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Abstract
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1. Introduction

The short-run dynamics of inflation and its cyclical interaction with real aggregates is an im-
portant question both in theory and in practice, especially for central banks in the conduct of
monetary policy. The recent experience of high levels of economic activity coupled with low
inflation observed in several countries casts doubt on the traditional Phillips curve as a model
of inflation dynamics.

A recent class of dynamic stochastic general equilibrium models integrates Keynesian fea-
tures, such as imperfect competition and nominal rigidities, resulting in a new view on the nature
of inflation dynamics. These models are grounded in an optimizing framework where imperfectly
competitive firms are constrained by costly price adjustments. Within this framework, the pro-
cess of inflation is described by the so-called New Keynesian Phillips Curve (NKPC) which has
two distinguishing features. First, the inflation process has a forward-looking component and
second, it is related to real marginal costs. These features are a consequence of the fact that in
this framework firms set prices in anticipation of future demand and factor costs. Compared to
traditional reduced-form Phillips curves, which are subject to the Lucas critique, the NKPC is
a structural model with parameters that are unlikely to vary as the policy regime changes. This
aspect is particularly important and has been outlined in a number of papers: parameter insta-
bility in reduced-form models is a likely possibility. Furthermore, the New Keynesian Phillips
Curve specification has dramatic implications for the conduct of monetary policy in that a fully
credible central bank can bring about disinflation at no recessionary cost if inflation is a purely
forward-looking phenomenon. A crucial issue is therefore whether the New Keynesian Phillips
Curve is empirically relevant.

The recent works of Gali and Gertler (1999) and Gali, Gertler, and Lopez-Salido (2001a,henceforth
GGLS) provide evidence supporting the NKPC for the United States and the euro area. These
authors estimate hybrid versions of the NKPC, where lags of inflation are also incorporated,
and conclude that the forward-looking component is more important and, furthermore, that
real marginal costs are statistically significant. In these studies, parameter estimates are ob-
tained by the Generalized Method of Moments (GMM) and statistical significance is assessed
based on Newey-West estimates of the covariance matrix.

Several econometric problems have been discussed in the literature on the empirical relevance
of their results.? On the one hand, Rudd and Whelan (2002), Lindé (2003) have suggested
that their results may be the product of specification bias associated with GMM estimation
procedure. Therefore, Rudd and Whelan (2002) showed that GMM produces biased estimates
of the true parameters when instruments are used that belongs to the true inflation equation.?
Lindé (2003) concluded that the mixed evidence for the NKPC can be explained by the extensive
used of limited information estimation methods. In addition, it appears difficult to accurately

2The common criticisms of the NKPC include: (i) whether it captures actual inflation persistence (Fuhrer,
1997; Fuhrer and Moore, 1995), (ii) the plausibility of the implied dynamics (Ball, 1999; Mankiw, 2001) and (iii)
the estimation methodology. We focus here on the third issue.

3Rudd and Whelan (2002) also argue that the hybrid model suffers from low power against the backward-
looking model.



distinguish between a purely forward looking specification and a backward looking model in
small samples and that the fully information maximum likelihood (FIML) approach leads to
emphasise the backward component rather than the forward looking component of the hybrid
NKPC. However, GGLS (2003) have shown that these claims are incorrect in the sense that
their results are robust to a variety of estimation procedures, including GMM estimation of
the closed form and nonlinear instrument variables. Specifically, the conclusions regarding the
importance of the forward looking behavior seems to be robust. On the other hand, Mavroeidis
(2002) discussed the issues of identification in the case of the single-equation formulations like the
NKPC. Indeed, the properties of the non-modelled variables are important for the identification
process. Overall, the hybrid NKPC may suffer from under-identification or misspecification.
In this respect, identification is achieved in empirical applications by confining explanatory
variables to the set of instruments, with misspecification as a result. Nason and Smith (2003)
argued that GMM estimates typically lead to parameters that are near-identified. Hence, higher
order dynamics in marginal cost or the output gap are necessary for identification and testing.
In addition, Nason and Smith (2003) showed that the coefficient on lagged inflation in the
hybrid NKPC can not be identified if inflation Granger causes marginal cost or the output
gap. In this respect, they also conclude that FIML makes identification easier. Ma (2002) also
discussed the question of identification and applied the test of weak instruments developed by
Stock and Wright (2000). His results showed that the method of GG (1999) is inadequate due
to observational equivalence in the pure forward-looking Phillips curve and weak identification
in the hybrid NKPC. It is, however, to be noted that the identification problems do not mean
that the NKPC is a poor approximation to inflation dynamics but rather that its interpretation
is problematic. In addition, the redundancy of instruments and their number is a crucial issue
for estimating the NKPC. Guay, Luger and Zhu (2002) demonstrated the sensitivity of standard
GMM estimates to the choice of instruments. In effect, using the continuously-updated GMM
estimator (CUE) developed by Hansen, Heaton and Yaron, empirical evidence for the NKPC is
weak in all their specifications in Canada. Moreover, the test of instruments validity is rejected
when considering the methodology proposed by Hall (2000). Finally, another important debate is
the discussion of ML versus GMM estimates of the hybrid NKPC. While the two approaches are
asymptotically equivalent, the finite sample performances may significantly differ. For example,
Fuhrer (1997) rejects the importance of the forward-looking component in US inflation using the
ML approach. In a related paper, Fuhrer and Rudebusch (2002) obtained a similar result for a
hybrid IS curve. At the same time, Jondeau and LeBihan (2003), Kurman (2003) find evidence
for the NKPC by using the implied cross-sections restrictions. Overall, the choice between the
two approaches is an open debate.

This paper reexamines the empirical relevance of the New Keynesian Phillips Curve for the
United States. In particular, several important econometric issues are addressed on the standard
approaches typically used for estimation and inference in NKPC models. These are related to
the potential bias of GMM estimates in the presence of many instruments, the low power of
specification tests based on overidentifying restrictions, and the estimation of variance-covariance
matrix. In order to mitigate these problems, we estimate different various specifications of the



NKPC by using the CUE and the 3-step GMM (3S-GMM) estimators proposed by Bonnal and
Renault (2001, 2003).

Our results show that the empirical evidence of the real marginal cost in the NKPC is rather
mixed and that the backward-looking component of inflation needs to be accounted for. In
particular, results are sensitive to the instruments sets, normalisation, estimators, the sample
period and revisions of data.

The rest of this paper is organized as follows. In section 2 we present the theoretical frame-
work that yields the NKPC. In section 3, we describe the econometric issues associated with
standard GMM estimation, discuss particular issues with estimation of the closed-form version
of the NKPC, and present our estimation strategy based on the biased-corrected continuous up-
dating estimator (CUE)and the 3 steps GMM estimator developed by Bonnal and Renault(2001,
2003). In particular, using the same data set as Gali and Gertler (1999), we demonstrate the
sensitivity of standard GMM estimates to the choice of instruments. In section 4, we present the

estimation results. A discussion of the main findings follows in section 5. Section 6 concludes.

2. The New Phillips Curves

2.1 Specifications

The New Keynesian Phillips Curve (NKPC), as advocated by Gali and Gertler (1999), is based
on a model of price setting by monopolistically competitive firms. Adopting a price setting
rule as in Calvo (1983) simplifies the aggregation problem. This price adjustment rule is in the
spirit of Taylor’s (1980) staggered contracts model. Following Calvo, each firm, in any given
period, may reset its price with a fixed probability 1 — 6 and, with probability 6, its price will
be kept unchanged or proportional to trend inflation Q.* These adjustment probabilities are
independent of the firm’s price history such that the proportion of firms that may adjust their
price in each period is randomly selected. The average time over which a price is fixed is then
given by 1/(1 —6).5 The firms face a common subjective discount factor, 3.
Let mc; be (log) real marginal cost, the NKPC (Woodford, 2003) is then given by:

1-6)(1-96
T = %mct + BEt’/Tt+1- (1)
where
a p—
=) "
The derivation in Yun (1996) and Goodfriend and King (1997) correspond to the particular

case where the elasticity of marginal cost with respect to output (1) is equal to zero.’

4This adjustment is necessary if there is trend inflation in order to preserve monetary neutrality in the

aggregate.
5Benigno and Lopez-Salido (2002) proposed to use an index of nominal rigidity given by: ﬁﬁ

6Indeed, the hypothesis that individual firms can instantaneously adjust their own capital stocks implies that



Gali and Gertler (1999) extend the basic Calvo model to allow a subset of firms to use a
backward-looking rule-of-thumb to capture the inertia in inflation. The net result is a hybrid
Phillips curve that nests (1). From the three structural parameters, w, 6 and 3, the three
reduced-form parameters v, 7 and A can be defined and the hybrid version of the Phillips
developed by Woodford (2003) is given as follows:

1
T =\ (m> meg + YeEyme + vpme—1, (2)

where

. <<1—w><1—9>(1—9m>¢1,

0
o= B,
W o= w
¢ = 6+w[l-0(1-p)],

and where w is the proportion of firms that use a backward-looking rule-of-thumb. The cor-
responding hybrid New Phillips curve for the aggregate assumption considered by Yun (1996)
and Goodfriend and King (1987) is derived in Gali and Gertler (1999) and the one based on
the assumption of Sbordone (2001) in Gali, Gertler, and Lopez-Salido (2001). One can easily
retrieve these specific forms from the general one given above.

Three principle results emerge from the estimations of Gali and Gertler (1999) and Gali,
Gertler and Lopez-Salido (2001): (1) the reduced-form coeflicient on real marginal cost is positive
and statistically significant; (2) tests rejects the pure forward-looking specification of the NKPC
(1) and (3) forward looking behaviour is dominant and the coefficients v¢ and v, sum to close

neighborhood of unity across a range of estimates.

2.2 Measure of Marginal Cost

Alternative measures of the marginal cost have been considered in empirical investigations of
the New Keynesian Phillips curve. We consider here the simplest measure of real marginal cost
based on the assumption of Cobb-Douglas technology (see Gali and Gertler 1999). Suppose the
following Cobb-Douglas production function:

Y = K (AH)" ),

where K; is the capital stock, A; is labor augmenting technology, and H; is hours worked. Real

marginal cost is then given by S;/(1 — @), where S; = W H;/P;Y; is the labor income share. In

firms act as price takers in the input market. Combined with the assumption of a constant return to scale
technology, real marginal cost is thus independent of output.



log-linear deviation from the steady state, we have:
mey = 8¢ = wi + hy — pr — ye.

The definition of marginal cost may be a critical issue in the estimation of the NKPC. For
instance, the real marginal cost may be measured in different ways, which involve either the
output gap or the real unit labour cost. In the first case, a reliable measure of the output gap
is necessary while the standard approximation of the real marginal cost by real unit labour cost
arises solely under the assumption of a constant return to scale production function (Rotem-
berg and Woodford, 1999). Under more realistic assumptions, the real unit labour cost needs
to be corrected. For instance, Rotemberg and Woodford (1999) discuss possible appropriate
corrections for different assumptions about technology. These include corrections to capture
a non-constant elasticity of factor substitution between capital and labor and the presence of
overhead costs and labor adjustment costs. Gagnon and Kahn (2003) derive the NKPC when
firms use alternative productions functions and show that each technology introduces a specific
"strategic complementarity parameter” and a modification to the real marginal cost measure.
Finally, Eichenbaum and Fisher (2003) modify the real marginal cost by allowing the firms re-
quiring working capital to finance payments to variable factors of production. Overall, these
studies argue that these corrections do not affect the qualitative nature of the results discussed
below. On the other hand, data may be revised over time and lead to different estimates. These
two issues are further discussed later.

3. Estimation Issues

3.1 Standard GMM Approach
The hybrid model in reduced form can be written as
Tt = V¢l + VoTe—1 + Amce + €441, (3)

where €441 is an expectational error term orthogonal to the information set in period ¢, i.e.,

By [(m — vpmep1 — W1 — Amey) Zi] = 0, (4)

where Z; is a vector of instruments dated ¢ and earlier. The orthogonality condition in (4)
then forms the basis for estimating the model by the generalized method of moments (GMM).
Gali and Gertler (1999) use this technique with four lags each of inflation, the labour income
share, the output gap,” the long-short interest rate spread, wage inflation, and commodity price

inflation. Finally they use a 12-lag Newey-West estimate of the covariance matrix to obtain

"Typically, the output gap is obtained by application of the Hodrick-Prescott filter or by fitting a quadratic
trend to the entire sample. Using filtered output gap measures as instruments could be invalid since they violate
the basic GMM orthogonality conditions.



standard errors for the model parameters. Based on these choices, they conclude that: (i) the
model is statistically significant, and (ii) v, is statistically larger than -,. They interpret these
results as support for the New Keynesian Phillips Curve in the case of the United States. In
contrast, GGLS (2001) choose a relatively smaller number of lags for instruments other than
inflation in order to minimise the potential estimation bias arisen in small samples due to the
number of overidentifying restrictions . In this respect, their instrument set reduce to four lags
of inflation, two lags each of the output gap, wage inflation and the labour income share.

