .6492 .7700 .1834 .2703
PSTAR_E .7565 .9162 .8304 .1841 .3567
NEURAL_L .8663 .7439 .6095 .0675 .2532
NEURAL_E .8839 .9437 .6396 .2198 .4081
BIER_han_L .5600 .1900 .3300 .2600 .3500
BIER_han_E .3200 .5400 .7500 .4700 .3300
BIER_L .3583 .0997 .2054 .0556 .0434
BIER_E .3095 .2209 .1524 .0489 .1886
POLY_L .9040 .1989 .3213 .1066 .1218
POLY_E .8301 .3573 .4343 .0556 .1841
RESET .7921 .9912 .6648 .6120 .4044
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Appendix 3: Formal Proofs
Proof of Lemma 1. The proof follows almost directly from Lemma 1 of

Bierens (1990), Stinchcombe and White (1994), or Theorem 1 of Bierens and
Ploberger (1997). We provide details for completeness. Lemma 1 of Bierens
(1990) states if P (E [ |x] = 0) < 1, then the set

S = {γ ∈ Γ : E[ F (x, γ)] = 0}, i = 1...k (39)

has Lebesgue measure zero where F (x, γ) denotes the exponential function.
Stinchcombe and White (1998) prove the result holds for essentially any F-
measurable analytic function F (x, γ), including the logistic and sin + cos
By Assumptions 2 and 3, x and h(x, δ) are F-measurable, P (infδ∈∆ |h(x, δ)|

> 0) = 1 and supδ∈∆ |h(x, δ)| < ∞ with probability one. Thus, if

P (E [ |x] = 0) = 1 (40)

such that the null is true, then

P (supδ∈∆E [h(x, δ) |x] = 0) = P (supδ∈∆ h(x, δ)E [ |x] = 0) (41)

= P (E [ |x] = 0) = 1.

Under the alternative, we likewise deduce

P (supδ∈∆E [h(x, δ) |x] = 0) = P (supδ∈∆ h(x, δ)E [ |x] = 0) (42)

= P (E [ |x] = 0) < 1.

Both (41) and (42) imply we may simply redefine as supδ∈∆ |h(x, δ)| in (39),
and apply Lemma 1 of Bierens (1990), or the generalized result of Stinchcombe
and White (1998), to the scalar components supδ∈∆ |hi(x, δ)| . We deduce each
set Si has Lebesgue measure zero and is nowhere dense in Rk.
Proof of Theorem 2. Consider (i). Let x be the k × n design matrix

(x1, ..., xn), and let y = (y1, ..., yn) and = ( 1, ..., n) be 1 × n row vectors. By
standard least squares algebra

φ̂1 = (xx0)−1xy0 (43)

φ̂
0
1 = φ01 + x0(xx0)−1
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Thus, the score evaluated under the null hypothesis of linearity reduces to

ŝ(0, γ) =
1

n

Xn

t=1
(yt − φ̂

0
1xt)xtFt (44)

=
1

n

Xn

t=1
xtFt( t − x0(xx0)−1xt)

=
1

n

Xn

t=1
xtFt

µ
t − 1
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s=1
sx
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0)−1xt
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´
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1

n

Xn

t=1
ĝt(γ)xt t

say, where

ĝt(γ) = Ft(γ)Ik − b̂(γ)Â−1 (45)

b̂(γ) =
1

n

Xn

t=1
xtx

0
tFt(γ)

Â−1 ≡ 1

n

Xn

t=1
xtx

0
t,

and where Ik denotes the k-dimensional identity matrix. By Assumption 1, t

is a martingale difference sequence under the null, hence

E ( t|Ft−1) = 0. (46)

Because xt and Ft are Ft−1-measurable, it follows that ĝt(γ)xt is Ft−1-measurable,
hence ĝt(γ)xt t forms a martingale difference sequence:

E ([ĝt(γ)xt]i t|Ft−1) = 0, i = 1...k. (47)

Therefore, by Assumptions 1-4, the Slutsky Theorems and the martingale cen-
tral limit theorem, cf. McLeish (1974), the sequence (1/

√
n)
Pn

t=1 ĝt(γ)xt t

converges in law jointly to a Gaussian random vector. In particular,

√
nŝ(0, γ) =

1√
n

Xn

t=1
ĝt(γ)xt t =⇒ N(0, V (γ)), (48)

pointwise in Γ for some covariance matrix, V (γ).
The covariance matrix V (γ) will be the point-wise probability limit of

nŝ(0, γ)ŝ(0, γ)0 =
·
1√
n

Xn

t=1
ĝt(γ)xt t

¸ ·
1√
n

Xn

t=1
ĝt(γ)xt t

¸0
, (49)
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provided the limit exists. In particular, by the martingale difference property
of the innovations t (and ĝt(γ)xt t) under H0, we deduce·

