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ABSTRACT

In simultaneous equation (SE) contexts, nuisance parameter, weak instruments and identifica-
tion problems severely complicate exact and asymptotic tests (except for very specific hypotheses).
In this paper, we propose exact likelihood based tests for possibly nonlinear hypotheses on the co-
efficients of SE systems. We discuss a number of bounds tests and Monte Carlo simulation based
tests. The latter involves maximizing a randomized p-value function over the relevant nuisance pa-
rameter space which is done numerically by using a simulated annealing algorithm. We consider
limited and full information models. We extend, to non-Gaussian contexts, the bound given in
Dufour (Econometrica, 1997) on the null distribution of the LR criterion, associated with possibly
non-linear- hypotheses on the coefficients of one Gaussian structural equation. We also propose
a tighter bound which will hold: (i) for the limited information (LI) Gaussian hypothesis consid-
ered in Dufour (1997) and for more general, possibly cross-equation restrictions in a non-Gaussian
multi-equation SE system. For the specific hypothesis which sets the value of the full vector of en-
dogenous variables coefficients in a limited information framework, we extend the Anderson-Rubin
test to the non-Gaussian framework. We also show that Wang and Zivot’s (Econometrica, 1998)
asymptotic bounds-test may be seen as an asymptotic version of the bound we propose here. In
addition, we introduce a multi-equation Anderson-Rubin-type test. Illustrative Monte Carlo experi-
ments show that: (i) bootstrapping standard instrumental variable (IV) based criteria fails to achieve
size control, especially (but not exclusively) under near non-identification conditions, and (ii) the
tests based on IV estimates do not appear to be boundedly pivotal and so no size-correction may be
feasible. By contrast, likelihood ratio based tests work well in the experiments performed.
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1. Introduction

Hypotheses tests in simultaneous equation (SE) models are among the most enduring problems
in econometrics. With few exceptions, the distributions of standard test statistics are known only
asymptotically due to feedback from the dependent variables to the explanatory variables. Indeed,
exact procedures have been proposed only for a few highly special cases. Early in the development
of econometric theory relating to the SE model, Haavelmo (1947) constructed exact confidence re-
gions for OLS reduced form parameter estimates and corresponding structural parameter estimates.
Bartlett (1948) and Anderson and Rubin (1949, (AR)) proposed exact F -tests for specific classes
of hypotheses in the context of a structural equation along with corresponding confidence sets; see
also Maddala (1974). Promising extensions of the AR test have recently been discussed in Dufour
and Jasiak (2001), Dufour and Taamouti (2003c, 2003b, 2003a) and Dufour (2003). Some exact
specification tests have also been suggested for SE. In particular, Durbin (1957) proposed a bounds
test against serial correlation in SE and Harvey and Phillips (1980, 1981a, 1981b, 1989) have sug-
gested tests against serial correlation, heteroskedasticity and structural change in a single structural
equation; these tests are based on residuals from a regression of the estimated endogenous part of
an equation on all exogenous variables. An exact F -test involving reduced form residuals was pro-
posed by Dufour (1987, Section 3), for the hypothesis of independence between the full vector of
stochastic explanatory variables and the disturbance term of a structural equation.1 Beside these
exceptions, available and routinely applied inference procedures in SE are asymptotic. In particular,
instrumental variable (IV) methods are the most widely used in empirical practice.
The finite sample distributions of standard estimators and test statistics have received atten-

tion early on in this literature. Initial studies (for surveys, see Phillips (1983) and Taylor (1983))
have revealed that: (i) exact distributions are highly complex; (ii) nuisance parameter problems
severely hinder the development of exact tests (except for very specific hypotheses); (ii) asymptotic
distributions may provide poor approximations in several cases. However, the severity of these find-
ings and their implications on applied work were not recognized until the recent research on near-
identification or weak instruments. Published papers dealing with such problems include: Nelson
and Startz (1990a), Nelson and Startz (1990b), Buse (1992), Choi and Phillips (1992), Maddala and
Jeong (1992), Angrist and Krueger (1994), McManus, Nankervis and Savin (1994), Bound, Jaeger
and Baker (1995), Cragg and Donald (1996), Hall, Rudebusch and Wilcox (1996), Dufour (1997),
Shea (1997), Staiger and Stock (1997), Wang and Zivot (1998), Zivot, Startz and Nelson (1998),
Stock and Wright (2000), Dufour and Jasiak (2001), Hahn and Hausman (2002, 2003), Kleibergen
(2002), Moreira (2003a, 2003b), Stock, Wright and Yogo (2002), Kleibergen and Zivot (2003),
Perron (2003), Wright (2003); several recent working papers are also cited in Dufour (2003) and
Stock et al. (2002). Studies on weak instruments convincingly demonstrate that standard asymptotic
procedures (i.e. procedure which impose identification away without correcting for local-almost-
identification (LAU)) are fundamentally flowed and lead to serious overrejections; these problems
are not small sample related and occur with fairly large sample sizes, since they are caused by
asymptotics failures. In particular Dufour (1997) shows that usual t-type tests, based on common
IV estimators, have significance levels that may deviate arbitrarily from their nominal levels since

1This procedure generalizes earlier tests suggested by Wu (1973) and Hausman (1978)
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it is not possible to bound their null distributions.
To circumvent weak-instruments related difficulties, the above cited recent work on SE has

focused on three main directions (see the surveys of Dufour (2003) and Stock et al. (2002)): (i)
refinements in asymptotic analysis which include the local-to-zero or local-to-unity frameworks
(e.g. Staiger and Stock (1997), Wang and Zivot (1998)), (ii) asymptotic approximations which hold
whether instruments are weak or not (e.g. Kleibergen (2002), Moreira (2003b)), and (iii) new finite-
sample-justified procedures based on proper pivots, i.e. statistics whose null distributions are either
nuisance parameter free or bounded by nuisance parameter free distribution [i.e. are boundedly
pivotal], (e.g. Dufour (1997), Dufour and Jasiak (2001), Dufour and Khalaf (2002), Dufour and
Taamouti (2003c, 2003b, 2003a)). So far, provably exact procedures are still in short supply, and
typically require normal errors.
With the declining cost of computing, a natural alternative to traditional inference are

simulation-based methods such as bootstrapping; for reviews, see Efron (1982), Efron and Tib-
shirani (1993), Hall (1992), Jeong and Maddala (1993), Vinod (1993), Shao and Tu (1995), Li and
Maddala (1996). These surveys suggest that bootstrapping can provide more reliable inference for
many problems. In connection with the SE model, examples in which the bootstrap outperforms
conventional asymptotics include: Freedman and Peters (1984a), Green, Hahn and Rocke (1987),
Hu, Lau, Fung and Ulveling (1986), Korajczyk (1985), Dagget and Freedman (1985), and Mor-
eira and Rothenberg (2003). Others however, find that the method leads to little improvement, e.g.
Freedman and Peters (1984b), Park (1985) and Beran and Srivastava (1985), Moreira and Rothen-
berg (2003). Clearly, there appears to be a conflict in the conclusions regarding the effectiveness of
the bootstrap in SE contexts.2
This paper addresses these issues and develops alternative simulation based test procedures

in limited and full information SE models. The tests we propose are motivated by finite sample
arguments. We focus on likelihood ratio (LR) based statistics. This choice is motivated by the
propositions in Dufour (1997) pertaining to LR’s boundedly pivotal characteristic, i.e. the fact that
LR admits nuisance-parameter-free bounds. Our contributions can be classified in five categories.
First, we extend, to non-Gaussian contexts, the bound given in Dufour (1997, (Theorem 5.1))

on the null distribution of the LR criterion, associated with possibly non-linear- hypotheses on the
coefficients of one Gaussian structural equation.3 We also propose a tighter bound which will hold:
(i) for the limited information (LI) Gaussian hypothesis considered in Dufour (1997, (Theorem 5.1))
(i.e. in the context of the LR statistic based on limited information maximum likelihood (LIML)
estimation), and (ii) for more general, possibly cross-equation restrictions in a non-Gaussian multi-
equation SE system. Formally, we show that Dufour (1997)’s result may be obtained as a special -
although non-optimal - case of our proposed bound. To do this, we use the results of Dufour and
Khalaf (2002) on hypotheses tests in multivariate linear regression (MLR) models.4

2In fact, it is well known that bootstrapping may fail to achieve size control when the asymptotic distribution of the
underlying test statistic involves nuisance parameters [see Athreya (1987), Basawa, Mallik, McCormick, Reeves and
Taylor (1991) and Sriram (1994), and Dufour (2002).

3SE LR tests often involve non-linear hypotheses implied by the structure; in connection, see Bekker and Dijkstra
(1990) or Byron (1974)

4The relationship between the MLR and the SE model is readily seen: when all the predetermined variables of a SE
system are strictly exogenous, the reduced form is equivalent to a (restricted) MLR system.
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Second, for the specific hypothesis which sets the value of the full vector of endogenous vari-
ables coefficients in a LI framework, we show that Wang and Zivot (1998)’s asymptotic bounds-test
may be seen as an asymptotic version of the bound we propose here. We use this result to extend
the validity of Wang and Zivot (1998)’s bound to the case of general linear hypotheses on structural
coefficients. To do this, we show that our general bound on the LIML is based on an AR-type
bounding pivotal statistic.
Third,we extend the AR-test to the non-Gaussian framework. Specifically, we show analytically

that the proof of its pivotality in finite samples does not require normal errors. This is achieved by
re-writing the AR statistic as an LR-type criterion (based on the LI reduced form). To date, available
exact AR-type tests require normality assumptions. In this regard, our results are noteworthy.
Fourth, our re-interpretation of the AR-test allows to re-write Kleibergen (2002)’s test as a

approximate generalized AR-test (see Dufour (2003) and Dufour and Taamouti (2003c, 2003b,
2003a)) obtained with a specific instrument substitution choice. Specifically, we prove analytically
that Kleibergen (2002)’s test can be obtained as an F-test for the exclusion of a specific instrument
matrix, based on a constrained estimate of the coefficient of the excluded regressors in the first stage
regression. To do this, we use the expression provided in Dufour (2003, Section 6.3 (d)) as well as
known results from the MLR literature (Berndt and Savin (1977), Dufour and Khalaf (2002)).
Fifth, we propose a multi-equation Anderson-Rubin-type test which also admits a pivotal bound

based on the results of Dufour and Khalaf (2003) relating to SURE models. In view of the renewed
interest in the Anderson-Rubin test (see Dufour (1997), Dufour and Jasiak (2001), Staiger and Stock
(1997), Wang and Zivot (1998) and Dufour and Taamouti(2003c, 2003b, 2003a)), extensions to a
systems context may prove useful.
It is important, at this stage, to emphasize that the distributional theory which underlies all

the above procedures holds whether identification constraints are imposed or not. Consequently,
identification problems are resolved without the need to introduce non-standard, e.g. local-to-zero,
asymptotics. Furthermore, although exactness is obtained under parametric assumptions (which are
duly defined in the paper), normality is not strictly required.
Sixth, this paper makes several contributions relevant to simulation-based tests. Indeed, the

