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Abstract

Implied volatility generated from observed option prices reflects market
expectations of future volatility. This paper determines whether or not,
implied volatilities, and hence market expectations, contain any genuinely
forward looking information not already captured by historical informa-
tion. Historical information is represented by current levels of volatility
and model based forecasts using a variety of volatility models. The VIX
index, constructed from S&P 500 options data is the measure of implied
volatility used in this study. Once accounting for historical information,
VIX appears to contain no forward looking information regarding future
S&P 500 volatility.
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1 Introduction

Estimates of the future volatility of asset returns are of great interest to fi-

nancial market participants. Generally, there are two approaches which can be

employed to obtain such estimates. First, predictions of future volatility can

be generated from econometric models of volatility given historical information.

For surveys of common modeling techniques see Campbell, Lo and MacKinlay

(1997) and Gourieroux and Jasiak (2001). Second, estimates of future volatil-

ity can be derived from option prices using implied volatility (IV). IV should

represent a market’s best prediction of an assets’ future volatility (see, amongst

others, Jorion, 1995, Poon and Granger, 2003). To make an informed choice

between these approaches, it is informative to examine whether IV incorporates

any information that could not be obtained from historical information. Ad-

dressing this issue not only informs the choice of forecasting approach used, but

also enhances our understanding of the operation of options markets.

Poon and Granger (2003) provide a wide ranging survey of literature exam-

ining the relative performance of the two approaches to forecasting volatility.

There it was shown that the majority of previous research concludes that IV

yields superior forecasts of future volatility. However, in many instances, a

combination of forecasts from competing approaches is preferred. Therefore it

appears as though option market participants derive option prices, and hence

IV, from a wide-ranging information set. This information set could possibly

contain both forward looking information and historical information captured

by econometric models of volatility.

The central task of this paper is to determine whether IV contains any gen-

uinely forward looking information, not already contained in historical informa-

tion. Therefore it is useful to formally describe these sources of information that

are reflected in option prices, and hence IV. Define a general information set,

ΘIV
t that reflects information pertaining to the option market’s expectation of

future volatility. It can be postulated that information reflected in ΘIV
t may be

attributable to either historical or genuinely forward looking information (not

attributable to historical information), denoted as ΘH
t and Θ

F
t respectively. Af-
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ter taking into account ΘH
t and ΘF

t , any remaining information in Θ
IV
t would

reflect random errors made by the options market when forming expectations

regarding future volatility. These subsets of information would not intersect.

Therefore, when considering the informational content of IV, the question is

to what degree do ΘH
t and Θ

F
t enter into the decision making process of partic-

ipants in the options market when determining option prices? From a practical

viewpoint, such questions could be addressed from a number of perspectives.

Recent works related to this issue are Fleming (1998), Blair, Poon and Taylor

(2001, henceforth known as BPT) and Pong, Shackleton, Taylor and Xu (2004,

henceforth known as PSTX).

Fleming (1998) examines whether or not information in IV subsumes all

information contained in ΘH
t . While Fleming (1998) finds that IV produce bi-

ased forecasts of future actual volatility (as defined by squared average returns),

forecast errors are orthogonal to historical information. These results indicate

that IV subsumes all historical information.

PSTX establish that a number of econometric models of volatility produce

volatility forecasts of a similar quality to those based on IV. They further show

that a combination of both IV and model based forecasts produce the most

accurate forecasts of future volatility. While not focusing on the issue of infor-

mation directly, the results of PSTX would indicate that ΘIV
t contains a portion

of ΘH
t . BPT on the other hand, do not view these alternatives as competing

approaches, but focus on the issue of whether including a wider set of historical

information and IV improve on standard GARCH models for volatility.