1√
n

Xn

t=1
ĝt(γ)xt t

¸ ·
1√
n

Xn

t=1
ĝt(γ)xt t

¸0
(50)

=
1

n

Xn

t=1

2
t ĝt(γ)xtx

0
tĝt(γ)

0 + op(1)

=
1

n

Xn

t=1

2
t

³
FtIk − b̂(γ)Â−1

´
xtx

0
t

³
FtIk − b̂(γ)Â−1

´0
+ op(1),

where the term op(1) contains the cross-products s t, s 6= t, and follows from
ergodicity and the martingale-difference property of t, cf. Assumption 1. By
stationarity and Assumption 4, we obtain the probability limits

b̂(γ)→ b(γ), Â→ A, (51)

pointwise in γ, and therefore by standard properties of functional probability
limits we deduce by the weak law of large numbers and Assumptions 1-4·

1√
n

Xn

t=1
ĝt(γ)xt t

¸ ·
1√
n

Xn

t=1
ĝt(γ)xt t

¸0
(52)

=
1

n

Xn

t=1

2
t

³
FtIk − b̂(γ)Â−1

´
xtx

0
t

³
FtIk − b̂(γ)Â−1

´0
+ op(1)

→ E
£
2
t

©
FtIk − b(γ)A−1

ª
xtx

0
t

©
FtIk −A−1b(γ)

ª¤
.

Finally, consider (ii). Under H1 the innovations t form a white noise
process, hence φ̂1 is a consistent estimator of the k-vector φ1. Thus, (22) follows
from Assumptions 1-4, Lemma 1 and the law of large numbers. In particular,

1

n

Xn

t=1
(yt − φ̂

0
1xt)xi,tFt(γ)→ E ( txi,tFt(γ)) 6= 0 (53)

for each i = 1...k with probability one. Therefore, η(γ) = E ( txtFt) 6= 0, a.s.

Proof of Lemma 3. Because xt does not contain a constant term, xt is a
p-vector. Consider any γ ∈ S∗, and notice that

V (γ) = E
£
2
t

©
Ft(γ)Ik − b(γ)A−1

ª
xtx

0
t

©
Ft(γ)Ik −A−1b(γ)

ª¤
(54)

= E
£
zt(γ)zt(γ)

0 2
t

¤
where we define the p-vector zt(γ) as

zt(γ) =
©
Ft(γ)Ik − b(γ)A−1

ª
xt. (55)

For simplicity, we will drop the argument γ from zt(γ). Recall that Ft(γ) ≡
Ft(xt, γ) is Ft−1-measurable.
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Step 1 (r0V (γ)r = 0): Because V (γ) is non-positive definite for every γ
∈ S∗, there exists a p-vector r ∈ Rp, r 6= 0, such that10

r0V (γ)r = 0, (56)

which reduces to

r0V (γ)r = r0E
£
ztz

0
t
2
t

¤
r (57)

= r0E
£
ztzt

0E
¡
2
t |xt

¢¤
r

= E
£
r0ztzt0rE

¡
2
t |xt

¢¤
= E

·³Xp

i=1
rizt,i

´2
E
¡
2
t |xt

¢¸
= 0.

By Assumption 5, E
¡
2
t |xt

¢
> 0 with probability one, hence the equality holds

if and only if Xp

i=1
rizt,i = 0, a.s., (58)

for every r ∈ Rp, r 6= 0.
Now, define Dt = (dt,i,j)

p
i,j=1 ≡ Ft(γ)Ik − b(γ)A−1. Then zt = Dtxt. Re-

calling xt = (yt−1, ..., yt−p)0 we deduce (58) holds for every r 6= 0 if and only
if Xp

i=1
rizt,i =

hXp

i=1
ri

³Xp

j=1
dt,i,jxt,j

´i
(59)

=
hXp

i=1
ri

³Xp

j=1
dt,i,jyt−j

´i
=

Xp

i=1
yt−i

³Xp

j=1
dt,i,jrj

´
=

Xp

i=1
yt−iet,i(r) = 0, a.s.

where we define et,i(r)≡
Pp

j=1 dt,i,jrj . Notice et,i(r) is Ft−1-measurable because

dt,i,j = − £b(γ)A−1¤
i,j
, i 6= j (60)

= Ft(γ)−
£
b(γ)A−1

¤
i,j

, i = j,

and Ft(γ) is Ft−1-measurable.
Step 2 (et,i(r) = 0): For the next step of the proof, we demonstrate

et,i(r) = 0 with probability one for each i = 1...p and arbitrary r ∈ Rp, r 6= 0,
by exploiting standard metric projection theory for Hilbert spaces.
10Clearly

r0V (γ)r = r0E
£
ztzt

0E
¡
2
t |xt

¢¤
r

= E
£
r0ztzt0rE

¡
2
t |xt

¢¤
= E

"µXk

i=1
rizt,i

¶2
E
¡
2
t |xt

¢# ≥ 0
therefore is suffices to consider only the indefinite case with equality.
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Denote by Lt the space L2 (Ω,Ft,Q). Consider the process {ỹt−i}≡ {yt−iet,i},
construct the L2-projection P (ỹt−i|Lt−i−1) for each ỹt−i into Lt−i−1, and de-
duce an orthogonal projection error

