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Under a sample selection or non-response problem where a response variable y is observed

only when a condition δ = 1 is met, the identified mean E(y|δ = 1) is not equal to the desired

mean E(y). But the monotonicity condition E(y|δ = 1) ≤ E(y|δ = 0) yields an informative

bound E(y|δ = 1) ≤ E(y), which is enough for certain inferences. For example, in a majority

voting with δ being vote-turnout, it is enough to know if E(y) > 0.5 or not, for which

E(y|δ = 1) > 0.5 is sufficient under the monotonicity. The main question is then whether the

monotonicity condition is testable, and if not, when it is plausible. Answering to these queries,

when there is a “proxy” variable z related to y but fully observed, we provide a test for the

monotonicity; when z is not available, we provide primitive conditions and plausible models

for the monotonicity. Going further, when both y and z are binary, bivariate monotonicities

of the type P (y, z|δ = 1) ≤ P (y, z|δ = 0) are considered, which can lead to sharper bounds for

P (y). As an empirical example, a data set on the 1996 US presidential election is analyzed to

see if the Republican candidate could have won had everybody voted, i.e., to see if P (y) > 0.5

where y = 1 is voting for the Republican candidate.
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1. Introduction

Many surveys suffer from sample-selection (or non-response) problems, where the

selection (or decision to respond) δ is done in a way it matters for a response variable y of

interest. In income surveys, people at either tail of the income range may not respond; the

observed response is then δy with δ = 1[y not in either tail], where 1[A] = 1 if A holds and

0 otherwise. Our interest is in E(y|x) for a covariate vector x, but what is readily available

from the sample is E(y|x, δ = 1). The question is then what can be learned about E(y|x)

under the selection problem.

Since

E(y|x) = E(y|x, δ = 0) · P (δ = 0|x) +E(y|x, δ = 1) · P (δ = 1|x), (1.1)

under 0 < P (δ = 0|x), we get

E(y|x, δ = 0) = E(y|x, δ = 1) ⇐⇒ E(y|x) = E(y|x, δ = 1). (1.2)

Two extreme approaches exist for the selection problem in the literature. First, the non-

verifiable (1.2) is assumed, amounting to ignoring the selection problem. Call this “ignoring

approach”; “ignoring” is taken from Rosenbaum and Rubin (1983). Second, if there is

a “proxy” variable z closely related to y but fully observed, (1.3)

then z is used to impute for y; call this “imputation approach”. Here, the sense of “y and z

closely related” should come from a verifiable condition: at least,

E(y|x, δ = 1) = E(z|x, δ = 1). (1.4)

The two approaches are diametrically different ways to come up with a complete data:

in the former, the missing-mechanism for y is ignored under (1.2) and only the observations

with δ = 1 are used; in the latter, missing y is filled in under (1.3), and all observations

are used. Although (1.3) is verifiable in the given data, the ensuing imputation requires a

non-verifiable assumption

E(y|x, δ = 0) = E(z|x, δ = 0) (1.5)

so that the non-identified E(y|x, δ = 0) can be replaced with the identified E(z|x, δ = 0).
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Without (1.4), z would not qualify as a source for imputation, and without (1.5), the

imputation fails. But, since (1.4) and (1.5) together implies E(y|x) = E(z|x), the imputation

approach faces an awkward situation: as far as identification goes, why bother with E(y|x)

at all if E(y|x) = E(z|x) and E(z|x) is identified? In view of this, one may wonder whether

it is possible to avoid (1.2) in the ignoring approach while making a less demanding use of z

than in the imputation approach. A contribution of this paper is showing that indeed it is

possible to go halfway (and further) between the two extreme approaches.

A remedy for a selection problem and its consequences on the ensuing statistical infer-

ence depend on the problem at hand, and there are cases where we do not need the full force

of the either approach above. For example, suppose, for some subpopulation characterized

by x,

y = 1 if vote for a particular party candidate and 0 otherwise,

δ = 1 if turnout for voting and 0 otherwise,

z = 1 if support the party overall and 0 otherwise.

Here we may be interested only in whether E(y|x) > 0.5 or not. For this, there is no need to

know E(y|x) exactly; bounding E(y|x) from below would be enough. Of course, bounding

E(y|x) will not work for every selection problem; it will work only when the inferential goal

is modest as in the voting example.

If bounding E(y|x) is the goal, then instead of (1.2), its “50% weaker” one-sided

version may do, say,

E(y|x, δ = 1) ≤ E(y|x, δ = 0) ((decreasing) ‘monotonicity in δ’). (1.6)

Since E(y|x, δ = 0) is not identified, instead of (1.6), we may test for

E(z|x, δ = 1) ≤ E(z|x, δ = 0) (1.7)

that is identified. This motivates “inequality imputation (or monotonicity imputation)”: take

a test for (1.7) as a test for (1.6), making a less demanding use of z than the usual imputa-

tion. Whereas the ignoring approach assumes the non-identified equality (1.2) and the usual

imputation approach assumes the non-identified equality (1.5)–call the usual imputation

“equality imputation”–inequality imputation assumes the non-identified implication ‘(1.7)

=⇒ (1.6)’.

