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1. Introduction 

There are many areas of economics where market outcomes are best described 

by an on-going sequence of interrelated negotiations. When firms negotiate over 

employment conditions with individual workers, patent-holders negotiate with several 

potential licensors, and when competing firms negotiate with their suppliers over 

procurement contracts, a network of more or less bilateral relationships determines the 

allocation of resources. To date, however, most theoretical developments in 

bargaining have either focused on the outcomes of independent bilateral negotiations 

or on multilateral exchanges with a single key agent. 

The goal of this paper is to consider the general problem of the outcomes that 

might be realised when many agents bargain bilaterally with one another and where 

negotiation outcomes are interrelated and generate external effects. This is an 

environment where (1) surplus is not maximised because of the existence of those 

external effects and the lack of a multilateral mechanism to control them; and (2) 

distribution depends upon the precise position of agents in the graph of network 

relationships. While cooperative game theory has developed to take into account (2) it 

almost axiomatically rules out (1). In contrast, non-cooperative game theory embraces 

(1) but restricts the environment considered – symmetry, two players, small players, 

etc. – to avoid (2). 

Here we consider a set of agents who are linked by a network – describing 

which pairs can negotiate bilaterally. Our environment is such that pairs of agents 

negotiate over variables that are jointly observable. This might be a joint action – such 

as whether trade takes place – or an individual action undertaken by one agent but 

observed by the other (e.g., effort or an investment). We specify a non-cooperative 

game whereby each pair of agents in a network bargains bilaterally in a pre-specified 
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sequence (although the order does not matter for the equilibrium we focus on). 

Pairwise negotiations utilise an alternating offer approach where offers and 

acceptances are made in anticipation of deals reached later in the sequence. Moreover, 

those negotiations take place with full knowledge of the network structure and the 

ability to make terms contingent upon that structure should it change. Specifically, the 

network may become “smaller” should other pairs of agents fail to reach an 

agreement. 

We consider a situation where the precise agreement terms cannot be directly 

observed outside a network and focus on an attractive equilibrium outcome of the 

incomplete information game. That outcome involves agents negotiating actions that 

maximise joint surplus (as in Nash bargaining). Hence, with externalities, outcomes 

are what might be termed “bilaterally efficient” rather than socially efficient. 

Nonetheless, the characterisation of those outcomes involves a simple Nash 

equilibrium of a game where actions are chosen to maximise each pair’s utility. 

The equilibrium set of transfers based on the same equilibrium that generates 

bilaterally efficient actions also gives rise to a precise structure; namely, a payoff that 

depends upon the weighted sum of values to particular coalitions of agents. This has a 

cooperative bargaining structure but with several important differences. First, the 

presence of externalities alongside the restricted communication space gives rise to an 

outcome that includes the Shapley value, the Myerson value (on a restricted graph) 

and the Shapley value in partition function space as special cases. Second, those 

externalities mean that, in certain circumstances, the equilibrium outcome is the 

Shapley value allocation but over a surplus that is characterised by bilateral rather 

than social efficiency. Thus, we have a non-cooperative foundation for a cooperative 

bargaining division of a non-cooperative surplus; both of which are easy to utilise in 
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applied settings. To our knowledge, no similar simple characterisation exists in the 

literature for a multi-agent bargaining environment. 

The paper proceeds as follows. In the next section, we review the current 

literature on non-cooperative foundations of the Shapley and Myerson values. Section 

3 then introduces our action space which is the principal environmental restriction in 

this paper. Our extensive form game is introduced in Section 4. The equilibrium 

outcomes of that game are characterised in Sections 4 and 5; first with the equilibrium 

outcomes as they pertain to actions and then to distribution. Section 6 then considers 

particular economic applications including the resource trading environment of Gul 

(1989), Stole and Zwiebel’s (1996) wage bargaining environment, and buyer seller 

networks. A final section concludes. 

2. Literature Review 

Winter (2002, p.2045) argues that “[o]f all the solution concepts in 

cooperative game theory, the Shapley value is arguably the most ‘cooperative,’ 

undoubtedly more so than such concepts as the core and the bargaining set whose 

definitions include strategic interpretations.” Despite this, the Shapley value has 

emerged as an outcome in a number of non-cooperative settings. Harsanyi (1985) 

noted the emergence of the Shapley value in games that divide surplus based on 

unanimity rules. However, recent attempts to provide a non-cooperative foundation 

for the Shapley value have focused, for the most part, on the outcomes of a series of 

bilateral negotiations.  

Gul (1989) proposed a game where a single agent can generate utility from 

consuming resources that are initially dispersed. His trading game has individual 

agents meeting randomly to conduct bilateral trades. Each bilateral negotiation 
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involves one agent being selected at random to make a take-it-or-leave-it purchase 

offer to the other agent. Successful trades result in the seller leaving the game with 

their earnings. Essentially, a trade is equivalent to a seller agreeing to join the buyer’s 

coalition. Eventually, sufficient trades occur that the grand coalition is formed with, 

for sufficiently patient players, the unique stationary subgame perfect outcome (with 

no delay) having each agent receive (in expectation) their Shapley value. The 

economic environment is quite specialised here, however, as it essentially amounts to 

a sequence of discrete trades. 

Stole and Zwiebel (1996) examined an environment where a firm bargains 

bilaterally with a given set of workers. While their treatment is for the most part 

axiomatic, focusing on a natural notion of stable agreements, they do posit an 

extensive form game for their environment. In this extensive form game, there is a 

fixed order in which each worker bargains with the firm. Any given negotiation has 

the worker and firm taking turns in making offers to the other party that can be 

accepted or rejected. Rejected offers bring with them an infinitesimal probability of 

an irreversible breakdown where the worker leaves employment forever. Otherwise, a 

counter-offer is possible. If the worker and firm agree to a wage (in exchange for 

participation in production), the negotiations move on to the next worker. The twist is 

that, agreements are not binding in the sense that, if there is a breakdown in any 

bilateral negotiation, this automatically triggers a replaying of the sequence of 

negotiations between the firm and each remaining worker. This new subgame takes 

place as if no previous wage agreements had been made (reflecting a key assumption 

in Stole and Zwiebel’s axiomatic treatment that wage agreements are not binding and 

can be renegotiated by any party at any time).  
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Stole and Zwiebel (1996, Theorem 2) claim that this extensive form game 

gives rise to the Shapley value as the unique subgame perfect equilibrium outcome 

(something they also derive in their axiomatic treatment). However, in their proof of 

this, they assume that the Binmore, Rubinstein and Wolinsky (1986) bargaining 

outcome holds for each negotiating pair even though a deviation from the equilibrium 

outcome in a previous negotiation may not yield that outcome.1 We demonstrate 

below that if the informational structure between different bilateral negotiations is 

more precisely specified (Stole and Zwiebel implicitly assume that the precise wage 

that is paid to a worker is not observed by other workers) and ‘out of equilibrium’ 

beliefs specified, their result holds. Nonetheless, as will be apparent below, our 

extensive form bargaining game – consisting of a sequence of bilateral negotiations 

based on the Binmore, Rubinstein and Wolinsky outcome – is a natural extension of 

theirs to more general economic environments. 

Finally, we note the influential contribution of Hart and Mas-Colell (1996) to 

this literature. They do not model an extensive form game based on bilateral offers 

and negotiations but instead consider rounds where players have opportunities to 

make offers to all ‘active’ players (i.e., players who have no had a proposal rejected). 

If this is accepted by all ‘active’ players, the game ends. If it is not accepted by one 

player there is a chance that the proposer will be excluded from the game. Hart and 

Mas-Colell (1996) demonstrate that there is a unique subgame perfect equilibrium of 

this game that results in each active player receiving its Shapley value. As Winter 

(2002) surveys, this game has given rise to a variety of extensions but in general the 

institutional environment requires the ability of proposers to make offers to all, for 

                                                 
1 Indeed, we demonstrate below that deviations do, indeed, result in an alternative outcome to an 
independent Binmore, Rubinstein and Wolinsky (1986) outcome. 
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single rejections to nullify agreements and for a commitment to cause proposers to 

risk exit following rejection. 

In summary, while significant, prior extensive form games that generate 

Shapley value outcomes as equilibrium outcomes have been based in somewhat 

restrictive economic environments. Either the set of choices is restricted – as in Gul 

(1989) and Stole and Zwiebel (1996) – to decisions to join coalitions or not or 

alternatively, the institutional environment involves communication structures and 

commitment not present in many important economic environments. 