Given the relatively large number of moment conditions,® the estimates reported by Gali and
Gertler (1999) are potentially biased since it is well-known that the estimation bias increases
with the number of moment conditions in the standard GMM approach (Newey and Smith 2001).
However, choosing a relative small number of instruments does not also prevent from estimation
bias.® The two following issues are still present: the weak instruments and the instruments
redundancy. In order to illustrate the finite-sample bias, we consider the following simple Monte
Carlo experiment (Bonnal and Guay, 2003) in which the number of instruments is increased.'°
Suppose the data are generated by the AR process

Yt = pYt—1 + €,

where p = .1 and ¢; ~ i.i.d. N(0,1). Consistent estimates of p are obtained by GMM. The
moment conditions are based on
E(EtZt) = 0,

where Z; = (Y4—1,Yt—2,...,Yt—k)" is a vector of valid instruments (since it excludes y;). The
sample size is fixed at 100 and we study the effect of an increase in the number of moment
conditions. The Monte Carlo experiment is based on 10,000 replications and the automatic lag
selection procedure of Newey and West (1994) is used to obtained an estimate of the weighting
matrix. Finally, we compute the point estimate of the autoregressive parameter using the CUE
and the 3S-GMM estimator.'! Table 1 reports the bias of the different estimators as a function
of the number of moment conditions k—1. The bias of the GMM estimator clearly increases with
the number of moments (lags of ;) included in the vector of instruments. With two instruments,
the estimator is nearly unbiased. With ten instruments, the bias appears to be of the same order
as the true parameter value. This simple Monte Carlo experiment concurs with the theoretical
results of Newey and Smith (2001). In contrast, results are different for the CUE and 3S-GMM
estimators. First, both estimators performs better in terms of bias or root mean square error

(RMSE) than the GMM estimator. Second, the bias appears to increase less than linearly with

8In fact, 24 moment conditions to estimate 3 reduced-form parameters.

91t is to be noted that a number of studies have also estimated New Keynesian Phillips curves in countries
other than the US applying equally arbitrary choices for the instrument set and the number of lags used in
the construction of the Newey-West standard errors. See for example, Batini, Jackson and Nickell (2000),
Balakrishman and Lopez-Salido (2002). A few notable exceptions are Jondeau and Le Bihan (2001, 2003) and
Linde (2001) who consider full information maximum likelihood approaches.

10We do not examine whether or not the instruments are redundant and/ or weak.

11 Both estimators are detailled in section 3.3.



Table 1. Bias of GMM, CUE and 3S-GMM estimators

k—1 poum bias rmse pcoyg  bias  rmse p3s_gmam  bias  rmse
0 .0602 -.0398 .2263 .0697 -.0303 .2027 .0609 -.0391 .2269
1 .0953 -.0047 1745 0726 -.0284 .1745 .9936 -.0064 .1753
2 .1109 .0109 1654 .0784 -.0216 .1647 1017 .0017 .1639
3 1223 0223 1612 .0734 -.0266 .1622 1110 .0110 1619
4 1318 0318 1615 .0685 -.0315 .1648 1175 0175  .1606
5 1441 .0441 1646 .0655 -.0345 .1610 1272 .0272  .1608
6 .1516 .0516 .1684 .0614 -.0386 .1725 1327 .0327 .1639
7 .1607 .0607 1713 .0586 -.0414 .1752 .1384 .0384 .1675
8 1687 0687 1787 .0542 -.0458 .1823 1473 0473 1726
9 1761 0761 1813 .0488 -.0512 .1926 1532 0532 1758
10 .1896 0896 .1857 .0462 -.0538 .2004 1583 0583 .1775

the number of moment conditions.
To further appreciate the relative importance of the number of instruments within a standard

GMM context, let v = v; and consider the reduced form under the constraint v + v, = 1:

m(7) = A(y)me + €iq, (5)

where m(y) = 7 — -1 — Y(me41 — m—1). For a fixed value of v € [0, 1], the parameter A(7)
can be consistently estimated by instrumental variables using lagged values of real marginal cost
dated t and earlier.

Using the same data set!'? as Gali and Gertler (1999), Figure 1 shows the effects of different
instruments and those of various lags in constructing Newey-West estimates of the standard
deviation. For a given instrument, it appears that there is little effect whether 8, 12, or 16 lags
are used for the Newey-West standard errors. On the other hand, it is clear that the choice of
instrument is crucial, especially at the upper end of the interval [0, 1] where the forward-looking
component in the new Phillips curve is more important. When the sixth lag of marginal cost
is used as instrument, marginal costs tend to appear marginally significant for some values of
the forward-looking component parameter near 0.7, while it is clearly insignificant when the
fourth lag is used as instrument. Note also the increased precision when the fourth lag is used as
instrument as reflected by the relatively tighter confidence bands. The difference in the width
of the confidence bands is expected since the more recent lags are more strongly correlated with
contemporaneous marginal cost and hence are better instruments.

Overall, these results suggest that the results reported by Gali and Gertler (1999) and GGLS

(2001) may be sensitive to the number of instruments and hence the significance of marginal

12The data is quarterly for the U.S. over the period 1960:1-1997:4. Inflation is the annualized change in the
logarithm of the GDP delator and real marginal costs are measured as deviations from the sample mean of the
logarithm of labour income share in the non-farm business sector.
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Figure 1. The dotted line in each graph shows the IV estimates of A(7y) in the model m;(y) =
A(y)meg + €441, where the instrument used is either the fourth lag (left panel) or the sixth lag
(right panel) of real marginal cost. Newey-West standard errors are used to construct the 95%
confidence bands using either 8, 12, or 16 lags.



costs in explaining U.S. inflation must be further analysed.

3.2 Closed Form Estimation

Another way to estimate the structural parameters of the pure forward-looking NKPC curve
or the hybrid NKPC is to derive the closed form representation. As shown in Gali and Gertler
(1999), the hybrid Phillips curve has the following closed form, conditional on the expected path
of real marginal cost:

A=
T = 01T—1 + m ;52 kEt[mct—i-k]a (6)

where ¢; and §y are, respectively, the stable and unstable roots of the hybrid Phillips curve given

by:
A VA TSR EA e 5T
27y 27y
An alternative to the standard GMM approach is to estimate directly the closed form represen-
tation as done in Rudd and Whelan (2003) and Gali, Gertler and Lopez-Salido (2001a, 2001b).'?

Under rational expectations, the closed form defines the following orthogonality conditions:

A=
Et (7Tt — 617Tt_1 — 262 kmCH_k)Zt = 0, (7)
k=0

&2y —

where Z; is a vector of instrumental variables.

With this approach it is necessary to use a truncated sum to approximate the infinite dis-
counted sum of real marginal costs. Based on an assumed value for the discount factor 3, Rudd
and Whelan (2001) use 12 leads of real marginal cost to construct the discounted stream of real
marginal costs. Gali, Gertler and Lopez-Salido (2001), on the other hand, use 16 leads and differ
by estimating the discount factor instead of fixing its value arbitrarily. In both cases however,
there is loss of degrees of freedom due to the need to truncate the sum which can be important
given the relatively small sample size (typically about 30 years of quarterly data). Furthermore,
given the way the measure of the discounted stream of future marginal cost is constructed, there
is a generated regressor problem. To see this, consider the limiting case of pure forward looking

behavior. In that case the closed form, under rational expectations, becomes

T = A Z ﬂkmctﬂc + U1 (8)
k=0

L3However, as is noted by Gali, Gertler and Lopez-Salido (2003), the closed form model of Rudd and Whelan
(2001, 3003) is inconsistent with the hybrid model in that their final form is not derived from the original hybrid
equation. Therefore, the closed form of the pure forward looking model is appended on lagged inflation as
opposed to be directly solved for the hybrid model.

10



where the new error term wy; is related to the original expectational error term €441 by

o0
Uppr = Eppr YT — A Y BEmci, (9)
k=1

and from which the generated regressor problem is apparent. Since wus11 in (9) is serially cor-
related (into to the indefinite future), it is essential that the efficiency of the GMM estimator
and the consistency of the associated standard errors be evaluated. Clearly, this problem is also
present in the hybrid Phillips curve. Estimation in the presence of generated regressors leads in
general to inefficient estimates that require adjustments to obtain consistent estimates of their
standard errors (see Pagan 1984, 1986, Murphy and Topel 1985, and McAller and McKenzie
1991a,b). Gali, Gertler, and Lopez-Salido (2001) recognize this problem, but no attempt is made
to evaluate it.

Another problem associated with the closed form is that it involves locally almost unidentified
(LAU) parameters such that use of Wald-type confidence intervals is invalid. The problem here is
that the ratio A/(d27y) has a discontinuity at every point of the parameter space where vy; = 0.
From Dufour (1997), it is then known that one can find a value of this ratio such that the
distribution of the Wald statistic will deviate arbitrarily from any “approximating distribution”
(such as the standard normal distribution). This suggests that Wald-type inference on structural
parameters that appear in NKPC models in ratio form is, in general, an issue for any of the
usual estimation approaches. Other techniques, such as confidence sets based on the inversion
of likelihood ratio tests, would yield valid inference on the LAU structural parameters. Note
that Wald-type inference remains valid for the “non-LAU” reduced-form parameters.

Given that the econometric issues with the closed form solution are roughly the same as
the issues used for estimation and inference in standard NKPC models, the estimates of the

closed-form solutions are not reported in this paper.

3.3 Estimation Strategy

Our estimation strategy differs in three important ways compared to other empirical studies
of the New Keynesian Phillips curve. First, an automatic lag selection procedure proposed by
Newey and West (1994) is adopted to compute estimates of the variance-covariance matrix of
the moment conditions. As shown by several studies, the small sample properties of method-
of-moments estimators depends crucially on the number of lags used in the computation of
this variance-covariance matrix.' Second, our estimator of the variance-covariance matrix uses
the sample moments in mean deviation in order to increase the power of the overidentifying
restrictions test as suggested by Hall (2000).'> A more powerful specification test is clearly
desirable as it addresses the issues raised by Dotsey (2002) who found that the conventional

specification test used in Gali and Gertler (1999) lacks power. Third, two alternative estimators

MFor a discussion, see Journal of Business and Economic Statistics (1996), vol. 14.
15The mean deviation is used for the GMM and 3S-GMM estimators.

11



are used for the non-linear specification - the CUE and 3S-GMM estimator. The CUE has the
advantage that it does not depend on the normalization of the moment conditions in contrast
to the conventional GMM estimator (invariance principle) while the 3S-GMM estimator is not
sensitive to initial conditions. Moreover, they perform better in finite samples than the GMM
estimator in terms of bias (see section 3.1 and Bonnal and Guay, 2003). In general, the differences
between the CUE and the 3S-GMM estimator are expected to be relatively small, at least
asymptotically, compared to the difference between them and the two-step GMM estimator.

We begin by first presenting the two alternative estimators to the conventional two-step
GMM estimator: the CUE introduced by Hansen, Heaton and Yaron (1996) and the 35-GMM
estimator proposed by Bonnal and Renault (2001, 2003).

The optimal two-step GMM estimator of Hansen (1982) based on the moment conditions

Elg(2¢,80)] =0 (10)
is defined as
R 1 I o 1
B = argmin - ;g(zmb’)'ﬂ(ﬂ)’lf ;g(zt,ﬂ),

where 3 is a first-step estimator usually obtained with the identity matrix as weighting matrix,
and where 2! is a consistent estimator of the inverse of the variance-covariance matrix of the
moments conditions.!®

The CUE is analogous to GMM except that the objective function is simultaneously min-
imized over § and Q(B) In other words, the empirical variance-covariance matrix of moment
conditions replaces the fixed metrics of the GMM, in which a norm of empirical moments is

minimised. This estimator is given by'”

T

T
§=arsyiy 73080 3 glen ).

t=1

This estimator has important advantages compared to the conventional two-step GMM esti-

mator. First, unlike GMM, this estimator does not depend on the normalization of the moment

161n other words, a two-step GMM estimator E is characterised by first order conditions:

255197 e i 3)

where E is a preliminary consistent estimator for Sg.
17 As is pointed out by Newey and Smith (2003), the CUE can be computed as the solution of:

T -~
laﬂ(m

t=

1 & 1 & 1 &
& ) —r
B = arg min ;g(n, [ > (9(2t,8) —9(2,8)) 9 (Zt,ﬁ)} ;g 2, 8

t=1

where g(zt, 8) = Z g(z¢, B).

This is important since Hall (2000) shows that it is preferable to use the mean deviation form of the covariance
matrix than the common form in two-step GMM.

12



conditions. As shown by Gali and Gertler (1999), Gali, Gertler and Lopez-Salido (2001), the
results obtained for the New Phillips curve and the hybrid version depend on the normalization
adopted for the GMM estimation procedure. Second, Newey and Smith (2001) have shown
for i.i.d case that the asymptotic bias of CUE does not increase with the number of moment
conditions. Specifically, Newey and Smith (2001) demonstrated that the CUE has the same
minimal higher order bias as the empirical likelihood estimator (ELE) if the moments of order
three are null.'® One advantage of the CUE (or Minimum Chi-square) over the ELE is that it is
less time-consuming and is not obtained through a saddle-point problem, which grows with the
number of moment conditions. In contrast, the dimension of the optimisation problem for the
CUE is equal to the number of moment conditions. At the same time, the CUE may be sensi-
tive to initial conditions. Third, Hansen, Heaton, and Yaron (1996) show that in small samples
the CUE has smaller bias for IV estimators of asset pricing models with several overidentifying
restrictions compared to that of GMM.

On the other hand, the 35-GMM estimator has the interesting property of being efficient
with minimal higher order bias, like the ELE. In contrast to the standard two-step GMM
estimator, the 35-GMM estimator seeks to use all the information cointained in the moments
restrictions (10) in order to estimate 8y . In effect, the 3S-GMM estimator makes implicit use of
the overidentifying restrictions to improve the estimatiom of the optimal selection of estimating
equations. In contrast, the two-step GMM estimator does not use a technique of variance
reduction. Indeed, the poor finite sample performance of GMM estimator can be explained
by the fact that only the information used in the just-identified moment conditions are used.'®
As is pointed out by Back and Brown (1993), the remaining moment conditions can be used
to improve the estimation of the data distribution by considering the empirical distribution. In
other words, both moment conditions and the proximity between the estimated distribution and
the empirical distribution are exploited, as in one-step alternatives. In this respect, the 3S-GMM
estimator avoids the saddle-point problem and the numerical procedure’s initialisation problem
while possessing the optimal bias property. In addition, the computational implementation is
not, burdesone and only requires three quadratic optimisation steps. To describe the estimator,
let us first consider the case of i.i.d process. In the first step, a consistent estimator E of 3y is
computed. In a second step, this estimator is used in order to define an efficient two-step GMM

estimator B, i.e. B» solves the following equations:2°

-1

1 < ~
T; t

NN A L
[Z ¢ (5) %(zt,ﬁ)] lz i’ (5) 9(zt,8)g' (2t, B)

t=1 t=1

18 These two estimators can be included in a general class based on the family of Cressie-Read power divergence
statistics ( Baggerly, 1998). The exponential tilting estimator also belongs to this class. Newey and Smith (2001)
use the notation ”Generalised Empirical Likelihood” estimators.