ỹ∗t−i ≡ P (ỹt−i|Lt−i−1) (61)

ut−i ≡ ỹt−i − ỹ∗t−i⊥Lt−i−1.
By L2-orthogonality of the projection error, we know

E (ut−iwt−i−1) = 0

for every element wt−i−1 ∈ Lt−i−1. Multiply
Pp

i=1 yt−iet,i(r) by ut−1, and take
the expectation. From (59) we then deduceXp

i=1
yt−iet,i(r)ut−1 =

Xp

i=1
ỹt−iut−1 = 0, a.s., (62)

thus, with probability one we have

0 = E
³Xp

i=1
ỹt−iut−1

´
(63)

= E (ỹt−iut−1) +
Xp

i=2
E (ỹt−iut−1)

= E (ỹt−1ut−1) + 0.

The third line follows from orthogonality: ut−1⊥Lt−2 implies E (ỹt−iut−1) = 0,
i = 2...p, because each ỹt−i ∈ Lt−i ⊆ Lt−2 for i ≥ 2. Hence,

0 = E (ỹt−1ut−1) (64)

= E
¡¡
ỹt−1 − ỹ∗t−1

¢
ut−1

¢
+E

¡
ỹ∗t−1ut−1

¢
= E

¡
u2t−1

¢
+E

¡
ỹ∗t−1ut−1

¢
= E

¡
u2t−1

¢
,

where we again exploit orthogonality: E
¡
ỹ∗t−1ut−1

¢
= 0 because ỹ∗t−1 ∈ Lt−2

and ut−1⊥Lt−2.
Clearly E

¡
u2t−1

¢
= 0 if and only if ut−1 = 0 with probability one. By

the assumption the σ-fields are strictly increasing we have Lt−2 ⊂ Lt−1, hence
the only way for the L2-projection error to be identically zero with probability
one for any r 6= 0 is if ỹt−1 = yt−1et,1(r) is induced by Ft−2 with probability
one: see, e.g., Brockwell and Davis (1987). Because yt−1 is Ft−1-measurable
with a non-degenerate distribution, however, we deduce σ (yt−1et,1(r)) ∈ Ft−2
is possible if and only if et,1(r) = 0 with probability one for any r ∈ Rk, r 6= 0.
Notice that yt−1et,1(r) = e 6= 0, with probability one for some non-zero

constant e, is ruled out because et,1(r) is a function of r, yt−1 is Ft−1-measurable
and governed by a nondegenerate marginal distribution, and A−1 is a non-zero
matrix: it is straightforward to show that if yt−1et,1(r0) = e 6= 0 for some r0 6=
0, then there exists an r 6= r0, r 6= 0, such that yt−1et,1(r) 6= e, and therefore
yt−1et,1(r) cannot be non-zero constant-valued.
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The proof that the remaining et,i(r) = 0 with probability one follows in an
identical manner: for each et,k(r), impose et,i(r) = 0 for i = 1...k − 1, multiplyPp

i=k yt−iet,i(r) by ut−k, and inmate the logic above in order to deduce et,k(r)
= 0.
Step 3 (Ft = c):
The identity et,i(r) = 0, a.s., for each i = 1...p, implies

et,i(r) =
Xp

j=1
dt,i,jrj = 0, a.s., (65)

for every r ∈ Rp, r 6= 0. Because r 6= 0 can be chosen arbitrarily, we deducePp
j=1 dt,i,jrj = 0 with probability one for any r 6= 0 if and only if dt,i,j = 0 for

each i, j = 1...p. For example, choose r = (0, ..., 1, ...0)0 where the 1 is placed in
the ith row, i = 1...p. Then

et,i(r) =
Xp

j=1
dt,i,jrj = dt,i,i = Ft(γ)−

£
b(γ)A−1

¤
i,i
= 0, a.s., (66)

hence
Ft(γ) =

£
b(γ)A−1

¤
i,i
= 0, a.s., (67)

This implies the Ft−1-measurable Ft(γ) is constant-valued with probability one
for any Ft−1-measurable xt, because b(γ) and A contain only constants (by the
assumption of stationarity in Assumption 1).
Because γ ∈ Γ is bounded, and due to the boundedness of xt with probability

one, xt 6= 0 a.s., and by the assumption that xt = vt = (yt−1, ..., yt−p)0 does
not contain a constant term, Ft(xt, γ) is constant-valued with probability one
if any only if γ = 0 a.s. Therefore, for any γ ∈ S∗ it must be the case that γ
= 0, hence S∗ has Lebesgue measure zero.
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