null distribution of all statistics considered may be quite complex, particularly in non-Gaussian
contexts. In view of this, we propose, following Dufour and Khalaf (2002), to apply the Monte
Carlo (MC) test procedure [Dwass (1957), Barnard (1963), Dufour (2002)] to obtain simulation
based exact p-values. MC test procedures may be viewed as parametric bootstrap tests applied to
statistics whose null distribution does not involve nuisance parameters, with however a fundamental
additional observation: the associated randomized test procedure can easily be performed to control
test size exactly, for a given number of replications.
Here, recall that we consider two types of statistics, the pivotal ones (our extensions of the AR

test), and the boundedly pivotal ones (general LR-LIML and multi-equation AR test). The MC test
method easily yields exact p-values given pivotal statistics; to avoid confusion in what follows, we
will refer to MC tests based on exact pivots as pivotal MC tests (PMC). Boundedly pivotal statis-
tics are approached through two MC test procedures. First, we consider the bounds-MC technique
(BMC) (Dufour (2002), Dufour and Khalaf (2002)). This methods differs from the PMC one in the
fact that the null distribution of the bounding statistics (which is pivotal by construction) is consid-
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ered. Second, we apply the maximized MC method (MMC) (Dufour (2002)); this method requires;
(i) defining a p-value function which gives a bootstrap-type MC p-value conditional on relevant nui-
sance parameters, (ii) maximizing the latter function (using global maximization algorithms) over
these nuisance parameters.5 The latter method may be viewed as a numerical search for the optimal
bound.
It is clear that such a search may be computationally expensive. So we propose to combine

the BMC with an MMC test, which can be run whenever the bounds test is not significant. To
understand this strategy, recall that the BMC test is exact in the sense that rejections (at level α) are
conclusive. Furthermore, we show that the MMC algorithm may be written in a way to include a
standard parametric bootstrap as a first step. Possibly expensive iterations - to obtain the maximal
MC p-value in question which underlies the MMC test - may thus be saved if the bootstrap p-value
exceeds α.
To illustrate the performance of these tests particularly given identification issues, we run a

small-scale simulation experiment. Our main findings are: (i) MC methods based on randomization
procedures where unknown parameters are replaced by estimators do not achieve size control, and
(ii) MMC p-values for IV-based test are always one; in other words, it is does not appear possible
to find a non trivial bound on the rejection probabilities, so that standard asymptotic and bootstrap
procedures are deemed to fail when applied to such statistics. In contrast, LR-based MMC tests
allow one to control the level of the procedure.
The paper is organized as follows. Section 2 develops the notation and definitions. In Section

3 we discuss pivotal statistics in full and sub-systems; general hypotheses are considered in Section
4. The MC test procedures applied to pivotal and general hypotheses are presented in 5. Simulation
results are reported in Section 6 and Section 7 concludes the paper.

2. Framework

We consider a system of p simultaneous equations of the form

Y B +XΓ = U, (2.1)

where Y = [y1 , ... , yp] is an n × p matrix of observations on p endogenous variables, X is an
n× k matrix of fixed (or strictly exogenous) variables and U = [u1 , ... , up] = [U1 , ... , Un]0 is a
matrix of random disturbances. The coefficient matrixB is assumed to be invertible. The equations
in (2.1) give the structural form of the model. Post-multiplying both sides by B−1 leads to the
reduced form

Y = XΠ + V, Π = −ΓB−1, π = vec(Π), (2.2)

where V = [v1 , ... , vp] = [V1 , ... , Vn]0 is the matrix of reduced form disturbances. Further, we
suppose the rows of U satisfy the following distributional assumptions:

Ut ∼ JWt, t = 1 , ... , n, (2.3)
5MMC p-values are computed using a simulated annealing (SA) optimization algorithm; see Corana, Marchesi, Mar-

tini and Ridella (1987) or Goffe, Ferrier and Rogers (1994).
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where the vectorw = vec(W1 , ... , Wn) has a known distribution and J is an unknown nonsingular
matrix; for further reference, letW = [W1 , ... , Wn]

0 where (2.3) implies that

W = U(J−1)0. (2.4)

When V ar(Wt) = Ip, var(Ut) = JJ 0 ≡ Ω and var(Vt) = (B−1)0ΩB−1 = (B−1)0JJ 0B−1 ≡ Σ.
Of course, condition (2.3) will be satisfied when

Wt ∼ N(0, Ip), t = 1 , ... , n. (2.5)

A key feature of SE models is the imposition of identification conditions on the structural coeffi-
cients. Usually, these conditions are formulated in terms of zero restrictions onB and Γ. In addition,
a normalization constraint is imposed which is usually achieved by setting the diagonal elements of
B equal to one. We can rewrite model (2.1), given exclusion and normalization restrictions as

yi = Yiβi +X1iγ1i + ui, i = 1 , ... , p, (2.6)

where Yi andX1i are n×mi and n×ki matrices which respectively contain the observations on the
included endogenous and exogenous variables of the model. Many problems are also formulated in
terms of limited-information (LI) models such as

yi = Yiβi +X1iγ1i + ui = Ziδi + ui,
Yi = X1iΠ1i +X2iΠ2i + Vi,

(2.7)

where Zi = [Yi, X1i], δi = (β0i, γ01i)0 and X2i refers to the excluded exogenous variables. The
associated LI reduced form is£

yi Yi
¤
= XΠi +

£
vi Vi

¤
, Πi =

·
π1i Π1i

π2i Π2i

¸
, X =

£
X1i X2i

¤
(2.8)

π1i = Π1iβi + γ1i, π2i = Π2iβi, (2.9)

which lead to the necessary and sufficient condition for identification

rank(Π2i) = mi. (2.10)

Our LI-analogue of (2.3) can be stated as follows. Let Vit refer to the tth row of Vi, then the rows
of
£
ui Vi

¤
satisfy the following distributional assumptions:¡

uit V 0it
¢ ∼ JiW i

t , t = 1 , ... , n, (2.11)

where vec(W i
1 , ... , W

i
n) has a known distribution and Ji is an unknown non-singular matrix.

When V ar(W i
t ) = Imi+1,

var
¡
uit V 0it

¢
= JiJ

0
i ≡ Ωi. (2.12)

5



For further reference, letW i = [W i
1 , ... , W

i
n]
0 where (2.11) implies that

W i =
£
ui Vi

¤
(J−1i )0. (2.13)

In this context, LIML corresponds to maximizing, imposing (2.9), the likelihood function

L(yi, Yi|X1i,X2i) = −n(m+ 1)
2

ln(2π)− n
2
ln |Σi|− 1

2
trΣ−1i D0iDi, (2.14)

whereDi =
£
yi Yi

¤−XΠi andΣi denotes the relevant reduced form error covariance. Numer-
ical maximization may be considered, yet it is well know that an equivalent solution obtains through
an eigenvalue/eigenvector problem based on the following determinantal equation¯̄̄£

yi Yi
¤0
M1i

£
yi Yi

¤− λi
£
yi Yi

¤0
M
£
yi Yi

¤¯̄̄
= 0 (2.15)

whereM = I −X(X 0X)−1X 0,M1i = I −X1i(X 0
1iX1i)

−1X 0
1i and λi refers to the eigen value in

question. Indeed, it can be shown (see, for example Davidson and MacKinnon (1993, Chapter 18),
Wang and Zivot (1998)) that the estimator of β is eβi = ARGMIN

βi
{λ(βi)}

λ(βi) =
[yi − Yiβi]0M1i [yi − Yiβi]

[yi − Yiβi]0M1i (I −M1iX2i(X 0
2iM1iX2)−1X 0

2iM1i)M1i [yi − Yiβi]
. (2.16)

Formally, the LIML estimator of βi and γ1i is

eδi = · eβieγ1i
¸
=

·
Y 0i Yi − eλiY 0iMYi Y 0iX

X 0Yi X 0X

¸−1 ·
Y 0i − eλiY 0iM

X 0
i

¸
yi (2.17)

where eλi is the smallest root of (2.15), which corresponds to λ(eβi) [where λ(βi) is given by (2.16)].
Correspondingly, expressions for the reduced form parameter estimates obtain as follows (see Theil
(1971), appendix B):

h eπ1i eΠ1i

i
= (X 0

1iX1i)
−1X 0

1i

³£
yi Yi

¤−X2i h eπ2i eΠ2i

i´
(2.18)h eπ2i eΠ2i

i
= (X 0

2iM1iX2i)
−1X 0

2iM1i

£
yi Yi

¤
(2.19)

− (X
0
2iM1iX2i)

−1X 0
2iM1i

£
yi Yi

¤·
1

−eβi
¸0 eΣi · 1

−eβi
¸ ·

1

−eβi
¸·

1

−eβi
¸0 eΣi

eΣi =

£
yi Yi

¤0
M
£
yi Yi

¤
n

+
(eλ− 1)
n

(2.20)
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×

£
yi Yi

¤0
M
£
yi Yi

¤ · 1

−eβi
¸µ£

yi Yi
¤0
M
£
yi Yi

¤ · 1

−eβi
¸¶0

·
1

−eβi
¸0 £

yi Yi
¤0
M
£
yi Yi

¤ · 1

−eβi
¸ .

The derivations of Theil (1971) also imply that
¯̄̄ eΣi ¯̄̄ satisfies¯̄̄ eΣi ¯̄̄ = eλi ¯̄̄0 £ yi Yi

¤0
M
£
yi Yi

¤¯̄̄
. (2.21)

For hypotheses of the form Riδi = ri on the coefficients of (2.7), where Ri is a known qi ×mi
matrix of rank qi and ri is known, Wald statistics are routinely applied and take the form

τw =
1

s2
(ri −Rib̂δi)0 − [R0i(ZiPi(P 0iPi)−1P 0iZi)−1Ri] (ri −Rib̂δi), (2.22)

s2 =
1

n
(yi − Zib̂δi)0(yi − Zib̂δi)0

where b̂δi is a consistent asymptotically normal estimator such as (2.17) or the 2SLS
δ̂i = [Z

0
iPi(P

0
iPi)

−1P 0iZi]
−1Z0iPi(P

0
iPi)

−1P 0iyi, Pi = [ X X(X 0X)−1X 0Yi ].

Imposing identification, the asymptotic null distribution of τw is χ2(q). For an asymptotic theory
conformable with under-identification, see Staiger and Stock (1997).

3. Pivotal Statistics in systems and subsystems

The recent literature on SE models has underscored the importance of proper pivots. This section
characterizes pivotal statistics in possibly non-Gaussian systems and subsystems, which include the
case of one single structural equation (the LI case). We first consider the LI context, since it is a
fundamental one, and because it may be used to explicate our multi-equation approach.