A common theme amongst these articles is that they do not recognise that

a portion of the information contained in IV, may simply be extracted from

model based forecasts of volatility, given historical information. Therefore, this

paper considers the content of ΘIV
t from another perspective. The question of

whether or not ΘIV
t reflects information relevant to future volatility that cannot

be extracted from predictions based on historical volatility, elements of ΘH
t , is

addressed. To do so, the following framework is utilised,

ΘIV
t = g(ΘH

t ) + εt, εt ⊥ g(ΘH
t ), ∀g(·) (1)
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where after taking into account ΘH
t , the residual portion of ΘIV , εt will be

examined to see whether it is correlated with future volatility. If this is the

case, ΘIV
t contains some degree of ΘF

t otherwise the residual portion of ΘIV
t

simply reflects random error.

This is quite a different view to that taken by Fleming (1998) in that formal

predictions of volatility are also used to draw the link between historical infor-

mation and future volatility (as defined by the realized volatility (RV) estimate

of Andersen, Bollerslev, Diebold and Labys (2001, 2003, henceforth known as

ABDL). In the context of Fleming (1998), ΘH
t simply contains various mea-

sures of current and historical volatility, whereas in the current setting, ΘH
t

also contains model based forecasts of future volatility using historical data.

This paper proceeds as follows. Section 2 discusses the data relevant for this

study. Section 3 outlines econometric models upon which elements of ΘH
t are

based. Section 4 presents empirical results that indentify whether ΘIV
t contains

any forward looking information. Section 5 provides concluding remarks.

2 Data

This study is based upon data relating to the S&P 500 Composite Index, from

2 January 1990 to 17 October 2003 (3481 observations). Figure 1 shows plots

of each of the series relevant to this study.

The top panel of Figure 1 plots daily logarithmic returns on the S&P 500

index. This shows that the magnitude of returns were relatively low (high)

during the mid 1990’s (since 1997).

To formally test the informational content of IV, estimates of both IV and

future actual volatility are required. The VIX index constructed by the Chicago

Board of Options Exchange from S&P 500 index options constitute the esti-

mates of IV utilised in this paper.1 It is derived from a number of put and call

options, which generally have strike prices close to the index value, and have

maturities close to the target of 22 trading days. The binomial option pricing

model is used to extract the estimates of IV, allowing for the possibility of early

1For technical details relating to the construction of the VIX index, see CBOE (2003).
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Figure 1: Daily S&P 500 index returns (top panel), daily VIX index (middle
panel) and daily S&P 500 index RV estimate (bottom panel).

exercise and expected dividend payments. While the true process underlying

option pricing in unkown, given the construction of the VIX, it is the most

general measure of the market’s estimate of average S&P 500 volatility over the

subsequent 22 tading days. VIX is believed to be a relatively unbiased estimate

of the true, but unobservable IV (BPT, 2001, and Christensen and Prabhala,

1998).

The middle panel of Figure 1 plots daily VIX estimates for the relevant

sample period2. Broadly, the behaviour of the VIX index reflects the overall

changes in volatility in the S&P 500. IV estimates during much of the 1990’s

were relatively low, while in more recent times IV has increased somewhat.

For the purposes of this study, estimates of actual daily volatility are ob-

tained using the RVmethodology outlined in ABDL (2001, 2003). ABDL (1999)

suggest how to deal with practical issues relating to intra-day seasonality and

2The daily volatility implied by the VIX can be calculated when recognising that the
VIX quote is equivalent to 100 times the annualised return standard deviation. Hence
V IX/ 100

√
252

2
represents the daily volatility measure (see CBOE, 2003).
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sampling frequency when dealing with intra-day data. Based on this methodol-

ogy, daily RV estimates are constructed using 40 minute S&P500 index returns.

The bottom panel of Figure 1 contains estimates of daily S&P500 RV for the

sample period considered. While the RV estimates exhibit a similar pattern

when compared to the VIX, RV reaches higher peaks than the VIX. This dif-

ference would mainly be due to the fact that the VIX represents an average

volatility measure.