197t is to be noted that the CUE also uses all information contained in moment conditions since it can be
interpreted as the empirical distribution on the set of all the distributions satisfying the moment conditions by
using the Chi-square metric.

20Tt is to be noted that the 28-GMM estimator can be computed by replacing m+(8) by T
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where the implied probabilities?! are defined as follows:

wi (B) = 7 = 23 BVe B ot B) ~ 30(9)]

It is to be noted that an asymptotically equivalent to efficient GMM estimator, 32, possessing
the following property is derived:

By — o = (T'AT'D) ' T AT g (Bo) + 0p(T )

where

r = E{aﬁl(ztaﬂﬂ)}
A = Elgg'(z,50)] = Var[g(zt, Bo)] -

In a third step, the optimal inference of the implied probabilities is used to estimate the Jaco-
bian and variance-covariance matrices. Specifically, E is used to solve the following p equations
(B S %p) in 632

!

lzT: m (52) 85 (Zt,52)l lzT: m (32) 9(2t,B2)g' (24, Ba)

t=1 t=1

1 & e
T > g(z1,83) =0
t=1

The definition of the 3S-GMM estimator extends to the autocorrelated case, where an au-
tocorrelation consistent covariance matrix is used to construct the estimator. In this case, Bg
solves the following equations:

N7, s e sl & -
lZm (5) 55 2| [23)] 7 2 0(f) =0

t=1
where
Q2 (B) = Zﬂt (ﬂ) (g(zt,ﬂ)gl(ztaﬂ) + QZkag(Zt,ﬂ)gl(ZHk,ﬂ))
t=1 k=1

and wg are weights in order to make positive semi-definite the autocorrelation consistent

estimator of the covariance matrix, and the implied probabilities are given by:

w (B) = 7~ 23002 @) ot ) ~523)]

The 3S-GMM has the advantage to give closed-form solutions for implied probabilities due
to the use of a Chi-Square metric . At the same time, one potential problem associated with the

21See Back and Brown (1993), Bonnal and Renault (2003) for the definition of implied probabilities for the
CUE.
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implied probabilities is that they might be not positive in finite samples. Bonnal and Renault
(2003) show that these probabilities are asymptotically positive and that signed measures can
be used in order to guarentee the best fitting of the estimated distribution to the theoretical
moments. Specifically, they proposed to estimate the implied probabilities as an optimally
weighted average of the standard two-step GMM implied probabilities (1/7") and the computed
implied probabilities (7¢(8)). This method know as shrinkage allows putting a non-zero weight
on the two-step GMM implied probabilities when some of the implied probabilities (m:(3)) are

zero.??

4. Results for the United States

In this section, we report the results for the pure forward-looking NKPC and the hybrid NKPC
using the original dataset of GG (1999). Specifically, we use several instruments sets including
different lags of some variables; inflation, commodity prices, wage inflation, long-short interest
rate spread and the output gaps. Different tests of robustness are performed by considering
sub-samples estimation, different normalisations and different measures of inflation, marginal

cost.

4.1 Baseline Model Estimates

We first present estimates for the reduced form of the New Keynesian Phillips curve (1) given
by:

Tt = m\mct + BEt’/Tt+1>

where k = 1/(1 — nu). If one follows Yun (1996) and Goodfriend and King (1997) then x =1,
whereas following Sbordone (2001), k = Tk

This reduced form specification is first estimated over the sample period 1960:Q1-1997:Q4.
Inflation is based on the GDP deflator and me; is the real marginal cost in log-deviation from
its mean calculated as the labor share of nonfarm business. Several sets of instruments are used
to investigate the robustness of the estimation results.?® These are: [1] four lags of inflation
and two lags of real marginal cost, wage inflation and commodity price inflation , [2] four lags
of inflation and two lags of real marginal cost, wage inflation and output gap, [3] four lags of
inflation and two lags of real marginal cost, wage inflation, [4] four lags of inflation, real marginal
cost, wage inflation and commodity price inflation , [5] four lags of inflation, real marginal cost,
wage inflation, commodity price inflation and output gap [6] four lags of inflation, real marginal
cost, wage inflation, commodity price inflation, output gap and the long-short interest rate
spread. Instruments dated ¢ — 1 and earlier are used to mitigate possible correlation with the

measurement error of real marginal cost.

22Bonnal and Renault (2003) show that the shrinkage procedure may improve the finite sample properties.
23We discuss the choice of the instruments in section 5.
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One econometric issue in small samples with nonlinear estimation using GMM or the 3S-
GMM estimator is that these estimators are sensitive to the way the orthogonality conditions
are normalised. In this respect, two different alternatives specifications of the orthogonality

conditions are estimated. The first specification takes the following form:
E, [(0m — (1 —60)(1 — B0)kmey — 0B7mi41) Zt]) =0
while the second is given by
Ey [(me — 07" (1= 0)(1 — BO)kme, — Bryr) Ze] =0

For robustness, we consider a different sample period 1970Q1-1997Q4, use the non-farm
deflator as opposed to the overall deflator, and consider different lag selection for the variance-
covariance matrix. Finally, both forms are estimated with x = 0.13 and k = 1. These values
are standard in the literature.?* Finally, two important issues need to be considered. First, we
check for potential weakness of instruments by performing an F-test applied to the first-stage
regression. In effect, Staiger and Stock (1997) pointed out that this statistic is of concern, as con-
ventional asymptotic results may break down under weak correlation between the instruments
and endogenous regressor. In our estimated equations, there is no evidence of weak correlation
between the instruments and the endogenous regressor. Second, Nason and Smith (2003) dis-
cussed two fundamental sources of non-identification in the NKPC: weak, higher-order dynamics
and superior information. They suggested a pre-test in each case: a test of the lag length for the
forcing variable (the real marginal cost) and a test of Granger non causality. Applying these
tests, we find evidence that the real marginal cost Granger causes inflation but that inflation
does not Granger cause the real marginal cost. It confirms earlier evidence of Nason and Smith
(2003). Moreover, using standard information criteria, we find that a lag lenght of order up to
one for the real marginal cost. Overall, these suggest that a backward-looking component, of the
Phillips curve may be necessary.

Tables (2a) and (2b) report the results for each specification when a 12-lag Newey-West esti-
mate of the covariance matrix is used. The first two columns give the discount factor estimate,
B, and the reduced form slope coefficient on real marginal cost X\.2°> The final column displays
Hansen’s J statistic of the overidentifying restrictions, together with the associated p-values.
First, the GMM estimate of the slope coefficient on marginal cost depends on the normalisa-
tion.2® The coefficient is statistically significant whatever the set of instruments when the first
specification is estimated. This evidence is also supported in the case of the 3S-GMM estima-
tor. However, there is no evidence for the CUE which is robust to normalisation. Second, in
contrast to GG and GGLS, the estimate of 3 is close to one whatever the set of instruments and

the estimator. Therefore, it implies a vertical ”long-run” inflation -real marginal cost trade-off

24Results are robust to alternative values of k. They are not reported here but are available on request.
251t is to be noted that the structural and the reduced form estimates lead to the same conclusions.
26GG (1999) and GGLS(2001) also point out the same result.
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(and inflation-output gap trade-off under some specific assumptions). This is the specification
of Roberts (1995). Nevertheless, we do not impose the discount factor to equal one. Over-
all, adding further instruments increases the precision slightly but does not lead to significant

differences.
(Insert Tables 2a, 2b around here)

Tables 3 and 4 report the estimates for the first specification when the automatic lag selection
procedure of Newey and West is used and the Hall correction is applied, respectively. First,
in both cases, the 3S-GMM and GMM estimate of the real marginal cost are still significant
at standard levels. Second, the overidentifying restrictions are rejected whatever the set of
instruments when the estimator of the variance-covariance matrix uses the sample moments in
mean deviation and the real marginal cost is not significant for the 3S-GMM. At the same time,

using the second specification, the evidence is rather weak for each estimator (Tables 5 and 6).

(Insert Tables 3 and 4 around here)
(Insert Tables 5 and 6 around here)

These results are robust to different sample periods and different values for s. Specifically,
the overidenfication restrictions are still rejected for each specification when x = 1 and the real
marginal cost is significant at standard level for the two-step GMM and the 3S-GMM estimator
for the first specification. However, it is to be noted that the robustness analysis shows that
there is some empirical evidence of the real marginal cost for some values of k in the case of
the CUE. Our results are also robust over the period 1970Q1-1997Q4. Finally, we find that
the real marginal cost is almost always not significant when the non-farm business deflator is
considered instead of the implicit GDP deflator in both specifications for the CUE and the
3S-GMM estimator.?”

Our results clearly show that one important concern is the choice of the normalisation.?®
Asymptotically, it should not matter which normalisation is used but in small samples it can.
As we discussed in section 3.3, the first specification has the advantage that the Wald test can be
interpreted without involving LAU parameters such that use of Wald-type confidence intervals
is invalid. In this respect, the first specification is our benchmark. However, results using the
second specification will be reported in order to be consistent with other empirical studies.

Overall, these results suggest that the empirical evidence of the pure forward-looking NKPC
is mixed. In fact, using the mean deviation correction of Hall (2000) leads to conclude that the
model is misspecified and that richer dynamics would seem necessary to capture the persistance
of US inflation.

27Results are not reported here but are available on request.
28Gali and Gertler (1999, p.207) note that ”[the first specification] appears to minimize the non-linearities,
while the second normalizes the inflation coefficient to unity”.
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4.2 Hybrid Model Estimates

In this section, we present estimates of the reduced form parameters and the structural param-
eters. The instrument sets are the same as we used in the previous section. To address the
small sample normalisation problem with GMM and 3S-GMM that we discussed earlier, we also

consider two different specifications. The first specification takes the form:
Ei[(¢pm — (1 —w) (1 —0)(1 — B0)ksmey — 0Fmy1) Zi] =0
while the second is given by
E[(me — ¢ (1 —w) (1= 60)(1 = BO)kmey — 8¢~ ' Brer) Ze] =0

As in the previous section, we consider three cases: (i) a 12-lag Newey-West estimate of the
covariance matrix, (ii) an automatic lag selection procedure and (iii) the Hall’s correction.

Tables 7 and 8 report estimates setting x = .13 for each specification. The first three columns
give the estimated structural parameters. The next three give the implied values of the reduced
form coefficients. Also reported are the average price duration D (in quarters) corresponding to

the estimate of § and the Hansen’s J-test for overidentifying restrictions.

(Insert Tables 7a,b,c and 8a,b,c around here)

Using the first specification, we find evidence of a statistically signficant real marginal cost
when a 12-lag Newey-West estimate of the variance-covariance matrix is used for the conventional
2-step GMM estimator and the 3-step GMM estimator. These two estimators lead to estimates
of the same order for the reduced-form coefficients and the structural coefficients. At the same
time, the real marginal cost is no longer significant in the case of CUE. Replacing the fixed
bandwith with the automatic lag selection procedure of Newey and West (1994) does not alter
the previous conclusions: the overidentifying restrictions are not rejected and the real marginal
cost is statistically significant for the two-step GMM and the 3S-GMM estimators. However,
when we use the demeaning procedure of Hall (2000), the validity of instruments is rejected
more often, i.e. the overdidentifying restrictions are rejected when the fourth, fifth and sixth
instruments sets are considered (Table 7c). Interestingly, the unconditional moments conditions
are not rejected when the number of instruments is not too large ([1], [2] and [3]). Thus these
three specifications provide some evidence for the hybrid NKPC. Nevertheless, this results still
depends on the chosen estimator. Finally, as shown in the previous section, it is to be noted
that the empirical evidence is weak when the second specification is used in order to estimate
the structural and reduced-form parameters. This is consistent with the results of GG (1999)
and GGLS (2001).2°

29Using Monte-Carlo simulations, Sondergaard (2003) shows that the second normalisation overestimates the
share of backward-looking firms.
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Three other parameters are of particular interest: the degree of price stickness @, the degree
of ”backwardness” in price setting w and the discount factor 5.

Regarding 0, we find lower estimates than GG (1999) and GGLS (2001). For example,
depending on the estimator, the parameter 6 is estimated to imply prices that are fixed for
roughly 2 to 4 quarters on average. This result is robust across the different estimators. It
is also consistent with survey evidence which suggests three to four quarters on average (see
Rotemberg and Woodford, 1997). On the other hand, the parameter w is estimated to be
around 0.3 to 0.6, i.e the fraction of backward looking price setters is higher than the estimates
suggested in GG and GGLS.

While the results suggest some imprecision in the estimate of degree of backwardness, one
conclusion does not change across methods: in accounting for inflation dynamics, the forward
looking behavior is larger than the backward looking component. In effect, the reduced-form
coeflicients vy and v, are significantly different from zero whatever the estimation method and
the set of instruments. Therefore, the pure forward looking model is rejected by the data.
At the same time, in contrast to GG and GGLS, the quantitative importance of the backward
looking component for inflation dynamics is not negligible even if the forward-looking component
remains dominant in the dynamics of inflation.

Finally, we find higher values of the discount factor than GG and GGLS. Specifically, the
estimate of 3 is reasonnably similar across the two methods and the different estimators. In
addition, restricting 5 equal to unity does not alter the results.