For an error term e and a covariate w, often the orthogonality E(ew) = 0 is assumed,

which is relaxed to E(ew) ≥ 0 in Manski and Pepper (2000). Using E(ew) = 0 is analogous
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to doing equality imputation, whereas using E(ew) ≥ 0 is analogous to doing inequality

imputation. While inequalities such as (1.6) and E(ew) ≥ 0 are just assumed in the literature,

we will try to justify or verify them in this paper–an uncharted territory in the literature.

Going further, when y and z are binary, bivariate inequalities such as

P (y = 1, z = 1|x, δ = 1) ≤ P (y = 1, z = 1|x, δ = 0) (1.8)

will be examined to derive sharper bounds on P (y = 1|x). Another motivation to look at

(1.8) is that, differently from the univariate monotonicity (1.6), (1.8) is testable, for it implies

an identified condition

P (y = 1, z = 1|x, δ = 1) ≤ P (z = 1|x, δ = 0). (1.9)

Throughout, our approach will be nonparametric without specifying the functional form of

E(y|x), nor the distribution of y|x.

Section 2 presents various bounds on E(y|x) in the literature to show how monotonici-

ties in δ help bounding E(y|x). Section 3 introduces ‘orthant dependence’ and common-factor

models to show when the monotonicities hold (or are plausible); proxy variables do not appear

yet. In Section 4, now with a proxy available, the monotonicities become testable and some

bounds obtained in Section 2 get sharpened by taking advantage of bivariate monotonicities

such as (1.8). Section 5 analyzes the 1996 US presidential election illustrating our approach

with y, δ, z defined as in the above voting example, to find that the Republican candidate

(Bob Dole) is likely to have lost anyway, even if everybody had voted,. Finally, Section 6

concludes.

2. How Monotonicity Helps Bounding E(y|x)

In this section, we briefly review part of the bounding approaches that we need for

later sections; see Horowitz and Manski (2000), Manski (2003), and the references therein

for the literature. Suppose that y is bounded by known lower and upper bounds yL and yH ;

this assumption will be relaxed near the end of this section. Then, the linear transformation

(y − yL)/(yH − yL) is bounded by 0 and 1. Hence, without loss of generality, assume

0 ≤ y ≤ 1.
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Suppose

(δi, δiyi, x
0
i), i = 1, ..., N, are observed, iid across i, (2.1)

where δi is a binary random variable and xi is a regressor vector; yi is observed only if δi = 1

while xi is observed always. Our interest is on E(y|xo) (= E(y|x = xo)), not on E(y|xo, δ = 1)

that is easily identified.

Omitting the subscript i in view of the iid assumption, we get

E(y|x) = E(y|x, δ = 0) · P (δ = 0|x) +E(y|x, δ = 1) · P (δ = 1|x). (2.2)

Here, all but E(y|x, δ = 0) is identified, handling of which determines the identification of

E(y|x). To avoid P (δ = 1|x) = 0, assume

0 < P (δ = 1|x) for a.e. x; (2.3)

if 0 < P (δ = 1|x) only for some x, then the bounds to be discussed hereafter hold only for

those x satisfying 0 < P (δ = 1|x).

Substituting

0 ≤ E(y|x, δ = 0) ≤ 1 (W)

into (2.2), we get the ‘worst-case bound’

E(y|x, δ = 1) · P (δ = 1|x) ≤ E(y|x) ≤ P (δ = 0|x) +E(y|x, δ = 1) · P (δ = 1|x); (B-W)

the size of the bound is

P (δ = 0|x). (S-W)

“W” is for Worst case, “B” is for Bound, and “S” is for Size.

Suppose E(y|x, δ) is monotonic in δ for some x:

(0 ≤) E(y|x, δ = 0) ≤ E(y|x, δ = 1). (MU)

Substituting W and MU into (2.2), for those x satisfying MU, we get

E(y|x, δ = 1) · P (δ = 1|x) ≤ E(y|x) ≤ E(y|x, δ = 1); (B-MU)

the size of the bound is

E(y|x, δ = 1) · P (δ = 0|x) ≤ S-W. (S-MU)
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For our empirical example later, δ = 1 if vote, and y = 1 if vote for Bob Dole (the Republican

candidate in the 1996 US presidential election); MU means the higher proportion of Dole-

supporters among the voters than among the non-voters.

If the monotonicity MU holds with the opposite inequality

(1 ≥) E(y|x, δ = 0) ≥ E(y|x, δ = 1), (ML)

then we get

E(y|x, δ = 1) ≤ E(y|x) ≤ P (δ = 0|x) +E(y|x, δ = 1) · P (δ = 1|x); (B-ML)

the size of the bound is

{1−E(y|x, δ = 1)} · P (δ = 0|x) ≤ S-W. (S-ML)

Suppose now that y is either bounded with unknown bounds or unbounded with

E|y| <∞. In this case, no worst-case bound is available, but MU and ML still yield at least,

respectively,

E(y|x) ≤ E(y|x, δ = 1) and E(y|x, δ = 1) ≤ E(y|x). (2.4)

If y is bounded only from one side with the bound known, then the worst-case bound is

one-sided, and combining the known bound with MU or ML may yield two-sided bounds.