3.1. Non-Gaussian extensions of the Anderson-Rubin test

In the context of the LI model (2.7), consider hypotheses of the form:

HAR : βi = β0i , (3.1)

where β0i is a known vector. Let y0i = yi − Yiβ0i ; then (3.1) may be tested in the context of the
transformed structural system

y0i = Yi(βi − β0i ) +X1iγ1i + ui, (3.2)
Yi = X1iΠ1i +X2iΠ2i + Vi, (3.3)

7



with reduced form£
y0i Yi

¤
=

£
X1i X2i

¤
Πi +

£
ui + V (βi − β0i ) Vi

¤
,

π1i = Π1i(βi − β0i ) + γ1i, π2i = Π2i(βi − β0i ).

Let O(s,j) denotes a zero s× j matrix. In this context, (3.1) corresponds to testing
£
O(k−ki, ki), I(k−ki)

¤
ΠiCi = 0, Ci =

·
1
O(mi, 1)

¸
. (3.4)

To simplify the presentation, note that since the hypothesis concerns solely the element of βi, the
test may be recast in the context of:

M1i

£
y0i Yi

¤
Ci = M1iX2iΠAR +M1i

£
ui + Vi(βi − β0i ) Vi

¤
Ci

ΠAR =
£
π2i Π2i

¤
Ci

with null hypothesisΠAR = 0. The QLR statistic in this case takes the form (see Dufour and Khalaf
(2002)) where PM1iX2i = I −M1iX2i(X

0
2iM1iX2i)

−1X 0
2iM1i

|Σ̂0
AR|

|Σ̂AR|
=

C0i
£
y0i Yi

¤0
M1i

£
y0i Yi

¤
Ci

C0i
£
y0i Yi

¤0
M1iPM1iX2iM1i

£
y0i Yi

¤
Ci
=

y00i M1iy
0
i

y00i M1iPM1iX2iM1iy0i

which is a monotonic transformation of the Anderson-Rubin statistic.

Theorem 3.1 DISTRIBUTION OF THE AR TEST STATISTIC. In the context of the LI model (2.7),
consider the problem of testing (3.1)

HAR : βi = β0i

imposing (2.11) where the first row of Ji has zeros everywhere except for the first element. Let

ΛAR =
[yi − Yiβ0i]0M1i [yi − Yiβ0i]

[yi − Yiβ0i]0M1iPM1iX2iM1i [yi − Yiβ0i]
(3.5)

be the associated Anderson-Rubin statistic. Then under the null hypothesis

P [ΛAR ≥ x] = P
· |w0iM1iwi|
|w0iM1iPM1iX2iM1iwi| ≥ x

¸
, ∀x,

where wi =
¡
wi1 wi2 ... win

¢0 gives the first column ofW i as defined in (2.11)-(2.13).

PROOF. Under the null hypothesis,

|Σ̂0
AR|

|Σ̂AR|
=

u0iM1iui
u0iM1iPM1iX2iM1iui

.
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Given assumption (2.11), ui =
£
ui Vi

¤
Ci = W iJ 0iCi. When the first row of Ji in (2.11)

has zeros everywhere, except for the first element which equals σ 6= 0, then J 0iCi = σCi and
W iJ 0iCi = σwi = σW iCi, so

|Σ̂0
AR|

|Σ̂AR|
=

σC 0iW
i0M1iW

iCiσ

σC0iW i0M1iPM1iX2iM1iM1iW iCiσ
=

C 0iW
i0M1iW

iCi
C 0iW i0M1iPM1iX2iM1iW iCi

. (3.6)

Then the result obtains on observing that wi =W iCi. ¥
The latter result means that an exact test can be carried out in non-normal context without the

need to specify the distribution of the full W i matrix. If normality is further imposed, then it is
straightforward to see (see also Dufour and Khalaf (2002)) that

[ΛAR − 1] n− k
k − ki ∼ F (k − ki, n− k).

As usual, the AR procedure can be adapted to test hypotheses on γ1i (in addition to constraints on
βi). It is clear that our results will apply to this case as well. So consider now the problem of testing

HARX : βi = β0i , γ11i = γ011i (3.7)

where γ1i = (γ011i, γ012i), γ11i is k1i × 1, and X1i =
£
X11i X12i

¤
is decomposed conformably.

The associated Anderson-Rubin statistic

ΛARX =

£
yi − Yiβ0i −X11iγ011i

¤0
M12i

£
yi − Yiβ0i −X11iγ011i

¤£
yi − Yiβ0i −X11iγ011i

¤0
M12iPM12iX22iM12i

£
yi − Yiβ0i −X11iγ011i

¤
M12i = I −X12i(X 0

12iX12i)
−1X 0

12i, X22i =
£
X11i X2i

¤
PM12iX22i = I −M12iX22i(X

0
22iM12iX22i)

−1X 0
22iM12i.

Then following the same arguments as in Theorem 3.1, we can show that under the null hypothesis

P [ΛARX ≥ x] = P
· |w0iM12iwi|
|w0iM12iPM12iX22iM12iwi| ≥ x

¸
, ∀x, (3.8)

and if normality is further imposed,

[ΛARX − 1] n− k
k − ki − k1i ∼ F (k − ki − k1i, n− k). (3.9)

Finally, consider the hypothesis analyzed in Dufour and Jasiak (2001, Section 4):

HARQX : βi = β0i , Q1iγ1i = ν0 (3.10)
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where Q1i is a q1i × ki matrix where q1i = rank(Q1i); Q1i can be treated as submatrix of an
invertible ki × ki matrix Qi =

£
Q01i Q02i

¤0 so that
Qiγ1i =

·
Q1iγ11i
Q2iγ21i

¸
=

·
ν1i
ν2i

¸
.

Let XQi = X1iQ
−1
i =

£
XQ1i XQ2i

¤
where XQ1i and XQ2i are T × q1i and T × (ki − q1i)

matrices, so the LI equation can be re-written as

yi = Yiβi +XQ1iν1i +XQ2iν2i + ui,

in which case testingHARQX amounts to assessing βi = β0i , ν1i = ν0. The associated Anderson-
Rubin statistic

ΛARQX =
[yi − Yiβ0i −XQ1iν0]0MQ2i [yi − Yiβ0i −XQ1iν0]

[yi − Yiβ0i −XQ1iν0]0MQ2iPMQ2i
X22iMQ2i [yi − Yiβ0i −XQ1iν0]

MQ2i = I −XQ2i(X 0
Q2iXQ2i)

−1X 0
Q2i , X22i =

£
XQ1i X2i

¤
PMQ2i

X22i = I −MQ2iX22i(X
0
22iMQ2iX22i)

−1X 0
22iMQ2i .

The same arguments underlying (3.8) yield

P [ΛARQX ≥ x] = P
 |w0iMQ2iwi|¯̄̄
w0iMQ2iPMQ2i

X22iMQ2iwi

¯̄̄ ≥ x
 , ∀x, (3.11)

and imposing normality

P [[ΛARQX − 1] n− k
k − ki − q1i ≥ x] = P [F (k − ki − q1i, n− k) ≥ x] . (3.12)

It is also easy to show, using the same arguments as in the above Theorems, that all the roots of
the determinantal equation¯̄̄

y00i MQ2iy
0
i − µ y00i MQ2iPMQ2i

X22iMQ2iy
0
i

¯̄̄
= 0

[yi − Yiβ0i −XQ1iν0] = y0i

are pivotal under the null hypothesis, which lead to alternative statistics, such as the Lawley-
Hotelling trace criterion, the Bartlett-Nanda-Pillai trace criterion and the maximum Root criterion.6
To conclude this section, it is useful to consider the test proposed by Kleibergen (2002) in the

context of (3.1). Dufour (2003) shows that the latter test corresponds to an AR-type test applied
with a specific instrument choice (denoted ZK). Specifically, equations 83-86 from Dufour (2003)

6 For references, see Rao (1973, Chapter 8) or Anderson (1984, chapters 8 and 13) and Dufour and Khalaf (2002).
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rewritten in terms of the transformed model

M1i

£
yi Yi

¤
=M1iX2i

£
π2i Π2i

¤
+M1i

£
ui Vi

¤
(3.13)

lead to the instrument

ZK = X2iΠ2i, Π2i = bΠ2i − bπ2i(eβi)SεV (β0i )
Sεε(β

0
i )

(3.14)

bΠ2i = (X 0
2iM1iX2i)

−1X 0
2iM1iYi, bπ2(β0i ) = (X 0

2iM1iX2i)
−1X 0

2iM1i

£
yi − Yiβ0i

¤
SεV

¡
β0i
¢
=

1

T − k
£
yi − Yiβ0i

¤0
MYi, Sεε(β

0
i ) =

1

T − k
£
yi − Yiβ0i

¤0
M
£
yi − Yiβ0i

¤
.

Here we argue that the later expression is a constrained OLS estimator ofΠ2i, imposing the LIML
structure. Expressions for constrained OLS estimates of (3.13) can be derived using the formulae
from the general theory on MLR imposing uniform linear hypotheses (see Berndt and Savin (1977,
equations 5 and 6) and Dufour and Khalaf (2002)). In is context, the AR null hypothesis takes the
form (in the notation of Berndt and Savin (1977)) F

£
π2i Π2i

¤
G = E,where F = Ik2 , E = 0

andG =
¡
1,−β00i

¢0. Then applying equation (5) from Berndt and Savin (1977) which we reproduce
here for convenience (where P0 and P give the formula for the constrained and unconstrained
estimators of

£
π2i Π2i

¤
in (3.13))

P0 = P −
³ eX 0 eX´−1 F 0 ·F ³ eX 0 eX´−1 F 0¸−1 (FPG−E) £G0SG¤−1G0S,

P =
³ eX 0 eX´−1 eXey, S = (ey − eXP0)0(ey − eXP0),ey = M1i

£
yi Yi

¤
, eX =M1iX2i,

yields the following expression for the constrained QMLE estimates:7

h bπ02i bΠ0
2i

i
= (X 0

2iM1iX2i)
−1X 0

2iM1i

£
yi Yi

¤
− (X

0
2iM1iX2i)−1X 0

2iM1i

£
yi Yi

¤·
1
−β0i

¸0 bΣi · 1
−β0i

¸ ·
1
−β0i

¸·
1
−β0i

¸0 bΣi
or alternativelyh bπ02 bΠ0

2

i
= (X 0

2iM1iX2i)
−1X 0

2iM1i

£
yi Yi

¤
−(X 0

2iM1iX2i)
−1X 0

2iM1i

£
yi − Yiβ0i

¤ £yi − Yiβ0i ¤0M £
yi Yi

¤£
yi − Yiβ0i

¤0
M
£
yi − Yiβ0i

¤ .
7A similar expression for the constrained LIML estimator ofΠ2i obtains, replacing βoi by eβi; see (2.19).
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Post-multiplying the latter expression by
·
O(1,m)
Im

¸
leads to the estimator

bΠ0
2i = bΠ2i − (X 0

2iM1iX2i)
−1X 0

2iM1i

£
yi − Yiβ0i

¤ £
yi − Yiβ0i

¤0
MYi£

yi − Yiβ0i
¤0
M
£
yi − Yiβ0i

¤ .
which is exactly equal toΠ2i as defined in (3.14). Recall that Dufour (2003) has shown that Wang
and Zivot (1998)’s LMGMM test obtains as an AR-type test with instrument X2i bΠ2i. We thus see
that Kleibergen (2002) is highly related to the latter, since it is obtained in a similar way, replacing
the unconstrained OLS estimator of Π2i by a constrained OLS estimator which imposes the struc-
ture. As mentioned in Dufour (2003), these tests are affected by the fact that instruments are not
independent from the error term ui, and thus are not pivotal in finite samples.