Overall, using the same data set of GG (1999), our results show that (i) the discount factor
is close to one, (ii) the forward-looking behaviour is dominant, (iii) the duration is of the same
order for the different estimators and prices are fixed for approximatively 2 to 4 quarters, (iv)
the empirical evidence for the real marginal cost is mixed, i.e. it depends on the normalisation
(for the 2-step GMM and the 3S-GMM), the estimator and the set of instruments and (v) tests
do not always reject the hybrid specification of the NKPC when the mean deviation correction
is applied. Results (ii), (iii) and (v) are roughly consistent with the results of GG (1999) and
GGLS (2001). In this respect, the next step is whether these results are robust and to what

extent we can explain the mixed evidence regarding the real marginal cost.

5. Discussion

The estimation strategy advocated in this paper allows us to obtain estimates of New Phillips
curves which do not depend on either the normalization of the moment conditions or the initial
conditions. When applied to US data, the CUE and 3S-GMM estimator result in more impor-
tance being given to the backward-looking vice forward-looking component in the hybrid version
New Phillips curve compared to the GMM estimates obtained by GG (1999) and GGLS (2001).
In this respect, the degree of price stickness and the degree of backwardness are higher than
the results in the literature. This leads to a much higher significant part of backward-looking
inflation in the NKPC.
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In contrast to other empirical studies,?° the specification test based on overidentifying restric-
tions rejects the New Phillips curve and its hybrid version for the two different normalisations
considered in this paper (for some sets of instruments). The estimation of the weighting matrix
is crucial for the small sample properties of Hansen’s specification test, especially when the num-
ber of moment conditions is important relative to the number of observations.>! These studies
fixed at arbitrary values the number of lags used in kernel estimation of the weighting matrix.
In this paper, we adopt a data-dependent automatic lag selection procedure and, the estimation
of the weighting matrix is based on sample moments in deviation. This approach improves the
power of the overidentifying restrictions test in small samples.

Finally, the empirical evidence for the real marginal cost is weak and seems to depend
critically on the number of instruments and the estimator.

In order to further assess the reliability of our results and more generally the robustness of the
results in the literature, we consider different issues in the estimation and inference of the NKPC:
the choice of the instruments, the measurement of the real marginal cost, the misspecification
of the dynamics of inflation, the inflation forecasting measures and the sample period. All these
issues have been already discussed in the literature and may explain the weak evidence on the
real marginal cost in the pure forward or hybrid NKPC for the United States.

- The choice of instruments

As we discussed in this paper, one important issue is the number of instruments in order to
estimate the NKPC. Moreover, the choice of the instruments is of particular concern. Therefore,
Hall and Peixe (2003) argue that it is desirable for the chosen instrument set to satisfy some
properties, which they refer as being orthogonality, identification, efficiency and non-redundancy.
For instance, their Monte-Carlo simulations report that the inclusion of redundant instruments
leads to deterioration in the finite sample performances of the GMM estimator. In addition, it
is important that the statistical properties of the instruments do not contaminate the limiting
distribution of the parameter estimator. In this respect, we depart from earlier studies by
excluding output gap measures from the instrument sets. Two measures of output gap are
usually retained as instruments. One is based on quadratically detrended output. With standard
unit root tests (such as the Augmented Dickey-Fuller), the presence of a unit root in US output
cannot be rejected. Under the maintained hypothesis of a unit root, quadratically detrended
output is then also characterized by a unit root. Unfortunately, the asymptotic properties of
instrumental variables estimators in the presence of nonstationary instruments are not known.
As a result, usual inference procedures are likely to be invalid. The other measure of output
gap usually used is based on the Hodrick-Prescott filter. Output gap is then a combination of
lags, leads, and contemporaneous values of output. Such measures of the output gap violate the
basic GMM orthogonality conditions and is likely to be correlated with the measurement error

of real marginal cost.>?

30Balakrishnan and Lopez-Salido (2002), Gali and Gertler (1999), Gali, Gertler and Lopez-Salido (2001), Gali,
Gertler and Lopez-Salido (2001) and Gali and Lopez-Salido (2000)

31For some of these studies, the ratio of the number of moment conditions to the number of observations equals
1/3.

321t is also to be noted that there is a priori no obvious reason to use a detrended output gap measure of one
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In this respect, we reconduct estimations with the following sets of instruments: [1] four lags
of inflation and two lags of real marginal cost and wage inflation, [2] six lags of inflation and two
lags of real marginal cost and wage inflation, [3] four lags of inflation, real marginal cost and
wage inflation, [4] six lags of inflation, real marginal costs and wage inflation and [5] six lags of
inflation and four lags of real marginal cost and wage inflation. Instruments dated ¢t — 1 and
earlier are also used to mitigate possible correlation with the measurement error of real marginal
cost.

Tables 9 and 10 report the results for both normalisations in the case of the hybrid NKPC.
We adopt the data-dependent automatic selecltion procedure of Newey and West (1994) and
the J-stat is based on the Hall’s correction.

(Insert Tables 9 and 10 around here)

We find empirical evidence for the real marginal cost in the first specification for the two-
step GMM and the 3S-GMM estimators using these different sets of instruments. However,
there is still no evidence in the case of the CUE and the evidence is rather weak for the second
specification. At the same time, the validity of instruments is no longer rejected when the
measures of output gap are ruled out. Therefore, if we compare these results with those of the
previous section, the results appear to be sensitive to the inclusion of the output gap measure
in the information set.

Finally, an important issue, which is also related to the number of instruments, is that agents
that reoptimize their price do so on the basis of their time ¢ information set. This means that
when they make new price plans, these goes into effect immediately. Eichenbaum and Fisher
(2003) test this assumption and assume that when firms reoptimise their price plans, it may
not have a direct effect and the new plan may only go into effect at a latter date ¢ + 7 (delay
effect).?® Hence, by varying 7, the information set changes and it is possible to test whether any
variable dated between t — 7 and ¢ has explantory power for the time ¢ inflation. In that case,
the model implies that inflation is a predetermined variable, depending upon past disturbances.
Eichenbaum and Fisher (2003) find strong evidence against the standard Calvo model when
7 = 0 and that the model is no longer rejected once they allow for at least a lag. In this
respect, we conduct a similar exercice with our five sets of instruments. Overall, we are not
able to identify a significant effect of the starting date of the information set (or the degree of
predetermination of inflation) and our previous results are not modified.

- The definition of real marginal cost

type or another. Specifically, in order to be consistent with the underlying theoretical definition of the natural
rate output, the output gap should respond to real disturbances of several types. However, a smoothed measure
of the output may not respond to these shocks.

33An alternative is to assume that a randomly chosen fraction of all prices are set optimally whereas the
remaining fraction is adjusted according to an indexation rule (see Smets and Wouters, 2002, Christiano,
Eichembaum and Evans, 1997) at a latter date for period ¢. In contract to Gali and Gertler (1999), inertia in
the inflation dynamics is no longer explained by a backward-looking rule of thumb. Nevertheless, in the limiting
case in which the discount factor equals one, the two models have the identical implications.
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Since the real marginal cost is a latent variable, two dimensions can be considered. On the
one hand, the results may depend on the calculation of the real marginal cost. For instance,
Rotemberg and Woodford (1999), GGLS (2001), Gagnon and Kahn (2003), Sbordone (2001)
have suggested to consider a Cobb-Douglas technology with overhead labor cost. In this case,
the measure of marginal cost is augmented by a term that depends on hours worked. In addition,
adjustment cost of labor, CES production function and complementaries may be taken into
consideration in order to derive the measure of marginal cost.>* On the other hand, the real
marginal cost may be revised over time due to measurement errors etc. These two dimensions
have been extensively discussed in the literature about the reliability of the output gap measures.
Intuitively, both dimensions may be important in order to explain the lack of robustness of the
marginal cost in the NKPC.

In order to illustrate the first point, Table 11 reports the results for a Cobb-Douglas produc-

tion function with overhead labor. In this case, the real marginal cost is given by:

meg = S¢ + bhy

H/H 35
1-H/H’
multiplied by the average hours works per quarter. The resulting serie is stationary around a

where b = The series for hours worked is constructed as the number of employees

stable mean. Finally, we include lags of hours worked in the sets of instruments.
(Insert Table 11 around here)

Using the same sets of instruments (see section 4.1), the empirical evidence of the real
marginal cost is still mixed. Once again, the specification is rejected in almost all cases when
the mean deviation correction of Hall (2000) is taken into consideration. In contrast, the results
are much more sensitive to the value of s. Specifically, as s goes close to one, the statistical
significance of the real marginal cost decreases.

Secondly, Figure 2 reports the real marginal cost in log-deviation from its mean calculated
as the labor share of nonfarm business from the original database of GG and the revised real
marginal cost (labelled mc1), which takes into account some revisions. We also report two other
measures of the real marginal costs. The second measure "mc2” is based on the same deflator
(Non-Farm Business, NFB) but used a different benchmark year (1996 instead of 1992). The
third measure "mc3” is based on the GDP deflator instead of the NFB deflator. In effect, the
end-of-sample properties of the original serie and ”mc1”are different. At the same time, the
change of the benchmark year (mcl) has minor effects in comparison with the change of the
price deflator (mc3). In this respect, we conduct estimations on revised data. Our results are
reported in Table 12.

(Insert Figure 2)
(Insert Table 12a around here)

34For a complete discussion, see Gagnon and Kahn (2003).
35The value of b is calibrated as in other studies of the NKPC.
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According to both normalisations, the real marginal cost is mostly not significant except for
the standard GMM estimator in the first specification. In fact, the real marginal cost is only
significant for the 3S-GMM when the number of instruments is relatively large and thus the
small-sample bias can not be ruled out. Results also show that almost one-third of the firms
prices in a rule-of-thumb manner. It differs from our results in section 4 in the sense that the
portion of backward-looking agents is less important. Therefore, it turns out that the hybrid
NKPC displays less inertia than previously stated. It is to be noted that this result is robust
over different sample period (see further) and different values of ». Hence, the revisions of the
real marginal cost cast some doubts on the robustness of the NKPC.

- The misspecification of the dynamics of inflation

Two types of mis-specification have been mainly studied in the literature: measurement error
and omitted dynamics. Omitted dynamics is also a plausible explanation of the non-significance
of the real marginal cost and/ or the forward-looking nature of the dynamics of inflation. Hybrid
NKPC in which additional lags of inflation have been introduced by some specific rule-of-thumbs
or by other sources of lag dynamics in inflation (Kozicki and Tinsley, 2002). In this respect,
we add extra lags of inflation to enter the right hand side of the dynamics of inflation. As is
pointed out by GG and GGLS, one motivation is that the estimated importance of the forward
looking behaviour of inflation may reflect the insufficient lagged dependence. Table 13 reports

the results when three additional lags of inflation are added to the right hand side.

(Insert Table 13 around here)

Parameter ¢ denotes the sum of the coefficients on the additional lags. This sum is small and
not statistically not significant. This result holds across all specifications. Thus it may appear
that the hybrid NKPC can account for the inflation dynamics with relatively little reliance on
arbitrary lags of inflation. At the same time, some lagged inflation coefficients are statistically
significant despite the fact that the sum is not, i.e. a richer inflation dynamics may be necessary.
Moreover, the test of overidentification moments is not rejected in several cases reinforcing the
previous statement. Apart these coefficients, the broad picture is changed in the sense that the
marginal cost does not have a significant impact on short run inflation dynamics in most cases.
These results are robust for the non-farm business deflator and for different values of sr.

- Inflation forecasting measures

One important issue may also be the measurement of inflation forecasts. Recent papers have
estimated the NKPC for the US using data from the survey of professional forecasters as proxy
for expected inflation. For instance Adam and Padula (2003) obtain significant and plausible
estimates for the structural parameters independently of whether they use the output gap or
unit labour costs as measure of marginal costs. An important concern is whether or not survey
expectations are inefficient and thus biased. In effect, if these survey expectations are inefficient,
the forecast errors will generally not be orthogonal to information available to agents at the time
of forecast. Therefore, instrumental variable techniques are no longer necessary since we do not

need to assume orthogonality of forecasts errors with respect to lagged information. At the
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same time, measurement error in real marginal cost is still present and instrumental variables
techniques can be applied.

Figure 3 plots actual and expected inflation. Inflation expectations are approximated with
data from the Survey of Professional Forecasters. We use the mean of the one-quarter ahead

inflation forecast for the implicit GDP deflator as the measure for expected inflation.
(Insert Figure 3 around here)

Overall, the actual and expected inflation rates move closely together over the sample period.

To assess whether inflation forecasts are biased or inefficient, we regress actual inflation rates
on a constant and on expected inflation and check whether the constant is equal to zero and
the slope coefficient equal to one. Surprisingly, we reject the rationality of survey expectations
using a Wald test.

Then we use our estimators. Table 14 reports the results.
(Insert Table 14 around here)

Overall, the use of inflation forecasts does not lead to improve the statistical significance of
the real marginal cost and conduct to imprecise estimates.

- Sample periods

Finally, our results may be explained by sub-sample instability. We do not conduct here
structural stability tests. However, we conduct estimations over different periods. For instance,
Table 15 reports the structural and reduced-form estimates over the period 1960Q1-2001Q4. In
effect, since the results may be sensitive to data revisions, we do not take into account the most

recent data.
(Insert Table 15 around here)

Overall, the empirical evidence of the real marginal cost is rather mixed.
Moreover, following GG, we consider different intervals. Overall, the broad picture remains

unchanged: there is no strong evidence for the real marginal cost.

6. Conclusion

The recent works of Gali and Gertler (1999) and Gali, Gertler amd Lopez-Salido (2001) provide
evidence that the inflation dynamics in the United States and the Euro zone can be well-described
by the hybrid New Keynesian Phillips Curve. Our approach has addressed several important
econometrics issues with their results. Specifically, we discuss the finite sample performances
of the two-step GMM estimators with other estimators recently proposed in the literature. In
addition, we stress the importance to use the mean deviation correction of Hall (2000) and to
avoid a fixed aribitrary bandwith. Using the Continuously-updating GMM estimator (Hansen,
Heaton and Yaron, 1996) and the 3-step GMM estimator (2003), our results show that the

empirical evidence of the New Keynesion Phillips curve is rather mixed.
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In this respect, the rejection of alternative specifications of the New Phillips curve suggests
that a richer dynamic structure in the explanatory variables will be needed to capture the
dynamics of US inflation. In the case of the United States, other studies (as for instance
Kurmann, 2002) also find considerable uncertainty between the observed persistent movements
in inflation and what is predicted by a New Phillips curve model. Overall, these results and
those of this paper represent an important step back from the conclusions of previous authors
who argue that New Phillips curve models are a good representations of inflation dynamics.
These new results suggest that, at the theoretical level, richer versions of the structural model
from which the New Phillips curve is derived would need to be developed.

