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Abstract

We consider LM-type tests for a unit root allowing for a break in trend at an

unknown date. In addition to the minimum LM test statistic, we propose new LM-

type tests based on the least squares estimator of the break date under the null. We

examine asymptotic behavior under the null hypothesis with and without a break.

For all the endogenous break tests considered, the limiting distribution when there

is a break in slope is not the same as when there is no break. Other authors have

obtained similar results in the context of DF-type tests. Since this discrepancy is

smaller for the LM-type based on the least squares estimator, smaller size distortions

are to be expected when using this test statistic. Simulation experiments confirm

the superiority in terms of size, power and break date estimation of the proposed

method.
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1 INTRODUCTION

Common procedures to test for the presence of a unit root are based on extensions of

the statistical techniques proposed by Dickey and Fuller (1979). Following Perron (1989),

an increased attention has been given to the possibility of the existence of a one-time

change in the deterministic component of a time series. He shows that Dickey-Fuller

(DF) type tests will have a tendency for not rejecting the null hypothesis of a unit root

for series that are stationary around a breaking trend. To solve this problem, several

authors have proposed tests for a unit root that allow for the presence of a break in the

trend function at an unknown date. These tests are generally based on fitting DF-type

regressions which include additional dummy variables capturing the change in the break

function. Zivot and Andrews (1992) propose choosing the break date which minimizes

the DF t-statistic across all possible regressions. Perron (1997) and Vogelsang and Perron

(1998) also consider choosing the break date according to the significance of the trend-

break dummy parameters. These authors further consider methods that allow for sudden

breaks, or of the ‘additive outlier’ (AO) type, and breaks that evolve more slowly over

time, or of the ‘innovational outlier’ (IO) type.

Vogelsang and Perron (1998) show that the distribution of DF-type unit root test

statistics that allow for the presence of a break are asymptotically invariant to a break

in the intercept under the null. However, Nunes, Newbold and Kuan (1997), Lee and

Strazicich (2001) and Harvey, Leybourne and Newbold (2001) show that in finite samples

this result may be illusory. When the break date is selected according to the least favorable

DF t-statistic, a large break in the intercept under the null leads to strong spurious

rejections of the unit root hypothesis. The same is true for the IO, but not AO, tests

when the break date is based on the significance of the dummy variables.1

When there is a break in the slope under the null, Vogelsang and Perron (1998) show

that the size of the minimum DF-type tests that allow for a change in slope will approach

one asymptotically. In fact, they show that these size distortions can be explained by the

wrong break date being selected.2 For the tests based on the dummy variables significance,

1Lee and Strazicich (2001) and Harvey, Leybourne and Newbold (2001) show that this is due to

incorrect choice of the break date. As a solution, Harvey, Leybourne and Newbold (2001) suggest moving

the chosen break date one period ahead.
2Vogelsang and Perron (1998) show that in the IO case that allows for a break in slope only, even by

choosing the true break date would not yield a valid test.
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the same is true in the IO case, but not in the AO. In this last case, the estimated location

of the break will approach the true one, so that the limiting distribution of these tests are

equivalent to the case where the break date is known as in Perron (1989). However, this

distribution differs from the case where no break is present under the null. If one chooses

the suggestion in Vogelsang and Perron (1998) to use the critical values corresponding to

the no break case then tests will be undersized if there is in fact a break.

Another approach to unit root testing based on the LM principle was proposed by

Schmidt and Phillips (1992). As shown in Amsler and Lee (1995), the asymptotic distri-

bution of the LM test for a unit root is invariant to a change in the intercept under the

null.3 These authors also propose a modification to the LM test that allows for a break

in the intercept at some known date. They show that the limiting distribution of the

test statistic under the null hypothesis of a unit root is the same as for the Schmidt and

Phillips (1992) LM test where no break is considered. This equivalence holds irrespective

of whether such break is present or not under the null.

In this paper we consider LM-type tests that allow for the presence of breaks in the

intercept and slope at unknown dates. Lee and Strazicich (1999, 2002) propose estimating

these dates by minimizing the LM test statistic over a range of possible break dates. Their

tests are asymptotically invariant to a change in the intercept under the null. In fact, we

further show that the null limiting distribution for the minimum LM test allowing for a

break in the intercept is the same as for the Schmidt and Phillips (1992) LM test with

no break. This is not true for a break in the slope. We show that in such a case, and

unlike the minimum DF-type tests, the slope break date estimated by the minimum LM

test converges to the true break date. Therefore, when a break in slope is present under

the null, the asymptotic distribution of the endogenous break minimum LM test statistic

is the same as the distribution of the corresponding exogenous break LM test. When no

break in slope is present under the null, the distribution is different, which leads to the

same dilemma regarding the choice of the appropriate critical value as in the DF-type

tests.

We also propose additional LM-type tests for a unit root where the break date is

chosen according to the regression that best fits the data under the null. This criteria

coincides with choosing the break date that maximizes the dummy variables significance.

We also consider the case where a one directional t-statistic is used when the direction of

3In fact, these authors also show that the same invariance result holds for the DF test.
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the break is known a priori. We show that for these proposed alternatives, the estimated

break date approaches the true one when the unit root null hypothesis holds with a break.

It follows that the null limiting distributions of these tests also differ according to whether

a break in the slope has occurred or not. However, such discrepancy is found to be smaller

than in the minimum LM test case. Therefore, size distortions when using the proposed

alternative tests will also be smaller if critical values corresponding to the no break case

are used but there is in fact a break. Simulation results show that these additional tests

perform better in terms of estimating the true break date than the minimum LM test,

both under the null and the alternative, leading to better size and power properties.

The structure of the paper is as follows. The next section presents the models and

statistics. In Section 3, limiting distributions of the statistics under the null are derived

when there is a break as well as when there is no break. Finite sample critical values

as well as several finite sample size and power simulations are presented in Section 4.

Concluding remarks are given in Section 5. All proofs are relegated to the Appendix.

2 LM-TYPE TESTS FOR A UNIT ROOT

We consider the following data generating process (DGP):

yt = δ1 + Z0
t β + xt, (1)

(1 − αL)xt = εt. (2)

As in Schmidt and Phillips (1992), we assume the same regularity conditions in Phillips

and Perron (1988) that allow for some degree of heterogeneity and autocorrelation in the

ε sequence. We also define the following nuisance parameters

σ2
ε = lim

T→∞

T−1E

(

T
∑

t=1

ε2t

)

, (3)

σ2 = lim
T→∞

T−1E

(

T
∑

t=1

εt

)2

(4)

and assume σ2
ε , σ

2 > 0. We also define the ratio ω2 = σ2
ε /σ

2.

This specification allows for the presence of different deterministic mean components

by different choices of the exogenous variables in Z0
t . The case of a deterministic trend
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with no structural change considered in Schmidt and Phillips (1992) corresponds to

Z0
t = t.

As in Perron (1989) we consider models where a break has occurred in the trend

function at some unknown date denoted by T 0
B, with 1 < T 0

B < T , where T is the sample

size. The superscript 0 is used to denote the true break date. We consider three different

models. Model 1 allows for a change in the intercept and corresponds to

Z0
t = (DU0

t , t) (5)

where DU0
t = 1(t > T 0

B) and 1(·) is the indicator function. In Model 2 there is a change

in both intercept and slope specified as

Z0
t = (DU0

t , t, DT
0
t ) (6)

where DT 0
t = 1(t > T 0

B)(t− T 0
B). Finally, Model 3 allows for a change in slope such that

the two segments of the trend function are joined:

Z0
t = (t, DT 0

t ). (7)

Allowing for more than one break could be easily accommodated in this model specifi-

cation by appropriate choices of Z0
t . In this paper only the additive outlier (AO) versions

of Perron’s models are considered.

We consider testing the unit root null hypothesis

H0 : α = 1 (8)

using LM-type test statistics based on the tests proposed by Schmidt and Phillips (1992).

Assuming normality of the errors, the restricted maximum likelihood estimator of β,

denoted by β̃, is obtained by estimating the following regression by OLS:

∆yt = ∆Ztβ + ut, (9)

where ∆Zt denotes the first difference of the regressors Zt based on an assumed break

date denoted by TB. If the assumed break date, TB, differs from the true one, T 0
B, then

Zt may also differ from Z0
t . Define the ‘residuals’

S̃t = yt − δ̃∗1 − Ztβ̃ (10)
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where

δ̃∗1 = y1 − Z1β̃. (11)

LM-type tests for a unit root are then obtained by OLS estimation of the following test

regression:

∆S̃t = ∆Ztβ + φS̃t−1 + et. (12)

To allow for autocorrelated errors, an augmented regression could be estimated as in

Amsler and Lee (1995) or Lee and Strazicich (1999, 2002):

∆S̃t = ∆Ztβ + φS̃t−1 +
k
∑

j=1

cj∆S̃t−j + et, (13)

where the choice of k could be based on a number of alternative procedures as in the case of

the augmented DF-type tests (see for example Vogelsang and Perron, 1998). Alternatively,

as in Schmidt and Phillips (1992), a simple correction of the test statistics could be used.