3.2. Multi-equation non-Gaussian extensions of the Anderson-Rubin test

The results of the previous section provide the basis for extending the AR procedure to multi-
equation contexts. Consider a subset of the p-equation system (2.6),

yi = Yiβi +X1iγ1i + ui, i = 1 , ... , m, (3.16)

wherem ≤ p. In this context, consider the problem of testing,

HMAR : βi = β0i , i = 1, ...,m. (3.17)

Typically, when equations in (3.16) are viewed as a system, the first stage in an IV-type procedure
consist in regressing each left-hand side endogenous variable on all the exogenous variables of the
full sub-system. Conformably, let Z2 refer to the set of exogenous variables that are excluded from
allm equations, so thatX =

£
Z1 Z2

¤
; then the first stage regression corresponds to

Y = Z1Π1 + Z2Π2 + V , (3.18)

where Y includes all the distinct right-hand-side endogenous variables and the error term V is
defined conformably; suppose that Y is T ×m and Z1 is T × k. By definition, postmultiplying Y
by a selection matrix (of zeros and ones) gives Yi, which allows to decompose (3.18) as follows:

Yi = Z1Π1i + Z2Π2i + Vi, i = 1, ...,m,

where Vi includes the relevant columns of V , and Π1i and Π2i are the relevant sub-matrices of Π1

andΠ2. Transform the system setting y0i = yi − Yiβ0i , i = 1, ...,m, as follows:

y0i = Yi(βi − β0i ) +Z1γi + ui (3.19)
Yi = Z1Π1i + Z2Π2i + Vi, (3.20)
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where γi may include zeros so that Z1γi =X1iγ1i. This leads to the reduced form£
y01 ... y0m Y

¤
=

£
Z1 Z2

¤ · π11 ... π1m Π1

π21 ... π2m Π2

¸
+
£
u1 + V1(β1 − β01) ... um + Vm(βm − β0m) V

¤
,

π1i = Π1i(βi − β0i ) + γi, π2i = Π2i(βi − β0i ),

in which case (3.17) corresponds to testing:h
O(k−k, k), I(k−k)

i · π11 ... π1m Π1
π21 ... π2m Π2

¸
C = 0, C =

·
Im
O(m, m)

¸
. (3.21)

These constraints do not consider the exclusions implied by the zeros in γi. Let MZ1 =
I − Z1(Z 01Z1)−1Z01 and ΠAR =

£
π21 ... π2m Π2

¤
C. Then the test amounts to assessing

ΠAR = 0 in the context of:

MZ1

£
y01 ... y0m Y

¤
C = MZ1Z2ΠAR

+MZ1

£
u1 + V1(β1 − β01) ... um + Vm(βm − β0m) V

¤
C

Let PM
Z1
Z2 = I −MZ1

Z2(Z 02MZ1X2)
−1Z 02MZ1 , then the LR statistic to testΠAR = 0 is

ΛMAR =

¯̄̄
C
0 £
y01 ... y0m Y

¤0
MZ1

£
y01 ... y0m Y

¤
C
¯̄̄

¯̄̄
C
0 £
y01 ... y0m Y

¤0
MZ1PMZ1

Z2MZ1

£
y01 ... y0m Y

¤
C
¯̄̄ ,

=

¯̄̄£
y01 ... y0m

¤0
MZ1

£
y01 ... y0m

¤¯̄̄¯̄̄£
y01 ... y0m

¤0
MZ1PMZ1

Z2MZ1

£
y01 ... y0m

¤¯̄̄ .
Theorem 3.2 DISTRIBUTION OF THE AR MULTIVARIATE TEST. In the context of the subsystem
(3.16) of the SE model (2.1), consider the problem of testing (3.17)

HMAR : βi = β0i , i = 1, ...,m,

where, without loss of generality, them-equations under test are the firstm equations of the system
so that £

u1 ... um
¤
= UC, C =

·
Im
O(p−m, m)

¸
where U satisfies (2.3), with

J =

·
J11 0
J21 J22

¸
, J11 : m×m, J11 is nonsingular (3.22)
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andW is partitioned conformably as follows

W =
£
W1 W2

¤
, Wi = [Wi1 , . . . , WiT ]

0
, i = 1, 2, (3.23)

Wt =

·
W1t

W2t

¸
, W1t : m× 1 .

Let

ΛMAR =

¯̄̄£
y01 ... y0m

¤0
MZ1

£
y01 ... y0m

¤¯̄̄¯̄̄£
y01 ... y0m

¤0
MZ1PMZ1

Z2MZ1

£
y01 ... y0m

¤¯̄̄
be the associated multivariate Anderson-Rubin statistic. Then under the null hypothesis

P [ΛMAR ≥ x] = P
 |W 0

1MZ1W1|¯̄̄
W 0
1MZ1PMZ1

Z2MZ1W1

¯̄̄ ≥ x
 , ∀x.

PROOF. Under the null hypothesis,

ΛMAR =

¯̄̄£
u1 ... um

¤0
MZ1

£
u1 ... um

¤¯̄̄¯̄̄£
u1 ... um

¤0
MZ1PMZ1

Z2MZ1

£
u1 ... um

¤¯̄̄ ,
£
u1 ... um

¤
= UC =WJ 0C =W

·
J
0
11

0

¸
=W1J

0
11.

SubstitutingW1J
0
11 for UC in ΛMAR leads to

ΛMAR =

¯̄̄
J11W

0
1MZ1W1J

0
11

¯̄̄
¯̄̄
J11W 0

1MZ1PMZ1
Z2MZ1W1J

0
11

¯̄̄ = |J11| |W 0
1MZ1W1|

¯̄̄
J
0
11

¯̄̄
|J11|

¯̄̄
W 0
1MZ1PMZ1

Z2MZ1W1

¯̄̄ ¯̄
J
0
11

¯̄
=

|W 0
1MZ1W1|¯̄̄

W 0
1MZ1PMZ1

Z2MZ1W1

¯̄̄ .
This completes the proof.¥
In this case as well, it easy to show, using the same arguments as in the above Theorem, that all

the roots of the determinantal equation¯̄̄
Y00i MZ1Y0i − µ Y00i MZ1PMZ1

Z2MZ1Y0i
¯̄̄
= 0£

y01 ... y0m
¤
= Y0i

are pivotal under the null hypothesis, which lead to alternative statistics. The case where m = p
deserves a special attention, and leads to the full system approach.

14



3.3. Pivots in full systems

In the context of (2.1) with (2.3), consider testing HB : B = B0; recall that B includes normal-
ization and exclusion restrictions (since all endogenous variables do not appear in all equations).
These constraints may be tested by assessing the exclusion restrictions in the regression of Y B0 on
X. Indeed, if we examine the reduced form (2.1), we see thatHB implies that the coefficient of

Y B0 = XΠB0 + V B0

should reflect the exclusion (identifying) restrictions in Γ . Typically, these exclusions are of the
SURE type (i.e. they do not affect the coefficient of the same regressor for all equations), yet its is
possible to obtain a pivot if we focus on assessing the exclusion of the common instruments.8 This
hypothesis takes the following form:

QΠB0C = 0 (3.24)

where Q and C are full-row rank and full column rank selection matrices.9 Without loss of gener-
ality, suppose that

C =

·
Ic
0

¸
, J =

·
J11 0
J21 J22

¸
, J11 is c× c , nonsingular, (3.25)

Wt =

·
W1t

W2t

¸
, W1t : c× 1 . (3.26)

Then

UC =WJ 0C =W
·
J
0
11

0

¸
=W1J

0
11 , Wi = [Wi1 , . . . , WiT ]

0
, i = 1, 2. (3.27)

The LR statistic to test the latter hypothesis is:

ΛB =

¯̄̄
C 0B00(Y −X bΠ0)

0(Y −X bΠ0)B0C ¯̄̄¯̄̄
C 0B00(Y −X bΠ)0(Y −X bΠ)B0C ¯̄̄

where bΠ0 and bΠ are the constrained and unconstrained OLS estimates in the regression of Y B0C
on X. LetM = I −X(X 0X)−1X 0,M0 = M +X(X 0X)−1Q0[Q(X 0X)−1Q0]−1Q(X 0X)−1X 0.
Then under the null hypothesis,

ΛB =
|C0B00V 0M0V B0C|
|C 0B00V 0MVB0C|

=

¯̄̄
C0B00

¡
B−10

¢0
U 0M0UB

−1
0 B0C

¯̄̄
¯̄̄
C 0B00

¡
B−10

¢0
U 0MUB−10 B0C

¯̄̄ = |C0U 0M0UC|
|C0U 0MUC| (3.28)

8If no common instruments are available, then exact bounds tests of the implied SURE constraints can be considered
as in Dufour and Khalaf (2003).

9The matrix C allows to select-out the equations of the system that will not be subject to exclusion tests, e.g. the
equations which in the first place did not include endogenous regressors.
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=

¯̄̄
J11W

0
1M0W1J

0
11

¯̄̄
¯̄
J11W 0

1MW1J
0
11

¯̄ = |J11| |W 0
1M0W1|

¯̄̄
J
0
11

¯̄̄
|J11| |W 0

1MW1|
¯̄
J
0
11

¯̄ = |W 0
1M0W1|

|W 0
1MW1| . (3.29)

No assumption on the distributionW2 is required and the matrix J in (2.3) only needs to be block
triangular. It is worth noting that hypotheses which test further common constraints on Γ in addition
to fixing B = B0 can be accommodated in the same way, by adjusting Q and C and allowing a
non-zero matrix of known constants on the right hand side of (3.24). Pivots can also be obtained for
such hypotheses, as is demonstrated in the following Theorem.

Theorem 3.3 CHARACTERIZATION OF PIVOTAL STATISTICS. In the context of the SE model
(2.1) consider the hypothesis which when written in terms of the reduced form (2.2) takes the form

HULB : QΠB0C = D (3.30)

where Q is a q × k known matrix with rank q,D is known,

C =

·
C11
0

¸
, C11 is c× c nonsingular,

U satisfies (2.3) with

J =

·
J11 0
J21 J22

¸
, J11 is c× c , nonsingular, (3.31)

andWt is partitioned conformably

Wt =

·
W1t

W2t

¸
, W1t : c× 1 .