In addition, we show that the results are particularly sensitive to the well-know problem of
the number of instruments, the choice of the instruments, data revisions and measurement of

the real marginal cost and the sample periods.
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Table 2a: Estimates of the forward-looking NKPC using the first specification

Mcthod Instrument sct B ? A J-stat
GMM [1] 979 .563 347 8.46
(011 (.036) (.079)
[.000] [.000] [.000] [.488]
[2] 991 .565 338 8.11
(.010) (.044) (.094)
[.000] [.000] [.000] [.523]
[3] 999 637 131 7.16
(011 (.053) (.038)
[.000] [.000] [.000] [402]
[4] 974 558 361 10.53
(.009) (031) (071)
[.000] [.000] [.000] [.785]
[5] 964 .530 434 10.89
(.009) (.030) (.079)
[.000] [.000] [.000] [.927]
[6] 976 .509 482 11.07
(.008) (.025) (.074)
[.000] [.000] [.000] [.982]
CUE [ 1020 676 148 7.12
(.022) (.098) (114)
[.000] [.000] [.196] [.624]
[2] 1018 671 155 7.17
021 (.095) (.114)
[.000] [.000] [.176] [.619]
[3] 1.022 669 156 7.09
(022) (.102) C12n
[.000] [.000] [.203] [419]
[4] 999 631 217 9.69
(019 (.069) (.104)
[.000] [.000] [.035] [.839]
[5] 997 742 090 10.21
(.018) (.120) (.098)
[.000] [.000] [.361] [.947]
[6] 1014 .596 267 10.47
(019 (.054) (.097)
[.000] [.000] [.006] [.987]
3S-GMM [1] 988 597 276 8.30
(.010) (.037) (.068)
[.000] [.000] [.000] [.504]
[2] 1.003 640 201 7.53
(.010) (.052) (.074)
[.000] [.000] [.007] [.582]
[3] 1.005 636 207 7.42
(011 (0s1) (.075)
[.000] [.000] [.006] [.386]
[4] 980 579 313 10.40
(.009) (.032) (.073)
[.000] [.000] [.000] [.794]
[5] 978 578 317 10.52
(.008) (.028) (.058)
[.000] [.000] [.000] [.938]
[6] 984 .546 382 11.09
(.007) (.022) (.052)
[.000] [.000] [.000] [.982]

Note: The p-values (in parenthesis) corresponding to the estimates of 3, ? and A are for the null hypothesis
that these estimates are zero. A 12-1ag Newey-West estimate of the covariance matrix is used . ? equals .13.



Table 2b: Estimates of the forward-looking NKPC using the second specification

Mcthod Instrument sct B ? A J-stat
GMM [ 987 719 113 7.64
(.009) (.070) (.066)
[.000] [.000] [.088] [.571]
[2] 995 632 216 7.63
(010) (051) (077
[.000] [.000] [.028] [.572]
[3] 1.000 673 158 7.16
(.010) (.063) (.075)
[.000] [.000] [.035] [412]
[4] 982 818 044 9.46
(.008) (.112) (.057)
[.000] [.000] [447] [.852]
[5] 978 753 086 10.12
(.007) (.067) (.052)
[.000] [.000] [.093] [.949]
[6] 993 753 041 10.35
(.007) (.067) (.046)
[.000] [.000] [.374] [.988]
3S-GMM [1] 992 725 .107 7.68
(.009) (.070) (.063)
[.000] [.000] [.094] [.566]
[2] 1.000 696 132 7.40
(.010) (.069) (.072)
[.000] [.000] [.069] [.596]
[3] 1.002 692 136 7.32
(o1 (.068) (.073)
[.000] [.000] [.063] [.396]
[4] 988 716 063 7.83
(.010) (.070) (072)
[.000] [.000] [461] [.617]
[5] 982 809 048 10.30
(.007) (.097) (.052)
[.000] [.000] [.360] [.945]
[6] 984 802 036 10.38
(.007) (.068) (.069)
[.000] [.000] [.554] [.967]

Note: The p-values (in parenthesis) corresponding to the estimates of [3, ? and A are for the null hypothesis
that these estimates are zero. A 12-lag Newey-West estimate of the covariance matrix is used . ? cquals .13.



Table 3: Estimates of the forward-looking NKPC using the first specification

Mcthod Instrument sct B ? A J-stat
GMM [1] 994 .540 394 16.45
(.019) (.058) (.139)
[.000] [.000] [.005] [.058]
[2] 999 557 353 15.00
(017) (.056) (.143)
[.000] [.000] [.015] [.091]
[3] 1.006 .589 283 12.37
(.020) (.079) (.146)
[.000] [.000] [.053] [.088]
[4] 978 562 .349 14.28
(012) (.079) (.089)
[.000] [.000] [.000] [.505]
[5] 966 532 424 14.43
(011 (.033) (.086)
[.000] [.000] [.000] [.758]
[6] 984 531 421 21.13
(014) (.039) (.102)
[.000] [.000] [.000] [.543]
CUE [1] 1.043 614 226 11.32
(.022) (.076) (121
[.000] [.000] [.063] [.255]
[2] 1.005 698 129 11.29
(.020) (.099) (.103)
[.000] [.000] [.213] [.256]
[3] 1.005 783 059 10.94
(.020) (.088) 17
[.000] [.000] [.613] [.141]
[4] 1.002 664 .160 12.59
(019 (.078) (.098)
[.000] [.000] [.088] [.634]
[5] 975 688 149 11.74
(.018) (.075) (.086)
[.000] [.000] [.084] [.896]
[6] 1.008 631 091 16.54
(019 (.039) (.098)
[.000] [.000] [.353] [.830]
3S-GMM [] 1.000 501 281 15.00
(.019) (.067) (.122)
[.000] [.000] [.224] [.091]
[2] 1.002 639 203 11.87
(017) (.080) (114)
[.000] [.000] [.079] [.221]
[3] 1.003 634 210 11.86
(.019) (.090) (131
[.000] [.000] [.113] [.105]
[4] 988 .588 294 13.65
(.012) (.043) (.081)
[.000] [.000] [.000] [.552]
[5] 983 .593 287 14.13
(.010) (.041) (.076)
[.000] [.000] [.000] [.776]
[6] 988 553 366 22.00
(013) (.040) (.091)
[.000] [.000] [.000] [.520]

Note: The p-values (in parenthesis) corresponding to the estimates of 3, ? and A are for the null hypothesis
that these estimates are zero. The automatic lag selection of Newey and West (1994) is used to estimate
covariance matrix. ? equals .13.



Table 4: Estimates of the forward-looking NKPC using the second specification

M cthod Instrument sct B ? A J-stat
GMM [1] 991 736 097 14.68
(015) (.116) (.098)
[.000] [.000] [.323] [.099]
[2] 997 661 174 11.81
(014) (.072) (.091)
[.000] [.000] [.058] [.224]
[3] 996 760 076 11.12
021 (.181) (.132)
[.000] [.000] [.563] [.133]
[4] 985 802 051 12.62
(.010) (131 (.073)
[.000] [.000] [485] [.631]
[5] 979 809 .103 11.27
(.007) (.132) (.061)
[.000] [.000] [.096] [.914]
[6] 990 830 003 15.81
(.010) (.135) (.061)
[.000] [.000] [.957] [.863]
3S-GMM [] 995 719 110 14.44
(.018) (.122) (.112)
[.000] [.000] [.328] [.107]
[2] 999 57 078 11.10
(017) (.148) (.110)
[.000] [.000] [478] [.269]
[3] Lo11 793 052 11.01
(019) (219) (125)
[.000] [.000] [.680] [.138]
[4] 986 798 053 12.83
(.010) (.125) (.072)
[.000] [.000] [461] [.614]
[5] 986 762 077 13.60
(.009) (.096) (.069)
[.000] [.000] [.269] [.806]
[6] 986 834 036 2091
(.012) (.176) (.079)
[.000] [.000] [.654] [.586]

Note: The p-values (in parenthesis) corresponding to the estimates of 3, ? and A are for the null hypothesis
that these estimates are zero. The automatic lag selection of Newey and West (1994) is used to estimate
covariance matrix. ? equals .13.



Table 5: Estimates of the forward-looking NKPC using the first specification

Method Instrument sct B O A J-stat
GMM [1] 1.002 542 .386 20.22
(019 (.059) (.139)
[.000] [.000] [.006] [.017]
[2] 1.003 577 .309 2042
(.016) (.059) (.116)
[.000] [.000] [.008] [.015]
[3] 1.007 381 298 15.20
(.020) 077) (.148)
[.000] [.000] [.045] [.034]
[4] 995 .389 289 26.37
(012) (.046) (.086)
[.000] [.000] [.001] [.034]
[5] 982 572 327 39.37
(.009) (.035) (.073)
[.000] [.000] [.000] [.004]
[6] 987 350 374 37.74
(012) (.058) (.088)
[.000] [.000] [.000] [.027]
35-GMM [1] 998 620 234 18.00
(.022) (075) (.120)
[.000] [.000] [.054] [.035]
[2] 1.003 650 187 13.90
(017 (.083) (.112)
[.000] [.000] [.096] [.125]
[3] 1.003 650 .188 13.10
(019 (.094) (.130)
[.000] [.000] [.140] [.053]
[4] 994 608 255 27.09
(012) (.045) (077)
[.000] [.000] [.000] [.028]
[5] 989 611 252 29.80
(010 (.043) (.072)
[.000] [.000] [.000] [.055]
[6] 990 5359 353 39.66
(013) (.040) (.089)
[.000] [.000] [.000] [.017]

Note: The p-values (in parenthesis) corresponding to the estimates of 3, ? and A are for the null hypothesis
that these estimates are zero. The automatic lag selection of Newey and West (1994) and the Hall’s
correction (2000) are used to estimate covariance matrix. ? cquals .13.



Table 6: Estimates of the forward-looking NKPC using the second specification

Mcthod Instrument sct B ? A J-stat
GMM [ 995 737 095 18.01
(018) (137) (115)
[.000] [.000] [410] [.035]
[2] 1.001 687 142 20.02
(014) (.083) (.091)
[.000] [.000] [.120] [.017]
[3] 995 695 058 12.06
(.022) (.082) (.132)
[.000] [.000] [.660] [.098]
[4] 988 768 074 30.81
(.010) (.105) (.073)
[.000] [.000] [.317] [.009]
[5] 991 724 .109 45.40
(.008) (.072) (.067)
[.000] [.000] [.010] [.000]
[6] 980 .840 020 46.51
(.010) (.152) (.061)
[.000] [.000] [.744] [.003]
3S-GMM [] 998 708 121 17.91
(018) (114) (112)
[.000] [.000] [.282] [.036]
[2] 1.001 759 076 13.13
(017 150 C110)
[.000] [.000] [491] [.157]
[3] 1013 800 047 13.11
(019 (232) (.126)
[.000] [.000] [.709] [.693]
[4] 990 768 073 31.51
(.010) (.102) (.072)
[.000] [.000] [.313] [.007]
[5] 99 716 116 35.27
(.009) (071) (.069)
[.000] [.000] [.091] [.012]
[6] 982 815 046 36.83
(012) 150 (079)
[.000] [.000] [.567] [.034]

Note: The p-values (in parenthesis) corresponding to the estimates of 3, ? and A are for the null hypothesis

that these estimates are zero. The automatic lag sclection of Newey and West (1994) and the Hall's correction are
used to estimate covariance matrix. 7 equals . 13.