The LM-type test statistic for a unit root in these models is given by the t-statistic for

testing φ = 0 and is denoted by tφ(j, TB), where j denotes the model (j = 1, 2, 3) and TB

indicates the break date used. The Schmidt and Phillips (1992) t-statistic corresponding

to the no break case, Zt = t, will be denoted as tφ.

To implement the tests allowing for a break, some choice of TB must be made. Fol-

lowing Zivot and Andrews (1992), Perron (1997) and Vogelsang and Perron (1998), Lee

and Strazicich (1999, 2002) propose the minimal t-statistic obtained over some range of

break dates, i.e. tφ(j, TB(tφ)) = infλ∈Λtφ(j, [λT ]), where tφ(j, [λT ]) denotes the t-statistic

with a break at TB = [λT ], [λT ] is the integer part of λT , and Λ is some compact subset

of [0, 1].

In this paper, we propose selecting the break date corresponding to the least squares

estimator of TB, that is, the date that minimizes the sum of squared residuals in the first

step regression (9). We denote by T̂B the value of TB chosen in this way. This choice

of the break date coincides with the one obtained by maximizing the F-statistic on the

significance of the two dummy variables ∆DUt and ∆DTt in regression (9) for Model 2,

and maximizing the absolute value of the t-statistic for ∆DUt in Model 1 and for ∆DTt

in Model 3.

We also consider choosing the break date that maximizes (minimizes) the t-statistic

for ∆DUt in Model 1 and for ∆DTt in Models 2 and 3, both in the first step regression
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(9), when the direction of the change is known to be positive (negative) a priori. We

denote these choices by TB(t∆Z). These procedures are similar to the ones discussed by

Perron (1997) and Vogelsang and Perron (1998) in the context of DF-type tests.

3 ASYMPTOTIC DISTRIBUTIONS UNDER THE

NULL

The results for the asymptotic distributions under the null hypothesis of a unit root are

presented for two cases. First, we consider the case of no break in the DGP. Results

for Model 1 assuming a fixed break date are given in Amsler and Lee (1995). Lee and

Strazicich (1999) also consider Model 1 when the break date is given by TB(tφ). We

further show that in this case, the limiting distribution is the same as in the no break

case of Schmidt and Phillips (1992). Lee and Strazicich (2002) also give results for Models

1 and 2 allowing for two breaks with the break dates fixed or estimated as TB(tφ). We

consider the case of just one break. We further consider using TB(t∆Z) and T̂B for all

three models.

In the second case there is a break under the null. Results for Model 1 assuming a

fixed break date are given in Amsler and Lee (1995). We provide results for Models 1, 2

and 3 when the break date is chosen according to any of the criteria considered above.

Critical values for the limiting distributions were obtained using T = 1,000 and 10,000

replications. The RNDN normal pseudo-random number generator in GAUSS 3.5 was

used in the simulations. We followed the same procedure described in Zivot and Andrews

(1992) and set Λ equal to the largest possible window.

3.1 The case of no break

In this subsection we consider the case where no break has occurred under the null hy-

pothesis of a unit root. The following DGP is assumed:

yt = δ1 + γ1t+ xt,

xt = xt−1 + εt.

For Model 1, Amsler and Lee (1995) show that when a fixed break date, TB = [λT ], is

assumed, the asymptotic distribution of tφ(1, TB) is the same as the one obtained for tφ,
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which doesn’t allow for a break, as given by equation (22) in Schmidt and Phillips (1992).

As mentioned in Amsler and Lee (1995), this is explained by the fact that the inclusion

of ∆DUt which equals 1 for only one observation, has no effect asymptotically. It follows

that tφ(1, TB(tφ)), tφ(1, T̂B) and tφ(1, TB(t∆Z)) also have this same limiting distribution.

The last rows in Tables 2, 5 and 8 give the asymptotic critical values using the case

T = 2,000 in Schmidt and Phillips (1992). Of course, in finite samples this invariance

result no longer holds. Finite sample critical values are presented in Section 4.

Consider now Models 2 and 3. The limiting distribution of tφ(j, TB) (j = 2, 3) in the

case of a fixed break date TB = [λT ] is given by:

tφ(j, TB) ⇒ R(λ) (j = 2, 3) (14)

where

R(λ) = −1

2
ω

(
∫ 1

0

V (r, λ)2dr

)−1/2

, (15)

V (r, λ) denotes the residuals from the projection of the process V (r, λ) onto the subspace

generated by the functions {1, du(r, λ)} with du(r, λ) = 1(r > λ),

V (r, λ) =
[

W (r) − r

λ
W (λ)

]

1(r ≤ λ)

+

[

W (r) −W (λ) − r − λ

1 − λ
(W (1) −W (λ))

]

1(r > λ) (16)

corresponds to a double standard Brownian bridge such that V (0, λ) = V (λ, λ) = V (1, λ) =

0, and W (r) is a standard Wiener process. The symbol ‘⇒’ in (14) denotes weak con-

vergence of the associated probability measures. This result was obtained in Lee and

Strazicich (2002) for Model 2 in the context of two structural breaks. Notice that the

limiting distribution is the same for Models 2 and 3 because, as in Model 1, the regressor

∆DUt is asymptotically negligible. Critical values for (14) when ω = 1 are presented in

Table 1 for several values of λ. They are also asymptotically valid for dependent and het-

erogeneous errors if tφ(j, TB) is multiplied by a consistent estimator of 1/ω as in Schmidt

and Phillips (1992).

When the break date is chosen to minimize the t-statistic, Lee and Strazicich (2002)

using arguments similar to those in Zivot and Andrews (1992) prove that:

tφ(j, TB(tφ)) ⇒ inf
λ∈Λ

R(λ) (j = 2, 3).
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Critical values for this limiting distribution when ω = 1 appear in the last row of Tables

3 and 4.4

We also obtain the limiting distributions of tφ(j, TB(t∆Z)) and tφ(j, T̂B) (j = 2, 3)

where the break date TB is chosen based on the maximal dummy variable t-statistic or

the least squares estimator of the break date. It is shown in the Appendix that:

tφ(j, TB(t∆Z)) ⇒ R(λ̃) (j = 2, 3) (17)

and

tφ(j, T̂B) ⇒ R(λ̂) (j = 2, 3) (18)

where λ̃ = arg maxλ∈ΛQ(λ) and λ̂ = arg maxλ∈ΛQ(λ)2, with

Q(λ) =
√

λ(1 − λ)

(

W (1) −W (λ)

1 − λ
− W (λ)

λ

)

.

Critical values for (17) appear in the last row of Tables 6 and 7, while critical values for

(18) appear in the last row of Tables 9 and 10.

3.2 The case of a break

In this subsection we derive the limiting distributions of the LM-type test statistics when

a break is present under the null hypothesis of a unit root. We consider first the case of

a break in the intercept occurring at date T 0
B = [λ0T ]. The DGP is given by

yt = δ1 + δDU0
t + γ1t+ xt.

Amsler and Lee (1995) show that the LM-type t-statistic for Model 1, tφ(1, TB), assuming

a break at TB = [λT ], has the same limiting distribution as the no break Schmidt and

Phillips (1992) LM t-statistic, tφ, independently of the break date being correctly placed

(λ = λ0) or not (λ 6= λ0).
5 In fact, Amsler and Lee (1995) also show that other unit

root tests that do not allow for a break, such as the Schmidt and Phillips (1992) LM test

and the DF test, are also asymptotically invariant to a break in the intercept under the

null. This asymptotic invariance property also holds for the LM-type tests for Models 2

4Lee and Strazicich (2002) only provide critical values for the case of two breaks with Λ = [0.1, 0.9]

and T = 100.
5If the break date is correctly placed then invariance to the value of δ also holds in finite samples.
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and 3.6 In summary, if there is a break in the intercept then the limiting distributions

of tφ(j, TB(tφ)), tφ(j, T̂B) and tφ(j, TB(t∆Z)) (j = 1, 2, 3) coincide with the corresponding

ones described in the previous subsection for the no break case.