It has previously been noted by many authors, amongst others ABDL. (2001,

2003), that RV measures are right skewed. The current sample of S&P 500 RV

conforms to this pattern, skewness is found to be 8.13. This degree of skew-

ness can be reduced by various transformations of RV,
√
RV and ln

√
RV show

skewness of 2.35 and 0.10 respectively. Logarithmic based transformations of

RV produce series that are very close to normally distributed. A very simi-

lar pattern is observed when dealing with the VIX index, however ln
√
VIX is

somewhat platokurtic. Augmented Dickey-Fuller tests have also been applied,

and reject the null hypothesis of a unit root in each of the RV and VIX series

(including the transformed series).

3 Models of volatility

This section considers the econometric models upon which volatility forecasts

are based, these forecasts representing possible subset of the historical informa-

tion set, ΘH
t . Defining Θ

H
t in such a way, is designed to capture the manner in

which option market participants may form views of future volatility based on

historical information. While the true mechanism underlying the formation of

estimates of future volatility is unkown, a number of plausible models to reflect

this process exist. This study utilises models from the GARCH, Stochastic

volatility (SV), and RV classes of models, in a similar manner to Koopman,

Jungbacker and Hol (2004) and BPT (2001). In the current section, the spec-

ification of each competing model will be introduced, and estimated given the

entire dataset. These models will then be utilised to generate volatility forecasts

in the subsequent section.
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GARCH style models utilised in this study are similar to those proposed by

BPT (2001). The simplest model specification is the GJR (see Glosten et al.,

1993, Engle and Ng, 1991) process,

rt = µ+ εt (2)

εt =
p
htzt zt ∼ N (0, 1)

ht = α0 + α1ε
2
t−1 + α2st−1ε2t−1 + βht−1

that captures the asymmetric relationship between volatility and returns. The

indicator variable st−1 takes the value of unity when εt−1 < 0 and 0 otherwise.

This process nests the standard GARCH(1,1) model when α2 = 0.

Following BPT (2001), this study utilises standard GARCH style models

augmented by the inclusion of RV3. The most general specification of a GARCH

process including RV is given by

rt = µ+ εt (3)

εt =
p
htzt zt ∼ N (0, 1)

ht = h1t + h2t

h1t = α0 + βht−1 + α1ε
2
t−1 + α2st−1ε2t−1

h2t = γ1h2t−1 + γ2RVt−1

and allows for two components to contribute to volatility, with each component

potentially exhibiting persistence. For γ1 = γ2 = 0 this reduces to the GJR

model in equation 2. Table 1 reports the parameter estimates from estimating

equation 3 imposing various parameter restrictions.

Parameters for the GARCH and GJR models are similar to those commonly

observed for GARCH models based on various financial time series, reflecting

strong volatility persistence, and are qualitatively similar to those reported in

BPT (2001). Furthermore, allowing for presence of asymmetric conditional

volatility is important, irrespective of the volatility process considered. In all
3While BPT (2001) also extend the GJR model to include the VIX index, this is not

relevant to the current study. These models are to be used to extract information from VIX
itself using forecasts based on historical data.
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Parameters
Model α1 α2 β γ1 γ2 −logL
GARCH 0.0593

(15.05)
0 0.9375

(2828)
0 0 4678.23

GJR 0.0082
(1.14)

0.1060
(6.59)

0.9288
(1338)

0 0 4635.66

GARCH+RV 0.0499
(7.70)

0 0.9303
(623)

0 0.2199
(3.69)

4639.94

GJR+RV 0.0038
(0.52)

0.1013
(6.03)

0.9211
(526)

0 0.1954
(3.50)

4602.63

GJR+RVG 0.0000∗ 0.1000
(3.41)

0.7689
(25.6)

0.9345
(1022)

0.0423
(11.5)

4530.33

Table 1: Parameter estimates for GARCH style models. A 0 entry in a cell
indicates that this parameter is restricted to be 0. A 0.0000* entry in a cell
indicates that the parameter was estimated on the 0 boundary. Robust t-
statistics are shown in parentheses.

cases, the asymmetry parameter is statistically significant, and reduces the neg-

ative log-likelihood function. Likelihood ratio (LR) tests, testing for the validity

of the symmetry restriction in GJR, GJR+RV are rejected (test statistics of

83.14 and 74.62 respectively exceed the χ21 1% critical value of 6.63).