Table 7a: Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, form I (ik=.13)

Mecthod Instrument 0 B ) A Ve Yo Duration J-stat
sct

GMM [ 583 990 385 108 577 385 240 701
(052)  (015)  (O47)  (030) (054  (047) (301)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.535]
2] 624 997 437 080 623 437 2.66 6.12
(064)  (015)  (060)  (032)  (064)  (.060) (A454)
L000]  [000]  [.000] LO13]  [.000]  [.000] [.000] [.634]
3] 628 999 .160 0.116 628 160 2.69 6.56
(053) (Ol (O73)  (035)  (0S3)  (073) (.386)
L000]  [000]  [.031] L0011 [.000]  [031] [.000] [.363]
[4] 523 981 398 139 513 398 2.10 10.30
(042)  (015)  (038)  (026)  (042)  (.038) (.183)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.740]
(5] 531 980 395 136 521 395 2.14 10.52
(041)  (014)  (035)  (025)  (04l)  (.035) (.187)
L000]  [000]  [.000] L000]  [.000]  [.000] [.000] [913]
[6] 525 983 415 135 516 415 2.10 10.70
(039)  (013)  (033)  (024) (039  (.033) C170)
L000]  [000]  [.000] L000]  [.000]  [.000] [.000] [.978]

CUE [ 640 999 .308 094 675 324 278 6.00
(124)  (034)  (096)  (086)  (072)  (070) (.959)
000]  [000]  [.000] [275]  [.000]  [.000] [.000] [.648]
2] 665 998 Al4 061 616 384 299 5.85
(170)  (042)  (135)  (085) (071  (.068) (1.52)
L000]  [000]  [.000] [476]  [.000]  [.000] [.052] [.664]
3] 670 999 375 065 641 359 3.03 5.54
(178 (039)  (138)  (.093)  (086)  (.082) (1.64)
L000]  [000]  [.007] [485]  [.000]  [.000] [.066] [476]
[4] 6.91 987 276 073 707 286 3.24 9.23
Cl47) (03D (104 (086) (079  (078) (1.54)
[000]  [000]  [.009] [392]  [.000]  [.000] [.037] [.815]
(5] 714 984 298 059 697 296 350 9.35
CIST) 03D LD (079 (073)  (072) (1.92)
L000]  [000]  [.008] [461]  [.000]  [000]  [0071]  [.951]
[6] 776 977 281 037 720 267 447 9.64
(2000 (027)  (119)  (076)  (073)  (07D) (4.00)
[000]  [000]  [019] L6271  [.000]  [.000] [.266] [.989]

3SGMM [ 603 997 353 102 601 353 252 6.40
(050)  (014) (045  (.028)  (0S1)  (.045) (314)
[000]  [000]  [.000] 000]  [.000]  [.000] [.000] [.602]
2] 625 1.000 409 083 625 409 266 6.01
(061)  (015)  (059) (031  (061)  (.059) (432)
[000]  [000]  [.000] L009]  [.000]  [.000] [.000] [.646]
[3] 625 1.003 217 110 627 217 267 6.21
(053)  (012)  (068)  (033)  (053)  (.068) (374)
[000]  [000]  [.000]  [0OL]  [.000]  [.000] [.000] [.399]
[4] 540 983 381 133 531 381 2.18 10.16
(041)  (014)  (038)  (025)  (041)  (.038) (.192)
[000]  [000]  [.000] L000]  [.000]  [.000] [.000] [.750]
[5] 551 982 385 127 541 384 223 10.41
(040)  (013)  (035)  (024)  (040)  (.035) 197)
[000]  [000]  [.000] L000]  [.000]  [.000] [.000] [.940]
[6] 543 983 408 126 534 409 2.19 10.62
(038)  (013) (034  (023)  (038)  (.034) (.182)
000]  [.000]  [.000] [L000]  [.000]  [.000] 1.000] [.980]

Notes: standard errors are in parenthesis, p-values are in square brackets. A 12-lag Newey-West estimate of the
covariancc matrix is used.



Table 7b: Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, form I (k=.13)

Method Instrument 0 B ) A Ve Yo Duration J-stat
sct

GMM [ 576 991 378 113 570 378 236 8.16
(059)  (018)  (053)  (034) (059  (053) (326)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [418]
2] 611 998 404 091 610 404 207 7.03
(070)  (018)  (068)  (037)  (070)  (.068) (463)
L000]  [000]  [.000] LO16]  [.000]  [.000] [.000] [.533]
3] 534 999 288 154 534 288 2.15 6.45
(0S7)  (028)  (086)  (.058)  (.084)  (.087) (.369)
L000]  [000]  [.000] L008]  [.000]  [.000] [.000] [.355]
[4] 521 983 375 .146 513 377 2.09 12.90
(048)  (015) (048 (03D (047)  (048) (:208)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.534]
(5] 535 980 .390 135 525 390 2.15 11.25
(043)  (013)  (039)  (027)  (043)  (.038) (.199)
L000]  [000]  [.000] L000]  [.000]  [.000] [.000] [.884]
[6] 523 985 394 .140 515 395 2.10 13.14
(044)  (O014)  (042)  (028)  (045)  (.042) (.193)
[000]  [000]  [.000] L000]  [.000]  [.000] [.000] [.926]

CUE [ 619 995 352 097 635 362 263 742
C115)  (036)  (094)  (081)  (062)  (.060) (.798)
000]  [000]  [.000] [236]  [.000]  [.000] [.000] [492]
2] 678 996 429 054 610 388 311 6.34
(190)  (044)  (146)  (086)  (070)  (.067) (1.83)
000]  [000]  [.000] [.534]  [.000]  [.000] [.092] [.608]
3] 620 999 322 103 658 341 263 5.64
(130)  (035)  (106)  (.093) (085  (.082) (.906)
000]  [000]  [.000] [271]  [.000]  [.000] [.000] [464]
[4] 666 992 219 099 747 248 299 10.79
G (027)  (087)  (.085)  (082)  (.080) (1.05)
[000]  [000]  [.000] [245]  [000]  [.000] [.004] [.702]
[5] 799 981 256 031 745 243 498 9.61
(238)  (027)  (123)  (08L)  (078)  (.076) (5.93)
L001]  [000]  [.000] [L706]  [.000]  [.000] [.402] [.943]
[6] 642 999 499 056 562 437 2.79 11.77
(14 (045)  (146)  (069)  (056)  (.054) (1.10)
[000]  [000]  [.000] [418]  [.000]  [.000] 1.000] [.961]

3SGMM [ 584 996 338 115 581 338 240 8.10
(060)  (019)  (056)  (037)  (060)  (.056) (.348)
[000]  [000]  [.000] L002]  [.000]  [.000] [.000] [424]
2] 608 1.002 357 099 .609 357 255 6.96
(065  (O17)  (066) (037 (065  (.066) (424)
[000]  [000]  [.000] L009]  [.000]  [.000] [.000] [.541]
[3] 586 1.008 274 122 592 274 242 6.06
(099)  (027)  (097)  (060)  (096)  (.097) (582)
[000]  [000]  [.000] L042]  [.000]  [.000] [.000] [417]
[4] 541 983 342 142 532 342 2.18 12.48
(047)  (014) (47 (03D (04T (047) (221)
[000]  [000]  [.000] L000]  [.000]  [.000] [.000] [.568]
[5] 558 982 375 125 548 375 227 11.09
(042)  (012)  (039)  (026)  (042)  (.039) (215)
[000]  [000]  [.000] 000]  [.000]  [.000] [.000] [.891]
[6] 537 986 369 137 530 360 2.16 13.11
(042)  (014) (04D (027)  (04d)  (04D) (.198)
000]  [.000]  [.000] [L000]  [.000]  [.000] 1.000] [.930]

Notes: standard errors are in parenthesis, p-values are in square brackets. The automatic lag selection of Newey and
West (1994) is uscd to estimate the covariance matrix.



Table 7¢: Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, form I (x=.13)

Mecthod Instrument %] B 0} A Ye Y Duration J-stat
sl

GMM iy 598 996 336 108 596 336 249 11.83
(058)  (016)  (053)  (033)  (057)  (053) (357)
[000]  [000]  [.000] [002]  [.000]  [.000] [.000] [.159]
2] 607 999 369 098 607 360 294 10.69
(060)  (O17)  (065)  (037)  (066)  (.065) (427)
[000]  [000]  [.000] [009]  [.000]  [.000] [.000] [.220]
3] 527 999 309 .158 522 309 2.09 7.11
(086)  (029)  (085)  (.057)  (083)  (.085) (376)
[000]  [000]  [.000] [007]  [.000]  [.000] [.000] [311]
[4] 567 994 252 142 563 252 231 31.67
(042)  (013)  (042)  (030)  (042)  (042) (:226)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.004]
(5] 630 986 282 .101 621 282 2.70 45.37
(043)  (010)  (033)  (025)  (044)  (.033) (315)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.000]
[6] 592 988 254 126 585 254 250 61.10
(038)  (010)  (037)  (025)  (038) (037 (.225)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.000]

3SGMM (1] .590 1.000 315 115 .590 315 244 11.88
(059)  (018)  (056)  (.036)  (058)  (.056) (352)
[000]  [000]  [.000] L002]  [.000]  [.000] [.000] [.156]
2] 610 1.003 341 .100 612 341 257 10.62
064)  (016) (065  (037)  (064)  (.065) (422)
L000]  [000]  [.000] L008]  [.000]  [.000] [.000] [.224]
3] 564 1.003 306 132 .566 306 229 6.92
(079 (023)  (075)  (048) (07T (075) (A417)
L000]  [000]  [.000] L007]  [.000]  [.000] [.000] [.328]
[4] 579 993 232 137 575 232 238 29.40
(043)  (013)  (042)  (030)  (043)  (042) (:242)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.009]
(5] 613 987 259 113 605 259 258 45.75
(040)  (010)  (032)  (025)  (04l)  (.032) (.268)
[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.000]
[6] .594 986 231 129 586 231 246 59.23
(037)  (010)  (036)  (025)  (038)  (.036) (223)
L000]  [000]  [.000] L000]  [.000]  [.000] [.000] [.000]

Notes: standard crrors arc in parcnthesis, p-values arc in squarc brackets. The automatic lag sclection of Newey and
West (1994) and the Hall’s correction (2000) arc used to estimate the covariance matrix.



Table 8a: Hybrid Phillips Curve Estimates 1960Q1-1997Q4, form II (k=.13)

Mecthod Instrument 0 B ) A Ve Yo Duration J-stat
sct

GMM [ 646 997 472 060 576 422 2.82 707
(068)  (016)  (069)  (034)  (031)  (.030) (.538)
[000]  [000]  [.000] L0791  [.000]  [.000] [.000] [.528]
2] 678 998 516 042 567 432 311 6.19
(090)  (018)  (084)  (034)  (032) (03D (.869)
L000]  [000]  [.000] [214]  [.000]  [.000] [.000] [.626]
3] 687 999 557 035 553 447 320 6.40
CLIO7) (0200 (118)  (034)  (040)  (040)  (1.040)
L000]  [000]  [.000] L316]  [.000]  [.000] [.002] [.380]
[4] 649 997 553 046 539 460 285 9.67
(070)  (019)  (074)  (028)  (028)  (.028) (.569)
[000]  [000]  [.000] L1011 [.000]  [.000] [.000] [.786]
(5] 663 997 548 043 546 453 297 9.76
(055)  (019)  (066)  (024)  (026)  (.026) (577
L000]  [000]  [.000] L0811  [.000]  [.000] [.000] [.939]
[6] 649 994 542 048 543 456 285 10.14
(055)  (016)  (058)  (022) (025  (.025) (443)
L000]  [000]  [.000] L033]  [.000]  [.000] [.000] [.984]

3SGMM [ 649 1.000 423 066 .606 394 2.86 6.55
(062)  (O15)  (059)  (033)  (030)  (.030) (.506)
000]  [000]  [.000] L050]  [.000]  [.000] [.000] [.586]
2] 674 1.000 A7 048 586 415 3.07 5.99
(O81)  (016)  (075)  (034)  (032)  (032) (772)
000]  [000]  [.000] [162]  [.000]  [.000] [.000] [.648]
[3] 669 1.001 459 052 593 407 3.0 5.80
(078)  (016)  (086)  (.036)  (040)  (.040) (713)
000]  [000]  [.000] [.147]  [.000]  [.000] [.000] [445]
[4] 660 995 .520 048 557 441 294 9.57
(068)  (018)  (069) (028  (028)  (.027) (.589)
[000]  [000]  [.000] 093]  [.000]  [.000] [.000] [.793]
[5] 723 1.001 585 024 553 447 362 9.75
(097)  (020)  (092)  (024)  (025)  (025)  (1.273)
000]  [000]  [.000] [325]  [.000]  [.000] [.005] [.940]
[6] 757 994 613 017 550 448 4.12 10.11
CLLD (019)  (106)  (022)  (024)  (024)  (1.892)
[000]  [000]  [.000] [441]  [.000]  [.000] [031] [.985]

Notes: standard crrors arc in parcnthesis, p-valucs are in squarc brackets. A 12-lag Newcey-West estimate of the
covariance matrix is uscd.



Table 8b: Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, form II (k=.13)

Mecthod Instrument 0 B ) A Ve Yo Duration J-stat
sct

GMM [ 635 996 465 064 576 422 2.74 8.23
(079 (019)  (O77) (04D (036)  (.036) (.599)
[000]  [000]  [.000] L118]  [.000]  [.000] [.000] [411]
2] 668 999 492 047 575 424 3.0 6.78
(100)  (018)  (092) (018  (037) (037 (919)
[000]  [000]  [.000] L003]  [.000]  [.000] [.000] [.559]
3] .606 999 365 .101 623 376 254 5.79
(096)  (024)  (086)  (064)  (064)  (.064) (.623)
L000]  [000]  [.000] L118]  [.000]  [.000] [.000] [.446]
[4] 654 998 538 046 548 451 2.89 11.78
(090)  (019)  (090)  (036)  (032)  (.032) (.756)
[000]  [000]  [.000] [210]  [.000]  [.000] [.000] [.623]
(5] .660 996 532 045 552 446 294 10.37
(066)  (O17)  (068)  (026)  (026)  (.026) (.575)
L000]  [000]  [.000] L087]  [.000]  [.000] [.000] [919]
[6] 647 997 521 051 553 446 2.84 11.81
(061)  (016)  (066)  (027)  (025)  (.025) (494)
L000]  [000]  [.000] L068]  [.000]  [.000] [.000] [961]

3SGMM [ 629 999 401 079 610 389 2.70 7.73
(070)  (O17)  (064)  (043)  (036)  (.036) (512)
000]  [000]  [.000] L065]  [.000]  [.000] [.000] [460]
2] 661 1.000 435 058 603 397 296 6.80
(090)  (018)  (084)  (044) (04D  (04D) (.788)
000]  [000]  [.000] [186]  [.000]  [.000] [.000] [.558]
[3] 594 1.008 332 116 645 358 247 5.70
(089)  (024)  (082)  (.068) (065  (.066) (.547)
000]  [000]  [.000] L086]  [.000]  [.000] [.000] [458]
[4] 654 998 481 055 576 424 2.89 11.92
(O81)  (O17) (079  (037)  (034)  (034) (.679)
[000]  [000]  [.000] [.144]  [.000]  [.000] [.000] [613]
(5] 692 996 519 038 .569 429 3.24 10.20
(075)  (016)  (072)  (027)  (025)  (.025) (.784)
000]  [000]  [.000] [L153]  [.000]  [.000] [.000] [.925]
[6] 666 997 494 049 573 426 2.99 12.46
(069)  (016)  (072)  (030) (029  (.029) 617)
[000]  [000]  [.000] [106]  [.000]  [.000] 1.000] [.947]

Notes: standard crrors are in parcnthesis, p-valucs arc in squarc brackets. The automatic lag selection of Newey and
West (1994) is uscd to estimate the covariance matrix.