These cases are omitted, however, for they are straightforward to derive.

Manski and Pepper (2000) use MU where δ is a treatment and both “potential”

responses (say, y0 and y1) for δ = 0 and δ = 1 appear as y in the framework of treatment

effect analysis (see, e.g., Lee (2004)). This setup is more restrictive than our sample selection

framework where only one response appears in MU. In the empirical example of Lee and

Melenberg (1998), MU or ML more or less halved the worst-case bound, which was a drastic

improvement. Thus it is interesting to know when the monotonicities would hold and what

kind of models would allow them. Answers to these questions are given in the following

section.

3. Conditions and Models for Monotonicity: Orthant Dependence

In the preceding section, we saw bounds for E(y|x) under two monotonicities in δ. In

this section, primitive conditions and specific models for the monotonicities are presented; no
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proxy variable appears in this section. The main result of this section is that the monotonic-

ities hold for the binary response model in (3.4) and for the linear model (3.5) under ‘orthant

dependence’.

3.1 Orthant dependence

Define ‘positive lower orthant dependence (PLOD)’ between two continuously dis-

tributed random variables u0 and u1 as

P (u0 < c0, u1 < c1) ≥ P (u0 < c0) · P (u1 < c1) ∀c0, c1 (3.1)

⇐⇒ P (u1 < c1|u0 < c0) ≥ P (u1 < c1) under P (u0 < c0) > 0.

PLOD is equivalent to ‘positive upper orthant dependence (PUOD)’

P (u0 > c0, u1 > c1) ≥ P (u0 > c0) · P (u1 > c1) ∀c0, c1 (3.2)

⇔ P (u1 > c1|u0 > c0) ≥ P (u1 > c1) under P (u0 > c0) > 0.

Owing to the equivalence, PLOD and PUOD are called simply ‘positive orthant dependence

(POD)’. The condition P (u0 < c0) > 0 (P (u0 > c0) > 0) is not really a restriction, for

if P (u0 < c0) = 0 (P (u0 > c0) = 0), then (3.1) ((3.2)) holds trivially. POD, which implies

non-negative covariance, originates in Lehmann (1966). See Tong (1980), Dharmadhikari and

Joag-dev (1988), and Joe (1997) for various other definitions and assertions in this section.

Denuit and Scaillet (2001) propose tests for POD and present applications in insurance, but

their tests are not applicable when the sample selection problem is present.

If the middle inequalities are reversed in PLOD and PUOD, then we get, respectively,

negative lower orthant dependence (NLOD) and negative upper orthant dependence (NUOD);

NLOD is equivalent to NUOD, and NLOD and NUOD are simply called ‘negative orthant

dependence (NOD)’. The equivalencies (PLOD⇐⇒ PUOD, and NLOD⇐⇒ NUOD) do not

hold, however, for more than two random variables. POD and NOD are possibly the weakest

concepts of dependence, matching closely what we have in mind when we loosely state two

variables are positively or negatively related.

Subtract the second part of (3.1) from one to get

P (u1 > c1|u0 < c0) ≤ P (u1 > c1) ⇐⇒ P (u1 > c1|− u0 > −c0) ≤ P (u1 > c1). (3.3)

Hence the POD of (u0, u1) is equivalent to the NOD of (−u0, u1). Analogously, the NOD of

(u0, u1) is equivalent to the POD of (−u0, u1).
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3.2 Threshold-crossing binary-response

Consider a typical threshold-crossing binary response selection model:

(2.1), δi = 1[x
0
iα+ εi > 0] and yi = 1[x

0
iβ + ui > 0] (3.4)

where α and β are parameter vectors and εi and ui are continuously distributed error terms.

MU is equivalent to

P (y = 1|x, δ = 0) ≤ P (y = 1|x).

For (3.4), this condition is, under the NOD of (−ε, u)|x,

P (u > −x0β|x, ε < −x0α) = P (u > −x0β|x,−ε > x0α) ≤ P (u > −x0β|x).

Hence, (the NOD of (−ε, u)|x ⇐⇒) the POD of (ε, u)|x is sufficient for MU to hold in the

model (3.4), and necessary as well if the support of (x0α, x0β) is R2.

As for ML, it is equivalent to

P (y = 1|x) ≤ P (y = 1|x, δ = 0),

and for (3.4), this is

P (u > −x0β|x) ≤ P (u > −x0β|x, ε < −x0α) = P (u > −x0β|x,−ε > x0α).

Hence, (the POD of (−ε, u)|x ⇐⇒) the NOD of (ε, u)|x is sufficient for M L to hold in the

model (3.4), and necessary as well if the support of (x0α, x0β) is R2. For the model (3.4),

POD and NOD provide a fairly complete characterization of MU and ML.