3. Observability of Actions 

Because we consider an environment where all negotiations are bilateral, we 

similarly restrict the observability of actions to no more than two agents. We assume 

below that individual actions (such as effort expended or an investment) may be 

observable, and hence negotiable, with one other agent. Similarly, a joint action (such 

as exchange of goods, services or assets) may be observed and negotiated by the two 

agents concerned. However, in each case, other agents cannot observe the action 

taken. Importantly, what this means is that agents cannot negotiate agreements 

contingent upon negotiations that one or neither of them is a party to. To assume 

otherwise would be inconsistent with our restriction to bilateral bargaining and would 

suggest instead that a multilateral bargaining protocol might be more appropriate. 

As an example, consider an environment where there are 2 buyers (1 and 2) 

and 2 sellers (A and B) of a product. Each buyer and seller can negotiate over the 

quantity of the product traded between them; e.g., 1 and A negotiate over 1Ax  and so 

on. The buyers’ values are 1 1 1( )A Bb x x+  and 2 2 2( )A Bb x x+ , respectively. Assume that 
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the sellers have no costs. In exchange for the product, buyers pay the sellers a 

transfer; for example, 1 pays A, 1At . Each pair trades a quantity and pays a transfer 

between them. 

The network of bilateral negotiations is as depicted in Figure 1. Notice that the 

two buyers and the two sellers are assumed here not to negotiate with one another. 

Our observability requirements will also presume that 2 will not be able to observe 

1 1( , )A Ax t  or 1 1( , )B Bx t . This means that agreements with 2 cannot be made contingent 

upon these outcomes even when 2 negotiates with A or B respectively.  

 

Figure 1: Buyer-Seller Network 

 

To formalize this, consider a set of agents, {1,2,..., }N n= . There are three 

types of actions: 

1. Individually observable actions by i: let ia  be the vector of such actions 

with individual component, m
ia . 

2.  Jointly observable actions by i and j (i < j): let ijx  be the vector of such 

actions with individual component, m
ijx . 

1 2 

A B 

1 1( , )A Ax t  

1 1( , )B Bx t

2 2( , )A Ax t

2 2( , )B Bx t
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3. Transfers between i and j: without loss of generality, we will assume there 

is only one of these, ijt  (that may be positive or negative) between each 

pair (i, j).  

As noted earlier, it is clear that ia , ijx  and ijt  are observed by i. (A1) formalizes our 

unobservability assumption. Let { }i i NA ∈≡ a , ( , ){ }ij i j NX ∈≡ x  and ( , ){ }ij i j NT t ∈≡ .  

(A1) (Unobservable Actions) During negotiations, agent i cannot observe 
/ iA a , /{ }ij j NX ∈x  and /{ }ij j NT t ∈ . 

 
In particular, this means that even if it is negotiating with j, j cannot directly 

communicate to i the outcomes of a previous negotiation with k. Instead, i must form 

beliefs over those actions it cannot observe and expectations about outcomes in the 

future. We let i’s beliefs over a particular action be superscripted with i and marked 

with a tilde. That is, i’s beliefs regarding klx  would be i
klx! .  

The results that follow do not explicitly depend upon the individually 

observable actions, { }i i NA ∈≡ a , although these might prove important in applications. 

For that reason, we suppress reference to them in what follows so as to simplify the 

exposition. 

4. Bargaining Game 

We begin by stating some additional notation, before defining our extensive 

form bargaining game. 

Set-up and notation 

The most natural way to describe the set of bilateral negotiations is by a graph 

(N, L) which has the set of agents as its vertices each connected by a set of edges or 
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links, { }{ , } { , } ,NL L i j i j N i j⊆ = ⊆ ≠ . Thus, the potential number of links in a 

complete graph (N, LN) is n(n-1)/2. An individual link between i and j will be denoted 

ij (or symmetrically ji). L describes the state space of potential agreements. If a link, 

ij, is in L, then agents i and j can still come to a bilateral agreement. If ij is not in L, 

then agents have reached a disagreement state. If a pair ij L∈  were to disagree, the 

new state is denoted: L ij− . Finally, for any sub-graph, K L⊆ , let 

{ }( )  s.t. S K i j ij K L≡ ∃ ∈ ⊆ . Note that ( )S L N= . 

Starting with a network (N, L), agents i and j negotiate bilaterally over choices, 

( )ijx K ∈ R  and payments ( )ijt K ∈ R  for each K L⊆  where ij K∈ . There are 

potentially n(n-1)/2 choice and payments variables; the (n x n) matrices of which are 

NX  and NT , respectively. We also define ,N LX  the matrix of choice variables where 

0ijx =  for ij L∉ . Thus, if there is a disagreement, we normalise by setting the 

relevant choice variable at 0.2 Similarly, we define ,N LT  where 0ijt =  for ij L∉ . That 

is, no bilateral payments are made if there is a disagreement.  

Given the agreed ,N LX  and ,N LT , an agent’s payoff is 

, , , ,( , ) ( )N L N L N L N L
i i iv u= −X T X T I  where iI  is an n by n matrix with a 1 in each row of 

column i and a 0 otherwise. This implies that ,N L
i ijij L

t
∈

=∑T I . Thus, we are 

assuming a transferable utility environment where total surplus generated is not 

affected by T. That is, , , ,( , ) ( )N L N L N L
i ii i

v u=∑ ∑X T X . 

This notation also allows us to define what we mean by a (constrained) 

efficient set of agreements. 

                                                 
2 Note that this does not necessarily mean that following a disagreement, no action is taken. For 
instance, a jointly observed action may be within the discretion of one party. In the event of a 
breakdown, that party may take that action to maximise their own payoff. We set the index of such 
individually optimized actions to zero. 
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Definition (Efficiency): For a given K, a set of agreements { }* ( )ij ij K
K

∈
x  is efficient if: 

{ }
* ,

( )
( ) arg max ( ) for all 

ij ij K

N K
ij iK

i N
K u ij K

∈ ∈

∈ ∈∑x
x X . 

with { }
,

( )
( , ) max ( , )

ij ij K

N K
iK

i N
v N K u A

∈ ∈

≡ ∑x
X . 

 
Thus, an agreement is efficient for a given network (N, K), if the choices agreed upon 

maximise the sum of utilities over all agents whether they are party to an agreement 

or not. Note also that for a subgraph, S: { }
,

( )
( , ) max ( )

ij ij K

S K
iK

i S
v S K u

∈ ∈

≡ ∑x
X . 

Finally, for some analysis that follows it will be convenient to partition the set 

of agents. 1{ ,..., }pP P P=  is a partition of the set N if and only if (i) 
1

p
ii

P N
=

=∪ ; and 

(ii) for all j k≠ , j kP P∩ = ∅ . We define p as cardinality of P. The set of all 

partitions of N is PN. For a given network (N, K), we can also define a graph, KP, 

imputed from a partition, P. That is, { ,  and , }P
i iK j k jk K j P k P= ∈ ∈ ∈ . In other 

words, KP is a graph partitioned by P. 

All of these concepts can be illustrated by returning to our buyer-seller 

network example. In this situation, Figure 1 depicts the set of links, 

{1 ,1 , 2 ,2 }L A B A B=  and we have assumed that ,
1 1 1 1( ) ( )L N

A Bu b x x= +X , 

,
2 2 2 2( ) ( )L N

A Bu b x x= +X  and , ,( ) ( ) 0L N L N
A Bu u= =X X . An efficient outcome would 

involve 
1 1 2 2, , , 1 1 1 2 2 2( , ) max ( ) ( )

A B A Bx x x x A B A Bv L N b x x b x x= + + + . If, however, 1 and A 

could no longer negotiate or trade with one another, the network would become 

{1 ,2 ,2 }K B A B=  and 1 1( , )A Ax t  would be set equal to (0,0)  with 

1 2 2, , 1 1 2 2 2( , ) max ( ) ( )
B A Bx x x B A Bv K N b x b x x= + + . Finally, if we were to partition the set 

of agents into P = {(1, A), (2, B)}, {1 ,2 }PL A B=  and {2 }PK B= . 
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In terms of what the parties negotiate over, recall that these are contingent 

outcomes. So 1 and A could negotiate, say, a quantity 1 ( ) 3Ax L =  and transfer 

1 ( ) 2At L =  as well as 1 (1 ,1 ,2 ) 4Ax A B B =  and 1 (1 ,1 ,2 ) 5At A B B =  and so on. That is, 

they consider all possible states that could emerge and they can negotiate different 

quantity and transfers that would be payable upon the final realisation of any 

particular network. In principle, the transfers and quantities paid under each network 

contingency could be the same. That is, the contract could be a full commitment. 

However, in the equilibrium we focus on below, this will not be the case. 