Table 8c: Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, form II (k=.13)

Mecthod Instrument 0 B ) A Ve Yo Duration J-stat
sct

GMM [ 623 999 399 083 609 390 2.66 11.97
(067)  (018)  (062)  (042)  (036)  (.036) (A474)
[000]  [000]  [.000] L049]  [.000]  [.000] [.000] [.152]
2] 654 999 427 063 605 395 2.89 10.05
(084)  (016)  (076)  (043)  (038) (037 (.706)
L000]  [000]  [.000] L146]  [.000]  [.000] [.000] [261]
3] 593 999 344 115 632 367 246 6.52
(090)  (024)  (082)  (.065)  (065)  (.064) (.545)
L000]  [000]  [.000] L0811  [.000]  [.000] [.000] [.367]
[4] 684 998 413 053 622 376 3.17 33.49
(084)  (015)  (070)  (.038)  (033)  (.032) (.842)
[000]  [000]  [.000] [L165]  [.000]  [.000] [.000] [.002]
(5] 812 994 486 014 623 375 533 41.87
(157 (014)  (105)  (.028)  (023)  (.023) (447)
L000]  [000]  [.000] [620]  [.000]  [.000] [.000] [001]
[6] 731 997 401 038 645 354 372 53.16
(085)  (013)  (066)  (032)  (027)  (.026) (119)
L000]  [000]  [.000] [236]  [.000]  [.000] [.000] [.000]

3SGMM [ 629 1.002 373 085 628 372 2.70 11.87
(067)  (O17)  (061)  (043)  (037) (037 (.489)
000]  [000]  [.000] L050]  [.000]  [.000] [.000] [.157]
2] 657 1.002 406 065 619 381 29 10.10
(084)  (018) (079 (045  (042)  (04D) (.723)
000]  [000]  [.000]  [I51]  [.000]  [.000] [.000] [258]
[3] 593 1.009 330 119 647 357 245 6.50
(089)  (024)  (082)  (.068)  (066)  (.066) (.536)
000]  [000]  [.000] 082]  [.000]  [.000] [.000] [.368]
[4] 671 995 385 063 633 365 304 3112
(076)  (014)  (064)  (039)  (034)  (034) (.707)
[000]  [000]  [.000] L113]  [.000]  [.000] [.000] [.005]
[5] 761 993 443 027 629 368 420 40.85
(10D (013)  (073)  (029)  (024)  (.023) (1.79)
000]  [000]  [.000] [355]  [.000]  [.000] L021] [.000]
[6] 707 997 380 049 649 350 341 52.54
(072)  (012) (058  (033) (027 (027 (.835)
[000]  [000]  [.000] [L132]  [.000]  [.000] 1.000] [.000]

Notes: standard crrors are in parcnthesis, p-valucs arc in squarc brackets. The automatic lag sclection of Newey and
West (1994) and the Hall’s correction (2000) arc uscd to estimate the covariance matrix.



Table 9: Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, form I (x=.13)

Mecthod Instrument %] B 0} A Ye Y Duration J-stat
sl

GMM 1] 527 999 309 158 522 309 2.09 7.11

(086)  (.029)  (.085)  (.057)  (.083)  (.085) (.376)

[000]  [.000]  [.000]  [007]  [.000]  [.000]  [.000] [311]
2] 517 997 278 .169 516 278 207 791

(086)  (034)  (097)  (062)  (08T)  (097) (368)

[000]  [000]  [.00S] [007]  [.000]  [.000] [.000] [442]
3] 512 999 223 185 512 223 2.05 10.97
(072)  (033) (09  (056)  (072)  (091) (303)

[000]  [000]  [016] [001]  [.000]  [.000] [.000] [.359]
[4] 487 986 222 207 480 222 197 21.15
(057)  (023)  (064)  (.045) (054  (064) (216)

[000]  [000]  [.000] [000]  [.000]  [.000] [.000] [.103]
(5] 511 999 209 .189 511 209 204 12.79
(068)  (030)  (089)  (054)  (069)  (.089) (.285)

[000]  [000]  [.000] [000]  [.000]  [.021] [.000] [.385]

CUE (1] 620 .999 322 103 658 341 263 5.64
(130)  (.035)  (.106)  (.093)  (.085)  (.082) (.906)

[000]  [.000]  [000]  [271]  [.000]  [.000]  [.000] [464]
2] 595 963 392 .105 573 39 247 491
(157 (047)  (133)  (090)  (156)  (.133) (.960)

[000]  [000]  [.000] [247]  [.000]  [.004] [012] [.767]
3] 571 997 A18 107 570 418 233 8.27
(136)  (048) (1200 (079  (143) (120 (.741)

L000]  [000]  [.000] L176]  [.000]  [.000] [.000] [.602]
[4] 668 999 331 073 668 331 3.0 12.33
CI58)  (034)  (116) (074 (165  (115)  (L44D

L000]  [000]  [.000] [321]  [.000]  [.000] [.039] [464]
(5] 630 966 Al4 084 .609 414 271 10.07
(157)  (049) (145 (079 (153) (145  (L.164)

[000]  [000]  [.000] [284]  [.000]  [.005] [.022] [610]

3SGMM [t .564 1.003 .306 132 .566 306 229 6.92

079)  (.023)  (075) (048  (.077)  (.075) (.417)

[000]  [.000]  [000]  [007]  [.000]  [.000]  [.000] [.328]
2] .549 1.009 210 .159 554 210 222 8.32

(086)  (030)  (100)  (062)  (087)  (.101) (421)

[000]  [000]  [.039] L012]  [.000]  [.038] [.000] [.403]
3] .595 997 307 114 .594 306 247 9.74

(089)  (028)  (095)  (051)  (086)  (.095) (.544)

[000]  [000]  [.001] L028]  [.000]  [.000] [.000] [463]
[4] 583 974 263 132 568 263 240 17.61
(075 (023) (079  (048)  (072)  (079) (433)

L000]  [000]  [.000] L007]  [.000]  [001] 1.000] [.347]
[5] 578 1014 221 136 586 221 237 11.35
(084)  (030)  (102)  (056)  (084)  (.103) (A470)

L000]  [000]  [.033] LO17]  [.000]  [.000] 1.000] [.498]

Notes: standard crrors are in parcnthesis, p-valucs arc in squarc brackets. The automatic lag selection of Newey and
West (1994) and the Hall’s correction (2000) arc used to cstimate the covariance matrix for the GMM and 3S-GMM
cstimator. The automaltic lag sclection procedure is applied for the CUE.



Table 10: Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, form I (ik=.13)

Mecthod Instrument 0 B ) A Ve Yo Duration J-stat
sct

GMM 1] 593 999 344 115 632 367 2.46 6.52

(090)  (.024)  (082)  (.065)  (.065)  (.064) (.545)

[000]  [.000]  [000]  [081]  [.000]  [.000]  [.000] [.367]
2] 613 999 332 .106 648 352 258 722

CLIS)  (029)  (103)  (083) (079  (078) (.766)

L000]  [000]  [.002] [202]  [.000]  [.000] [.000] [.513]
3] 574 999 378 118 603 397 235 11.92
(079 (025)  (083)  (062)  (0S8)  (.058) (434)

L000]  [000]  [.000] L0571 [.000]  [.000] [.000] [.290]
[4] 587 974 492 083 534 459 243 19.02
(119 (039) (114 (07D (058)  (.058) (.706)

[000]  [000]  [.000] [245]  [000]  [.000] [.000] [.268]
(5] 592 999 376 107 611 389 245 11.85
(102) (03D (105)  (075)  (072)  (076) 611)

[000]  [000]  [.000] L156]  [.000]  [.000] [.000] [457]

3SGMM (1] .593 1.009 .330 119 647 357 245 6.50
(.089)  (.024)  (082)  (.068)  (.066)  (.066) (.536)

[000]  [.000]  [.000]  [.082]  [.000]  [.000]  [.000] [.368]
2] 593 1.005 318 123 653 349 246 7.40

(104)  (028)  (097)  (083) (079  (078) (627)

L000]  [000]  [.00L] [L141]  [.000]  [.000] [.000] [494]
[3] 587 1.013 339 119 641 365 242 9.77

(097)  (030)  (099)  (078) (075  (073) (.570)

000]  [000]  [.000] [L127]  [.000]  [.000] [.000] [461]
[4] 625 1.003 313 102 668 333 267 14.88
(124)  (033) (11D (093)  (083)  (.081) (.883)

L000]  [000]  [.000] [271]  [.000]  [.000] [.000] [.533]
[5] .580 1.004 332 128 638 364 238 11.57
(090)  (029)  (095)  (076)  (074)  (073) (513)

[L000]  [.000]  [.000] [L010]  [.000]  [.000] .000] [.480]

Notes: standard errors are in parenthesis, p-values are in square brackets. The automatic lag selection of Newey and
West (1994) and the Hall’s correction (2000) arc uscd to estimate the covariance matrix.



Table 12a: Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, revised data, form I (x=.13)

Mecthod Instrument 0 B ) A Ve Yo Duration J-stat
sct
GMM [1] .608 980 311 .109 596 311 2.55 5.11
(10D .043) (107 (.054) (.106) (107 (.655)
[.000] [.000] [.000] [.046] [.000] [.000] [.000] [.530]
[2] .624 981 298 103 612 298 2.66 6.05
(.103) (.040) 107 (.054) (.109) (.107) (.725)
[.000] [.000] [.006] [.062] [.000] [.000] [.000] [.641]
[3] 584 986 319 119 576 319 241 8.41
(.093) (.042) (.103) (.052) .097) (.103) (.541)
[.000] [.000] [.000] [.022] [.000] [.000] [.000] [.583]
[4] .646 960 222 104 621 222 2833 22.63
.067) (.020) .070) (.039) 071) (.070) (.539)
[.000] [.000] [.032] [.008] [.000] [.002] [.000] [.124]
[5] .617 980 257 112 .605 257 2.62 12.02
(.083) (.028) (.093) .045) (.085) (.093) (.566)
[.000] [.000] [.000] [.013] [.000] [.006] [.000] [.444]
CUE [1] .681 979 302 076 .681 309 3.14 4.48
.120) (.038) 107 (.069) (.090) (.089) (1.186)
[.000] [.000] [.006] [.261] [.000] [.000] [.000] [.612]
[2] .709 980 .299 062 .692 298 344 6.05
(.133) (.036) (.108) (.066) (.088) (.087) (1.580)
[.000] [.000] [.006] [.353] [.000] [.000] [.030] [.641]
[3] 677 972 305 078 674 312 3.10 7.11
(.115) 037 (.106) (.064) (.087) (.088) (1.106)
[.000] [.000] [.000] [.227] [.000] [.000] [.006] [.715]
[4]
[5] .702 984 .365 055 .650 343 337 8.78
(.141) (.039) 119 (.063) (.084) (.084) (1.60)
[.000] [.000] [.000] [.386] [.000] [.000] [.037] [.721]
3S-GMM [1] 651 990 310 086 .644 310 2.86 4.78
114) (.042) (.115) (.055) (.120) (.115) (937
[.000] [.000] [.008] [.123] [.000] [.008] [.003] [.572]
[2] .664 981 274 085 .652 274 298 5.56
11D (.036) (113) (.055) 117 (113) (.992)
[.000] [.000] [.000] [.127] [.000] [.000] [.003] [.697]
[3] .682 969 347 070 .662 347 3.15 7.63
(.125) (.043) 120) (.054) (.129) .120) (1.25)
[.000] [.000] [.000] [.193] [.000] [.000] [.L013] [.664]
[4] .643 966 246 102 621 246 2.80 20.07
(.076) .024) (.L081) 04D 077 (.081) (.594)
[.000] [.000] [.003] [.015] [.000] [.000] [.000] [217]
[5] .654 976 .280 .090 .638 280 2.89 11.00
(.093) 027 (.098) (.045) (.095) (.098) (.776)
[.000] [.000] [.000] [.046] [.000] [.005] [.000] [.529]

Notes: stand

ard errors are in parenthesis, p-values are in square brackets. The automatic lag sclection of Newey and
West (1994) and the Hall’s correction arc used to cstimate the covariance matrix.



Table 12a (continued): Hybrid Phillips Curve Estimates 1960Q1- 1997Q4, revised data,
form IT (k=.13)

Mecthod Instrument %] B 0} N Ve Y Duration J-stat
sct

GMM i 653 981 345 082 645 347 2.89 4383
(123) (045 12D (070)  (097)  (096)  (1.026)
L000]  [000]  [.00S] [243]  [.000]  [.000] [.005] [.565]
2] 674 981 343 072 653 339 307 5.74
G130 (042)  C124)  (069)  (097)  (.096) (1.23)
[000]  [000]  [.000] [303]  [.000]  [.000] [014] [.676]
3] 673 985 319 075 670 322 3.06 7.59
(124) (04D (1200 (068)  (096)  (.096) (1.17)
L000]  [000]  [.000] [272]  [.000]  [.000] L010] [.668]
[4] 757 965 368 037 655 330 4.11 21.07
CL19)  (023)  (096)  (042)  (059)  (.060) (2.02)
L000]  [000]  [.000] [374]  [.000]  [.000] [.043] [.176]
(5] .680 959 309 078 665 315 3.13 10.93
(106)  (028)  (103) (055  (087)  (.088) (1.03)
[000]  [000]  [.000] [L164]  [000]  [.000] [.000] [.534]

3SGMM [ 644 992 310 093 670 326 281 4.85
CLI3)  (043)  CL15) (07D (098)  (.097) (.891)
L000]  [000]  [.007] [L131]  [.000]  [.001] [.002] [.562]
2] 661 984 332 076 .660 333 301 5.77
(126) (04D (12D (070)  (098)  (.096) (1.14)
[000]  [000]  [.000] [276]  [.000]  [.000] [.009] [.674]
3] .669 971 342 076 646 341 3.0 7.60
(126)  (043)  (122)  (068)  (068)  (.095) (1.15)
[000]  [000]  [.000] [268]  [.000]  [.000] [.009] [.667]
[4] 726 980 337 050 673 318 3.65 18.37
(L3 027) (10D (047 (07D (072) (1.52)
L000]  [000]  [.000] [301]  [.000]  [.000] L017] [.302]
(5] 685 978 326 069 665 3241 3.18 10.78
G (028)  (107)  (054)  (087)  (.087) (1.12)
[000]  [000]  [.000] [201]  [.000]  [.000] 1.000] [.547]

Notes: standard crrors are in parcnthesis, p-valucs arc in squarc brackets. The automatic lag selection of Newey and
West (1994) and the Hall’s correction arc used to estimate the covariance matrix.