3.3 Linear-model unbounded-response

For an unbounded y, the bounds in the literature consider only a known bounded

transformation of y, say T (y), to get bounds for T (y), which is however rather artificial. In

this subsection, we will show that one-sided bounds analogous to MU and ML hold for an

unbounded y under POD and NOD if E|y| <∞.

Suppose, we have

(2.1), δi = 1[x
0
iα+ εi > 0] and yi = x0iβ + ui, E|y| <∞. (3.5)

8



Observe

E(y|x) =

Z ∞

0
S(t|x)dt−

Z 0

−∞
F (t|x)dt where

F (t|x) ≡ P (y ≤ t|x) = P (u ≤ t− x0β|x), S(t|x) ≡ 1− F (t|x) = P (u > t− x0β|x).

If (ε, u)|x is POD, then

P (u < t− x0β|x) ≤ P (u < t− x0β|x, ε < −x0α) (3.6)

⇐⇒ P (u < t− x0β|x) ≤ P (u < t− x0β|x,−ε > x0α) = P (u < t− x0β|x, δ = 0).

Also, subtract this from one to get

P (u > t− x0β|x) ≥ P (u > t− x0β|x,−ε > x0α) = P (u > t− x0β|x, δ = 0). (3.7)

Use (3.6) and (3.7), respectively, for F (t|x) and S(t|x) to get

E(y|x, δ = 0) ≤ E(y|x) ⇐⇒ E(y|x, δ = 0) ≤ E(y|x, δ = 1).

Doing analogously, if (ε, u)|x is NOD, then

E(y|x, δ = 0) ≥ E(y|x) ⇐⇒ E(y|x, δ = 1) ≤ E(y|x, δ = 0).

Hence, the POD (NOD) of (ε, u)|x is sufficient for MU (M L) in the model (3.5). Differently

from the bounded y case with known bounds, however, MU and ML give only one-sided

bounds in (2.4).

Intermediate cases such as a known lower bound and no finite upper bound are

omitted, for they can be easily derived by combining the results of Subsection 3.2 and 3.3.

3.4 Common factor models and regressor dependence

POD and NOD are primitive conditions that may be taken for MU and ML without

much hesitation. But one may further inquire what implies POD or NOD. This subsection

presents ‘common factors’ as further primitive conditions for POD and NOD (and thus for

MU and ML).

One of the simplest models of POD is a “common factor” model: with µ denoting a

common random variable, suppose

u0 = µ+ v0 and u1 = µ+ v1 where v0 and v1 are iid and µ is independent of (v0, v1); (3.8)
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the iid assumption will be relaxed shortly. The variables u0 and u1 become NOD if µ in u1 is

replaced by −µ. For instance, if (u0,u1) follows a normal distribution with COV (u0, u1) ≥ 0

and has the same marginal distribution, then they can be always written as (3.8).

In (3.4) and (3.5), there is no sample selection problem if ε and u are independent

given x. One easy way for ε and u to be related is through an additive omitted variable. In

this regard, (3.8) is attractive: µ is the omitted variable linking u0 = ε and u1 = u. In a given

model for (3.4) and (3.5), one may have a good candidate for µ and know to which direction

µ affects δ and y; if the directions are the same, then POD is plausible; otherwise, NOD is

plausible. POD in fact holds for a generalized version of (3.8) allowing for nonlinearity of uj

in µ and vj , which is shown in the following after dependence concepts stronger than POD

and NOD are introduced.

Define ‘positive regression dependence (PRD)’ of u1 on u0 as

P (u1 > c1|u0 = c0) is non-decreasing in c0 ∀c1. (3.9)

The PRD of u1 on u0, which is also said to be “u1 is stochastically increasing in u0”, implies

POD of u0 and u1. If

P (u1 > c1|u0 = c0) is non-increasing in c0 ∀c1,

then u1 is “negatively regression-dependent on u0 (NRD)”. One example for PRD (NRD) is

a bivariate normal distribution with a positive (negative) correlation.

Suppose

u0 = g0(µ, v0) and u1 = g1(µ, v1) where µ, v0, v1 are independent,

and gj(·, ·) is such that uj is PRD on µ, j = 0, 1.
(3.10)

Theorem 5.3.1 in Tong (1980) proves that POD holds for (3.10) which includes (3.8) as a

special case; v0 and v1 in (3.10) are not required to follow the same distribution as in (3.8).

The common factor models appear in Lee (1999) in a bivariate context related to (3.4).