We consider now the consequences of the presence of a break in the slope under the

null. For a break occurring at date T 0
B = [λ0T ], the DGP is given by:

yt = δ1 + γ1t+ γDT 0
t + xt.

In the Appendix we show that:

T 1/2tφ = Op(1) (19)

so that the Schmidt and Phillips (1992) LM t-statistic tφ converges to zero as T → ∞.

It follows that the probability of rejecting the null hypothesis of a unit root approaches

zero when there is a break in slope under the null. The same result is obtained for any of

the LM-type tests allowing for a change in the intercept (namely tφ(1, TB), tφ(1, TB(tφ)),

tφ(1, T̂B) and tφ(1, TB(t∆Z))) since the inclusion of ∆DUt does not matter asymptotically.

For Models 2 and 3, if the break in slope is correctly placed (TB = T 0
B) then tφ(j, TB)

(j = 2, 3) will be exactly invariant to the value of γ under the null hypothesis. It follows

that, under the null hypothesis of a unit root, the limiting distribution of the exogenous

break LM-type t-statistic for these two models when a break occurs will be the same as

that obtained in (14) when no break has occurred:

tφ(j, [λ0T ]) ⇒ R(λ0) (j = 2, 3). (20)

Invariance no longer holds when the break date is misplaced. In the Appendix we show

that if λ 6= λ0 then

T 1/2tφ(j, [λT ]) = Op(1) (j = 2, 3), (21)

so that tφ(j, [λT ]) converges to zero asymptotically. It follows that when the break date

is incorrectly chosen, the probability of rejecting the null hypothesis, when it holds with

a break in the slope, approaches zero as T → ∞.
6There is exact invariance in the case of Model 2 when the break date is correctly placed. This point

is also discussed in Lee and Strazicich (2002). Similar invariance results are obtained by Vogelsang and

Perron (1998) in the context of DF-type tests that allow for a break in the trend.
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Consider now the asymptotic behavior of the minimal LM-type tests tφ(j, TB(tφ))

(j = 2, 3). Since tφ(j, [λT ]) has a limiting distribution given by (20) that has support over

the negative real line when λ = λ0, but converges to zero when λ 6= λ0, it follows that

if λ0 ∈ Λ then arg infλ∈Λ tφ(j, [λT ]) (j = 2, 3) converges to λ0. Therefore, we obtain the

following asymptotic result:

tφ(j, TB(tφ)) ⇒ R(λ0) (j = 2, 3). (22)

It is interesting to note that the corresponding DF-type tests have quite different prop-

erties. As shown in Vogelsang and Perron (1998), minimal DF-type tests allowing for a

break in slope diverge asymptotically because the estimated break date does not converge

to the true one.

Finally, we consider the limiting distribution of tφ(j, TB(t∆Z)) and tφ(j, T̂B) (j = 2, 3).

As shown in the Appendix, both TB(t∆Z) and T̂B converge to the true break date asymp-

totically so that

tφ(j, TB(t∆Z)) ⇒ R(λ0) (j = 2, 3) (23)

and

tφ(j, T̂B) ⇒ R(λ0) (j = 2, 3). (24)

As in the minimal LM-type test, the limiting distribution equals that obtained in the case

where the break date is known. It follows that some size distortions will arise if critical

values for the no break case are used but the unit root null hypothesis holds with a break

in slope. A similar result was obtained by Vogelsang and Perron (1998) in the case of

the DF-type tests allowing for a break in the trend. However, since the critical values

for tφ(j, TB(t∆Z)) and tφ(j, T̂B) are considerably closer to the fixed break critical values,

size distortions will be larger when using tφ(j, TB(tφ)). For example, for a 5% significance

level, the fixed break critical values in Table 1 vary between -3.29 for λ = 0.9 and -3.66 for

λ = 0.5, while from Table 3 the critical value for tφ(2, TB(tφ)) equals -4.27. Closer to the

fixed break case is the critical value for tφ(2, TB(t∆Z)) from Table 7 which equals -3.47,

or for tφ(2, T̂B) from Table 9 which equals -3.50. For instance, if there is in fact a break

at λ = 0.5 and the asymptotic 5% critical values for the endogenous break tests are used,

asymptotically the true size of tφ(2, TB(tφ)) will be below 1% while for tφ(2, TB(t∆Z)) and

tφ(2, T̂B) the true size will be between 5% and 10%. This results in a loss in the power of

tφ(2, TB(tφ)).
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4 FINITE SAMPLE SIMULATIONS

In this section, finite sample critical values as well as size and power simulations are

presented for the statistics tφ(j, TB(tφ)), tφ(j, TB(t∆Z)) and tφ(j, T̂B) (j = 1, 2, 3). We

obtain these by simulating from the following DGP:

yt = δDU0
t + γDT 0

t + xt, (25)

xt = αxt−1 + ρ∆xt−1 + et + ψet−1, (26)

where et are i.i.d. N(0, 1) random deviates. Each simulation was based on 10,000 repli-

cations. We set Λ equal to the largest window possible for each sample size considered.

4.1 Critical values with no break

In this subsection we present finite sample critical values for the statistics tφ(j, TB(tφ)),

tφ(j, TB(t∆Z)) and tφ(j, T̂B) (j = 1, 2, 3) assuming no break, δ = γ = 0, under the null

α = 1. We only present results for the case of no autocorrelation in the first difference of

the errors: ρ = ψ = 0. Size distortions caused by the presence of a break, δ, γ 6= 0, or by

autocorrelation in the errors, ρ, ψ 6= 0, are considered in the next subsection. We have

set x0 = 0, δ1 = 0 and γ1 = 0 without loss of generality since in this case the statistics

are exactly invariant to these parameters.

For selecting the truncation lag parameter k in regression (13) we have considered

two procedures. In the first case we set k = 0 which corresponds to regression (12). As

an alternative, we also consider a data-dependent method as in Perron (1989, 1997) and

Vogelsang and Perron (1998) denoted as k(t−sig). For any given value of TB, k is chosen

so that the coefficient on the last included lagged first difference is significant at the 10%

level, but insignificant in higher-order autoregressions up to some fixed maximum lag

length denoted by kmax. We set kmax = 5 so that our results are comparable with those

presented in Vogelsang and Perron (1998) for the augmented DF-type tests allowing for

a break.

We present the results for T = 50, 100 and 150 in Tables 2–10.7 In general, the

asymptotic critical values provide reasonably good approximations to the finite sample

critical values when k = 0. Only in the case of tφ(1, TB(tφ)) does convergence to the

7Critical values for tφ(1, TB(tφ)) when T = 100 and k = 0 differ slightly from the ones presented in

Lee and Strazicich (2002) because of a different choice of Λ.
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limiting critical values seem to be somewhat slower. When k(t−sig) is used with kmax =

5, the critical values are much smaller than the asymptotic and k = 0 critical values.

Similar results were found by Vogelsang and Perron (1998) for the augmented DF-type

tests. These discrepancies seem to be larger for the tests based on TB(tφ). The simulations

also suggest that in all cases these differences vanish asymptotically.

4.2 Finite sample size and power

We now present the results of several finite sample size and power simulations using

T = 100. We considered several values of δ and γ, both under the null, α = 1, and under

the alternative α = 0.8. For the cases where a break occurs, δ, γ 6= 0, the true break date

was set to T 0
B = 50 (λ0 = 0.5).

In the first set of simulations we considered i.i.d. errors, ρ = ψ = 0, and set k = 0

in order to isolate the effects of the breaks from the effects of autocorrelation. We used

the 5% critical values described in the previous subsection for the case of no break and

presented in Tables 2–10 for T = 100 and kmax = 0. Results appear in Table 11.

We first discuss the results obtained for the Schmidt and Phillips (1992) LM test tφ.

A break in the intercept has a minor impact on size. However, it may lead to a severe

decrease in power. These results are in line with the findings in Amsler and Lee (1995).