Table 13: Robustness to inflation specification, 1960Q1 - 1997Q4, form II (<=.13)

Method | Instrument 0 B ® A Ye Yo © D J-stat
scl
GMM [1] .645 999 418 .069 .607 393 001 2.82 2.76
(152) 213y  (143)  (054)  (.065) (.096) (.073) (1.21)
[.000]  [.000] [.004] [.208]  [.000] [.000] [.987] [.021] [.429]
[2] .608 999 422 .086 590 392 .000 2.55 1243
(.142) 208y  (132)  (0O57)  (.063) (.140) (.069) (.930)
[.000]  [.000] [.004] [.134]  [.000] [.006] [.998] [.007] [.087]
[3] .669 999 392 .063 .630 370 .002 3.02 6.66
(.149)  (186)  (140) (065  (.065) 097 (.070) (1.36)
[.000]  [.000] [.000] [.242]  [.000] [.000] [.981] [.028] [.247]
[4] .648 999 622 .037 510 490 -.007 2.84 27.12
(256)  (381)  (191)  (050)  (.056) (.080) 071) 2.07)
[012]  [.009] [.001] [.464]  [.000] [.000] [.930] [.171] [.012]
[5] 612 999 412 .087 598 402 -.001 2.57 15.11
(146) (209  (130)  (057)  (.068) (.094) 071) (.968)
[.000]  [.000] [.002] [.132]  [.000] [.000] [.983] [.009] [.088]
CUE [1] .650 999 .380 074 631 369 .003 2.86 2.33
(201) (2400 (147 (095 (114 (.099) (.091) (L.64)
[002]  [.000] [.000] [.441]  [.000] [.000] [.978] [.084] [.506]
[2] .644 999 246 107 723 276 .004 2.81 7.19
(147 170y (118 (093) (1200 (.107) (.099) (1.16)
[.000]  [.000] [.040] [.251]  [.000] [.011] [.962] [.017] [.409]
[3] 658 999 288 .088 .696 304 0.005 2.93 4.27
(168) (184  (130) (094 (116 (.105) (.087) (1.44)
[.000]  [.000] [.000] [.352]  [.000] [.000] [.950] [.043] [.511]
[4] 766 999 282 012 505 489 -.002 2.97 13.55
(.102) 181y  (121)  (.100)  (.103) (.080) (.098) (L.47)
[.000]  [.000] [.001] [.980]  [.000] [.000] [.960] [.041] [.405]
[3]
35 [1] .644 1.013 304 077 .646 360 -.004 2.81 532
GMM (122)  (168)  (122)  (050)  (.042) (.074) (.064) (.969)
[.000]  [.000] [.000] [.127]  [.000] [.000] [.953] [.004] [.377]
[2] 622 1.060 .380 079 .648 374 -019 2.65 3.80
17y (179 (103) 047y (050) (.074) (.060) (.819)
[.000]  [.000] [.000] [.098]  [.000] [.000] [.745] [.002] [.578]
[3] 568 1.016 459 074 616 430 -.042 2.32 2.26
167y (176)  (153)  (054)  (.065) (.097) (.074) (.897)
[.000]  [.000] [.000] [.169]  [.000] [.000] [.565] [.011] [.521]
[4] .694 944 284 .078 677 294 032 3.27 28.73
(098)  (099) (069  (044)  (030) (.061) (.054) (1.05)
[.000]  [.000] [.000] [.077]  [.000] [.000] [.553] [.002] [.002]
[5] 714 987 324 055 .681 313 .007 3.50 3441
097y  (100)  (O071)  (033)  (.029) (.056) (.046) (1.19)
[.000]  [.000] [.000] [.096]  [.000] [.000] [.877] [.096] [.003]

Notes: standard crrors are in parenthesis, p-values are in square brackets. The automatic lag selection of Newey and
West (1994) and the Hall’s correction arc used to estimate the covariance matrix for the 2SGMM and 3S-GMM. The
first procedure is only used for the CUE.



Table 14: Robustness to inflation forecasting measures, 1960Q1- 1997Q4, form I1(i=.13)

Method Instrument 0 B ) A Ve Y Duration J-stat
sct
GMM [1] 325 999 238 616 577 423 148 16.65
(.034) (052) (.114) (.198) (.144) (.129) .075)
[.000] [.000] [.000] [.002] [.000] [.000] [.000] [.O11]
[2] 323 993 .307 503 510 487 1.50 17.91
037 (.053) (.106) (.142) 114) (.103) (.081)
[.000] [.000] [.005] [.000] [.000] [.000] [.000] [.056]
[3] .293 937 443 391 378 .608 142 21.95
(.054) (.113) 177 (.175) (.144) (.132) (.108)
[.000] [.000] [.013] [.028] [.000] [.000] [.000] [.502]
[4] 242 988 571 317 274 713 1.32 43.17
.043) 107 117 (.102) (.086) (.081) 073
[.000] [.000] [.000] [.002] [.002 [.000] [.000] [.000]
[5] 235 987 522 .384 .289 .698 1.31 28.13
(.055) (.130) (.144) (.136) 117) (.109) (.094)
[.000] [.000] [.000] [.006] [.016] [.000] [.000] [.000]
CUE [1] 358 941 279 487 533 442 1.56 7.87
(.048) (.052) (.126) 15D (.139) (.135) (.116)
[.000] [.000] [.000] [.002] [.000] [.001] [.000] [.248]
[2] 337 917 376 406 440 535 151 8.30
(.053) .073) (.143) (.139) 13D 127 (.120)
[.000] [.000] [.000] [.001] [.001] [.000] [.000] [.599]
[3]
[4] .309 946 532 275 351 640 145 13.21
057 .091) (.159) 117 (.108) (.105) (.119)
[.000] [.000] [.001] [.021] [.002] [.000] [.000] [.657]
[5] .385 992 522 327 753 241 1.63 8.51
(.034) (.026) 1D 112) (.138) (.132) (.089)
[.000] [.000] [.000] [.004] [.000] [.000] [.000] [.743]
3S-GMM [1] .345 993 214 606 614 382 1.53 15.79
(.036) 047 (.108) (.195) (.142) 127 (.084)
[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.015]
[2] 327 971 325 478 .489 501 1.49 17.28
(.039) (.058) (.108) 137 11D (.10 (.085)
[.000] [.000] [.003] [.000] [.000] [.000] [.000] [.068]
[3] .336 1.003 213 .630 614 387 1.51 19.37
(.034) (.042) (.096) (.175) (.129) ay 077
[.000] [.000] [.028] [.000] [.000] [.000] [.000] [.013]
[4] .362 968 231 537 .593 392 1.56 53.22
(.028) (.029) 061) (.099) (.078) 071 (.069)
[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.000]
[5] .298 1.012 301 .569 .503 502 143 23.30
(.035) (49 (.098) (.133) (.114) (.104) 071
[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.025]

Notes: standard crrors are in parenthesis, p-values are in square brackets. The automatic lag selection of Newey and
West (1994) and the Hall’s correction arc used to estimate the covariance matrix for the 2SGMM and the 3S-GMM.
The first procedure is only used for the CUE.



Table 15: Hybrid Phillips Curve Estimates 1960Q1- 2001Q4, form I (k=.13)

Method Instrument 0 B ) A Ve Y Duration J-stat
sct

GMM I 641 987 339 087 633 339 2.79 5.24
(098)  (043)  (113) (047 (099)  (113) (.766)
[000]  [000]  [.003] L066]  [.000]  [.003] [.000] [.514]
2] 658 985 331 080 649 331 293 6.17
(10D (039)  (113) (047 (103 (113) (.869)
000]  [000]  [.000] LO91]  [.000]  [.004] [.000] [.628]
[3] 638 991 347 087 633 347 276 7.87
(098)  (042)  (112)  (046)  (098)  (.112) (.747)
000]  [000]  [.000] L062]  [.000]  [.002] [.000] [.642]
[4] 702 973 246 071 683 246 335 18.57
(068)  (019) (079  (032) (069  (.079) (.762)
000]  [000]  [.000] L028]  [.000]  [.000] [.000] [292]
[5] 614 984 295 082 653 295 297 10.82
(084)  (027)  (098)  (.039)  (083)  (.097) (737
[000]  [000]  [.000] [033]  [.000]  [.000] 1.000] [.544]

CUE [ 712 981 343 054 665 327 3.48 4.64

(122)  (038)  (l15)  (053)  (082)  (.083) (1.48)

[000]  [000]  [.003] [316]  [.000]  [.000] [.020] [.590]
2] 737 979 348 044 669 323 381 6.30

(136)  (037)  (II7) (053) (079  (.080) (1.97)

[000]  [000]  [.000] [408]  [.000]  [.000] [.055] [614]
[3] 726 975 338 050 669 319 3.66 6.81

(126)  (037)  (116)  (053)  (081)  (.083) (1.69)

[000]  [000]  [.000] [.345]  [.000]  [.000] [031] [743]
[4] 796 983 330 026 698 294 491 12.32
(165)  (033)  (125)  (.048) (078 (077D (1.39)

[000]  [000]  [.000] [.583]  [.000]  [.000] [.000] [721]
[5] 754 975 343 039 674 314 407 8.55

(141 (034) (115 (051 (076)  (078) (2.33)

[000]  [000]  [.000] [449]  [.000]  [.000] [.083] [.740]

3SGMM [ 679 994 351 068 675 351 312 495
CL13)  (043) (12D (048) (114 (12D (1.10)
[.000]  [.000]  [.004] [L159]  [.000]  [.004] [.005] [.551]
2] 694 987 315 066 685 315 327 7.16
(096)  (028)  (105)  (.039)  (.094)  (.106) (L.02)
[.000]  [.000]  [.000] [L095]  [.000]  [.003] [.002] [.520]
3] .699 973 361 061 .680 362 333 722
CL18)  (042)  (122) 047y (118)  (122) (1.31)
[.000]  [.000]  [.000] [L196]  [.000]  [.004] [012] [.704]
[4] 712 982 27 063 700 272 347 16.67
(084)  (024)  (093)  (.036)  (.084)  (.093) (1.02)
[L000]  [.000]  [.004] [.083]  [.000]  [.004] [.000] [.408]
(5] .690 983 323 067 679 323 323 10.03
094)  (028)  (102)  (.038)  (.092)  (.102) (977
[L000]  [.000]  [.002] LO81]  [.000]  [.000] [.001] [614]

Notes: standard crrors are in parenthesis, p-values are in square brackets. The automatic lag selection of Newey and
West (1994) and the Hall’s correction arc used to estimate the covariance matrix.



Table 15 (continued): Hybrid Phillips Curve Estimates 1960Q1- 2001Q4, form II (ic=.13)

Method Instrument 0 B ) A Ve Y Duration J-stat
sct

GMM [1] 704 986 .368 053 .649 345 3.38 4.86
(.130) (.044) (13D (.056) (.089) (.089) (1.48)

[.000] [.000] [.005] [.342] [.000] [.000] [.024] [.561]

[2] 716 966 338 056 .662 323 352 7.14
(.107) (.029) 107 .045) (.089) (.082) (1.33)

[.000] [.000] [.000] [.222] [.000] [.000] [.009] [.522]

[3] 712 988 351 052 .664 331 348 7.23
(.129) 041 (.128) (.055) (.088) (.089) (1.56)

[.000] [.000] [.000] [.349] [.000] [.000] [.027] [.703]

[4] .784 953 428 026 .624 358 4.63 19.35
(.118) (.025) (.109) 03D (.059) (.058) (2.53)

[.000] [.000] [.000] [.404] [.000] [.000] [.068] [251]

[5] 721 964 .339 053 661 322 3.59 9.85
(.107) (.028) 107 (.044) .079) (.081) (1.38)

[.000] [.000] [.000] [.229] [.000] [.000] [.010] [.629]

3SGMM [1] .676 995 .338 069 .665 333 3.09 4.97
11D .043) 119 057 (.089) (.090) (1.06)

[.000] [.000] [.005] [.225] [.000] [.000] [.004] [.547]

[2] .697 987 379 .055 .642 353 3.30 6.06
127 .043) (13D (.056) (.088) (.088) (1.38)

[.000] [.000] [.000] [.327] [.000] [.000] [.L018] [.641]

[3] 721 973 357 050 .655 334 3.58 7.16
(.134) 041) (.130) (.056) (.088) (.089) (1.71)

[.000] [.000] [.000] [.369] [.000] [.000] [.038] [.710]

[4] 71 987 .369 .030 .669 325 437 15.51
(.126) (.028) (.113) (.038) (.069) 071) (2.41)

[.000] [.000] [.001] [.428] [.000] [.000] [.072] [.487]

[5] 726 982 371 046 .652 339 3.64 9.75
11D .030) (.112) .043) (.078) .079) (1.53)

[.000] [.000] [.001] [.286] [.000] [.000] [.L018] [.638]

Notes: standard crrors arc in parenthesis, p-valucs arc in square brackets. The automatic lag sclection of Newey and
West (1994) and the Hall’s correction are used to estimate the covariance matrix.



Figure 2: Ditferent measures of real marginal costs and revisions
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Figure 3: Inflation forecasting measures
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