In summary of this section, common factor models imply POD or NOD, which in

turn implies monotonicities in δ for E(y|x, δ). But if we do not have an idea on the direction

of the influence of the common factor on δ and y, this finding is not of much help. For

this, an alternative is looking for a proxy variable z for y, which is explored in the following

section. Of course, there is no “free lunch”: we need either a restriction such as MU or an

extra variable such as z.
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4. Bivariate Monotonicities for Bivariate Binary Responses

In the preceding sections, we derived bounds for E(y|x) under monotonicities in δ

in univariate response cases and then provided primitive conditions and models implying the

monotonicities. In this section, bivariate responses with y and z are considered where z is

fully observed along with x regardless of δ:

(δ, δy, z, x0) is observed. (4.1)

As mentioned already, we may do inequality imputation with z–test for the inequality (1.7)

to accept/reject the inequality (1.6)–which is one of main proposals of this paper. But since

this is straightforward to do, this section focuses on bivariate monotonicities of the type (1.8),

because they can be tested and then used to get sharper bounds on E(y|x). We will let y and

z binary in this section so that the resulting bounds can be used for the empirical example

for voting in Section 5. The bounds derived for binary y and z may be extended to generic

y and z, using 1[y < t] and 1[z < t] and then doing analogously to Subsection 3.3.

Although we entertain the availability of z, the new variable z does not necessarily

mean that we need extra information relative to the univariate response cases, because a

component of x can be pulled out of x to be used as z. This statement is, however, subject

to the caveat that the subpopulation characterized by x changes by losing the component.

Assume

0 < P (z = 1|x, δ = 0) < 1 for a.e. x; (4.2)

if this holds only for some x, the bounds below hold only for those x. In our empirical example

later, y = 1 if vote for Dole, z = 1 if Republican, and δ = 1 if vote; z is observed for everybody.

In Subsection 4.1 and 4.2, we examine bounds on the joint probabilities P (y = 1, z = 1|x)

and P (y = 1, z = 0|x), respectively, using bivariate monotonicities. In Subsection 4.3, the

bounds on the joint probabilities are combined to render improved bounds on P (y = 1|x).

It should be also mentioned that, although we use z as a proxy variable for y and

explore bounds on P (y = 1, z = 1|x) and P (y = 1, z = 0|x) only for P (y = 1|x), there are

cases where we may be genuinely interested in P (y = 1, z = 1|x) and P (y = 1, z = 0|x).

An example is that y and z are two measures of a job-training program success; e.g., y is

the dummy variable for being employed one year after (thus observed only for those still

tracked after one year) while z is finding a job immediately after the program (thus observed

11



for all trainees). In such cases, Subsection 4.1 and 4.2 are of interest on their own. To

avoid cluttering notations, “|x” will be omitted in this section other than in the subsection

headings; qualifiers such as “for some x for which this condition holds” will be omitted as

well.

4.1 P(y1=1,y2=1|x)

Observe

P (y = 1, z = 1) = P (y = 1, z = 1|δ = 0) · P (δ = 0) + P (y = 1, z = 1|δ = 1) · P (δ = 1); (4.3)

all but P (y = 1, z = 1|δ = 0) is identified. Differently from univariate cases, the worst-case

bound uses, not 0 ≤ P (y = 1, z = 1|δ = 0) ≤ 1, but

0 ≤ P (y = 1, z = 1|δ = 0) ≤ P (z = 1|δ = 0). (W’)

W’ yields

P (y = 1, z = 1|δ = 1) · P (δ = 1) ≤ P (y = 1, z = 1) ≤ (B-W’)

P (z = 1|δ = 0) · P (δ = 0) + P (y = 1, z = 1|δ = 1) · P (δ = 1);

P (z = 1|δ = 0) · P (δ = 0) is the size of B-W’. (S-W’)

Suppose, the bivariate version of monotonicity in δ holds:

P (y = 1, z = 1|δ = 0) ≤ P (y = 1, z = 1|δ = 1). (MU’)

For our empirical example, MU’ is that there are more Dole-supporting Republicans among

voters than among non-voters. Combine MU’ with W’ to get

0 ≤ P (y = 1, z = 1|δ = 0) ≤ min{P (y = 1, z = 1|δ = 1), P (z = 1|δ = 0)}.

This yields

P (y = 1, z = 1|δ = 1) · P (δ = 1) ≤ P (y = 1, z = 1) ≤ (B-MU’)

min{P (y = 1, z = 1|δ = 1), P (z = 1|δ = 0)P (δ = 0) + P (y = 1, z = 1|δ = 1)P (δ = 1)};

the size is min{P (y = 1, z = 1|δ = 1)P (δ = 0), S-W’} ≤ S-W’. (S-M’
U)

The appendix shows a primitive condition for the monotonicity in the bivariate response case

for the threshold-crossing model; the condition is “dependence through stochastic ordering”

that generalizes orthant dependence.
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Suppose MU’ holds with the opposite inequality:

P (y = 1, z = 1|δ = 0) ≥ P (y = 1, z = 1|δ = 1). (ML’)

For ML’, it is necessary to have

P (y = 1, z = 1|δ = 1) ≤ P (z = 1|δ = 0) (ML’-ID)

that is identified. Combine ML’ with W’ to get

P (y = 1, z = 1|δ = 1) ≤ P (y = 1, z = 1|δ = 0) ≤ P (z = 1|δ = 0).