While not considered by BPT 2001, this study also proposes that an SV

process may describe the formation of estimates of volatility based on historical

information. Therefore, forecasts of future volatility based on SV style models

will also be considered as elements of ΘH
t when investigating the informational

content of IV. SV models differ from GARCH models in that conditional volatil-

ity is treated as an unobserved variable, and not as a deterministic function of

lagged returns. The simplest SV models describes zero-mean returns as

rt = σt ut ut ∼ N (0, 1) (4)

where σt is the time t conditional standard deviation of rt. The SV models

treats σt as an unobserved (latent) variable, following its own stochastic path,

the simplest being an AR(1) process,

log (σ2t ) = α+ β log (σ2t−1) + wt wt ∼ N(0, σ2w). (5)

Similar to Koopman et al. (2004), this study extends a standard volatility

model to incorporate RV as an exogenous variable in the volatility equation.

The standard SV process in equation 5 can be extended to incorporate RV in
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Parameters
Model α β γ σw −logL
SV −0.0046

(−1.07)
0.9819
(2245)

0 0.1693
(7.00)

4622.6

SV+RV −0.0079
(−1.43)

0.9916
(1394)

0.1100
(5.98)

0.0941
(3.58)

4543.89

Table 2: Parameter estimates for the SV models. A 0 entry in a cell indicates
that this parameter is restricted to be 0. Robust t-statistics are shown in
parentheses.

the following manner

log (σ2t ) = α+ β log (σ2t−1) + γ(log(RVt−1)−Et−1[log (σ2t−1)]) + wt. (6)

Here, RV enters the volatility equation through the term log(RVt−1)−Et−1[log (σ2t−1)].

This form is chosen due to the high degree of correlation between RV and the

latent volatility process and represents the incremental information contained

in the RV series. It is noted that equation 6 nests the standard SV model as a

special case by imposing the restriction γ = 0.

Numerous estimation techniques may be applied to the model in equations

4 and 5 or 6. In this instance the nonlinear filtering approach proposed by

Clements, Hurn and White (2003) is employed. This approach is adopted as

it easily accommodates exogenous variables in the state equation. As with the

GARCH style models, the SV models are estimated on the entire data series

with parameter estimates contained in Table 2.

SV parameter estimates appear to capture the same properties of the volatil-

ity process when compared to the GARCH results. In both instances, volatility

is found to be a persistent process, and the inclusion of RV as an exogenous

variable is important. A test of the restriction, γ = 0 is clearly rejected as the

LR statistic is 156.22.

In addition to GARCH and SV approaches it is possible to utilise estimates

of RV to generate forecasts of future volatility. These forecasts can be gener-

ated by directly applying time series models, both short and long memory, to

daily RV. In following ADBL (2003) and Koopman et al. (2004) ARMA(2,1)

and ARFIMA(1,d,0) process are utilised. Generally, these specification may be
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Parameters
Model µxt a1 a2 d b1

ARMA(2,1) −4.7479
(−50.49)

1.1501
(53.68)

−0.1584
(−7.66)

0 0.8636
(71.93)

ARFIMA(1,d,0) −4.7453
(−50.28)

0.1079
(0.72)

0 0.3972
(3.10)

0

Table 3: Parameter estimates for the RV models. A 0 entry in a cell indicates
that this parameter is restricted to be 0. Robust t-statistics are shown in
parentheses.

represented as

A(L) (1− L)d
¡
xt − µxt

¢
= B(L) εt. (7)

where A(L) and B(L) are coefficient polynomials and d is the degree of frac-

tional integration. A general ARMA(p,q) process applied to xt is defined under

the restriction of d = 0.

Table 3 reports parameters estimates for the RV time series models. In the

ARMA (2,1) case, parameter estimates reflect the common feature of volatlity

persistence. Allowing for fractional integration in the ARFIMA(1,d,0) case

reveals that volatility exhibits long memory properties.