Let

ΛULB =

¯̄̄
C 0B00(Y −X bΠ0)0(Y −X bΠ0)B0C

¯̄̄
¯̄̄
C0B00(Y −X bΠ)0(Y −X bΠ)B0C ¯̄̄

denote the LR statistic for testing the latter restrictions where bΠ0 and bΠ are the constrained and
unconstrained OLS estimates in the regression of Y B0C onX. Then under the null hypothesis

P [ΛULB ≥ x] = P
· |W 0

1M0W1|
|W 0

1MW1| ≥ x
¸
, ∀x,

whereM = I −X(X 0X)−1X 0, M0 = M +X(X 0X)−1Q0[Q(X 0X)−1Q0]−1Q(X 0X)−1X 0 and
Wi = [Wi1 , . . . , WiT ]

0
, i = 1, 2.
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PROOF. Following (2.21)-(3.29), we see that under the null hypothesis,

ΛULB =
|C0U 0M0UC|
|C 0U 0MUC| , UC =WJ 0C =W

·
J
0
11C11
0

¸
=W1 J

0
11C11

where J 011C11 is nonsingular. So

ΛULB =

¯̄̄
C011J11W 0

1M0W1 J
0
11C11

¯̄̄
¯̄
C011J11W 0

1MW1 J
0
11C11

¯̄ = |C011J11| |W 0
1M0W1 |

¯̄̄
J
0
11C11

¯̄̄
|C 011J11| |W 0

1MW1 |
¯̄
J
0
11C11

¯̄ = |W 0
1M0W1|

|W 0
1MW1| .

This completes the proof.¥
The same arguments as in the above Theorem show that all the roots of the determinantal equa-

tion ¯̄
C0U 0M0UC − µ C0U 0MUC

¯̄
= 0

are also pivotal under the null hypothesis. The above derivations show that pivotal statistics can be
obtained for all hypotheses of the form (3.30); these constraints are Uniform Linear; see Dufour and
Khalaf (2002) and Berndt and Savin (1977). Here we show that pivots obtain when the coefficients
of the left-hand side endogenous variables of the equations subject to test are all fixed. Indeed,
since the error term of the reduced form equals UB−1, the framework differs from Dufour and
Khalaf (2002): invariance to J obtains when B is fixed (to allow the decomposition in (3.28)). One
exception is noteworthy, and is stated in the following Theorem.

Theorem 3.4 PIVOTAL STATISTICS: A SPECIAL CASE. Consider the MLR model (2.1) with (2.3)
and the hypothesis which when written in terms of (2.2) takes the form

HUL : QΠC = D (3.32)

where C is an invertible p× p matrix, Q is a q × k known matrix with rank q and D is known. Let

ΛUL =

¯̄̄
C0(Y −X bΠ0)

0(Y −X bΠ0)C ¯̄̄¯̄̄
C0(Y −X bΠ)0(Y −X bΠ)C ¯̄̄

be the LR statistic for testing the latter restrictions, where bΠ0 and bΠ are the constrained and
unconstrained OLS estimates in the regression of Y C onX. Then under the null hypothesis

P [ΛUL ≥ x] = P
· |W 0M0W |
|W 0MW | ≥ x

¸
, ∀x,

whereM = I −X(X 0X)−1X 0, M0 = M +X(X 0X)−1Q0[Q(X 0X)−1Q0]−1Q(X 0X)−1X 0 and
W is as defined in (2.3).
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PROOF. Under the null hypothesis,

ΛUL =
|C0V 0M0V C|
|C 0V 0MVC| =

¯̄̄
C0
¡
B−1

¢0
U 0M0UB

−1C
¯̄̄

¯̄
C0 (B−1)0 U 0MUB−1C

¯̄
=

¯̄̄
C0
¡
B−1

¢0 ¯̄̄ |U 0M0U |
¯̄
B−1C

¯̄¯̄
C0 (B−1)0

¯̄ |U 0MU | |B−1C| = |U 0M0U |
|U 0MU | =

|JW 0M0WJ
0|

|JW 0MWJ 0|

=
|J | |W 0M0W | |J 0|
|J | |W 0MW | |J 0| =

|W 0M0W |
|W 0MW | .

This completes the proof. An example of the latter case in the LI context includes the problem
whereΠ2i is tested in addition to βi.¥
We emphasize again that the above results do not require the normality assumption. Eventually,

when the normality hypothesis (2.5) holds, the distribution of the bounding statistic for special cases
of Q and C is well known (see Rao (1973, chapter 8), Anderson (1984, chapters 8 and 13) and the
appendix of Dufour and Khalaf (2002)) and involves the product of p independent beta variables
with degrees of freedom that depend on the sample size, the number of restrictions and the number
of parameters involved in these restrictions. For example, when C = Ip,

P [Λ−1NL ≥ x] = P [L ≥ x] , ∀x, (3.33)

where L is distributed like the product of p independent beta variables with parameters (12(n− k−
p+ i) , q2) , i = 1, ... , p. When c = 1,

[ΛUL − 1]n− k
q
∼ F (q, n− k). (3.34)

4. General Hypotheses tests on structural coefficients

In this section, we consider hypotheses for which pivots are not available. These hypotheses may be
linear or non-linear, and may be approached from a full or sub-system approach. We first consider
the full system case which will lead to useful results for the single equation problem.

4.1. The full system approach

Consider the problem of testing arbitrary restrictions on the structural parameters of model (2.1),
under (2.3), which when expressed in terms of the reduced form coefficients, take the form

HNL : Rπ ∈ ∆0, (4.1)

where R is (r × kp) of rank r and ∆0 is a non-empty subset of <r. This characterization of the
hypothesis allows for nonlinear as well as inequality constraints. The Gaussian QLR criterion to
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testHNL is n ln(ΛNL),where

ΛNL =
|Σ̂NL|
|Σ̂| , (4.2)

with Σ̂NL and Σ̂ being the restricted and unrestrictedML estimators ofΣ; in the statistics literature,
Λ−1NL corresponds to Wilks’ criterion. The discussion in the previous section does not lead to pivotal
statistics for these hypotheses, yet we will show that ΛNL is boundedly pivotal, in the sense of
Dufour (1997), i.e. its null distribution can be bounded by a pivotal quantity; see Dufour and Khalaf
(2002). To do this, we first observe that the general hypothesis (4.1) always admits as a special case,
some hypothesis for which a pivot exists; indeed, the case where all the coefficients of the reduced
form equation are restricted provides a trivial case which always satisfies our purpose. To relate our
results with Dufour (1997), consider this special case

HL : Π = D, (4.3)

which obtains as in (3.32) with the further restriction that Q = Ik. Clearly, HL ⊆ HNL. In
general, its is also possible to find a hypothesis of the form (3.30) which is special case of HNL.
LetHULB ⊆ HNL denote the hypothesis of the latter form which obtains fromHNL with the least
number of restrictions.

Theorem 4.1 BOUNDELDY PIVOTAL STATISTICS. Consider the MLR model (2.1) and letΛNL be
the statistic defined by (4.2) for testing restrictions which, when written in terms of the reduced form
(2.2), take the form (4.1). Further, consider restrictions of the form (3.30) HNL : QΠB0C = D
where Q is a q × k known matrix with rank q,D is known,

C =

·
C11
0

¸
, C11 is c× c (nonsingular)

and Q, B0 and C11 are chosen such that HUL ⊆ HNL. Then under the null hypothesis imposing
(2.3) with

J =

·
J11 0
J21 J22

¸
, J11 is c× c (nonsingular)

andWt =

·
W1t

W2t

¸
, W1t : p1 × 1,

P [ΛNL ≥ x] ≤ P
· |W 0

1M0W1|
|W 0

1MW1|
¸
, ∀x,

whereM = I −X(X 0X)−1X 0, M0 = M +X(X 0X)−1Q0[Q(X 0X)−1Q0]−1Q(X 0X)−1X 0 and
Wi = [Wi1 , . . . , WiT ]

0
, i = 1, 2.

PROOF. Let ΛULB be the reciprocal of Wilks’ criterion for testing HULB . Since by construc-
tion HULB ⊆ HNL, and since both ΛUL and ΛNL use the URF as the unconstrained hypothesis,
then it is straightforward to see that ΛNL ≤ ΛULB. The null distribution of ΛULB was established
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in Theorem 3.3, which leads to above bound.¥
If we consider the bound associated with (3.32), and we further impose normality, then using

(3.34) leads to the results of Dufour (1997).

Theorem 4.2 BOUNDELDY PIVOTAL STATISTICS: A SPECIAL CASE. Consider the MLR model
(2.1) and let ΛNL be the statistic defined by (4.2) for testing restrictions which, when written in
terms of the reduced form (2.2), take the form (4.1). Then under the null hypothesis imposing (2.3)
and normal errors

P [Λ−1NL ≥ x] ≤ P [L ≥ x] , ∀x,
where L is distributed like the product of p independent beta variables with parameters (12(n− k−
p+ i) , k2 ) , i = 1, ... , p.

PROOF. Consider restrictions of the form (4.3) HL : Π = D, and let ΛL be the reciprocal of
Wilks’ criterion for testing HL. Following the arguments of Theorem 4.1, we see that ΛNL ≤ ΛL.
The null distribution of Λ−1L obtains as a special case of (3.33) with q = k, which leads to above
beta-based bound.¥
Since Dufour (1997)’s bound was formally stated in the context of a LI model, let us turn the LI

context.

4.2. The LI context

Let us first consider the case of the LIML LR statistic associated with HAR : βi = β0i , in the
context of the LI model (2.7). Wang and Zivot (1998) have shown that this statistic is a monotonic
transformation of

ΛLIML = λ(β0i )− λ(eβi)
where λ(βi) is defined in (2.16) and eβi is the LIML estimate of β defined in (2.17). Recall that
λ(eβi) = min

βi
{λ(βi)} and λ(β0i ) = ΛAR as defined in (3.5). It is thus easy to see that ΛLIML ≤

ΛAR, so under the null hypothesis, using Theorem 3.1, we have:

P [ΛLIML ≥ x] ≤ P
· |w0iM1iwi|
|w0iM1iPM1iX2iM1iwi| ≥ x

¸
, ∀x, (4.4)

where wi =
¡
wi1 wi2 ... win

¢0 gives the first column ofW i as defined in (2.11)-(2.13). If the
normality hypothesis is further imposed, then

P

·
[ΛLIML − 1] n− k

k − ki ≥ x
¸
≤ P [F (k − ki, n− k) ≥ x] , ∀x.

Whereas n[ln(ΛLIML)] has a χ2(mi) asymptotic distribution only under identification assumptions,
n[ln(ΛAR)] is asymptotically distributed as χ2(k−ki) whether the rank condition holds or not. The
above inequality implies that the asymptotic distribution of the LR-LIML statistic is thus bounded
by a χ2(k − ki) distribution independently of the conditions for identification. This result was
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derived under local-to-zero asymptotics in Wang and Zivot (1998). Our result also shows that using
the LR-LIML in this context will lead to power losses compared to the AR criterion.
Consider the problem of testing arbitrary restrictions on the parameters of model (2.7), under

(2.11), which when expressed in terms of the reduced form (2.8), take the form

HNL : Rπi ∈ ∆0, (4.5)

where R is (r × kmi) of rank r and ∆0 is a non-empty subset of <r and πi = vec(Πi). The
Gaussian QLR criterion to testHNL is n ln(ΛNL),where

ΛNL =
|Σ̂NL
i |
|Σ̂i|

, (4.6)

with Σ̂NL
i and Σ̂i being the restricted and unrestricted ML estimators of Σi; note that the denom-

inator is completely unconstrained, i.e. does not reflect the LIML exclusion restrictions. As in the
full system approach, we first observe that the general hypothesis (4.5) always admits as a special
case, some hypothesis for which a pivot exists; indeed, the case where all the coefficients of the LI
reduced form equation are restricted

HL : Πi = D, (4.7)

provides such a trivial example: clearly,HL ⊆ HNL.