For a break in slope, size is practically zero, confirming the asymptotic result in subsection

3.2. A break in slope also drives power to zero.

Consider now the results for the test statistics using Model 1 which allows for a break

in intercept. When the unit root null hypothesis, α = 1, holds with a break in the

intercept only, δ 6= 0 and γ = 0, tφ(1, TB(tφ)) becomes slightly undersized. Size equals

4.7% for δ = 5 and 3.6% for δ = 10. For tφ(1, TB(t∆Z)) and tφ(1, T̂B), the exact size

nearly matches nominal size. This better performance is explained by the fact that the

correct break date is almost always correctly identified using these two procedures. On the

other hand, whenever a change in slope occurs, γ 6= 0, all test statistics become severely

undersized. This result confirms the asymptotic findings in subsection 3.2. When the

alternative holds without a break, α = 0.8, we see that tφ(1, TB(tφ)) performs better

than tφ(1, TB(t∆Z)) and tφ(1, T̂B). However, in the presence of a break in the intercept,

the reverse occurs. When the alternative holds with a break in the slope, all tests have

power close to zero. In all the cases, we see that the correct break date is more frequently

selected when using tφ(1, TB(t∆Z)) and tφ(1, T̂B).
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Next, we discuss the results obtained for the tests based on Model 2. Consider first

the results under the null. As the break in the intercept gets larger, tφ(2, TB(tφ)) and

tφ(2, TB(t∆Z)) become more undersized. On the other hand, the size for tφ(2, T̂B) is

always close to 6%. For a change in slope, tφ(2, TB(tφ)) is undersized while tφ(2, TB(t∆Z))

is oversized. The size for tφ(2, T̂B) is again only slightly above nominal size. When

both a break in intercept and slope occur, tφ(2, T̂B) performs better than the other test

statistics. Under the alternative, when there is no break, the three tests considered have

similar powers. When a break occurs we see that tφ(2, TB(tφ)) always performs much

worse than tφ(2, T̂B). As expected, tφ(2, TB(t∆Z)) performs better when there is a break

in slope only. As in Model 1, the correct break date is always more frequently selected

when using tφ(2, T̂B) relative to tφ(2, TB(tφ)).

Finally, we address the results for the tests based on Model 3. This model is designed

to cope with a change in slope only. When a break in the intercept occurs under the

null, all test statistics become undersized. For a break in the slope, tφ(3, TB(tφ)) is also

undersized, while the size of tφ(3, T̂B) is closer to the nominal size. Under the alternative

hypothesis, when there is no break, tφ(3, TB(tφ)) and tφ(3, TB(t∆Z)) perform better than

tφ(3, T̂B). It is interesting to note that in this case the power of tφ(2, T̂B) is larger than the

power of tφ(3, T̂B). When there is a break in the intercept under the alternative, all test

statistics have low power. For a break in the slope, as expected tφ(3, TB(t∆Z)) performs

better, followed closely by tφ(3, T̂B). Power for tφ(3, TB(tφ)) is lower mainly because the

correct break date is selected less often. Finally, when both a break in the intercept and

in the slope occur under the alternative, tφ(3, TB(tφ)) performs better, but still distant

from the power achieved using the Model 2 test statistics tφ(2, TB(t∆Z)) and tφ(2, T̂B).

Overall, the results suggest that the minimum LM tests suffer from size distortions in

the presence of a break under the null. In contrast, for the tφ(2, T̂B) test statistic, true

size is always close to nominal size. This test also revealed good power properties for

the different types of breaks considered making it particularly attractive when it is not

possible to restrict the break to occur only in the intercept or only in the slope. When

it is known that only a break in intercept may have occurred, the corresponding test for

Model 1, tφ(1, T̂B), has more power. However, all tests based on Model 1 are severely

undersized when a break in slope occurs. If it is known that there is a break in slope only,

and its direction is known a priori, some gain in power may also be obtained by using

tφ(3, TB(t∆Z)). Then again, if there is a break in intercept, all tests based on Model 3 are

14



severely affected in terms of power. The only case where a minimum LM test statistic is

superior to other tests in terms of size and power is when using Model 1 and when no

break has occurred. However, when one is sure that there is no break, then the Schmidt

and Phillips (1992) LM test, tφ, would be preferred. Finally, we note that when a break

occurs under the null or under the alternative, tests based on TB(t∆Z) or T̂B seem to

select the correct break date more often than tests based on TB(tφ).

In a second set of simulations we allow for autocorrelated errors and set kmax = 5.

In this case, we use the 5% finite sample critical values for T = 100 and kmax = 5. Also,

as in Vogelsang and Perron (1998), we consider the following five error specifications: (1)

ρ = 0, ψ = 0, (2) ρ = 0.6, ψ = 0, (3) ρ = −0.6, ψ = 0, (4) ρ = 0, ψ = 0.5 and (5) ρ = 0,

ψ = −0.5. Results for the LM-type test statistics based on Model 2 appear in Table 12.

The first thing to notice is that although true size depends on the correlation structure

considered, in general size distortions caused by the autocorrelation in the errors are not

too large. The only exception where tests are largely oversized is in experiment (5)

where the errors have a negative MA(1) component. Similar findings were obtained in

the context of the AO DF-type tests in Vogelsang in Perron (1998). On the other hand,

regardless of the correlation structure of the errors, the consequences of a break on true

size are similar to those obtained above for the case of no autocorrelation and kmax = 0.

A break in the intercept or the slope usually leads to a decrease in the size of tφ(2, TB(tφ))

and to an increase in the size of tφ(2, T̂B). The size of tφ(2, TB(t∆Z)) tends to decrease

with a break in the intercept and to increase with a break in the slope.

We consider now the results in terms of power. In the case of a negative AR(1)

component in the errors, all tests have low power. Vogelsang in Perron (1998) found the

same behavior for AO DF-type tests. Regardless of the autocorrelation pattern considered,

tφ(2, TB(tφ)) tends to be superior to tφ(2, T̂B) when there is no break. However, the power

of tφ(2, TB(tφ)) is reduced in the presence of a break in the intercept or in the slope.

Again, Vogelsang and Perron (1998) report a similar result for the AO DF-type tests. In

contrast, the power of tφ(2, T̂B) tends to be larger in the presence of a break. This is

explained by the fact that T̂B selects the true break date more often than TB(tφ), and

when the wrong break date is selected the tests have a tendency to undereject the null.

Finally, as expected, tφ(2, TB(t∆Z)) is preferred to tφ(2, T̂B) when the break occurs only

in the slope.
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5 CONCLUSION

This paper considers LM-type tests for a unit root allowing for the presence of a break in

the trend function at an unknown date. Three possible cases are considered: a change in

intercept, a change in slope, and both. In addition to the minimum LM test statistic, we

propose tests where the break date is estimated using the significance of the trend break

parameter or the least squares estimator of the break date under the null.

We examine the asymptotic behavior of the LM-type tests when the null hypothesis

of a unit root holds with a break as well as when there is no break. The test statistics

are asymptotically invariant to the magnitude of the intercept change. However, they are

not invariant to the magnitude of the slope change. For all the endogenous break tests

considered, the null limiting distribution when there is a break in slope is not the same

as when there is no break. Since the discrepancy is larger for the minimum LM-type unit

root test, smaller size distortions are to be expected when using the other proposed test

statistics.

A Monte Carlo study compares the finite sample performance of the alternative en-

dogenous break LM-type tests. Results suggest the superiority in terms of size, power

and break date estimation of our proposed methods relative to the minimum LM-type

unit root tests when there is a break.

16



APPENDIX

In this appendix, we prove the asymptotic results presented in the text by employing the

functional central limit theorem (FCLT) used in Phillips and Perron (1988). Limiting

results for the minimal and maximal test statistics are obtained by first establishing

weak convergence for a fixed λ and then applying the continuous mapping theorem as

in Zivot and Andrews (1992). Throughout the appendix ⇒ denotes weak convergence in

distribution and
p→ convergence in probability.

When the null hypothesis of a unit root holds with a possible break in the slope at

date T 0
B = [λ0T ] we have that

yt = δ1 + γ1t + γDT 0
t + xt (A.1)

and

∆yt = γ1 + γDU0
t + εt. (A.2)

We can write (A.2) in matrix notation as ∆Y = ∆Z0β+ ε where ∆Y = (∆y2, . . . ,∆yT )′,

∆Z0 = (∆Z0′
2 , . . . ,∆Z

0′
T )′, ∆Z0

t = (1, DU0
t ), ε = (ε2, . . . , εT )′, and β = (γ1, γ)

′.

The first step regression (9) can also be written in matrix notation as

∆Y = ∆Zβ + U (A.3)

where ∆Z = (∆Z ′

2, . . . ,∆Z
′

T )′ and U = (u2, . . . , uT )′. The least squares estimator of β

is given by β̃ = (∆Z ′∆Z)−1∆Z ′∆Y .

Define the following (T−1×1) vectors S̃−1 =(S̃1, . . . , S̃T−1)
′ and ∆S̃ = (∆S̃2, . . . ,∆S̃T )′.

Using (10) and (11) we get that ∆S̃ = ∆Y − ∆Zβ̃, so that ∆S̃ is the vector of residuals

from regression (A.3). Define the orthogonal projection matrixM = I−∆Z(∆Z ′∆Z)−1∆Z ′.