Information regarding the bargaining network 

Earlier we stated (A1) which confined the observability of actions to those 

agents undertaking them. Also of importance is the set of bilateral negotiations that 

can take place. These are described by the network, (N, L). That network connects 

sub-groups of agents or perhaps all agents. More precisely, 

Definition (Connectedness). Agents i and j are connected in network ( , )N L  if there 
exists a sequence of agents 1 2( , ,..., )ti i i  such that 1i i=  and ti j=  and { }1,l li i L+ ∈  for 
all {1, 2,..., 1}l t∈ − . i is directly connected to j if ij L∈ . 
 
Definition (Component). A component of network ( , )N L  that contains i is 

{ }( )  or  is connected to iC L j N j i j i= ∈ = . Let N/L be the set of components of 
network ( , )N L . 
 
Notice that all agents in a network (N, L) are connected if, for all j L∈ , ( )ij C L∈ . 

All agents are connected if, or for all j N∈ , ( )ij C L∈ . Finally, all agents are directly 

connected if NL L=  (the complete graph). 

Importantly, in what follows, a breakdown in bargaining between i and j is a 

situation where the network changes from ( , )N L  where ij L∈  to ( , )N L ij− ; 

implying that { ( ), ( )} {0,0}ij ij K L ijK t K ⊆ − =x . It will also be considered irreversible as 
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the link between i and j can never subsequently be restored. Thus, as breakdowns are 

possible, the network will potentially move from one with many links to graphs that 

are subsets of the original network. For convenience, we will sometimes describe 

networks in terms of states with a current state and potential future states. 

A key assumption here is: 

(A2) (Knowledge of the Bargaining Network) The state of the network 
( , )N K  is common knowledge. 

 
This assumption is necessary in order for agents to negotiate contracts that are 

contingent upon the network state. As we will also see below, this assumption would 

be necessary if, rather than writing contracts contingent upon networks that may arise, 

agents negotiated contracts based only on the current network and renegotiated them 

in the event a new network arose (following a breakdown). Analytically, we 

demonstrate below that (A2) simplifies the ultimate structure of the solution to our 

bargaining game. 

Extensive form 

We are now in a position to define the full extensive form game. Given (N, L), 

fix an order of pairs, { }ij Lij ∈ . The precise order will not matter to the solution that 

follows. Bargaining proceeds as follows. Each pair negotiates in turn. A bilateral 

negotiation takes the following form: randomly select i or j. That agent, say i, makes 

an offer { }
,

( ), ( )ij ij K L ij K
K t K

⊆ ∈
x  to j. j either accepts the offer or rejects it. If j accepts 

it, the offer { }
,

( ), ( )ij ij K L ij K
K t K

⊆ ∈
x  is fixed and we proceed to the next pair. If j rejects 

the offer, with probability 1-σ negotiations end and the bargaining game 

recommences over a new network ( , )N L ij− . Otherwise negotiations continue with j 
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making an offer to i. Notice that offers are made contingent upon the potential 

agreement state (K). 

This specification of an individual bilateral negotiation is essentially the same 

as that of Binmore, Rubinstein and Wolinsky (1986) for stand-alone bilateral 

negotiations. Here, however, bilateral negotiations are not isolated and are embedded 

within a sequence of negotiating pairs. 

Belief structure 

Given that our proposed game involves incomplete information, to 

demonstrate the existence of certain equilibrium outcomes in the game, we will need 

to impose some structure on ‘out of equilibrium’ beliefs. This is an issue that has 

drawn considerable attention in the contracting with externalities literature (McAfee 

and Schwartz, 1994; Segal, 1999; Rey and Verge, 2003). 

It is not our intention to revisit that literature here. Suffice it to say that the 

most common assumption made about what players believe about actions that they do 

not observe, or that have not yet happened is the simple notion of “passive” or 

“market to market” beliefs. We will utilise it through this paper. To define it, let 

,
ˆˆ{( ( ), ( ))}ij ij ij L K LK t K ∈ ⊆x  be a set of equilibrium agreements between all negotiating 

pairs. 

Definition (Passive Beliefs). When i receives an offer from j of ˆ( ) ( )ij ijK K≠x x  or 
ˆ( ) ( )ij ijt K t K≠ , i does not revise its beliefs regarding any other outcome in the game. 

 
At one level, this is a natural belief structure that mimics Nash equilibrium reasoning. 

That is, if i’s beliefs are consistent with equilibrium outcomes – as they would be in a 

perfect Bayesian equilibrium, then under passive beliefs, it holds those beliefs 

constant off the equilibrium path as well. At another level, this is precisely why 
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passive beliefs are not appealing from a game-theoretic standpoint. Specifically, if i 

receives an unexpected offer from an agent it knows to be rational, a restriction of 

passive beliefs is tantamount to assuming that i makes no inference from the 

unexpected outcome; even if it were to accept this offer based on its current beliefs. 

Nonetheless, as we demonstrate here, passive beliefs plays an important role in 

generating tractable and interpretable results from our extensive form bargaining 

game; simplifying the interactions between different bilateral negotiations. 

Feasibility 

The non-cooperative bargaining game presented above will have an 

equilibrium whose convenient characterisation will at times rely upon agreements 

being reached in all bilateral negotiations in a network (N, L). However, an 

equilibrium with this property may not exist. For instance, as Maskin (2003) 

demonstrates, when an agent may be able to free ride upon the contributions and 

choices of other agents, that agent may have an incentive to force breakdowns in all 

their negotiations so as to avoid their own contribution. Maskin demonstrates that this 

is the case for situations where there are positive externalities between groups of 

agents (as in the case of public goods). 

The idea that an agent or group of agents may not wish to participate in a 

larger coalition is related to the existence of the core. Here, the usual definition of the 

core will not, in general, apply as the actions agreed upon in bilateral negotiations 

may not maximise the value of a coalition. For that reason, we make an assumption 

equivalent to core existence in our bilateral context. 

For this purpose, we first need a definition of bilateral efficiency: 

Definition (Bilateral Efficiency). For a given network (S, K), a set of actions, 
ˆ ˆ( ) { ( )}ij ij KX K K ∈= x  satisfies bilateral efficiency if: 
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ˆ ˆ ˆ( ) arg max ( ,{ ( )} ) ( ,{ ( )} )
ijij i ij kl kl ij j ij kl kl ijK u K u K≠ ≠∈ +xx x x x x , for all ij K∈ . 

 
Consistent with this definition, we define: ˆˆ( , ) ( ( ))ii S

v S K u X K
∈

≡∑  where ˆ ( )X K  are 

bilaterally efficient. Given this, we can assume: 

(A3) (Bi-Core Existence) The Bi-Core as defined by: 

{ } ˆBi-Core( , ) for all , ( , )S
i ii N

i S
N L v S N v v S L

∈
∈

 
≡ ⊆ ≥ 
 

∑  

is non-empty. 
 

This assumptions states that given any set of payoffs to all agents, any subset of 

agents will be jointly better off with those payoffs than with the joint payoff they 

would receive if all existing links (given L) were severed with agents outside of that 

subset; assuming that joint payoff is bilaterally efficient.  

Suppose that ( , ) ( , )v K N v K ij N≥ −  for all ij K∈  and K L⊆ . This is a weak 

form of superadditivity. Then the following condition clearly implies a non-empty 

core. 

Definition (No Component Externalities). ,( )N L
iu X  is independent of klx  for any 

( )ik C L∉ . 
 
This condition says that if i’s utility is not affected by actions of agents that it is not 

connected to. It is related to the concept of component decomposability in cooperative 

game theory that is an axiom on i’s realised payoff rather than condition on a 

primitive of the model. 

Notice that our buyer-seller network example satisfies this condition as b1 and 

b2 are independent of the purchases of the other buyer. However, if these buyers were 

competitors in some other market, then it is possible that their purchases could enter 

into the utilities of each other. In this case, a component externality would be present. 
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5. Equilibrium Outcomes: Actions 

In exploring the outcomes of this non-cooperative bargaining game, it is useful 

to focus first on the equilibrium actions that emerge before turning to the transfers and 

ultimate payoffs. Of course, an equilibrium described is one in which actions and 

transfers are jointly determined. It is for expositional reasons that we focus on each in 

turn. 

The precise equilibrium transfers do not directly determine overall surplus 

generated. In this regard, we can demonstrate the following: 

Theorem 1. Suppose that all agents hold passive beliefs regarding the outcomes of 
negotiations they are not a party to. Given ( , )N L , as 1σ → , in any perfect Bayesian 
equilibrium outcome, ˆ ˆ( ( ), ( ))X L T L , is bilaterally efficient. 

