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Abstract

This paper introduces a new bivariate autoregressive conditional
framework (ACD×ACL) for modelling the arrival process of buy and
sell orders in a limit order book. The model contains two dynamic
components to describe the observed clustering of durations and order
types: a duration process to capture the time structure, combined with
a new “Autoregressive Conditional Logit” model in order to display the
traders’ order choice. Both processes are adapted to a common natural
filtration and modelled simultaneously. It can be shown that the state
of the order book as well as the success and the speed of the matching
process have a significant influence on the traders’ decisions when and
on which side of the market to submit orders and, thus, affect the
market’s liquidity.
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1 Introduction

There is a large theoretical and empirical literature on the microstructure
of financial markets, boosted by the increased availability of ultra-high fre-
quency transaction data. These time stamped trade-by-trade data are char-
acterized by one main feature, namely the irregularity of time intervals
between two consecutive observations. Since durations between transac-
tions often reflect the intensity of trading and thus different degrees of the
asset’s liquidity, they become important variables explaining the develop-
ment of intraday returns and volatilities in financial markets. Because the
time variable is considered as stochastic, the study of financial economet-
ric models requires alternative methods to the ordinary “fixed-time” series
analysis. Based on the seminal work by Engle and Russell (1997, 1998)
and Engle (2000), who successfully modelled these specific point processes,
many studies have concentrated on the further development of the Autore-
gressive Conditional (AC ) framework in order to describe limit order book
activities more accurately (see, for example, Bauwens and Giot (2001, 2003),
Grammig and Hujer (2001, 2002), Fernandes and Grammig (2003)).

Hence, especially duration (ACD) and intensity processes (ACI ) are of-
ten modified and improved, almost with extensions to multivariate models
analyzing the whole order book, not only the trades. Hall, Hautsch and
McCulloch (2003), for example, model the joint intensity of the bid and ask
order arrival process and show in their empirical results that the state of the
order book has a significant influence on the order behavior. Although their
intensity approach, combined with a logit regression, is convenient for mul-
tivariate specifications and time varying covariates, it is far less intuitive and
forecasts are computationally burdensome (see also Russell (1999), Bowsher
(2003), Bauwens and Hautsch (2003)). In contrast, Engle and Lunde (2003)
use two time scales in their analysis. They found out that quotes and trades
tend to cluster in time in both a deterministic and stochastic way and thus
treat the arrival of trades and succeeding quotes as a bivariate dependent
point process. Due to the combination of trade and quote durations, a com-
plicated situation arises, which makes the specification of the dependence
between duration pairs very difficult and clearly shows that the ACD model
as the common duration approach has its limits: In contrast to an intensity
approach, one can not take new information into account during the actu-
ally lasting waiting time, because one can only condition on the information
available at the beginning of each duration. Due to this drawback, dura-
tion models are usually not suitable for multivariate specifications, because
- in a multidimensional context - different duration processes start and end
asynchronously without any common time point to be linked with.

This paper solves this problem by introducing an alternative bivariate
modelling framework with an extended ACD concept considering all points
of the whole transaction process (without any distinction between bid-, ask-
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Figure 1: All event points

and trade durations), setting a new point of view in the overall multivariate
transaction process, as shown in figure (1). Additionally, to restore the re-
spective type of the order (bid or ask), an innovative dynamic “order type
process” is affixed to the ACD model. The main objective of this paper is
to investigate the arrival process of bid and ask limit orders and to discover
what determines the traders’ decisions when and on which side of the market
to act. The question addressed here concerns the time varying information
set traders refer to before submitting their orders. Comprehending the mar-
ket conditions under which traders either demand or supply liquidity will
lead to a better understanding of the price formation process — the central
economic purpose.

Contrary to Engle and Lunde (2003), where two duration processes are
modeled jointly, the “mixed” model suggested in this paper is much easier
to handle: there is (a) one extended ACD model that captures the whole
time structure, combined with (b) a new “Autoregressive Conditional Logit”
model describing the order type with the remaining information of the order
book to analyze the traders’ order placement strategy. It is neither a pure
duration approach, nor a strict intensity framework. In comparison to other
multivariate processes, this bivariate model is easier to understand due to
its AR structure interlocked twice in the specification.

The outline of this article is as follows: In section 2 the bivariate model
is introduced and described. Section 3 shows the smoothing technique and
discusses the ML estimation. In section 4 the data and the empirical res-
ults will be presented, especially with respect to the economic implications.
Section 5 concludes.