Theorem 4.3 BOUNDELDY PIVOTAL LI STATISTICS: A SPECIAL CASE. Consider the MLR
model (2.7)-(2.8) and let ΛNL be the statistic defined by (4.6) for testing restrictions which, when
written in terms of the reduced form (2.8), take the form (4.5). Then under the null hypothesis
imposing (2.11) and normal errors

P [ΛNL ≥ x] ≤ P
" ¯̄
W i0W i

¯̄
|W i0MW i| ≥ x

#
, ∀x,

whereM = I −X(X 0X)−1X 0, andW i is as defined in (2.3); imposing normal errors we further
obtain that

P [Λ−1NL ≥ x] ≤ P [L ≥ x] , ∀x,
where L is distributed like the product ofmi+1 independent beta variables with parameters (12(n−
k − (mi + 1) + i) , k2) , i = 1, ... , mi + 1.
PROOF. Let ΛL be the reciprocal of Wilks’ criterion for testing HL applied to the LI context.

Following the arguments of Theorem 4.1, we see that ΛNL ≤ ΛL. The null distribution of ΛL
obtains as in 3.4, applied to the LI context. The normal case also derives from (3.33) with q = k
and p = mi which leads to above beta-based bound.¥
The normal case is exactly the same result obtained in Dufour (1997). Following the reasoning

explicated for our full system approach, tighter bounds can be obtained by a proper choice of the
linear hypothesis which is a special case of (4.5). As an illustration, let us consider the important
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special case where restrictions in (4.5) only affect δi, the coefficients of the structural equation. In
this case, it is possible to find a linear hypothesis of the form (3.10) which is a special case of the
hypothesis under test. Then using the same arguments underlying Theorem 4.1 and the distributional
result (3.11) yields the following bounds test procedure.

Theorem 4.4 BOUNDEDLY PIVOTAL LI STATISTICS. Consider the problem of testing arbitrary
restrictions on the structural parameters of model (2.7) under (2.11) of the form

HNLS : Rδi ∈ ∆0, (4.8)

whereR is r×(mi+ki) of rank r and∆0 is a non-empty subset of<r. The Gaussian QLR criterion
to testHNLS is n ln(ΛNLS),where

ΛNLS =
|Σ̂NLS
i |
|Σ̂i|

, (4.9)

with Σ̂NLS
i and Σ̂i being the restricted and unrestricted ML estimators ofΣi. Consider a hypothesis

of the form (3.10) which is a special case of (4.8)

HARQX : βi = β0i , Q1iγ1i = ν0 ⊆ HNL, (4.10)

where Q1i is a q1i × ki matrix with q1i = rank(Q1i); Q1i can be treated as submatrix of an
invertible ki × ki matrix Qi =

£
Q01i Q02i

¤0 so that
Qiγ1i =

·
Q1iγ11i
Q2iγ21i

¸
=

·
ν1i
ν2i

¸
.

Let XQi = X1iQ
−1
i =

£
XQ1i XQ2i

¤
where XQ1i and XQ2i are T × q1i and T × (ki − q1i)

matrices. Then imposing (2.11) where the first row of Ji has zeros everywhere except for the first
element,

P [ΛNLS ≥ x] ≤ P
 |w0iMQ2iwi|¯̄̄
w0iMQ2iPMQ2i

X22iMQ2iwi

¯̄̄ ≥ x
 , ∀x,

MQ2i = I −XQ2i(X 0
Q2iXQ2i)

−1X 0
Q2i , X22i =

£
XQ1i X2i

¤
PMQ2i

X22i = I −MQ2iX22i(X
0
22iMQ2iX22i)

−1X 0
22iMQ2i .

where wi =
¡
wi1 wi2 ... win

¢0 gives the first column of W i as defined in (2.11). Imposing
normality, we further obtain

P

·
ΛNLS − 1] n− k

k − ki − q1i ≥ x
¸
≤ P [F (k − ki − q1i, n− k) ≥ x] .

Note that the LR statistics considered use an unconstrained MLR as the alternative hypothesis.
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An alternative statistic which considers the exclusion constraints can also be considered and will
admit the same bound; see e.g. (4.4); indeed, by construction, the LIML-constrained statistic is
larger than its unconstrained-alternative counterpart. However, this also means that bounds-tests
should be based on the latter.

5. Simulation based pivotal and bounds tests

As is evident from the above results, the exact distributional results we have derived typically involve
non-standard distributions, even in some Gaussian based contexts. However, they can be easily
obtained using the MC method; see Dufour (2002), Dufour and Khalaf (2002). In the following, we
describe the methodology in full and LI systems. To facilitate the presentation, in what follows: (i)
S denotes the statistic considered, (ii)W refers to W in (2.3) or W i in (2.11), (ii) X denotes the
exogenous variables used for the test including instruments, and (iv) the number of MC drawsN is
obtained so that α(N + 1) is an integer, where 0 < α < 1 is the level of the test.
Let us first consider the case where S is pivotal, i.e. S = S(W,X), where S(W,X) refers

to the pivotal expression of S under the null hypothesis, as in Theorems 3.1 - 3.4. Let S(0) denote
the test statistic calculated from the observed sample; generate N of replications S(1), . . . , S(N)
of S which satisfy the null hypothesis, using draws from the null distribution ofW and S(W,X).
Compute p̂N [S] ≡ pN(S(0) ; S), where

pN(x ; S) ≡ NGN(x ; S) + 1
N + 1

, GN(x ; S) ≡ 1

N

NX
i=1

s
¡
S(i) − x¢ , (5.1)

and s(x) = 1 if x ≥ 0, and s(x) = 0 if x < 0 . In other words, pN(S(0) ; S) = [N bGN(S(0)) +
1]/(N + 1) where N bGN(S(0)) is the number of simulated values which are greater than or
equal to S(0). The MC critical region is pN(S(0) ; S) ≤ α , where, under the null hypothesis,
P
£
pN(S

(0) ; S) ≤ α
¤
= α; see Dufour (2002). To avoid confusion, we refer to p-values based on

the latter method as Pivotal MC (PMC) p-values.
If S is nuisance parameter dependant but boundedly pivotal, let S(W,X) refer to the pivotal

expression of the relevant bound under the null hypothesis, as in Theorems 4.1 - 4.3. The associated
MC procedure applies as in the PMC case, where S(1), . . . , S(N) are obtained using S(W,X);
here, (5.1) leads to a level correct MC p-value which we denote Bounds MC (BMC) p-value, such
that P

£
pN(S

(0) ; S) ≤ α
¤ ≤ α; see Dufour (2002) and Dufour and Khalaf (2002).

When S depends on nuisance parameters (say θ), a MC p-value, conditional on θ which we
will denote bpN(S|θ) may be obtained as follows. Let S(0) denote the test statistic calculated from
the observed sample; generate N of replications S(1), . . . , S(N) of S given θ, using draws from
the simulated model under the null hypothesis. Applying (5.1) yields a conditional MC p-valuebpN [S|θ]. The (standard) parametric bootstrap (denoted Local MC (LMC)) corresponds to the case
where a consistent estimate of θ (compatible with the null hypothesis), say bθ, is used in the latter
procedure. The MMC method involves maximizing bpN [S|θ] over all values of θ compatible with
the null hypothesis, which provides a numerical search for the tightest bound available.
It is evident that for all 0 ≤ α ≤ 1 and ∀bθ, if the LMC p-value exceeds α, then the MMC p-value
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will also exceed α. This means that non-rejections in the context of LMC tests may be interpreted
”exactly”, with reference to the MMC test. Furthermore, if the BMC p-value is less than α, then we
can be sure that the MMC p-value is also less than α. Since the BMC procedure is numericall less
expensive than MMC, we recommend the following sequential procedure (with level α). Obtain a
BMC p-value first and reject the null hypothesis if the BMC p-value is ≤ α. If not, obtain an LMC
p-value using the constrained QMLE of θ. If the LMC p-value exceeds α, then conclude the test is
not significant. Otherwise, run an MMC algorithm.

6. A Simulation study

This section reports an investigation, by simulation, of the performance of the various proposed test
procedures. We focus on the LI examples. In each case, we also study 2SLS-based Wald tests,
which are routinely computed in empirical practice. The asymptotic and MC test versions of the
latter tests are considered. Since a bound is not available for these tests, we focus on the LMC
and MMC tests. Each experiment was based on 1000 replications. We use Simulated Annealing to
obtain the maximal p-values. The MC tests are applied with 99 replications.
The experiments are based on the LI model (2.7). We consider three endogenous variables

(pi = 3 and mi = 2) and k = 3, 4, 5 and 6 exogenous variables. In all cases, the structural
equation includes only one exogenous variable, the constant regressor. In the following tables,
d = (k − 1)− (p− 1) refers to the degree of over-identification. The restrictions tested are of the
form precisely, we consider in turn: hypotheses which set the full vector of endogenous variables
coefficients i.e. of the the form: (3.1), and hypotheses which set a subset of endogenous variables
coefficients of the the form:

β1i = β01i, (6.1)

where βi = (β01i,β02i)0 and β1i ism1i × 1, withm1i = 1. The sample sizes are set to n = 25, 50,
100. The exogenous regressors are independently drawn from the normal distribution, with means
zero and unit variances. These were drawn only once. The errors were generated according to a
multinormal distribution with mean zero and covariance

Σi =

 1 .95 −.95
.95 1 −1.91
−.95 −1.91 12

 (6.2)

The other coefficients were

γ1i = 1, βi = (10,−1.5)0, Π1i = (1.5, 2)0, Π2i =

·
Π̃

O(k−3,2)

¸
, (6.3)

The identification problem becomes mores serious as the determinant of Π 0
2Π2 gets closer to zero.

In view of this, we consider various choices for Π̃:

Π̃(1) =

·
2 1
1 2

¸
, Π̃(2) =

·
2 1.999
1.999 2

¸
,
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Π̃(3) =

·
.5 .499
.499 .5

¸
, Π̃(4) =

·
.01 .009
.009 .01

¸
.