This yields

P (y = 1, z = 1|δ = 1) ≤ P (y = 1, z = 1) ≤ (B-ML’)

P (z = 1|δ = 0) · P (δ = 0) + P (y = 1, z = 1|δ = 1) · P (δ = 1);

the size is {P (z = 1|δ = 0)− P (y = 1, z = 1|δ = 1)}P (δ = 0) ≤ S-W’. (S-ML’)

ML’-ID assures S-ML’≥ 0. Although MU’ and ML’ are impossible to verify, the implication

ML’-ID of ML’ is. Hence, checking out ML’-ID will help see which one of MU’ and M L’ is

the more plausible.

4.2 P(y1=1,y2=0|x)

Turning to P (y = 1, z = 0), analogous bounds hold, which are presented here without

discussion. Observe

0 ≤ P (y = 1, z = 0|δ = 0) ≤ P (z = 0|δ = 0); (W”)

P (y = 1, z = 0|δ = 1) · P (δ = 1) ≤ P (y = 1, z = 0) ≤ (B-W”)

P (z = 0|δ = 0) · P (δ = 0) + P (y = 1, z = 0|δ = 1) · P (δ = 1);

P (z = 0|δ = 0) · P (δ = 0). (S-W”)

Suppose

P (y = 1, z = 0|δ = 0) ≤ P (y = 1, z = 0|δ = 1). (MU”)

Combine MU” with W” to get

0 ≤ P (y = 1, z = 0|δ = 0) ≤ min{P (y = 1, z = 0|δ = 1), P (z = 0|δ = 0)}.
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This yields

P (y = 1, z = 0|δ = 1) · P (δ = 1) ≤ P (y = 1, z = 0) ≤ (B-MU”)

min{P (y = 1, z = 0|δ = 1), P (z = 0|δ = 0)P (δ = 0) + P (y = 1, z = 0|δ = 1)P (δ = 1)};

min{P (y = 1, z = 0|δ = 1)P (δ = 0), S-W”} ≤ S-W”. (S-MU”)

Suppose that the monotonicity MU” holds with the opposite equality:

P (y = 1, z = 0|δ = 0) ≥ P (y = 1, z = 0|δ = 1), (ML”)

for which it is necessary to have

P (y = 1, z = 0|δ = 1) ≤ P (z = 0|δ = 0) (ML”-ID)

that is identified. Combine ML” with W” to get

P (y = 1, z = 0|δ = 1) ≤ P (y = 1, z = 0|δ = 0) ≤ P (z = 0|δ = 0).

This yields

P (y = 1, z = 0|δ = 1) ≤ P (y = 1, z = 0) ≤ (B-ML”)

P (z = 0|δ = 0) · P (δ = 0) + P (y = 1, z = 0|δ = 1) · P (δ = 1);

{P (z = 0|δ = 0)− P (y = 1, z = 0|δ = 1)} · P (δ = 0) ≤ S-W”. (S-ML”)

Owing to ML”-ID, S-ML”≥0. Although MU” andML” are impossible to verify, the implication

ML”-ID of ML” is. Checking out M L”-ID will help see which one of MU” and M L” is the

more plausible.

4.3 Combining bivariate inequalities

After testing for ML’-ID and ML”-ID, one can combine the bounds on P (y = 1, z =

1|x) and P (y = 1, z = 0|x) to get a bound on P (y = 1|x). This may yield an improved

bound for P (y = 1|x) relative to B-W–but not always. For instance, using B-W’ and B-W”

in the preceding subsections yields only B-W; no improvement here. But some combinations

of ML’, ML”, MU’, and MU” do give better bounds. One example is (MU’, ML”); to shorten

our exposition, we present only this combination in the following paragraph, which will then

be used for our empirical analysis later.
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Under (MU’,ML”), combining B-MU’ and B-ML” renders

P (y = 1|δ = 1) · P (δ = 1) + P (y = 1, z = 0|δ = 1) · P (δ = 0) ≤ P (y = 1) ≤

min{P (δ = 0) + P (y = 1|δ = 1)P (δ = 1), (B-MUL)

P (z = 0|δ = 0)P (δ = 0) + P (y = 1|δ = 1)P (δ = 1) + P (y = 1, z = 1|δ = 1)P (δ = 0)}.

The lower bound is sharper than that of B-MU and B-W which is only the first term in the

lower bound of B-MUL. The upper bound is at least as good as that of B-ML and B-W which

is the first term in the min function. Hence, B-MUL is sharper than at least B-W.

5. 1996 US Presidential Election

In this section, we apply our proposals to the 1996 US presidential election with

three major candidates: Bill Clinton, Bob Dole, and Ross Perot. The US presidential election

follows an electoral college system, not the usual popular vote. In the US history, it happened

a couple of times (including the one between Bush vs. Gore) that a candidate lost the election

despite winning the popular vote. We will however pretend that the US presidential election

follows the popular vote. One reason is that, if the election is so close that we have to

worry about the difference between the two systems, then statistical methods are unlikely

to provide meaningful answers; recall the “statistical dead-heat” before election in Bush vs.

Gore. Another reason is that our sample size is not large enough to go down to the state

level, which is necessary to consider the electoral college system.