 
All proofs are in the appendix. This result says that individual actions are chosen to 

maximise own utility given expectations about unobserved actions while joint actions 

are chosen to maximise joint utility under the same expectations. It is easy to see that 

in general the outcome will not be efficient.  

The intuition behind the result is subtle. Consider a pair, i and j, negotiating in 

an environment where they have agreed to the equilibrium choices in any past 

negotiation and there is one more additional negotiation still to come and that this 

negotiation involves j and another agent, k. Given the agreements already fixed in past 

negotiations, the final negotiation between j and k is simply a bilateral Binmore, 

Rubinstein, Wolinsky bargaining game that would ordinarily yield the Nash 

bargaining solution if j and k had symmetric information regarding the impact of their 

choices on their joint utility, ( , ,.) ( , ,.)j ij jk k ij jku x x u x x+ . This will be the case if i and j 

agree to the equilibrium ˆijx . However, if i and j agree to ˆij ijx x′ ≠ , j and k will have 

different information. Specifically, while, under passive beliefs, k will continue to 
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base its offers and acceptance decisions on an assumption that ˆijx  has occurred, j’s 

offers and acceptances will be based on ijx′ . That is, j will make an offer, 

( , ( ))jk jk ijt x x′ ′ ′ , that maximises ( , ,.)j ij jk jku x x t−  rather than ˆ( , ,.)j ij jk jku x x t−  subject to 

k accepting that offer. Moreover, we demonstrate that j will reject offers made to it by 

k. 

In this case, the question becomes: will i and j agree to some ˆij ijx x′ ≠ ? If they 

do, this will alter the equilibrium in subsequent negotiations. j will anticipate this, 

however, the assumption of passive beliefs means that i will not. That is, even if they 

agreed to ˆij ijx x′ ≠ , i would continue to believe that ˆ jkx  will occur. For this reason, i 

will continue to make offers consistent with the proposed equilibrium. On the other 

hand, j will make an offer, ( , )ij ijt x′ ′ , that maximises ( , ( ),.) ( )j ij jk ij ij iju x x x t x′ ′−  rather 

than ˆ( , ,.)j ij jk iju x x t−  subject to i accepting that offer. We demonstrate that this is 

equivalent to j choosing: 

ˆ ˆarg max ( , ( ),.) ( , ,.) ( , ( ),.)
ijij x j ij jk ij i ij jk k ij jk ijx u x x x u x x u x x x′ ′ ′∈ + +  

which, by the envelope theorem applied to jkx′ , has ˆij ijx x′ = . 

When the negotiation between i and j is not the second last negotiation, there 

is an additional complication in that deviations by them will trigger a cascade of 

deviations throughout subsequent negotiations. Nonetheless, in the proof we 

demonstrate that, taking this into account, i and j will still not to deviate from the 

conjectured equilibrium. Essentially, even if they are the first negotiating pair, then a 

deviation will impact on every subsequent negotiation through a connected graph. 

However, in this case, they take into account all agents’ utilities in an additive fashion 

so that the envelope theorem continues to apply in the same manner as in the ‘two 

negotiation’ case. 
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Finally, it is useful to state a case where the perfect Bayesian equilibrium 

outcome under passive beliefs is efficient. Consider the following definition: 

Definition (No Non-Pecuniary Externalities). ,( )N L
iu X  is independent of jkx  for all 

{ } and jk ij L ik L∉ ∉ . 
 
That is, i’s utility is only affected by joint actions made by agents it is directly 

connected to. Notice that pecuniary externalities can still exist here through the 

transfers that are agreed upon in other bilateral negotiations that themselves impact on 

the value of an agreement between a particular pair. Given this we have the following 

result: 

Corollary 1. Assume the conditions of Theorem 1 and that there are no non-pecuniary 
externalities for all i. Then given ( , )N L , as 1σ → , the unique perfect Bayesian 
equilibrium agreements are efficient. 

6. Equilibrium Outcomes: Transfers and Payoffs 

We are now in a position to consider the equilibrium transfers and payoffs. As 

was determined above, when there are externalities present, sequential bilateral 

bargaining does not lead to a maximised surplus. Instead, under passive beliefs, it 

yields a Nash equilibrium where actions are taken ignoring externalities on other 

agents. In this sense, the outcome is very different than what might emerge from 

cooperative bargaining. 

However, we demonstrate here that while surplus is determined in a non-

cooperative manner, under the same passive beliefs assumption, division arising from 

the same underlying non-cooperative game takes on a form attractively similar to 

cooperative bargaining outcomes. In particular, depending upon the nature of 

externalities and the network of bilateral negotiations, the division of whatever 

surplus is created gives agents variants of their Myerson-Shapley value on that 
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reduced surplus. As such, payoffs have an appealing coalitional structure even if 

surplus mirrors a non-cooperative determination. 

Some definitions 

It is useful at this point to state some additional definitions from cooperative 

bargaining theory using our notation.  

Definition (Shapley Value). The Shapley value of agent i, in a given coalition, 
S N⊆ , ( )i SΦ  is: 

( ) ( )
:

! 1 !
( , ) ( , ) ( , )

!
S T i T

i
T S i T

T S T
S L v T i L v T L

S
∪

⊆ ∉

− −
Φ = ∪ −∑ . 

 
This is the definition introduced by Aumann and Dreze (1974) and it becomes the 

value derived by Shapley (1953) when the relevant coalition is the grand coalition, N. 

In contrast, Myerson (1977) provides a related value that is defined over a network.  

Definition (Myerson Value). Suppose that 
/

( , ) ( , )
K S L

v S L v S K
∈

=∑ . The Myerson 

value of agent i, ( , )i S LΨ  is a function that satisfies: (i) 
( )

( , ) ( , )ii G K
S K v S K

∈
Ψ =∑  

for all K L⊆  and /G S K∈ ; and (ii) 
( , ) ( , ) ( , ) ( , )i i j jS K S K ij S K S K ijΨ − Ψ − = Ψ − Ψ −  for all K L⊆  and ij K∈ . 

 
Note that the condition on ( , )v S L  (termed component efficiency in the cooperative 

game theory literature) is automatically satisfied if agents’ utilities satisfy the no 

component and no non-pecuniary externalities conditions. This definition of the 

Myerson value comes from Jackson and Wolinsky (1996) which allows the value 

derived from a coalition to depend upon the network underlying the coalition. In 

relevant examples in the literature, considered below, the network itself plays a 

critical role in productivity. Myerson had assumed that a coalition would result in the 

same total value regardless of how agents in the coalition were connected.  

The Myerson value is somewhat restrictive in that it is not defined in 

situations where different groups of agents impost externalities upon one another. 
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Myerson (1977b) generalised the Shapley value to consider this by defining it for 

games in partition function space. Here we provide a further generalised definition of 

the Myerson value to allow for a partition function space as well as a graph of 

potential communications. 

Definition (Generalised Myerson Value). The Generalised Myerson value of agent i, 
in a given coalition, S N⊆ , ( , )i S Lϒ  is: 

1 1 1( , ) ( 1) ( 1)! ( , )
( 1)( )N

p P
i

T P i T PP P
T T

S L p v T L
S p S T

−

′∈ ∉ ∈∈
′≠

 
 ϒ = − − − ′− −
  

∑ ∑ ∑ . 

 
It is easy to demonstrate that when there are no component externalities, this value is 

equivalent to the Myerson value and, in addition, if it is defined over a complete 

graph, it is equivalent to the Shapley value. 

Some Issues: An Illustrative Example 

Before turning to consider these results, it is useful to highlight some 

important technical issues by way of an illustrative example. Consider a situation in 

which there are three agents (1, 2 and 3), each of whom can negotiate bilaterally with 

one another; that is, our starting point is a complete graph. We will denote this initial 

network by 123. If there is a breakdown in negotiations between one pair that will 

result in a network of 1-2-3, 1-3-2 or 2-1-3 respectively; with the middle agent the 

agent who has not had a breakdown with any of the other two agents. If there are two 

breakdowns in negotiations, the networks may become 12, 13 or 23. Finally, if all 

three negotiations breakdown, the state becomes 0.  

We suppose also that there are only joint actions and, using the result in 

Theorem 1, those actions will lead to a payoff to agent i of ( )iu K ; for example, if 

network 1-2-3 occurs, the expected negotiated actions are such that 1(1 2 3)u − −  is 

generated to agent 1. 
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To see how payoffs and transfers are determined in equilibrium, note that, as 

the probability of a breakdown anywhere, σ, goes to 0, we can treat negotiations over 

transfers in each state as separate bilateral negotiations between each negotiating pair. 