Forecasts of future volatility which may enter ΘH
t are based on these three

classes of models (GARCH, SV and RV). Given these elements of ΘH
t , the

following section will consider the forward looking informational content of IV.

4 Empirical Analysis

This section presents empirical results addressing the question of informational

content of IV, posed in Section 1. Section 4.1 outlines a preliminary investiga-

tion into the relevance of VIX for future RV. Section 4.2 formally examines the

issue of whether ΘIV contains information relevant for future volatility beyond

that contained in ΘH
t .

4.1 Preliminary results

A very preliminary investigation into the information (in relation to future

volatility) contained in ΘIV , compares VIX and future RV. Irrespective of

whether ΘIV contains information from within ΘH
t or ΘF

t , this exercise high-
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Figure 2: VIX index and average 22 ahead S&P500 RV.

lights the options market’s ability to forecast future S&P500 volatility. Figure

2 compares the VIX series with average RV over the next 22 trading days and

reveals a striking result.

It appears as though both increases (decreases) in the VIX lag increases

(decreases) in 22 day ahead averages of RV. Due to the RV series in figure ??

capturing a 22 day ahead average RV, this series will rise (fall) prior to the

specific day on which RV does rise (fall). As the VIX series generally lags this

forward looking RV series, is seems as though options markets do not anticipate

such volatility changes.

This assertion can be examined more rigorously by testing whether RV

Granger causes VIX and/or vice versa. Due to the persistence in volatility it is

plausible to expect that RV Granger-causes VIX, given that recent values of RV

are likely to prevail in the near future. If, however, VIX contains information

regarding future volatility, which cannot be obtained from lagged values of RV,

then VIX should also Granger cause RV. Table 4 illustrates that, while, as

expected, RV clearly Granger causes the VIX index, there is no evidence that
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RV, VIX
√
RV,
√
VIX log

√
RV, log

√
VIX

VIX gc RV 0.691 0.889 0.664
RV gc VIX 0.000 0.000 0.000

Table 4: P-values for F-tests with null hypothesis of non Granger causality.
Daily observations from 2 January 1990 to 17 October 2003. 25 lags, 3456
usable observations.

VIX Granger causes RV. These results highlight that after taking into account

one possible element of ΘH
t , lagged values of RV, it seems as though the VIX

series does not contain additional forward looking information. This issue will

be more formally addressed in the subsequent section.

4.2 Forward looking information in VIX

This section formulates an empirical representation of the hypothesis outlined

in Section 1 that IV does not contain any genuine forward looking information

that could otherwise not be filtered from historical data. In doing so, the

forward looking informational content of IV (VIX index in this context) will be

revealed.

This in itself is a difficult task, as it is not clear which elements of ΘH
t are

used by option market participants to formulate expectations of future volatil-

ity. In reality, ΘH
t may contain an possibly infinite amount of information. For

the purpose of this study, it is assumed that the information in ΘH
t can be rep-

resented by volatility forecasts based on econometric models along with current

level of volatility measured by RVt. Information contained in the VIX, which

is not spanned by ΘH
t may potentially be genuine forward looking information.

A linear projection is used to filter ΘH
t from ΘIV

t , in so far as this linearity as-

sumption is restrictive, this methodology is in fact biased toward rejecting the

hypothesis that there is no forward looking information in VIX. The relevant

methodology is now discussed.

To begin, let ΘH
t be represented by ωt, a vector of S&P 500 volatility fore-

casts (relating to the subsequent 22 trading days) formed at time t. These

forecasts are based on the models discussed in Section ??. All forecasts are

generated on the basis of rolling window parameter estimates using 1,000 ob-
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servations, the end of the window being the last observation before the 22 day

forecast period. When RV is included as an exogenous variable, a linear rela-

tion between volatility and RV was postulated in order to generate multi-period

forecasts4.