The following is the voting proportions using the data of N = 1670 in the National

Election Studies (Warren et al. (1999)):

No vote Clinton Dole Perot

0.33 0.36 0.26 0.05

This data with N = 1670 excludes those who voted for the other candidates; only 3% of

the original data with N = 1714 voted this way. Differently from the 1992 election, Perot’s

presence was not much.

Given the small 10% difference between Clinton and Dole and the large 33% no vote

rate, an intriguing question from Dole’s viewpoint would be whether he could have won if the

voter turnout had been better. Some Dole supporters might have chosen not to vote, for they
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thought that Dole would lose anyway with or without their votes. Although the choice is not

observed for non-voters, there was no missing in the dummy variable for being Republican,

which is likely to be highly positively correlated with voting for Dole. Thus, set

y = 1 if vote for Dole among the three candidate.

z = 1 if Republican.

We will examine two questions: Could Dole have won if

Q1: everybody had voted, with Perot out,

Q2: everybody had voted, with Perot in;

although Perot took only 5% of the votes, this may matter if this imaginary election with

everybody voting is a close one. The variable δ will be set in two different ways:

for Q1, δ = 1 if vote for Clinton or Dole,

for Q2, δ = 1 if vote for Clinton, Dole, or Perot;

in the former, voting for Perot is treated as no-vote.

All bounds given below carry four numbers, say a < b < c < d, where b and c are

the lower and upper bound estimate for E(y), respectively, and a is the lower 95% confidence

interval (CI) bound for b whereas d is the upper 95% CI bound for c. The differences b− a

and d− c are 2 ∼ 3% in most cases and do not alter any conclusion based only on b and c in

the following.

For B-MUL in Subsection 4.3, the upper bound involves a min function of two esti-

mators. For this, we derived the asymptotic joint normal distribution of the two estimators

and then obtained a 95% CI using

0.975 = P (min(aN , bN ) < λ) = 1− P (min(aN , bN) > λ) = 1− P (aN > λ, bN > λ)

for two estimators aN and bN and a constant λ; λ gives the upper 95% CI bound for the

upper bound of B-MUL.

Examining Q1, we obtained the following bounds without using z:

B-W: 0.24 0.26 0.64 0.66

B-MU: 0.24 0.26 0.42 0.45

B-ML: 0.39 0.42 0.64 0.66

(5.1)
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Only B-MU gives the definite conclusion that Dole would have lost anyway with Perot out,

which is natural in view of what MU means (i.e., more Dole supporters among the voters

than among the non-voters).

Turning to using z, 95% CI’s for E(z|δ = 0) and E(z|δ = 1) are respectively

0.19± 0.03 and 0.33± 0.03;

clearly, E(z|δ = 0) ≤ E(z|δ = 1) holds. Doing inequality imputation, we take MU and the

resulting B-MU: Dole would have lost anyway with Perot out.

For the bivariate monotonicities, we obtained the following for the two identified

conditions ML’-ID and ML”-ID:

ML’-ID: 0.29 0.32 0.15 0.19

ML”-ID: 0.13 0.15 0.75 0.81
(5.2)

ML’-ID is soundly rejected while ML:”-ID is not. Hence, we take MU’ and ML”, which yields

B-MUL:

B-MUL: 0.28 0.31 0.64 0.66 (5.3)

The lower bound is sharper than that of B-MU, whereas the upper bound is the same as that

of B-ML. Although B-MUL is sharper than B-W, it is still inconclusive.

Examining Q2, we obtained the following bounds without using z:

B-W: 0.24 0.26 0.59 0.62

B-MU: 0.24 0.26 0.39 0.42

B-ML: 0.36 0.39 0.59 0.62

(5.4)

As in (5.1), only B-MU gives the definite answer that Dole would have lost anyway with Perot

in, although all bounds shift downward compared with (5.1).

Turning to using z, 95% CI’s for E(z|δ = 0) and E(z|δ = 1) are respectively

0.18± 0.04 and 0.32± 0.02;

E(z|δ = 0) ≤ E(z|δ = 1) still holds. Doing inequality imputation, we take MU and the

resulting B-MU: Dole would have lost anyway with Perot in.

ML’-ID and ML”-ID are

ML’-ID: 0.27 0.30 0.15 0.18

ML”-ID: 0.12 0.14 0.76 0.82
(5.5)
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As in (5.2), ML’-ID is soundly rejected while ML”-ID is not; as before, we take MU’ and ML”.

Combining MU’ and ML”, we get B-MUL that is sharper than B-W:

B-MUL: 0.27 0.30 0.59 0.62 (5.6)

Although this does not give a definite answer, the number 0.30 is below the critical number

0.5 by 0.2 whereas the number 0.59 is above 0.5 by only 0.09. Recalling Q2, it is unlikely

that Dole would have won with Perot in, even if everybody had voted.

It is certainly possible that, for some sub-population with x = x0, some of the above

bounds get sharper, yielding definitely positive outcomes for Dole. This would then mean

that Dole could have focused his campaign on this sub-population to have had at least a

closer race.