If this is 12, then, then our BRW bargaining game results in the Nash bargaining 

solution: 

 ( )
1 12 1 2 12 2

1
12 1 2 2 12

(12) (0) (12) (0)
(12) (12) (12) (0) (0)

u t u u t u
t u u u u

− − = + −
⇒ = − + −

 (1) 

For 1-2-3 these are: 

 ( )
1 12 1

2 12 23 2 23

(1 2 3) (1 2 3) (23)
(1 2 3) (1 2 3) (1 2 3) (23) (23)

u t u
u t t u t

− − − − − −
= − − + − − − − − − −

 (2) 

 
( )1 12 13 1 13

2 12 2

(2 1 3) (2 1 3) (2 1 3) (13) (13)
(2 1 3) (2 1 3) (13)

u t t u t
u t u

− − − − − − − − − −
= − − + − − −

 (3) 

And for 123, these are: 

 
( )

( )
1 12 13 1 13

2 12 23 2 23

(123) (123) (123) (1 3 2) (1 3 2)

(123) (123) (123) (1 3 2) (1 3 2)

u t t u t

u t t u t

− − − − − − − −

= + − − − − − − −
 (4) 

 
( )

( )
1 12 13 1 12

3 13 23 3 23

(123) (123) (123) (1 2 3) (1 2 3)

(123) (123) (123) (1 2 3) (1 2 3)

u t t u t

u t t u t

− − − − − − − −

= + + − − − − − −
 (5) 

 
( )

( )
2 12 23 2 12

3 13 23 3 13

(123) (123) (123) (2 1 3) (2 1 3)

(123) (123) (123) (2 1 3) (2 1 3)

u t t u t

u t t u t

+ − − − − − − −

= + + − − − − − −
 (6) 

With the total number of transfer prices over all contingent negotiations being 12. 

While solving for transfers would appear to be possible with 12 bargaining equations 

and 12 unknowns, equations (4), (5) and (6) are linearly dependent. For there are 

many consistent transfer prices -- 12 (123)t , 13 (123)t  and 23(123)t  -- that will satisfy 

those equations. In other cases, the transfer prices are uniquely determined. It is for 

this reason, that we refer in theorems to equilibrium outcomes rather then equilibria 
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themselves. Nonetheless, even though particular transfer prices are not uniquely 

determined in some networks, payoffs are. 

In this game, it is straightforward to demonstrate that in equilibrium, agents 

receive: 

( ) ( )
( ) ( )
( )

1 1
1 1 2 3 1 2 33 3

1 1
1 2 3 1 2 36 6

1
1 2 36

(123) (123) (123) (123) 2 (23) (23) (23)

               (12) (12) 2 (12) (13) 2 (13) (13)

               2 (0) (0) (0)

u u u u u u

u u u u u u

u u u

Φ = + + + − −

+ + − + − +

+ − + +

 

( ) ( )
( ) ( )
( )

1 1
2 1 2 3 1 2 33 6

1 1
1 2 3 1 2 36 3

1
1 2 36

(123) (123) (123) (123) 2 (23) (23) (23)

               (12) (12) 2 (12) (13) 2 (13) (13)

               (0) 2 (0) (0)

u u u u u u

u u u u u u

u u u

Φ = + + + − + +

+ + − + − + −

+ − +

 

( ) ( )
( ) ( )
( )

1 1
3 1 2 3 1 2 33 6

1 1
1 2 3 1 2 33 6

1
1 2 36

(123) (123) (123) (123) 2 (23) (23) (23)

               (12) (12) 2 (12) (13) 2 (13) (13)

               (0) (0) 2 (0)

u u u u u u

u u u u u u

u u u

Φ = + + + − + +

+ − − + + − +

+ + −

 

These outcomes are, in fact, each agent’s Shapley values. We demonstrate below that 

this is a general outcome in environments where the set of bilateral negotiations 

comprises a complete graph. 

Notice that these payoffs do not depend on network states where there are two 

bilateral negotiations despite that fact that (123)ii
u∑  does not equal (1 2 3)ii

u − −∑  

as it does in Myerson (1977). Jackson and Wolinsky (1995) demonstrate a similar 

outcome for the Myerson-Shapley value. Here, the outcome arises for the same reason 

as each pair of Nash bargaining equations represents a condition of balanced 

contributions. This is a property that makes these bargaining outcomes particularly 

useful in applications as we do not need to solve for non-cooperative action outcomes 

in beyond the network with most links in any connected coalition. 
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General Result 

We are now in a position to state our main result. 

Theorem 2. Given ( , )N L , as 1σ → , there exists a perfect Bayesian outcome of our 
extensive form bargaining game with each agent i receiving: 

1 1 1ˆ ˆ( , ) ( 1) ( 1)! ( , )
( 1)( )N

p P
i

T P i T PP P
T T

N L p v T L
n p n T

−

′∈ ∉ ∈∈
′≠

 
 ϒ = − − − ′− −
  

∑ ∑ ∑ . 

 
Thus, in equilibrium, we have a generalised Myerson value type division of a reduced 

surplus. That surplus is generated by a bilaterally efficient outcome where each 

bilateral negotiation maximising their own sum of utilities while ignoring the external 

impact of their choices on other negotiations (as in Theorem 1).  

As in Theorem 1, the proof relies upon the agents holding passive beliefs in 

equilibrium. For this reason, Theorem 2 is an existence proof. Without passive beliefs, 

the equilibrium outcomes are more complex and do not reduce to this simple 

structure. That simplicity is, of course, the important outcome here. What we have is a 

bargaining solution that marries the simple linear structure of cooperative bargaining 

outcomes with the easily determined actions based on bilateral efficiency. As we 

demonstrate below, that allows it to be of practical value in applied work. 

To that end, directly following on from Theorem 2, are the following 

corollaries: 

Corollary 2. Suppose that for all i N∈ , ,( )N L
iu X  satisfies no component externalities. 

Given ( , )N L , as 1σ → , there exists a perfect Bayesian outcome of our extensive 
form bargaining game with each agent receiving: 

, ,ˆ ˆ( , ) ( )N L N L
i i iN L uΨ ≡ −X P I  where ,ˆ ˆ{ }N L

ij ij Lx ∈=X , 

where (a) 
( )

ˆ ˆ( , ) ( , )ii S K
S K v S K

∈
Ψ =∑  for all K L⊆  and /G S K∈ ; and (b) 

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )i i j jS K S K ij S K S K ijΨ − Ψ − = Ψ − Ψ −  for all K L⊆  and ij K∈ . If, 
instead, we have ( , )NN L , each agent receives: 

( ) ( )
:

! 1 !ˆ ˆ ˆ( , ) ( , ) ( , )
!

N S i S
i

S N i S

S N S
N L v S i L v S L

N
∪

⊆ ∉

− −
Φ = ∪ −∑ . 
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Thus, with no component externalities, we obtain the Myerson (or Shapley value) 

type division of a reduced surplus based on bilateral efficiency. On the other hand, 

with a stronger condition, we have a non-cooperative foundation for the Myerson-

Shapley value: DEFINE NON-PECUNARY 

Corollary 3. Suppose that for all i N∈ , ,( )N L
iu X  satisfies no non-pecuniary 

externalities. Given ( , )N L , as 1σ → , there exists a perfect Bayesian outcome of our 
extensive form bargaining game with each agent receiving their Myerson value. 
 

Non-Binding Agreements 

It is possible, however, that in some environments agents will not be able to 

make agreements that are contingent upon the state K. This is a central assumption in, 

for example, Stole and Zwiebel (1996) who assume that labour supply contracts are 

non-binding and so can be unilaterally broken if there is a change in a publicly 

observed state.  

To explore this, suppose that, given K, a sequence of pairs { }ij Kij ∈  is fixed and 

agent pairs make alternating offers to one another regarding a single choice and 

payment pair. If they agree, for example, to ( )( ), ( )ij ijx K t K , the next pair in the 

sequence negotiates. However, if a breakdown occurs, then the state changes to K ij−  

and a new subgame occurs in which a sequence of pairs in K ij−  is fixed and 

bilateral negotiations take place in sequence. On the other hand, if there is no 

breakdown in a sequence then the agreements { }( ), ( )ij ij ij K
x K t K

∈
 stand and each 

agent’s payoff is determined.  

This case involves non-binding agreements. An interpretation of this is that 

while each pair might arrive at an agreement, if there is a change in circumstance – 

that is, the state of agreements, K – then any individual agent can re-open negotiations 
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with any other agent it is still linked to in K. This is precisely the generalisation of the 

Stole-Zwiebel bargaining game to our more general environment. 