Based on these forecasts, the information contained in ΘIV
t may be decom-

posed using the form set out in equation 1, which is restated here for conve-

nience,

ΘIV
t = g(ΘH

t ) + εt. (8)

To ascertain the forward looking informational content of ΘIV
t , it is nec-

essary to test whether εt are correlated with future RV. If no correlation is

evident then ΘIV
t appears to contain no forward looking information beyond

that explained by ΘH
t . Given that ωt is a representation of ΘH

t , the simplest

way in which to operationalise equation 8 is invoke the assumption that g(ΘH
t )

is a linear function and estimate the parameter vector γ = (γ0,γ
0
1)
0 in

ΘIV
t = γ0 + γ1ωt + εt (9)

by OLS. However, inference in this context is not straightforward due the non-

normality and autocorrelation of the residuals. To provide accurate inference

a GMM framework is utilised which does not depend on the residual’s normal-

ity. Furthermore, the informational hypothesis is tested as a by-product of the

estimation procedure.

The GMM estimate of γ minimises V =M0HM, whereM = T−1
¡
εt (γ)

0Z
¢

is the k × 1 vector of moment conditions, H is a k × k weighting matrix and

Z is a vector of instruments. In order to minimise coefficient variances, H

is chosen to be the variance-covariance matrix of the k moment conditions

in M, where allowance is made for residual correlation (see Hamilton, 1994).

Whenever k > dim (γ), the test for overidentifying restrictions J = TM0HM,

is χ2 (k − dim (γ)) distributed under the null hypothesis that the residuals in
equation 9 are uncorrelated with elements in Z. This test will be used to test

the hypothesis whether εt (γ) is orthogonal to future RV.
4For further details see BPT (2001), p 14.
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To this end the instrument vector zt is defined to include such information,

RVt = {RVt, RVt+1→t+5, RVt+1→t+10, RVt+1→t+15, RVt+1→t+22} whereRVt+1→t+j

is the average realised volatility in the days t + 1 to t + j5. A number of in-

strument sets will be used, relying on combinations of elements of historical

information, ωt and future information RVt. If εt (γ) is correlated with future

RV, significant nonzero elements of M = T−1
¡
εt (γ)

0Z
¢
will be found. In this

case, the J statistic will be sufficiently large to reject the null hypothesis.

As the elements in ωt are highly colinear, it is necessary to reduce the

number of elements significantly. A general-to-specific strategy, eliminating

the elements with the lowest p-values, leaves four significant elements, the

GARCH, GJR+RVG, ARMA and ARFIMA forecasts. The parameter esti-

mates for the ARMA and ARFIMA forecasts (being of opposite sign and ap-

proximately equal magnitude) suggest that the difference between the ARMA

and ARFIMA forecasts, denoted here as DAR, captures important information.

To address the question of the informational content of ΘIV
t , two sets of esti-

mation results are reported in Table 5. Results in Panel (a) are based on ωt =

{GARCH, GJR+RV G, DAR}, whereas in Panel (b), ωt = {GARCH, GJR+

RV G, DAR, RVt} where RVt is the current level of realised volatility.
Results for Model I indicate that the elements in ωt have significant ex-

planatory power in relation to the current level of VIX. Parameter estimates

for all elements in ωt are significant and R2 is found to be 0.771. Model II,

extends the set of instruments to include RVt which contains levels of future

RV. Results from the J-test indicate that residuals, εt (γ) are uncorrelated with

future RV suggesting that ΘIV
t contains no elements from ΘF

t .

Model III, is estimated on the premise that the instrument set is further ex-

tended to include dRVt = {dRVt, dRVt+1→t+22}. Here dRVt and dRVt+1→t+22,

indicate the change in RV from the current level to the prevailing level during

the next business day, and to the average level prevailing during the next 22

business days respectively. Model III results lead to quite a different conclusion

5While the VIX index is a measure of expected volatility during the next 22 business days
it is reasonable to include RV over shorter horizons as VIX might have FLIC with respect to
shorter horizons.
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Parameters
const GARCH GJR+RVG DAR RVt J − Test

Panel (a)
I: Instruments {c,ωt}
0.408
(7.05)