6. Conclusions

In this paper, we examined monotonicity conditions useful for bounding regression

functions in models with sample selection or non-response problems. When no proxy variable

is available that is fully observed but related to the response variable, a weak primitive condi-

tion (orthant dependence) was presented for monotonicities in binary-response models as well

as in linear models. When a proxy variable is available, ‘inequality imputation’ is suggested

where the monotonicity for the response variable is tested using the proxy variable instead.

We also explored monotonicities in bivariate cases; in some cases, bivariate monotonicities

led to an improved bound for the regression function. The regression-function bounds were

applied to the US 1996 presidential election to show that Dole would have lost anyway even if

everybody had voted; undoubtedly, our methodology can be easily applied to other elections

and votings.
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APPENDIX: Primitive Conditions for Monotonicity in Bivariate Responses

To simplify notations, suppose (δi, δiyi1, yi2, x0i) is observed (thus y1 = y and y2 = z)

and

δi = 1[x
0
iβ0 + ui0 > 0] and yij = 1[x

0
iβj + uij > 0], j = 1, 2 (a.1)

where βj , j = 0, 1, 2, are parameter vectors, and ui0, ui1, and ui2 are continuously distributed

error terms.

The extension of PUOD to the trivariate case is, under P (u0 > c0) > 0,

P (u0 > c0, u1 > c1, u2 > c2) ≥ P (u0 > c0) P (u1 > c1) P (u2 > c2) ∀c0, c1, c2 (a.2)

⇐⇒ P (u1 > c1, u2 > c2|u0 > c0) ≥ P (u1 > c1) P (u2 > c2). (a.3)

What we need is however not this, but

P (u1 > c1, u2 > c2|u0 > c0) ≥ P (u1 > c1, u2 > c2) ∀c0, c1, c2 under P (u0 > c0) > 0.

(a.4)

If u1 and u2 are POD, then the lower bound in (a.4) is sharper than that in (a.3). For the

trivariate version of (3.10) with u2 = g2(µ, v2) added, (a.4) holds owing to Theorem 5.3.1 in

Tong (1980). In the following, we explore general conditions for (a.4).

A multivariate version of PRD is ‘positive dependence through stochastic ordering

(PDS)’ in Joe (1997, p.21): {u0, u1, ..., uJ} is PDS, if for any m ∈ {0, 1, ..., J} and cj ’s,

P (uj > cj , j 6= m, j = 0, 1, ..., J |um = cm) is non-decreasing in cm. (a.5)

PDS implies the multivariate PUOD and PLOD (Joe (1997, p.27)). We can define ‘negative

dependence through stochastic ordering (NDS)’ analogously: for any m ∈ {0, 1, ..., J} and

cj ’s,

P (uj > cj , j 6= m, j = 0, 1, ..., J |um = cm) is non-increasing in cm. (a.6)

NDS implies the multivariate NUOD and NLOD where the trivariate NUOD is (NLOD is

analogous and so omitted)

P (u0 > c0, u1 > c1, u2 > c2) ≤ P (u0 > c0) · P (u1 > c1) · P (u2 > c2) ∀c0, c1, c2. (a.7)

An example of PDS (NDS) is a multivariate standard normal distribution with all non-

negative (non-positive) correlations (Joe (1997, p.34)).
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For our purpose, PDS needs to hold only for m = 0. Now, with c0 > cn,

P (uj > cj , j = 1, ..., J |u0 > c0) ≥ P (uj > cj , j = 1, ..., J |u0 > cn) (a.8)

→ P (uj > cj , j = 1, ..., J) as cn → −∞.

In the trivariate case, this is exactly (a.4).

ML’ for (a.1) is

P (u1 > −x0β1, u2 > −x0β2|x) ≤ P (u1 > −x0β1, u2 > −x0β2|x,−u0 > x0β0). (a.9)

For this, it is sufficient that (−u0, u1, u2)|x is PDS only with respect to −u0. ML” for (a.1) is

P (u1 > −x0β1, u2 < −x0β2|x) ≤ P (u1 > −x0β1, u2 < −x0β2|x,−u0 > x0β0) (a.10)

⇐⇒ P (u1 > −x0β1,−u2 > x0β2|x) ≤ P (u1 > −x0β1,−u2 > x0β2|x,−u0 > x0β0)

for which it is sufficient that (−u0, u1,−u2)|x is PDS only for −u0.

As for MU’ for (a.1), we need

P (u1 > −x0β1, u2 > −x0β2|x) ≥ P (u1 > −x0β1, u2 > −x0β2|x,−u0 > x0β0). (a.11)

For this, it is sufficient that (−u0, u1, u2)|x is NDS only for −u0. MU” for (a.1) is

P (u1 > −x0β1, u2 < −x0β2|x) ≥ P (u1 > −x0β1, u2 < −x0β2|x,−u0 > x0β0) (a.12)

⇐⇒ P (u1 > −x0β1,−u2 > x0β2|x) ≥ P (u1 > −x0β1,−u2 > x0β2|x,−u0 > x0β0)

for which it is sufficient that (−u0, u1,−u2)|x is NDS only for −u0.
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