We examine LR statistics which use an unconstrained MLR as the alternative hypothesis and their
counterpart which considers the LIML exclusion constraints. For convenience and clarity, the for-
mer are denoted LROLS and the latter LRLIML. We also consider Wald statistics of the form (2.22)
based on LIML and 2SLS estimators and denote these statistics WaldLIML and Wald2SLS respec-
tively. We report the probability of Type I error for the standard asymptotic χ2 test, and the LMC,
MMC and BMC based procedures. The subscripts asy, LMC, MMC and BMC which appear in
the subsequent Tables are used to identify these procedures respectively. In the case of the statistic
LROLS under (3.1), the local MC test is denoted PMC to account for the fact that the test is exact
since the statistic is pivotal. We have also examined the generalized Wang and Zivot (1998) asymp-
totic bounds tests to which we refer as BNDz. We perform a power study by varying the value of
β1 away from the null value of 10 and given Π̃(1), for the tests which size was adequate.
To generate the simulated samples in the LMC case, we consider the restricted LIML estimates

of the parameters that are not specified by the null, except for the Wald2SLS statistic. In this case,
we use restricted 2SLS estimates for the structural equation and OLS based estimates for reduced
form equations which complement the system. From these estimates, sum-of-squared-residuals are
constructed which yield the usual estimate covariance estimate. Furthermore, to ensure the comple-
mentarity of the MMC and the bounds procedures, the exact bounds are obtained by simulation (we
do not use the F distribution). Tables 1-5 summarize our findings. Our results show the following.

1. Identification problems severely distort the sizes of standard asymptotic tests. While the
evidence of size distortions is notable even in identifiedmodels, the problem is far more severe
in near-unidentified situations. The results for the Wald test are especially striking: empirical
sizes exceeding 80 and 90% were observed! More importantly, increasing the sample size
does not correct the problem. This result substantiates so-called “weak instruments“ effects.
The asymptotic LR behaves more smoothly in the sense that size distortions are not as severe;
still some form of size correction is most certainly called for.

2. The performance of the standard bootstrap is disappointing. In general, the empirical sizes of
LMC tests exceed 5% in most instances, even in identified models. In particular, bootstrap
Wald tests fail completely in near-unidentified conditions.

3. Whether the rank condition for identification is imposed or not, more serious size distortions
are observed in over-identified systems. This holds true for asymptotic and bootstrap proce-
dures. While the problems associated with the Wald tests conform to general expectations, it
is worth noting that the traditional bootstrap does not completely correct the size of LR tests.

4. In all cases, the Wald tests maximal randomized p-values are always one. This meant that
under the null and the alternative, MMC empirical rejections were always zero (this result,
for space considerations, is not reported in the Tables).

5. The bounds tests and theMMC tests achieve size control in all cases. The strategy of resorting
to MMCwhen the bounds test is not conclusive would certainly pay off, for the critical bound
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is easier to compute. However, it is worth noting that although the MMC are thought to be
computationally burdensome, the SA maximization routine was observed to converge quite
rapidly irrespective of the number of intervening nuisance parameters.

6. The LIML-LMC performs generally better than the generalized Wang and Zivot (1998)
asymptotic bounds tests. Observe however that the LMC test is not exactly size correct,
whereas Wang and Zivot (1998)’s tests sizes were not observed to exceed 5%. In situations
were size was adequate, the LMC test showed superior power.

7. The performance of the Wald-LIML LMC test may seem acceptable, although the above
remark in the case of theMMC p-value also holds in this case. As expected, power losses with
respect to the LR test are noted. It is worth noting that since constrained and unconstrained
MLE is done analytically, there seems to be arguments in favor of a Wald test if a LIML
approach is considered.

The above findings mean that 2SLS-based tests are inappropriate in the weak instrument case and
cannot be corrected by bootstrapping. Much more reliable tests will be obtained by applying the
proposed LR-based procedures. The usual arguments on computational inconveniences should not
be overemphasized. With the increasing availability of more powerful computers and improved
software packages, there is less incentive to prefer a procedure on the grounds of execution ease.

7. Conclusion

The serious inadequacy of standard asymptotic tests in finite samples is widely observed in the SE
context. Here, we have proposed alternative, simulation-based procedures and demonstrated their
feasibility in an extensive Monte Carlo experiment. Particular attention was given to the identifica-
tion problem. By exploiting MC methods and using these in combination with bounds procedures,
we have constructed provably exact tests for arbitrary, possibly nonlinear hypotheses on the sys-
tems coefficients. We have also investigated the ability of the conventional bootstrap to provide
more reliable inference in finite samples. The simulation results show that the latter fails when the
simulated statistic is IV-based. In the case of the LR criteria, although the bootstrap did reduce
the error in level, it did not achieve size control. In contrast, MMC LR tests perfectly controlled
levels. The exact randomized procedures are computer intensive; however, with modern computer
facilities, computational costs are no longer a hindrance.

References

Anderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis, second edn, John
Wiley & Sons, New York.

Anderson, T. W. and Rubin, H. (1949), ‘Estimation of the parameters of a single equation in a
complete system of stochastic equations’, Annals of Mathematical Statistics 20, 46–63.

26



Table 1. Empirical P(Type I error): Testing a subset of endogenous variables coefficients, LR tests.
LRLIML LROLS

d eΠ n Asy LMC MMC BMC BDZ Asy LMC MMC BMC BDZ
1 eΠ(1) 25 7.5 5.3 0.8 0.8 1.3 6.1 3.8 2.3 2.3 3.2

50 7.9 5.3 0.4 0.2 0.1 4.9 5.2 1.7 1.7 2.2
100 6.3 5.1 0.8 0.8 0.7 5.8 4.9 2.4 2.5 2.4

2 25 10.2 5.9 0.4 0.4 0.8 5.9 5.3 1.1 1.1 1.6
50 8.9 5.7 0.8 0.7 0.4 5.8 4.7 2.6 2.6 2.9
100 6.4 4.5 0.3 0.2 0.4 5.2 5.0 1.6 1.6 2.0

3 25 14.9 6.8 0.6 0.6 0.9 8.2 4.5 2.3 2.3 5.2
50 9.8 5.0 0.2 0.2 0.1 6.3 3.9 1.9 1.9 3.1
100 7.4 5.1 0.2 0.1 0.0 4.8 4.5 1.7 1.7 2.7

1 eΠ(2) 25 14.2 7.1 1.7 1.6 3.0 7.5 4.9 2.3 2.1 4.3
50 12.7 5.6 1.1 1.1 1.2 5.2 4.5 1.6 1.6 2.0
100 12.0 6.1 1.5 1.5 1.6 6.1 5.5 2.0 1.9 2.5

2 25 20.0 7.8 1.2 1.1 2.4 7.0 4.4 2.6 2.6 4.2
50 17.0 6.7 1.8 1.5 1.7 6.4 4.4 2.6 2.6 2.9
100 15.6 6.1 0.9 0.9 0.9 5.1 4.5 1.6 1.6 2.1

3 25 22.3 8.9 1.4 1.0 2.4 8.8 5.7 3.3 3.3 5.9
50 23.6 8.6 0.9 0.8 1.4 7.1 4.4 2.5 2.5 4.1
100 21.0 6.4 1.2 1.0 1.1 5.4 4.1 2.1 2.1 2.2

1 eΠ(3) 25 2.4 2.0 0.2 0.2 0.1 1.5 1.7 0.3 0.3 0.8
50 3.4 3.9 0.4 0.4 0.4 1.6 2.6 0.5 0.5 0.6
100 6.0 5.4 0.5 0.5 0.5 2.8 3.7 7.0 7.0 0.8

2 25 4.3 3.9 0.0 0.0 0.0 1.5 1.2 0.3 0.3 0.2
50 6.6 5.2 0.3 0.3 0.0 1.6 2.4 0.7 0.7 0.6
100 7.2 5.4 0.1 0.1 0.2 1.8 2.4 0.4 0.4 0.5

3 25 6.4 3.8 0.0 0.0 0.0 2.2 1.4 0.6 0.6 0.1
50 6.3 4.6 0.1 0.0 0.1 1.0 0.9 0.1 0.1 0.3
100 10.9 7.1 0.1 0.1 0.2 1.4 2.1 0.7 0.7 0.7

1 eΠ(4) 25 2.1 1.3 0.1 0.1 0.1 0.6 1.0 0.3 0.3 0.4
50 1.8 1.3 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0
100 2.5 1.6 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0

2 25 5.4 1.8 0.0 0.0 0.0 0.5 0.8 0.3 0.2 0.2
50 0.4 1.1 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.0
100 1.7 1.7 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0

3 25 9.0 2.6 1.0 1.0 0.1 1.4 1.0 0.3 0.3 0.8
50 5.8 2.0 0.0 0.0 0.0 0.7 0.8 0.0 0.0 0.2
100 0.4 1.3 0.1 0.1 0.0 0.4 0.5 0.2 0.2 0.1
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Table 2. Empirical P(Type I error): Testing a subset of endogenous variables coefficients, Wald
tests.

Wald - 2SLS Wald - LIML
d eΠ n Asy LMC Asy LMC
1 eΠ(1) 25 8.6 5.8 8.3 3.9

50 6.4 5.9 6.2 5.1
100 5.4 4.9 5.5 4.9

2 25 11.0 6.8 9.9 4.3
50 8.0 5.8 8.5 5.1
100 7.6 5.9 7.2 4.7

3 25 14.2 8.5 14.3 4.9
50 10.4 6.0 10.9 4.7
100 8.1 6.1 7.4 5.0

1 eΠ(2) 25 8.2 5.3 8.6 3.3
50 4.6 4.9 5.2 3.0
100 4.2 4.3 5.1 4.0

2 25 12.6 5.9 13.9 3.1
50 8.3 5.1 10.4 3.8
100 7.6 3.7 11.7 3.5

3 25 14.7 7.3 18.7 4.1
50 13.4 7.9 18.8 4.5
100 11.6 5.1 17.1 3.7

Wald - 2SLS Wald - LIML
d eΠ n Asy LMC Asy LMC
1 eΠ(3) 25 10.9 5.8 6.0 2.0

50 7.2 5.6 4.8 2.2
100 6.8 5.2 5.9 2.9

2 25 17.7 11.6 10.5 2.7
50 13.3 7.4 6.7 2.4
100 11.0 6.8 8.3 3.1

3 25 22.6 10.2 10.2 2.4
50 18.3 10.5 10.4 3.4
100 14.3 7.0 6.3 2.7

1 eΠ(3) 25 88.9 57.9 75.1 0.4
50 84.9 49.6 66.8 0.7
100 85.0 44.8 68.0 0.6

2 25 85.0 44.8 79.7 0.1
50 55.5 21.0 76.9 0.5
100 95.3 58.7 74.3 0.6

3 25 99.3 82.3 84.4 1.0
50 98.9 76.4 81.6 0.6
100 98.9 70.0 77.8 0.5
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Table 3. Empirical P(Type I error): Testing the full vector of endogenous variables coefficients.
Wald2SLS LRLIML LROLS WaldLIML AR

d eΠ n Asy LMC Asy LMC MMC BDZ Asy LMC Asy MC
1 eΠ(1) 25 9.7 5.1 10.9 5.5 3.1 5.2 8.9 5.3 9.2 3.4 4.8

50 7.1 5.1 6.8 4.4 2.1 3.5 6.1 4. 6.7 4.1 4.7
100 6.5 4.8 6.6 4.7 2.2 2.4 6.3 4.3 6.3 4.7 5.3