0.544
(7.75)

0.572
(4.93)

−0.802
(−2.46)

NA

II: Instruments {c,ωt,RVt}
0.389
(6.64)

0.556
(9.20)

0.593
(6.10)

−0.596
(−2.85)

0.4167
(5)

III: Instruments {c,ωt,RVt, dRVt}
0.386
(6.33)

0.548
(9.11)

0.618
(6.46)

−0.397
(−2.68)

0.0139
(7)

Panel (b)
IV: Instruments {c,ωt}
0.416
(7.11)

0.521
(7.80)

0.662
(6.06)

−0.820
(−2.24)

−0.040
(−3.14)

NA

V: Instruments {c,ωt,RVt, dRVt}
0.398
(6.88)

0.557
(10.17)

0.630
(7.17)

−0.634
(−2.59)

−0.033
(−4.70)

0.8902
(7)

Table 5: GMM estimates. In parentheses, t-statistics for coefficient estimates
and degrees of freedom for the J-test are reported. Significance test are per-
formed using the Andrews-Monahan weighting matrix with pre-whitening.

regarding the informational content of ΘIV
t . Here the null hypothesis of the J-

test is rejected, indicating that there is some information in ΘIV
t not captured

solely by volatility forecasts. Inspection of the moment conditions reveals that

the elements inM associated with dRVt trigger the rejection.

As all elements included in ωt contain some element of volatility smoothing,

one might argue that the smoothing process eliminates some important infor-

mation contained in the actual level of current volatility, RVt. Hence panel (b)

displays results for equation 9 where ωt is extended to include RVt. Parame-

ter estimates for Model IV show that RVt is significantly related to VIX (R2 is

found to be 0.777). Model V addresses the question of information in ΘIV
t when

ΘH
t is represented by not only volatility forecasts, but also RVt. When including

this measure, all evidence of forward looking information in ΘIV
t disappears.

Although not of primary interest for the purposes of this study, the para-

meter estimates contain interesting information. The positive coefficients for

GARCH and GJRRV G indicate that V IX and the GARCH and GJR+RVG

capture a significant amount of common information. Interestingly, the RVt
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parameter is significantly negative. To understand this it is important to ac-

knowledge that RVt, in comparison to the GARCH-model forecasts is a very

noisy measure. Therefore it appears appears as if the negative coefficient rep-

resents an element of mean reversion in volatility. The reason for the negative

coefficient on the DAR variable is not at all obvious. The difference between

the ARMA and the ARFIMA forecasts is negatively correlated to all model

based volatility forecasts, indicating that the ARFIMA forecast tends to be

higher than the ARMA forecast whenever the volatility level is high. This may

reflect the difference between long and short memory process underlying the

ARMA and the ARFIMA models.

5 Concluding remarks

This paper has examined the informational content of IV, specifically whether

IV offers any genuinely forward looking information not captured by historical

information. Whilst numerous authors have considered the informational con-

tent of IV, none have sought to isolate the forward looking component of IV in

the manner proposed here. Fleming (1998) for instance considers whether the

information in IV completely subsume historical information.

To isolate forward looking information, it was first necessary to define in-

formation reflected in IV that was attributable to historical information. In

this context such historical information included was not only current levels of

volatility, but also forecasts of future volatility based only on historical data.

These forecasts were included to reflect the possible process by which option

market participants may form expectations of future volatility. Given these

elements of historical information, the forward looking informational content

of IV was then considered. To do so, the relationship between future volatility

and information in IV not attributable to historical information was examined.

Overall, the empirical results presented in Section 4 show that if the historical

information set is correctly specified, S&P 500 option IV does not contain any

information regarding future volatility not captured by historical information.

These findings reveal two important facts regarding the operation of the
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S&P 500 options market. First, IV appears to be closely related to current levels

of volatility. Therefore, option prices, and hence IV are strongly influenced by

the prevailing level of volatility. Second, S&P 500 option market participants

appear to have no foresight in relation to the future evolution of S&P 500

volatility.
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