It is straightforward to demonstrate that the proofs of all results – in particular, 

Theorems 1 and 2 – are unchanged by this. The reason is that in those proofs we focus 

on an equilibrium where agreements contingent upon a state maximise the joint 

payoffs of the parties concerned. This is precisely what would happen if, in fact, the 

parties were to re-negotiate contract terms following the observation of a state (K) 

rather than prior to it. Indeed, this simplifies the belief structure considerably as they 

are the subgame perfect outcomes following a breakdown whereas in our contingent 

contract case they are the expectation of agreements signed by others. 

7. Applications 

We now consider how our basic theorems apply in a number of specific 

contexts where cooperative game theoretic outcomes have played an important role. 

Gul’s Resource Accumulation Game 

Gul (1989) considers the following economic environment. Each of N agents 

has a valuable resource. The resources can be combined into bundles of M N≤  

resources that would give their owner V(M) in utility. Moreover, max ( ) ( )M V M V N=  

so it is efficient for all resources to be combined. Gul (1989) uses this environment 

and a specific extensive form bargaining game (based on random matching) to 

demonstrate that there exists an equilibrium (specifically a stationary subgame perfect 

equilibrium) where each individual agent receives their Shapley value. 

Here we examine the same environment but using our non-cooperative 

bargaining game. As in Gul (1989), it is assumed that all agents can transact with any 
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other agent. However, unlike Gul, we assume that there is only a single opportunity 

for this as each pair bargains in a previously defined sequence. Thus, here 1ijx M= +  

if i purchases a resource bundle of size M from j and 0ijx =  if i sells its resources to j. 

Agent i’s utility is ( )ijj i
V x

≠∑  where (0) 0V = . 

Observe first that utilities here involve no pecuniary externalities as they 

depend only directly on trades with agents they are directly connected to. Thus, 

Corollary 3 immediately applies and each agent receives it Shapley value. Moreover, 

we can naturally extend the environment to a situation where agent utilities differ and 

there is an efficient owner of all resources. In this situation, there exists an 

equilibrium outcome where that owner receives the resources. 

Stole and Zwiebel’s Wage Bargaining Game 

Stole and Zwiebel (1996) develop a model of wage bargaining between a 

number of workers and a single firm. The workers cannot negotiate with one another 

or as a group. Thus, the relevant network has an underlying ‘star’ graph with links 

between the firm and each individual worker. A key feature of Stole and Zwiebel’s 

model is that bargaining over wages is non-binding; that is, following the departure of 

any given worker (that is, a breakdown), either the firm or an individual worker can 

elect to renegotiate wage payments. As noted earlier, while Stole and Zwiebel posit an 

extensive form bargaining game as a foundation for their axiomatic treatment of 

bargaining, the equilibria in this game are not really characterised. Nonetheless, 

Theorem 2 now provides that characterisation; confirming their Shapley value 

outcome. 

Interestingly, Theorem 2 now demonstrates that an assumption that wage 

contracts are non-binding is not necessary to motivate the Stole-Zwiebel wage 
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bargaining outcome. Instead, wage contracts could be made contingent upon the 

number of workers employed by the firm. The result would be the same payoffs to the 

firm and each worker. Moreover, Stole and Zwiebel’s key conclusions regarding how 

anticipation of this wage outcome impacts upon the firm’s ex ante choices of 

employment, capital and technology will all be preserved for the contingent contract 

case. Thus, the economic driving force behind Stole and Zwiebel’s labour market 

results is an environment that gives individual workers some bargaining power in ex 

post wage negotiations rather than the non-binding nature of wage contracts.3 

Nonetheless, what is significant here is that, when a firm cannot easily expand 

the set of workers it can employ ex post, there will be a Myerson value wage 

bargaining outcome (as in Corollary 2). This happens if workers are not identical, 

differ in their outside employment wages, and have variable work hours. Moreover, if 

there were many firms, each of whom could bargain with any available worker ex 

post, each firm and each worker will receive their Myerson value over the broader 

network. As such, our results demonstrate that a Myerson value outcome can be 

employed in significantly more general environments than those considered by Stole 

and Zwiebel. 

General Buyer-Seller Networks 

Perhaps the most important application of the model presented here is to the 

analysis of buyer-seller networks. These are networks where buyers purchase goods 

from sellers and engage in a series of bilateral transactions; the joint actions between 

them being the total volume of trade. Significantly, it is often assumed – for practical 

                                                 
3 This is also true of the results of Wolinsky (2000) who uses an axiomatic argument to justify a 
Shapley value wage bargaining outcome. de Fontenay and Gans (2003) examine a situation where a 
breakdown in negotiations causes a link with one worker (the insider) to be severed and a link to be 
established, if possible, with a new worker. The above results do not apply to breakdowns that build 
links as well as remove them. 
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and antitrust reasons – that the buyers and sellers do not negotiate with others on the 

same side of the market. Hence, the analysis takes place on a graph with restricted 

communication and negotiation options. 

In this literature models essentially fall into two types. The first assumes that 

there are externalities between buyers (as might happen if they are firms competing in 

the same market) but that there is only a single seller (e.g., McAfee and Schwartz, 

1994; Segal, 1999; de Fontenay and Gans, 2004a) while the second assumes that there 

are no externalities between buyers but there are multiple buyers and sellers (Cremer 

and Riordan, 1987; Kranton and Minehart, 2001; Inderst and Wey, 2003; Bjonerstedt 

and Stennek, 2002).4 In each case, however, the underlying bargaining or market 

game differs from the model here ranging from a series of take it or leave it offers 

(McAfee and Schwartz, 1994) to auction mechanisms (Kranton and Minehart, 2001) 

to a simultaneous determination of bilateral negotiations (Inderst and Wey, 2003).  

Nonetheless, regardless of the type of model, this literature is predominantly 

focused upon whether bilateral transactions between buyers and sellers can yield 

efficient outcomes. The broad conclusion is that where there are externalities between 

buyers, the joint payoff of buyers and sellers is only maximised when those 

externalities are not present. 

Our environment here encompasses both of these model types – permitting 

externalities between buyers (and indeed sellers) as well as not restricting the numbers 

or set of links between either side of the market. In so doing, we have demonstrated 

that when there are no non-pecuniary externalities – i.e., the only externalities for 

variables that are bilaterally contractible between agents occur through prices – then 

                                                 
4 Horn and Wolinsky (1988) permit externalities between buyers but sellers are constrained to deal with 
a single buyer.  
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surplus is maximised (Corollary 1). Thus, it provides a general statement of the broad 

conclusion of the buyer-seller network literature. 

In effect, Corollary 1 can be viewed as a generalisation of the results of Segal 

(1999, Proposition 3) that when there are no externalities, contracts are efficient. We 

can also characterise the equilibrium outcomes and their relationship with the efficient 

set of outcomes; generalising Segal (1999, Proposition 4). 

Theorem 2. Suppose that each xij is measured in the same increments. Then if 

{ }* * *{ }  is efficientij ij ij Lij L
M ∈∈

= ∑ x x  and { }ˆ ( )ijij L
E L

∈
= ∑ x , then if each 

, *( ,  for all  s.t. )N L
i ij iju A j ij L= ∈X x x  is non-decreasing (non-increasing) in each jkx  

( ,k j i≠ ), then * *( )E M M∪ ≤ ≥  by the strong set order. 
 
As there are possible interactions between choices, as in Segal (1999), we can only 

make comparisons (using the strong set order) between the sets of equilibrium and 

efficient choices. For two sets, A and B, A B≤  if whenever a A∈ , b B∈  and a b≥ , 

this implies that a B∈  and b A∈ . The proof follows Segal (1999) directly as 

{ }, ,ˆ ˆ( ) arg max ( , ) ( , )  for all 
ij

N K N K
ij i j kl klK u A u A kl K∈ + = ∈xx X X x x . The significant 

generalisation is that we do not consider a principal-agent structure (or ‘star’ graph 

with links from a single agent to each other agent and no links between them) and we 

allow each agent to have some bargaining power (Segal considers situations where a 

single agent has all of the bargaining power and can make take-it-or-leave-it offers). 

Ultimately, the framework here allows one to characterise fully the 

equilibrium outcome in a buyer-seller network where buyers compete with one 

another in downstream market. Significantly, this solution can be used to analyse the 

effects of changes in the network structure of a market. For example, Kranton and 

Minehart (2001) explore the formation of links between buyers and sellers while de 

Fontenay and Gans (2004b) explore changes in those links as a result of changes in 
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the ownership of assets. The cooperative game structure of payoffs – in particular its 

linear structure – makes the analysis of changes relatively straightforward. 