We have that ∆S̃ = M∆Y and

M∆S̃ = ∆S̃. (A.4)

It also follows that

S̃ ′

−1M∆S̃ = S̃ ′

−1∆S̃

=
T
∑

t=2

S̃ ′

t−1∆S̃
′

t

= −1

2
∆S̃ ′∆S̃ (A.5)
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where the last equality follows as in Lemma 1 in Schmidt and Phillips (1992).

The estimator of φ in the second step regression (12) can be written as

φ̂ = (S̃ ′

−1MS̃−1)
−1S̃ ′

−1M∆S̃

= −1

2
(S̃ ′

−1MS̃−1)
−1∆S̃ ′∆S̃ (A.6)

with the second equality following from (A.5). The t-statistic for testing φ = 0 can also

be written as

t(φ = 0) = (s2S̃ ′

−1MS̃−1)
−1/2S̃ ′

−1M∆S̃

= −1

2
(s2S̃ ′

−1MS̃−1)
−1/2∆S̃ ′∆S̃, (A.7)

where s2 is the estimated variance of the errors given by

s2 =
1

T − 1
(∆S̃ − S̃−1φ̂)′M(∆S̃ − S̃−1φ̂). (A.8)

Proof of (19) in the text. We show that when there is a break in the slope under

the null hypothesis of a unit root, so that (A.1)–(A.2) hold with γ 6= 0, then we have the

result in (19). To obtain tφ, the first step regression (9) must be estimated assuming no

break, which corresponds to Zt = t, ∆Zt = 1, and can be written as

∆yt = γ1 + ut.

The least squares estimator of γ1 is given by

γ̃1 =
1

T − 1

T
∑

t=2

∆yt. (A.9)

For a break in slope at date T 0
B = [λ0T ], it follows from (A.2) and (A.9) that γ̃1 =

γ1 + γ
T−T 0

B

T−1
+ 1

T−1

∑T
t=2 εt. By the FCLT we obtain

T 1/2(γ̃1 − γ∗1) ⇒ σW (1) (A.10)

where γ∗1=γ1 + γ(1 − λ0).

From (10) and (11) we have that S̃t = yt − y1 − γ̃1(t− 1) and ∆S̃t = ∆yt − γ̃1. Using

(A.1) and (A.2) we get

S̃t = (xt − x1) − (γ̃1 − γ1)(t− 1) + γDT 0
t

= (xt − x1) − (γ̃1 − γ∗1)(t− 1) − (γ∗1 − γ1)(t− 1) + γDT 0
t , (A.11)
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and

∆S̃t = εt − (γ̃1 − γ1) + γDU0
t . (A.12)

The first term in (A.11) is Op(T
1/2) by the FCLT. By (A.10) the second term is also

Op(T
1/2). The last two terms are O(T ). It follows that

T−1S̃[rT ]
p→ γf(r) (A.13)

where

f(r) = −(1 − λ0)r + 1(r > λ0)(r − λ0).

From (A.13) we get

T−3S̃ ′

−1MS̃−1 =
T
∑

t=2

1

T

(

S̃t−1

T
− 1

T − 1

T
∑

t=2

S̃t−1

T

)2

p→
∫ 1

0

(

γf(r) −
∫ 1

0

γf(s)ds

)2

dr. (A.14)

Computing the integrals in (A.14) we arrive at

T−3S̃ ′

−1MS̃−1
p→ γ2λ

2
0(1 − λ0)

2

12
. (A.15)

From (A.12) and after rearranging terms we have that

∆S̃ ′∆S̃ =

T
∑

t=2

(

εt − (γ̃1 − γ1) + γDU0
t

)2

=
T
∑

t=2

(

εt − (γ̃1 − γ1)(1 −DU0
t ) − (γ̃1 − γ1 − γ)DU0

t

)2
.

Since by (A.10) we have that γ̃1
p→ γ∗1 = γ1 + γ(1 − λ0) it follows that

T−1∆S̃ ′∆S̃
p→ σ2

ε + γ2(1 − λ0)
2λ0 + γ2λ2

0(1 − λ0) = σ2
ε + γ2λ0(1 − λ0). (A.16)

Using (A.15) and (A.16) in (A.6) we obtain:

T 2φ̂
p→ −1

2

(

γ2λ
2
0(1 − λ0)

2

12

)−1
(

σ2
ε + γ2λ0(1 − λ0)

)

. (A.17)
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Using (A.15), (A.16) and (A.17) in (A.8) we also get that

s2 p→ σ2
ε + γ2λ0(1 − λ0). (A.18)

Finally, using (A.15), (A.16) and (A.18) in (A.7), we get

T 1/2tφ = −1

2
(s2T−3S̃ ′

−1MS̃−1)
−1/2T−1∆S̃ ′∆S̃

p→ −1

2

(

γ2λ
2
0(1 − λ0)

2

12

)

−1/2
(

σ2
ε + γ2λ0(1 − λ0)

)1/2

proving the result. �

In what follows, we present proofs of the results for Model 3 only. All the corresponding

proofs for Model 2 would follow along similar lines since it differs from Model 3 only by

the inclusion of an asymptotically negligible one-time dummy variable.

The first step regression (9) for Model 3 assuming a break occurring at TB = [λT ]

corresponds to Zt = (t, DTt), ∆Zt = (1, DUt), and can be written as

∆yt = γ1 + γDUt + ut. (A.19)

The least squares estimators of γ1 and γ can be written as

γ̃1 =
1

TB − 1

TB
∑

t=2

∆yt, (A.20)

γ̃ =
1

T − TB

T
∑

t=TB+1

∆yt −
1

TB − 1

TB
∑

t=2

∆yt. (A.21)

We also have from (10) and (11) that

S̃t = yt − y1 − γ̃1(t− 1) − γ̃DTt

and

∆S̃t = ∆yt − γ̃1 − γ̃DUt.

Using (A.1) and (A.2) we obtain

S̃t = (xt − x1) − (γ̃1 − γ1)(t− 1) − γ̃DTt + γDT 0
t (A.22)
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and

∆S̃t = εt − (γ̃1 − γ1) − γ̃DUt + γDU0
t . (A.23)

Lemma 1. If γ = 0, or if γ 6= 0 and λ = λ0, then the following holds:

T 1/2(γ̃1 − γ1) ⇒ σ
W (λ)

λ
, (A.24)

T 1/2(γ̃ − γ) ⇒ σ

[

W (1) −W (λ)

1 − λ
− W (λ)

λ

]

, (A.25)

T−1/2S̃[rT ] ⇒ σV (r, λ), (A.26)

where V (r, λ) is defined in (16).

Proof of Lemma 1. If γ = 0, or if γ 6= 0 and λ = λ0, then we have from (A.2) and

(A.20) that γ̃1 = γ1 + 1
TB−1

∑TB

t=2 εt. From (A.21) we also get γ̃ = γ + 1
T−TB

∑T
t=TB+1 εt −

1
TB−1

∑TB

t=2 εt. By the FCLT we arrive at (A.24) and (A.25). From (A.22) and using (A.24)

and (A.25) we obtain:

T−1/2S̃[rT ] ⇒ σ

[

W (r) − r
W (λ)

λ
− 1(r > λ)(r − λ)

(

W (1) −W (λ)

1 − λ
− W (λ)

λ

)]

.

After rearranging terms we finally obtain (A.26). �

Lemma 2. Suppose that γ 6= 0 and λ 6= λ0. If λ < λ0 then

T 1/2(γ̃1 − γ1) ⇒ σ
W (λ)

λ
, T 1/2(γ̃ − γ′) ⇒ σ

[

W (1) −W (λ)

1 − λ
− W (λ)

λ

]

(A.27)

where γ′=γ 1−λ0

1−λ
. If λ > λ0 then

T 1/2(γ̃1 − γ′1) ⇒ σ
W (λ)

λ
, T 1/2(γ̃ − γ′′) ⇒ σ

[

W (1) −W (λ)

1 − λ
− W (λ)

λ

]

(A.28)

where γ′1=γ1 + γ λ−λ0

λ
and γ′′=γ λ0

λ
. Finally we have that

T−1S̃[rT ]
p→ γf(r, λ) (A.29)
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where

f(r, λ) =

{

−1−λ0

1−λ
1(r > λ)(r − λ) + 1(r > λ0)(r − λ0) if λ < λ0,

−λ−λ0

λ
r − λ0

λ
1(r > λ)(r − λ) + 1(r > λ0)(r − λ0) if λ > λ0.