2 25 11.4 6.2 13.3 6.5 1.6 3.5 8.6 5.0 12.1 4.0 4.6
50 9.5 5.6 10.1 6.8 2.3 2.5 6.9 5.9 8.9 5.0 4.9
100 8.2 5.9 6.2 4.1 0.8 1.2 5.2 4.2 7.9 5.6 4.2

3 25 14.8 7.2 16.0 7.5 1.4 2.6 11.4 6.3 15.5 5.0 4.4
50 11.8 5.4 10.2 4.8 1.2 1.7 7.5 5.2 13.0 4.2 5.6
100 8.4 6.4 7.4 5.2 0.6 0.2 5.0 4.7 8.0 5.9 4.3

1 eΠ(2) 25 8.1 5.0 12.9 5.4 3.8 6.9 8.9 5.3 7.7 2.7 4.8
50 4.9 3.3 9.7 5.7 3.4 4.3 6.1 4.6 4.4 1.9 4.7
100 4.4 4.0 11.1 5.5 3.6 4.8 13.3 6.3 4.0 4.1 5.3

2 25 12.8 6.5 18.1 6.6 2.4 4.7 8.6 5.0 11.8 4.1 4.6
50 9.9 5.2 15.6 7.2 3.8 3.6 6.9 5.9 9.0 3.6 4.9
100 6.5 4.0 13.2 5.7 2.7 2.5 5.2 4.2 6.0 3.2 4.2

3 25 14.9 6.9 20.7 7.3 2.3 4.1 11.4 6.3 14.8 3.3 4.4
50 12.1 5.7 20.8 7.3 2.4 3.7 7.5 5.2 14.2 3.6 5.6
100 9.2 5.0 17.3 6.4 2.2 2.6 5.0 4.7 11.2 3.1 4.3

1 eΠ(3) 25 11.9 6.4 12.8 5.4 3.7 6.7 8.5 5.3 8.9 2.7 4.8
50 6.5 5.2 9.7 5.8 3.4 4.5 6.1 4.6 4.8 3.1 4.7
100 5.6 4.4 11.1 5.5 3.6 4.8 6.3 4.3 4.1 4.2 5.3

2 25 18.9 10.3 18.0 6.6 2.4 4.7 8.6 5.0 14.2 3.3 4.6
50 12.1 6.2 15.7 7.3 3.8 3.6 6.9 5.9 10.2 2.6 4.9
100 9.4 5.0 13.2 5.7 2.7 2.5 5.2 4.2 7.2 2.8 4.2

3 25 23.0 10.2 20.9 7.2 2.4 4.1 11.4 6.3 16.8 3.5 4.4
50 18.5 8.2 20.9 7.1 2.5 3.7 7.5 5.2 15.8 3.4 5.6
100 12.4 6.1 17.2 6.4 2.2 2.6 5.0 4.7 12.2 3.6 4.3

1 eΠ(4) 25 92.5 72.6 14.3 6.1 4.9 7.6 8.9 5.3 79.0 3.8 4.8
50 91.1 66.5 10.9 6.0 4.1 4.9 6.1 4.6 73.1 3.9 4.7
100 90.2 61.3 11.3 5.1 3.7 5.0 6.3 4.3 7.11 3.2 5.3

2 25 98.9 85.3 21.8 6.4 3.1 5.8 8.6 5.0 82.3 2.8 4.6
50 98.4 79.4 18.1 6.1 4.4 4.6 6.9 4.6 73.1 3.9 4.9
100 97.5 71.5 14.7 5.4 3.1 2.9 5.2 4.2 76.9 3.2 4.2

3 25 99.6 90.7 26.5 7.7 3.1 5.3 11.4 6.3 84.9 2.5 4.4
50 99.3 87.2 23.6 6.5 3.0 5.3 7.5 5.2 82.2 3.8 5.6
100 99.1 81.9 20.7 6.2 2.8 3.0 5.0 4.7 78.5 2.7 4.3

29



Table 4. Power: Testing the full vector of endogenous variables coefficients
H0 : β11 = 10 LRLIML LROLS WaldLIML AR
Sample Size d β11 LMC MMC BMC BDz PMC LMC
25 1 10.1 12.2 8.0 8.0 11.2 11.4 13.8 10.4

10.2 30.2 22.8 22.8 31.7 27.4 32.6 29.0
10.3 55.0 44.4 44.3 55.8 50.4 51.1 51.5
10.5 88.6 80.8 80.8 89.6 84.8 73.8 86.6
11 99.9 99.4 99.4 99.9 99.6 83.6 99.7

2 10.1 14.6 5.5 5.4 9.3 10.5 12.6 10.7
10.2 35.9 19.0 18.8 29.0 29.4 29.9 29.7
10.3 59.6 39.2 38.8 51.5 48.8 48.9 51.0
10.5 91.5 77.0 76.8 87.6 84.5 69.8 86.6
11 1.0 99.2 99.2 99.8 99.5 80.1 99.6

3 10.1 15.0 4.7 4.2 8.2 9.9 12.6 10.5
10.2 35.9 14.2 13.7 23.1 24.6 30.9 25.7
10.3 61.4 32.6 30.7 46.9 46.5 49.7 48.1
10.5 93.1 73.8 71.3 86.2 84.1 72.3 85.1
11 1.0 99.1 99.0 99.7 99.6 81.9 1.0

H0 : β11 = 10 LRLIML LROLS WaldLIML AR
Sample Size d β11 LMC MMC BMC BDz PMC LMC
50 1 10.1 22.4 15.6 15.6 19.0 19.3 25.9 20.5

10.2 66.9 54.0 54.0 59.2 60.2 62.9 60.9
10.3 93.2 88.4 88.4 92.0 90.7 84.8 92.8
11.0 1.0 1.0 1.0 1.0 1.0 96.4 1.0

2 10.1 24.3 11.9 11.8 15.5 20.1 24.1 20.4
10.2 67.6 46.4 45.8 53.1 57.5 59.0 59.8
10.3 93.2 83.8 83.6 88.6 89.1 80.7 89.9
11.0 1.0 1.0 1.0 1.0 1.0 94.8 1.0

3 10.1 22.8 7.7 6.9 9.7 16.9 22.9 17.1
10.2 61.8 31.8 30.7 38.5 46.2 54.5 48.8
10.3 90.1 68.7 67.2 74.5 79.4 78.8 81.8
11.0 1.0 1.0 1.0 1.0 1.0 95.3 1.0

H0 : β11 = 10 LRLIML LROLS WaldLIML AR
Sample Size d β11 LMC MMC BMC BDz PMC LMC
100 1 10.1 41.4 31.6 31.6 33.9 37.9 44.3 45.9

10.2 93.8 87.0 87.0 89.0 90.3 89.9 91.4
10.5 1.0 1.0 1.0 1.0 1.0 99.1 1.0

2 10.1 40.7 19.4 18.9 23.2 31.4 41.6 33.6
10.2 95.1 77.0 76.6 81.0 84.3 88.6 87.1
10.3 99.6 98.4 98.4 98.7 98.8 98.9 99.1
10.5 1.0 1.0 1.0 1.0 1.0 99.6 1.0

3 10.1 38.3 15.6 13.7 15.3 27.3 40.6 27.6
10.2 89.0 70.2 70.1 71.6 82.0 88.0 83.0
10.5 1.0 1.0 1.0 1.0 1.0 99.3 1.0
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Table 5. Power: Testing a subset of endogenous variables coefficients
H0 : β11 = 10 LRLIML LROLS
Sample Size d β11 LMC MMC BMC BDz LMC MMC BMC BDz
25 1 10.3 15.3 7.2 3.5 6.1 12.7 8.0 5.6 9.1

10.5 18.8 10.3 5.8 8.9 16.2 11.2 8.4 12.4
11.0 21.6 10.8 7.8 11.1 18.4 13.2 10.5 14.8

2 10.3 13.6 6.2 2.8 5.3 10.6 6.5 5.5 10.1
10.5 15.7 7.9 4.6 7.5 13.0 9.0 7.4 12.9
11.0 19.4 10.1 5.6 9.6 15.3 11.6 9.0 16.0

3 10.3 15.1 5.4 2.0 3.7 8.3 4.8 4.8 10.1
10.5 17.7 7.3 2.5 5.2 11.4 7.7 6.6 12.8
11.0 22.4 8.7 3.5 7.6 13.8 10.4 8.7 16.3

H0 : β11 = 10 LRLIML LROLS
Sample Size d β11 LMC MMC BMC BDz LMC MMC BMC BDz
50 1 10.1 11.0 4.9 2.5 2.6 8.8 5.9 4.0 5.2

10.3 28.8 18.4 10.5 12.8 24.7 20.3 15.6 17.7
10.5 39.1 27.6 17.0 19.5 33.3 28.1 21.7 5.6
11.0 48.2 35.5 24.0 27.5 42.7 36.6 29.0 33.2

2 10.1 10.3 3.5 1.2 1.4 6.9 4.1 3.3 4.6
10.3 23.4 14.0 5.4 8.2 17.9 14.1 9.6 13.9
10.5 30.3 19.5 10.0 14.0 25.3 20.7 15.9 19.8
11.0 37.3 22.9 15.6 18.2 31.4 27.1 21.3 26.7

3 10.1 11.9 3.4 0.7 1.1 7.1 4.5 3.4 5.7
10.3 28.8 12.7 4.8 6.3 19.2 14.9 12.0 17.4
10.5 37.5 20.2 8.9 12.3 26.9 21.5 17.7 24.1
11.0 45.3 27.5 13.6 18.3 35.6 29.2 25.3 32.8

H0 : β11 = 10 LRLIML LROLS
Sample Size d β11 LMC MMC BMC BDz LMC MMC BMC BDz
100 1 10.1 16.6 10.4 4.4 4.7 14.6 10.7 6.7 7.9

10.2 38.9 25.9 15.6 16.8 32.6 26.7 21.5 23.5
10.3 54.6 44.3 26.0 28.1 47.7 39.4 32.1 34.6
10.5 69.9 58.9 42.2 45.6 63.5 58.1 49.1 52.5
11.0 80.4 68.6 56.1 60.8 76.3 72.5 62.5 66.7

2 10.1 19.0 12.6 3.3 3.8 12.9 9.3 7.5 7.9
10.2 42.1 271 10.7 13.0 29.7 25.4 19.9 22.3
10.3 58.6 42.7 21.5 24.8 45.0 40.2 33.6 37.4
10.5 70.9 59.6 38.6 43.0 62.5 58.3 50.8 54.6
11.0 82.0 70.7 53.2 58.0 75.6 71.1 65.1 69.0

3 10.1 18.2 8.4 1.7 2.2 11.0 8.4 6.7 7.4
10.2 40.6 20.8 7.7 8.7 27.1 22.0 19.2 21.7
10.3 55.8 34.1 15.3 17.7 40.6 36.0 30.6 34.5
10.5 72.8 49.5 28.4 31.8 59.1 53.1 46.9 51.7
11.0 81.8 64.6 44.4 48.7 74.0 69.9 64.0 68.7
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