8. Conclusion and Future Directions 

To be done. 
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Appendix 

Proof of Theorem 1 

As we are solving for a perfect Bayesian equilibrium with passive beliefs, we 
need only consider the incentives for one player, i, to deviate. Let 

ˆ ˆ ˆ ˆˆ ˆ( ( ), ( ), ( )) ({ ( )} ,{ ( )} ,{ ( )} )i i N ij ij L ij ij LA L X L T L L L t L∈ ∈ ∈= a x  be the equilibrium outcome 
and also agents’ beliefs regarding unobserved actions. Let us assume for simplicity 
that i always gets to make the first offer, noting that if this were not the case, as σ 
approached 1, player i would simply reject any offer that differed from the offer that 
they would have made. 

Suppose i is involved in s negotiations, and re-name the agents that i 
negotiates with as “1 to s”. When i comes to negotiate with player s, in her final 
round, if i has deviated in previous negotiations, i can offer a deviation that s will 
accept in this round. 

Without loss in generality, suppose that i has deviated in only a single past 
negotiation, agreeing to ( ),ij ijt′ ′x  rather than ˆ ( ) ( )s

ij ijL L=x x!  and ˆ ( ) ( )s
ij ijt L t L= ! . The 

agreements between I and j in all other contingencies remain at their equilibrium 
value. By passive beliefs, this will mean that the negotiations over contingencies 
between i and s will also be unchanged. Hence, here we focus on their negotiations 
over actions and transfers in the original state L.  

In making the first offer to s, i solves the following problem: 
1

,
1

ˆ ˆ ˆˆ ˆmax ( ( ), , , ( ) /{ ( ), ( )})
is is

s

t i is ij is ij is ij
j

u A L X L L L t t
−

=

′ − −∑x x x x x  

subject to ˆ ˆ ˆ( ( ), , ( ) /{ ( )}) (1 )s is is is s siu A L X L L t Vσ σ+ ≥ + − Ωx x  

where Vs is s’s expectation of their payoff if it makes a counter-offer, and siΩ  is s’s 
payoff if there is a breakdown in negotiations between i and s and contingent 
contracts come into force; because of passive beliefs, neither of these values is 
affected by the current offer. The transfer payment provides a degree of freedom that 
allows i to make the constraint bind; therefore: 

ˆ ˆ ˆ(1 ) ( ( ), , ( ) /{ ( )})is s si s is ist V u A L X L Lσ σ= + − Ω − x x  

and i solves: 

1

1

ˆ ˆ ˆ ˆmax ( ( ), , , ( ) /{ ( ), ( )})
ˆ ˆ ˆ                              ( ( ), , ( ) /{ ( )})

ˆ                              (1 )

is i is ij is ij

s is is
s

ij s si
j

u A L X L L L

u A L X L L

t Vσ σ
−

=

′

+

− − − − Ω∑

x x x x x

x x  
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where the last three terms of the expression do not depend on isx . Nonetheless, a past 
deviation may cause a deviation in future negotiations. Let us call this new value 

( )is ij′x x . 

The issue becomes, anticipating this, will that past deviation actually occur. 
Consider i’s negotiation with j. Without loss in generality, we will assume that j is i’s 
(1-s)th negotiation. Under passive beliefs, j’s offers will not change even following an 
alternative offer from i; as it does not use this information to revise ˆj j

is is=x x! . i does 
anticipate this and when making an offer to j, solves: 

2

,
1

ˆ ˆ ˆˆ ˆmax ( ( ), ( ), , ( ) /{ ( ), ( )}) ( )
ij ij

s

t i is ij ij is ij ij is ij ij
j

u A L X L L L t t t
−

=

′ ′− − −∑x x x x x x x  

subject to ˆ ˆ ˆ( ( ), , ( ) /{ ( )}) (1 )j ij ij ij j jiu A L X L L t Vσ σ+ ≥ + − Ωx x  

Substituting in the constraint and i’s expected ( )is ijt′ x , we have: 

2

1

ˆ ˆ ˆ ˆmax ( ( ), ( ), , ( ) /{ ( ), ( )})

ˆ ˆ ˆ              ( ( ), , ( ) /{ ( )})
ˆ ˆ ˆ              ( ( ), ( ), ( ) /{ ( )})

ˆ              (1 ) (1 )

ij i is ij ij is ij

j ij ij

s is ij is

s

j ji s si ij
j

u A L X L L L

u A L X L L

u A L X L L

V V tσ σ σ σ
−

=

′

+

′+

− − − Ω − − − Ω −∑

x x x x x x

x x

x x x  

where again the terms in the last line do not depend on ijx . Note that, by the envelope 
theorem and the fact that ˆ ˆ( ( )) ( )is ij isL L′ =x x x , this maximisation problem gives the 
same solution as: 

ˆ ˆˆ ˆˆ ˆmax ( ( ), , ( ) /{ ( )}) ( ( ), , ( ) /{ ( )})
ij i ij is j ij iju A L X L L u A L X L L+x x x x x . 

Thus, there is no deviation from the equilibrium negotiations with j and hence, no 
deviation in subsequent negotiations. 

The proof for individual actions proceeds along similar but simplified lines. 

Proof of Theorem 2 

The proof of this theorem has two parts. First, we need to establish the set of 
conditions that characterise the unique cooperative game allocation in a partition 
function environment when the communication structure is restricted to a graph. 
Second, we will demonstrate that an equilibrium of our non-cooperative bargaining 
game satisfies these conditions. 

Part 1: Conditions Characterising the Generalised Myerson Value 

Myerson (1977a) examines a communication structure restricted to a graph – 
something that is extended by Jackson and Wolinsky (1996) – and demonstrates that 
the Myerson value is the unique allocation of the surplus under a fair allocation 
condition and a component balance condition. Myerson (1977b) defines a cooperative 
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value for a game in partition function space but does not examine this on a restricted 
communication structure nor does he provide a characterisation of that outcome based 
on conditions such as fair allocation and component balance. Given our general 
environment here, we first fill these gaps. 

Let v(S, KP) be the underlying value function of a game in partition function 
form with total number of agents (S) and graph of communication (K). Here are some 
definitions important for the results that follow. 

Definition (Allocation Rule). An allocation rule is a function that assigns a payoff 
vector, ( , , ) R NN v L ∈Y , for a given (N, v, L). 

Definition (Component Balance). An allocation rule, Y , is component balanced if 
( , , ) ( )ii C
N v L v C

∈
ϒ =∑  for every /C N L∈ , where ( ) ii C

v C u
∈

=∑ . 

Definition (Fair Allocation). An allocation rule, Y , is fair if 
( , , ) ( , , ) ( , , ) ( , , )i i j jN v L N v L ij N v L N v L ijϒ − ϒ − = ϒ − ϒ −  for every ij L∈ . 

The final two conditions are amendments of similar conditions imposed in Myerson 
(1977a) and Jackson and Wolinsky (1996) but for the notation in this paper.  

The method of proof will be the following. First, Lemma 1 establishes that under 
component balance and fair allocation, there is a unique allocation rule. Second, we 
that the generalized Myerson value satisfies fair allocation and component balance. 
Thus, using Lemma 1, this implies that the generalized Myerson value is the unique 
allocation rule for this type of cooperative game. 

First, we can demonstrate that: 

Lemma 1. For a given cooperative game (N, v, L), under component balance and fair 
allocation, there exists a unique allocation rule. 

PROOF: Suppose there are two allocations 1Y  and 2Y  that are different, and let g be 
the minimal graph for which the two rules are different: for some i, 

1 2( , ) ( , )i ig v g vϒ ≠ ϒ . If i is not linked to any j, i must have the same payoff under both 
graphs, by component balance.  