(A.30)

Proof of Lemma 2. Consider first the case λ < λ0. From (A.2) and (A.20) we

have that γ̃1 = γ1 + 1
TB−1

∑TB

t=2 εt. Similarly, using (A.2) and (A.21) we get γ̃ = γ
T−T 0

B

T−TB

+
1

T−TB

∑T
t=TB+1 εt − 1

TB−1

∑TB

t=2 εt. By the FCLT we obtain (A.27). Rearranging the terms

in (A.22) we obtain S̃t = (xt − x1) − (γ̃1 − γ1)(t − 1) − (γ̃ − γ ′)DTt − γ′DTt + γDT 0
t .

The first term is Op(T
1/2) by the FCLT. By (A.27) the second and third terms are also

Op(T
1/2). The last two terms are O(T ). Therefore we arrive at (A.29)–(A.30) for the case

λ < λ0.

For λ > λ0 we have that γ̃1 = γ1 + γ
TB−T 0

B

TB−1
+ 1

TB−1

∑TB

t=2 εt and γ̃ = γ
T 0

B
−1

TB−1
+

1
T−TB

∑T
t=TB+1 εt − 1

TB−1

∑TB

t=2 εt. By the FCLT we obtain (A.28). Rearranging (A.22)

we have S̃t = (xt −x1)− (γ̃1 −γ′1)(t−1)− (γ̃−γ ′′)DTt − (γ′1 −γ1)(t−1)−γ′′DTt +γDT 0
t .

The first term is Op(T
1/2) by the FCLT. The second and third terms are also Op(T

1/2)

by (A.28). The last three terms are O(T ). Therefore we arrive at (A.29)–(A.30) for the

case λ > λ0. �

Lemma 3. If γ = 0, or if γ 6= 0 and λ = λ0, then T−2S̃−1MS̃−1 ⇒ σ2
∫ 1

0
V (r, λ)2dr

where V (r, λ) denotes the residuals from the projection of the process V (r, λ) onto the

subspace generated by the functions {1, du(r, λ)} with du(r, λ) = 1(r > λ).

Proof of Lemma 3. The result follows directly by (A.26) in Lemma 1. �

Lemma 4. If γ 6= 0 and λ 6= λ0 then T−3S̃−1MS̃−1
p→ γ2h(λ, λ0) where

h(λ, λ0) =

{

(λ0−λ)2(1−λ0)2

12(1−λ)
if λ < λ0,

(λ−λ0)2λ2

0

12λ
if λ > λ0.

(A.31)

Proof of Lemma 4. S̃−1MS̃−1 represents the sum of the squared residuals from the

regression of S̃t−1 on 1 and DUt. This is equivalent to a regression of S̃t−1 on 1 − DUt

and DUt. Therefore, by (A.29) in Lemma 2 it follows that:

T−3S̃−1MS̃−1
p→
∫ λ

0

[

γf(r, λ) − 1

λ

∫ λ

0

γf(s, λ)ds

]2

dr

+

∫ 1

λ

[

γf(r, λ) − 1

1 − λ

∫ 1

λ

γf(s, λ)ds

]2

dr.
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By computing the integrals we arrive at the desired result. �

Lemma 5. If γ 6= 0 then T−1∆S̃ ′∆S̃
p→ σ2

ε + γ2g(λ, λ0) where

g(λ, λ0) =















(1−λ0)(λ0−λ)
1−λ

if λ < λ0,

0 if λ = λ0,
λ0(λ−λ0)

λ
if λ > λ0.

If γ = 0 then T−1∆S̃ ′∆S̃
p→ σ2

ε .

Proof of Lemma 5. From (A.23) we have:

T−1∆S̃ ′∆S̃ = T−1

T
∑

t=2

(

εt − (γ̃1 − γ1) − γ̃DUt + γDU0
t

)2
. (A.32)

Consider first the case γ 6= 0. When λ = λ0 we have that DUt = DU0
t and, from

Lemma 1, γ̃1
p→ γ1 and γ̃

p→ γ. It then follows that T−1∆S̃ ′∆S̃
p→ σ2

ε . When λ < λ0 we

rewrite (A.32) as

T−1∆S̃ ′∆S̃ = T−1

T
∑

t=2

(

εt − (γ̃1 − γ1) − γ̃(DUt −DU0
t ) − (γ̃ − γ)DU 0

t

)2
. (A.33)

The result follows easily from (A.33) since by Lemma 2 we have that γ̃1 − γ1
p→ 0 and

γ̃ − γ
p→ −γ λ0−λ

1−λ
. Finally, when λ > λ0, we rewrite (A.32) as

T−1∆S̃ ′∆S̃ = T−1

T
∑

t=2

(

εt − (γ̃1 − γ1)(1 −DU0
t ) (A.34)

−(γ̃1 − γ1 − γ)(DU0
t −DUt) − (γ̃1 − γ1 + γ̃ − γ)DUt

)2
.

The result follows again easily from (A.34) since by Lemma 2 we have that γ̃1−γ1
p→ γ λ−λ0

λ

and γ̃ − γ
p→ γ λ0−λ

λ
.

For γ = 0 we have from (A.23) that

T−1∆S̃ ′∆S̃ = T−1

T
∑

t=2

(εt − (γ̃1 − γ1) − γ̃DUt)
2 .

Since by Lemma 1 we have that γ̃1 − γ1
p→ 0 and γ̃

p→ 0, it follows that T−1∆S̃ ′∆S̃
p→ σ2

ε

proving the result. �
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Lemma 6. If γ = 0, or if γ 6= 0 and λ = λ0, then φ̂ = Op(T
−1). If γ 6= 0 and λ 6= λ0

then φ̂ = Op(T
−2).

Proof of Lemma 6. Using (A.6) the result follows from Lemmas 3, 4 and 5. �

Lemma 7. We have that s2 p→ σ2
ε + γ2g(λ, λ0).

Proof of Lemma 7. Using (A.4) and (A.5) in (A.8), we can write s2 as

s2 =
1

T − 1
(∆S̃ ′M∆S̃ − 2φ̂S̃ ′

−1M∆S̃ + φ̂2S̃ ′

−1MS̃−1)

=
1

T − 1
((1 + φ̂)∆S̃ ′∆S̃ + φ̂2S̃ ′

−1MS̃−1).

The result then follows easily from Lemmas 3, 4, 5 and 6. �

Lemma 8. If γ = 0, or if γ 6= 0 and λ = λ0, then tφ(3, [λT ]) ⇒ R(λ) with R(λ) as

defined in (15).

Proof of Lemma 8. Using (A.7), the result follows from Lemmas 3, 5 and 7. �

Proof of (17) in the text. We show that in the absence of a break, γ = 0,

then (17) holds. The t-statistic for testing that the coefficient of DUt in the first step

regression (A.19) is equal to zero when TB = [λT ] is given by t∆Z(λ) = γ̃/
√
σ̂2m22

where m22 denotes the row 2, column 2 element of (∆Z ′∆Z)−1 and σ̂2 = ∆S̃ ′∆S̃/(T −
1) is the estimated variance of the errors in (A.19). It is easy to see that Tm22

p→
1

λ(1−λ)
. By Lemma 5 we have that σ̂2 p→ σ2

ε . By applying Lemma 1 we have that

t∆Z(λ) ⇒ 1
ω

√

λ(1 − λ)
(

W (1)−W (λ)
1−λ

− W (λ)
λ

)

. Since TB(t∆Z) is the break date that max-

imizes t∆Z(λ), by using Lemma 8 and the CMT as in Zivot and Andrews (1992), we

have that tφ(3, TB(t∆Z)) ⇒ R(λ̃) where λ̃ = arg maxλ∈Λ

√

λ(1 − λ)
(

W (1)−W (λ)
1−λ

− W (λ)
λ

)

,

proving the result. �

Proof of (21) in the text. We show that if there is a break, γ 6= 0, whose date is

misplaced, λ 6= λ0, then (21) holds. By using Lemmas 4, 5 and 7 in (A.7) it follows that

T 1/2tφ(3, [λT ])
p→ −1

2

(

γ2h(λ, λ0)
)

−1/2 (
σ2

ε + γ2g(λ, λ0)
)1/2

,

proving the result. �
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Proof of (23) in the text. We show that in the presence of a break, γ 6= 0, (23)

holds. We first derive the limiting behavior of t∆Z(λ) = γ̃/
√
σ̂2m22 when γ 6= 0. By

Lemmas 1 and 2 we have that γ̃
p→ γk(λ, λ0) where

k(λ, λ0) =















1−λ0

1−λ
if λ < λ0,

1 if λ = λ0,
λ0

λ
if λ > λ0.