Therefore, i must be linked to some j, and the two graphs must be the same 
after any link is broken 1 2( , ) ( , )i ig ij v g ij vϒ − ≠ ϒ − . Fair allocation implies that for all i 
and j that are linked: 

1 1 1 1

1 1 1 1

2 2

2 2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

                                 ( , ) ( , )

                                  ( , ) ( , )

i i j j

i j i j

i j

i j

g v g ij v g v g ij v

g v g v g ij v g ij v

g ij v g ij v

g v g v

ϒ − ϒ − = ϒ − ϒ −

⇒ ϒ − ϒ = ϒ − − ϒ −

= ϒ − − ϒ −

= ϒ − ϒ

 

Therefore, 1 2 1 2( , ) ( , ) ( , ) ( , )i i j jg v g v g v g vϒ − ϒ = ϒ − ϒ  = some ∆ (different from zero by 
the first assumption), for any i and j that are connected, and, therefore, by extension, 
for any i and j in the same component h; with set of constituent agents, N(h). 
Therefore, if there are nh agents in the component, 

1 2

( ) ( )
( , ) ( , ) 0i i h

i N h i N h
g v g v n

∈ ∈

ϒ − ϒ = ∆ ≠∑ ∑ . 
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Notice however that by component balance the payoffs to all agents in a 
component have to sum up to the same thing: 

1 2

( ) ( )
( , ) ( ( ) | ) ( , )i i

i N h i N h
g v v N h g g v

∈ ∈

ϒ = = ϒ∑ ∑ ; therefore we have a contradiction. / 

 

Next we demonstrate that the generalized Myerson value satisfies fair 
allocation. Let i and j be linked together by a graph L, where payoffs to groups are 
described by a component additive payoff function v(.|L). Suppose that each agent i 
receives their generalized Myerson value from the game (N, v, L) in partition function 
form: 

1 1 1( , ) ( 1) ( 1)! ( , )
( 1)( )N

p P
i

T P i T PP P
T T

N L p v T L
N p N T

−

′∈ ∉ ∈∈
′≠

 
 ϒ = − − − ′− −
  

∑ ∑ ∑ . 

 
We aim to show that ( ) ( )( , ) ( , ) ( , ) ( , ) 0i i j jL v L ij v L v L ij vϒ − ϒ − − ϒ − ϒ − = . 
 

( ) ( )

( )

( )

1

( , ) ( , ) ( , ) ( , )

1 ( , ) ( , ( ) )
( 1)( )

( 1) ( 1)!
1 ( , ) ( , ( ) )

( 1)( )

N

i i j j

P P

i S P
S Sp

S PP P
P P

j S P
S S

L v L ij v L v L ij v

v S L v S L ij
p N S

p

v S L v S L ij
p N S

′∉ ∈
′≠−

∈∈

′∉ ∈
′≠

ϒ − ϒ − − ϒ − ϒ −

  
  − − −  ′− −   = − −  
  
  + − − ′ − −    

∑
∑ ∑

∑

 

Consider any partition P, and any set S ′  of that partition. If i and j are members of 
S ′ , it does not appear in the summation. If neither i nor j are members of S ′ , it 
appears in the top and the bottom line of the parenthesis, and cancels out. Thus the 
only relevant case is when i is a member of S ′  and j is not, or vice versa; but if i and j 
are not members of the same set of the partition, then ( )P PL L ij= − , and therefore 

( , ) ( , ( ) )P Pv S L v S L ij= − , and the term disappears. / 

 

Third, we demonstrate that the generalized Myerson value satisfies component 
balance. Let i and j be linked together by a graph L, where payoffs to groups are 
described by a component additive payoff function v(.|L). Suppose that each agent i 
receives their generalized Myerson value from the game (N, v, L) in partition function 
form. We will show that for every component, C(L), 

( )
( , ) ( ( ), )i

i C L
N L v C L L

∈
ϒ =∑ . 

To do this, we first show that component balance is implied by two of the 
properties that Myerson (1977b) proved for the extension of Shapley values to games 
in partition function form: Value Axiom 2, that carriers get all the value, and Value 
Axiom 3, that adding two partition function games gives an addition of their values. 
Let Y  be the allocation under the game (N, v, L). For a given component, C, let 1Y  
be the allocation so that for all i C∈ , 1 ( , )i i N Lϒ = ϒ  and for all i C∉ , 1 0iϒ = . 
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Similarly, let 2Y  be the allocation so that for all i C∈ , 2 0iϒ =  and for all i C∉ , 
2 ( , )i i N Lϒ = ϒ . By Axiom 2, the set of agents in C gets all the value in allocation 1, 

and N\C gets all the value in allocation 2. By Axiom 3, the vector of payoffs in 1 and 
2 sum up to Y . 

Given the same C, consider a partition of N into C and N\C. Then define two 
games in partition function form with value functions, (a) { , \ }( , )C N Cv C L  and (b) 

{ , \ }( \ , )C N Cv N C L . Let a
iϒ  and b

iϒ  be the Myerson values (in partition function space) 
for an agent associated with the first and second games respectively. By the carrier 
axiom, 

{ , \ }( , ) ( , )a C N C
i

i C
C L v C L

∈

ϒ =∑  

{ , \ }

\

( , ) ( \ , )b C N C
i

i N C
C L v N C L

∈

ϒ =∑  

Now we add these two games (a) and (b) together, obtaining the original game in 
partition function form. By Axiom 3, the payoff to each agent is the sum of their 
payoffs under (a) and (b). But agents in C only have a non-zero payoff in game (a), 
therefore: 

{ , \ } { , \ } { , \ }( , ) ( , ) ( , ) ( , ) ( , )a C N C b C N C a C N C
i i i i

i C i C i C i C
N L C L C L C L v C L

∈ ∈ ∈ ∈

ϒ = ϒ + ϒ = ϒ =∑ ∑ ∑ ∑ . 

Part 2: The non-cooperative bargaining game satisfies these conditions. 

We want to show that the non-cooperative bargaining game satisfies fair 
allocation and component balance over a cooperative game with value function 
ˆ( , )v N L  as determined by bilateral efficiency. Note that Theorem 1 demonstrates that 

an equilibrium of the bargaining game involves achieving bilateral efficiency. This 
defines an imputed value function. We now want to show that for this equilibrium the 
two conditions are satisfied for the game with this value function. 

Let îjt  be the equilibrium transfer between each pair, ij L∈ , that bargain. 

When i and j bargain together, let i
ijt  be the transfer that i offers, which would give a 

payoff ˆ ˆ and i i
i jv v  to i and j respectively; j’s offer j

ijt  would, if accepted, lead to payoffs 
ˆ ˆ and j j
i jv v  respectively. Given that the transfers are chosen to make the incentive 

constraint bind, the offers satisfy: 

 
ˆ ˆ(1 ) ( , )
ˆ ˆ(1 ) ( , )

i j
i i i
j i
j j j

v N L ij v
v N L ij v

σ σ
σ σ

+ − ϒ − =

+ − ϒ − =
 (7) 

where ( , )i N L ijϒ −  is the payoff to i after a breakdown with j. 

Given that none of the transfer is wasted, there is also a summing up 
condition: 
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11

1 1 1

ˆ ˆ ˆˆ ˆ
ji n

i i
i i ki ik ij ik

k k i k j
v u t t t t

−−

= = + = +
= + − − −∑ ∑ ∑  

(where transfer tij is zero if i and j do not have a bargaining link). 

 
11

1 1 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
ji n n

i i j j
i j i j i ki ik j kj jk

k k i k k i
v v v v u t t u t t

−−

= = + = = +

+ = + = + − + + −∑ ∑ ∑ ∑  (8) 

Using (7) to substitute out ˆ ˆ and j i
i jv v  in the first part of (8): 

ˆ ˆ ˆ ˆ(1 ) ( , ) (1 ) ( , )

ˆ ˆ(1 ) (1 ) ( , ) (1 ) (1 ) ( , )

ˆ ˆ( , ) ( , )

i j i j
i j j i i j

i j
i j j i

i j
i j j i

v v N L ij v N L ij v

v N L ij v N L ij

v N L ij v N L ij

σ σ σ σ

σ σ σ σ

+ + − ϒ − = + − ϒ − +

⇒ − + − ϒ − = − + − ϒ −

⇒ + ϒ − = + ϒ −

 

Note from (7) that in the limit, as σ tends towards zero, payoffs ˆ ˆand i j
i iv v  become the 

same payoff îv , and therefore: 

ˆ ˆ( , ) ( , )i j j iv N L ij v N L ij+ ϒ − = + ϒ −  

which is the balanced contributions condition. 

Now consider condition (8) and its analogue for every bargaining link in the 
component that includes i and j. In the limit, as σ tends towards zero, the condition 
becomes: 

1

1 1

ˆ ˆˆ
i n

i i ki ik
k k i

v u t t
−

= = +

= + −∑ ∑  

for each i, where transfer tij is zero if i and j do not have a bargaining link. Therefore, 
for a given component, Ci(L):  

1

( ) ( ) 1 1 ( )

ˆ ˆˆ
i i i

i n

i i ki ik i
i C L i C L k k i i C L

v u t t u
−

∈ ∈ = = + ∈

 = + − = 
 

∑ ∑ ∑ ∑ ∑  

because there are no transfers to agents that you do not bargain with. The non-zero 
transfers in this summation term are all between agents in Ci(L), and, therefore, the 
summation includes both îjt  and (- îjt ), which cancel out. This demonstrates 
component balance. 
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