By Lemma 5 we have that σ̂2 p→ σ2
ε + γ2g(λ, λ0). We also have that Tm22

p→ 1
λ(1−λ)

.

Combining these results we get

T−1/2t∆Z(λ)
p→ γk(λ, λ0)

√

λ(1 − λ)
(

σ2
ε + γ2g(λ, λ0)

)

−1/2
.

It follows that the limiting behavior of t∆Z(λ) depends on λ0. For any given λ0 it is

easy to see that this limiting function of λ attains a maximum at λ0 when γ > 0 (and a

minimum at λ0 when γ < 0). It follows that λ0 is chosen asymptotically which, together

with Lemma 8, proves the result. �

Proof of (18) and (24) in the text. Let RSS(TB) denote the residual sum of

squares for the first step regression (A.19) when the break date used equals TB. Since T̂B =

arg maxTB
RSS(TB) = arg maxTB

t2∆DT (TB), (18) and (24) follow by the same arguments

used to prove (17) and (23) respectively. �
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Table 1. Asymptotic Critical Values for tφ(j, TB) (j=2,3) for Fixed TB = [λT ]

λ 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

.1 -3.84 -3.56 -3.30 -3.02 -2.55 -2.11 -1.71 -1.42 -1.28 -1.18 -1.06

.2 -4.06 -3.74 -3.51 -3.21 -2.76 -2.30 -1.89 -1.59 -1.43 -1.30 -1.19

.3 -4.13 -3.84 -3.59 -3.32 -2.89 -2.45 -2.06 -1.76 -1.59 -1.47 -1.35

.4 -4.15 -3.86 -3.63 -3.37 -2.97 -2.55 -2.18 -1.90 -1.75 -1.63 -1.51

.5 -4.15 -3.87 -3.66 -3.40 -2.99 -2.58 -2.22 -1.94 -1.80 -1.68 -1.57

.6 -4.12 -3.88 -3.63 -3.38 -2.98 -2.55 -2.17 -1.88 -1.73 -1.61 -1.48

.7 -4.12 -3.82 -3.58 -3.31 -2.89 -2.46 -2.05 -1.74 -1.59 -1.47 -1.33

.8 -4.03 -3.73 -3.48 -3.21 -2.76 -2.30 -1.89 -1.58 -1.42 -1.31 -1.20

.9 -3.88 -3.54 -3.29 -3.01 -2.56 -2.11 -1.72 -1.43 -1.28 -1.17 -1.06
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Table 2. Critical Values for tφ(1, TB(tφ))

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -4.46 -4.09 -3.80 -3.41 -2.87 -2.31 -1.83 -1.47 -1.31 -1.19 -1.08

5 -5.17 -4.76 -4.43 -3.99 -3.36 -2.72 -2.20 -1.86 -1.68 -1.56 -1.44

100 0 -4.32 -3.91 -3.62 -3.26 -2.74 -2.21 -1.77 -1.45 -1.30 -1.18 -1.04

5 -4.71 -4.33 -3.96 -3.58 -2.98 -2.42 -1.94 -1.62 -1.46 -1.36 -1.22

150 0 -4.18 -3.77 -3.47 -3.15 -2.65 -2.15 -1.73 -1.42 -1.27 -1.15 -1.04

5 -4.37 -4.02 -3.70 -3.35 -2.82 -2.29 -1.85 -1.52 -1.37 -1.25 -1.15

∞ -3.56 -3.27 -3.02 -2.75 -2.34 -1.90 -1.54 -1.29 -1.16 -1.07 -0.97

Table 3. Critical Values for tφ(2, TB(tφ))

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -5.46 -5.04 -4.71 -4.39 -3.87 -3.36 -2.87 -2.49 -2.30 -2.15 -2.00

5 -6.34 -5.90 -5.59 -5.25 -4.70 -4.14 -3.63 -3.22 -3.00 -2.84 -2.66

100 0 -5.12 -4.79 -4.52 -4.21 -3.74 -3.25 -2.81 -2.45 -2.25 -2.10 -1.93

5 -5.65 -5.30 -5.03 -4.71 -4.20 -3.65 -3.18 -2.80 -2.60 -2.45 -2.27

150 0 -5.02 -4.70 -4.44 -4.12 -3.66 -3.20 -2.77 -2.42 -2.22 -2.07 -1.90

5 -5.41 -5.07 -4.79 -4.49 -3.99 -3.47 -3.02 -2.65 -2.46 -2.30 -2.13

∞ -4.74 -4.51 -4.27 -4.01 -3.57 -3.12 -2.70 -2.36 -2.18 -2.02 -1.87

Table 4. Critical Values for tφ(3, TB(tφ))

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -5.32 -4.94 -4.61 -4.30 -3.78 -3.27 -2.80 -2.42 -2.24 -2.09 -1.94

5 -6.20 -5.79 -5.48 -5.12 -4.57 -4.02 -3.49 -3.07 -2.84 -2.68 -2.47

100 0 -5.08 -4.74 -4.46 -4.16 -3.68 -3.20 -2.76 -2.40 -2.21 -2.07 -1.90

5 -5.60 -5.23 -4.96 -4.64 -4.12 -3.57 -3.09 -2.69 -2.50 -2.34 -2.17

150 0 -4.96 -4.64 -4.37 -4.07 -3.62 -3.16 -2.73 -2.38 -2.19 -2.03 -1.88

5 -5.34 -5.02 -4.74 -4.43 -3.92 -3.41 -2.94 -2.57 -2.38 -2.21 -2.04

∞ -4.74 -4.51 -4.27 -4.01 -3.57 -3.12 -2.70 -2.36 -2.18 -2.02 -1.87
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Table 5. Critical Values for tφ(1, TB(t∆Z))

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -3.77 -3.45 -3.16 -2.85 -2.40 -1.95 -1.57 -1.30 -1.18 -1.09 -1.00

5 -4.29 -3.92 -3.60 -3.21 -2.63 -2.11 -1.69 -1.38 -1.23 -1.09 -0.89

100 0 -3.75 -3.37 -3.13 -2.84 -2.37 -1.92 -1.57 -1.32 -1.19 -1.09 -0.98

5 -4.01 -3.63 -3.31 -2.99 -2.48 -2.00 -1.61 -1.35 -1.21 -1.11 -1.00

150 0 -3.60 -3.28 -3.04 -2.76 -2.34 -1.91 -1.55 -1.30 -1.17 -1.07 -0.99

5 -3.78 -3.47 -3.17 -2.87 -2.42 -1.96 -1.58 -1.31 -1.19 -1.09 -0.98

∞ -3.56 -3.27 -3.02 -2.75 -2.34 -1.90 -1.54 -1.29 -1.16 -1.07 -0.97

Table 6. Critical Values for tφ(2, TB(t∆Z))

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -4.53 -4.17 -3.87 -3.49 -2.94 -2.38 -1.91 -1.57 -1.40 -1.27 -1.14

5 -5.11 -4.67 -4.32 -3.92 -3.29 -2.63 -2.07 -1.70 -1.50 -1.35 -1.15

100 0 -4.31 -3.99 -3.70 -3.36 -2.86 -2.35 -1.89 -1.56 -1.39 -1.25 -1.11

5 -4.64 -4.26 -3.93 -3.56 -3.02 -2.45 -1.96 -1.60 -1.42 -1.29 -1.15

150 0 -4.21 -3.90 -3.63 -3.29 -2.80 -2.31 -1.86 -1.53 -1.37 -1.24 -1.12

5 -4.53 -4.10 -3.76 -3.42 -2.91 -2.37 -1.90 -1.55 -1.39 -1.26 -1.13

∞ -4.00 -3.72 -3.47 -3.18 -2.72 -2.23 -1.81 -1.50 -1.33 -1.21 -1.09

Table 7. Critical Values for tφ(3, TB(t∆Z))

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -4.47 -4.11 -3.81 -3.46 -2.91 -2.37 -1.91 -1.56 -1.40 -1.26 -1.14

5 -5.01 -4.58 -4.21 -3.83 -3.22 -2.59 -2.06 -1.69 -1.49 -1.32 -1.11

100 0 -4.27 -3.96 -3.67 -3.34 -2.85 -2.35 -1.90 -1.56 -1.39 -1.26 -1.11

5 -4.58 -4.18 -3.88 -3.53 -2.99 -2.43 -1.95 -1.60 -1.41 -1.29 -1.14

150 0 -4.21 -3.87 -3.59 -3.27 -2.80 -2.30 -1.87 -1.54 -1.37 -1.24 -1.12

5 -4.46 -4.07 -3.74 -3.39 -2.88 -2.36 -1.89 -1.55 -1.38 -1.26 -1.13

∞ -4.00 -3.72 -3.47 -3.18 -2.72 -2.23 -1.81 -1.50 -1.33 -1.21 -1.09
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Table 8. Critical Values for tφ(1, T̂B)

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -3.83 -3.47 -3.19 -2.88 -2.41 -1.95 -1.58 -1.31 -1.18 -1.09 -0.99

5 -4.35 -3.96 -3.62 -3.24 -2.64 -2.12 -1.69 -1.39 -1.23 -1.10 -0.95

100 0 -3.75 -3.37 -3.11 -2.82 -2.37 -1.93 -1.57 -1.31 -1.19 -1.09 -0.98

5 -3.99 -3.61 -3.30 -2.97 -2.49 -2.00 -1.61 -1.34 -1.21 -1.10 -0.99

150 0 -3.61 -3.32 -3.06 -2.77 -2.33 -1.91 -1.55 -1.29 -1.17 -1.07 -0.98

5 -3.83 -3.49 -3.18 -2.88 -2.41 -1.96 -1.58 -1.31 -1.19 -1.08 -0.98

∞ -3.56 -3.27 -3.02 -2.75 -2.34 -1.90 -1.54 -1.29 -1.16 -1.07 -0.97

Table 9. Critical Values for tφ(2, T̂B)

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -4.52 -4.17 -3.88 -3.54 -3.03 -2.51 -2.06 -1.72 -1.54 -1.42 -1.28

5 -5.15 -4.71 -4.41 -4.05 -3.45 -2.83 -2.28 -1.88 -1.67 -1.50 -1.29

100 0 -4.37 -4.02 -3.73 -3.43 -2.95 -2.48 -2.05 -1.72 -1.55 -1.40 -1.24

5 -4.71 -4.34 -4.03 -3.68 -3.14 -2.62 -2.15 -1.78 -1.59 -1.44 -1.28

150 0 -4.26 -3.93 -3.67 -3.37 -2.92 -2.46 -2.04 -1.69 -1.52 -1.39 -1.25

5 -4.47 -4.15 -3.85 -3.55 -3.05 -2.54 -2.09 -1.72 -1.55 -1.41 -1.26

∞ -4.07 -3.75 -3.50 -3.22 -2.78 -2.32 -1.90 -1.60 -1.44 -1.32 -1.22

Table 10. Critical Values for tφ(3, T̂B)

T kmax 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99%

50 0 -4.59 -4.22 -3.93 -3.57 -3.04 -2.52 -2.06 -1.72 -1.54 -1.43 -1.28

5 -5.04 -4.64 -4.31 -3.95 -3.36 -2.74 -2.20 -1.82 -1.62 -1.45 -1.27

100 0 -4.35 -4.04 -3.78 -3.46 -2.96 -2.47 -2.03 -1.69 -1.53 -1.40 -1.26

5 -4.62 -4.27 -3.98 -3.64 -3.10 -2.55 -2.09 -1.74 -1.55 -1.41 -1.27

150 0 -4.29 -3.97 -3.68 -3.37 -2.90 -2.43 -1.99 -1.67 -1.50 -1.38 -1.25

5 -4.45 -4.14 -3.83 -3.51 -2.99 -2.47 -2.02 -1.68 -1.51 -1.37 -1.25

∞ -4.07 -3.75 -3.50 -3.22 -2.78 -2.32 -1.90 -1.60 -1.44 -1.32 -1.22
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Table 11. Frequency of null rejections (Rej.) and correct break date selection (T 0

B) for LM-type tests: tφ(j, ·) (j = 1, 2, 3)

DGP: yt = δDU0

t + γDT 0

t + xt, xt = αxt−1 + et, et i.i.d. N(0, 1)

T = 100; T 0

B = 50; 5% nominal size; kmax = 0

tφ tφ(1, TB(tφ)) tφ(1, TB(t∆Z)) tφ(1, T̂B) tφ(2, TB(tφ)) tφ(2, TB(t∆Z)) tφ(2, T̂B) tφ(3, TB(tφ)) tφ(3, TB(t∆Z)) tφ(3, T̂B)

α δ γ Rej. Rej. T 0
B Rej. T 0

B Rej. T 0
B Rej. T 0

B Rej. T 0
B Rej. T 0

B Rej. T 0
B Rej. T 0

B Rej. T 0
B

1 5 0 .049 .047 .358 .051 .987 .052 .979 .044 .152 .043 .000 .061 .973 .041 .129 .043 .038 .042 .024

1 10 0 .034 .036 .477 .050 1.00 .052 1.00 .026 .282 .022 .007 .061 1.00 .021 .184 .021 .084 .018 .056

1 0 1 .000 .000 .000 .000 .019 .000 .011 .019 .085 .071 .210 .059 .131 .021 .101 .072 .264 .057 .264

1 0 2 .000 .000 .001 .000 .021 .000 .011 .017 .142 .067 .424 .060 .345 .019 .204 .068 .631 .052 .631

1 5 1 .000 .000 .001 .000 .992 .000 .986 .036 .072 .071 .576 .061 .996 .039 .097 .068 .542 .053 .542

1 10 2 .000 .000 .000 .000 1.00 .000 1.00 .078 .044 .066 1.00 .061 1.00 .084 .019 .045 .827 .033 .827

.8 0 0 .762 .750 – .598 – .573 – .461 – .475 – .421 – .447 – .438 – .310 –

.8 5 0 .356 .555 .671 .730 .976 .739 .964 .282 .408 .162 .000 .518 .958 .203 .216 .161 .025 .111 .008

.8 10 0 .027 .452 .915 .743 1.00 .756 1.00 .167 .721 .012 .000 .536 1.00 .030 .257 .012 .075 .006 .038

.8 0 1 .000 .000 .000 .000 .020 .000 .011 .267 .125 .537 .257 .454 .131 .291 .157 .541 .306 .476 .306

.8 0 2 .000 .000 .000 .000 .021 .000 .011 .249 .213 .546 .430 .510 .331 .268 .309 .555 .629 .490 .629

.8 5 1 .000 .000 .000 .000 .985 .000 .975 .333 .178 .493 .521 .535 .993 .341 .066 .371 .554 .312 .554

.8 10 2 .000 .000 .000 .000 1.00 .000 1.00 .380 .195 .558 1.00 .536 1.00 .376 .003 .124 .817 .095 .817
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Table 12. Frequency of null rejections for LM-type tests for Model 2: tφ(2, ·)
DGP: yt = δDU0

t + γDT 0
t + xt, xt = αxt−1 + ρ∆xt−1 + et + ψet−1, et i.i.d. N(0, 1)

T = 100; T 0
B = 50; 5% nominal size; kmax = 5

Size (α = 1) Power (α = 0.8)

δ, γ δ(γ = 0) γ(δ = 0) δ, γ δ(γ = 0) γ(δ = 0)

ρ ψ TB 0.0 5.0 10.0 1.0 2.0 0.0 5.0 10.0 1.0 2.0

0.0 0.0 TB(tφ) .050 .043 .024 .028 .026 .332 .073 .168 .167 .156

TB(t∆Z) .050 .045 .022 .076 .079 .348 .102 .008 .398 .414

T̂B .050 .063 .064 .058 .065 .291 .364 .377 .321 .358

0.6 0.0 TB(tφ) .055 .049 .036 .049 .042 .881 .750 .599 .751 .708

TB(t∆Z) .048 .043 .034 .081 .083 .697 .476 .162 .726 .768

T̂B .066 .072 .072 .072 .068 .701 .733 .780 .680 .748

-0.6 0.0 TB(tφ) .072 .050 .017 .034 .032 .224 .076 .025 .089 .077

TB(t∆Z) .053 .031 .013 .078 .078 .156 .030 .005 .186 .193

T̂B .054 .058 .064 .050 .056 .143 .131 .164 .103 .141

0.0 0.5 TB(tφ) .073 .067 .046 .048 .042 .359 .263 .140 .221 .204

TB(t∆Z) .061 .062 .040 .095 .100 .283 .187 .053 .333 .361

T̂B .077 .086 .087 .082 .086 .284 .326 .336 .297 .327

0.0 -0.5 TB(tφ) .430 .297 .118 .255 .236 .859 .565 .358 .635 .594

TB(t∆Z) .158 .089 .022 .244 .250 .561 .083 .017 .576 .595

T̂B .176 .220 .229 .196 .223 .496 .526 .577 .433 .537
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