2 The Model

As high frequency transaction data arrive in irregular time intervals, re-
searchers have to be concerned not only with the variable of genuine interest,
but also with the arrival time of each event. In other words, order book data
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generally can be characterized by two kinds of random variables. The first
one is the time t of the transaction and the other one is the observation
Z (called “marks”, i.e. price, quote, volume) linked with t. Consider the
arrival times of events t0, t1, t2, ... with ti ∈ R≥0∀i as random variables dis-
tributed in time by a point process. Usually, it is recorded when traders set
bid (tk)k∈N and ask (tm)m∈N orders and when these orders are filled (tl)l∈N,
yielding a transaction. Thus, for modelling the whole trading development
on have to deal with three point processes and their respective arrival times
tk, tl, tm ∈ R≥0∀k, l,m (see figure (1)). But since transactions are always
initiated by either an ask or a bid order, it is sufficient only to record the
arrival time and the market side (bid or ask) of incoming orders to get all
(different) entry points in the whole order book. Hence, (ti)i∈N is now the
sequence of arrival times of an incoming order, not a transaction. It is to
be stressed that the rate of order arrivals only implies the intensity of order
submission, but not necessarily fast and frequent trading. It displays first
and foremost the order book’s activity, not the market’s liquidity. The pur-
pose of the final bivariate ACD×ACL model is to describe the order choice
and order intensity jointly. An advantage of this new framework is that it
does not only allow the prediction of the next order type and its arrival time
given the past history, but also easily solves the “zero-duration” problem
that frequently occurs: In case of order aggressiveness, for example, a very
high demand that cannot be satisfied by one single supplier often must be
divided into n transactions to trade with n suppliers. As discernible in figure
(2), this one (bid) order has to be matched with several (ask) orders of the
opposite market side, leading to split transactions all executed at one time
point, probably each one at a different limit price. In univariate models, this
“zero-duration” problem is often eluded by aggregating n transactions or,
worse, eliminating n − 1 transactions. The bivariate model proposed here
considers all n+ 1 orders and their respective arrival time.

Figure 2: Aggregated transactions
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2.1 The ACD Model

Applying a duration framework is the most common approach to describe
point processes. Here, the simple ACD model as the most popular tool in
recent financial econometrics was used to model the elapsing time between
consecutive orders and explains duration clustering just through the time
dependency of durations. It represents in its simplest form a time series
model of time, making it relatively easy to understand, and characterizes a
dynamic point process in which the conditional expectation is written as a
linear function of past durations.

First of all, introduce a counting function N(t) which simply indicates
the number of event arrivals that have occurred before or at time t. This
is a monoton-increasing step function with unit increments at each arrival
time t. Obviously, N(t) is a simple jump process with N (t0) = 0. Further,
define the filtration

F0 ⊆ F1 ⊆ ... ⊆ Fi−1 ⊆ Fi = σ (t0, t1, ..., ti−1, ti)

with F0 = {∅,Ω} . Thus, Fi is the σ-field generated by all time random
variables observed till ti. The instantaneous probability of an event at t
is called the intensity of the process. In time dependent point processes,
this intensity is obtained by conditioning on past information. Define the
conditional intensity of the process as

λ
¡
t|FN (t)

¢ ≡ λ
¡
t|N (t) , t1, t2, ..., tN (t)

¢
(1)

= lim
∆t→0

P
¡
N (t+∆t) > N (t) |N (t) , t1, t2, ..., tN(t)

¢
∆t

.

This function provides a complete description of the point process’ full dy-
namics and is similar to the hazard rate, which is often applied in survival
analysis (see Lancaster (1990) or Harrell Jr. (2002)). Now let

Xi = ti − ti−1

with t0 = 0, where Xi is the ith duration between the ith and (i − 1)th
incoming order. Further, define Ψi ≡ E (Xi|Fi−1) as the conditional dura-
tion adapted to the filtration Fi−1, i.e. the conditional expectation of the
adjusted duration given the information available at ti−1. Usually, linear
ARMA parameterizations are proposed for the conditional mean duration.
Therefore, let

Ψi ≡ E (Xi|Fi−1) (2)

= Ψ (Xi−1, ..., X1;θ1)

= ω + α1Xi−1 + ...+ αpXi−p + β1Ψi−1 + ...+ βqΨi−q

= ω +

pX
j=1

αjXi−j +
qX

k=1

βkΨi−k ,
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where the parameters ω, α1, ..., αp, β1, ..., βq are all included in θ1. To en-
sure the stationarity of the process, one must take care of the restrictive
constraints for this basic linear specification, in general

ω > 0

αj, βk ≥ 0 ∀j, k
pX

j=1

αj +

qX
k=1

βk < 1 .

This specification clearly implies that the conditional mean adjusts propor-
tionally to recent durations and the influence of these shocks will decline
exponentially over time. Since this probabilistic structure of the conditional
duration Ψi in equation (2) is similar to that of a GARCH process, this
class of duration models are also called “autoregressive conditional”, char-
acterized by the lag lengths p and q of the past (un-/conditional) durations.
It is now assumed that

Xi = Ψi · εi (3)

with εi as the innovations (see Engle and Russell (1997, 1998)). The essential
property here is that the errors εi ≡ Xi

Ψi
, defined as standardized durations,

are independent and identically distributed random variables, following a
special distribution function with the density function f (.), which must be
specified:

εi
i.i.d.∼ f (εi;θ1) .

Of course, this density must have a non-negative support to avoid negative
durations. Further assume that εi are independent of Xi. As durations and
expected durations are positive, the multiplicative disturbance naturally will
have positive probability only for positive values and it must have a mean
of unity, i.e.

E (εi) = 1 .

This requires all temporal dependence of the durations to be captured en-
tirely by the mean function, whereby this hypothesis is testable in practice
by using the standardized durations (Engle (2000)).

In the duration analysis literature, the type of this model is referred to
as an Accelerated Failure Time model which can be viewed as a log-linear
regression model for time as well. Equation (3) specifies that the predictor
Ψi act multiplicatively on the failure time or additively on the log failure
time. The effect of Ψi is to alter the rate at which a subject proceeds along
the time axis, i.e. to accelerate or decelerate the time to “failure” or, here,
to submit an order. The crucial assumption for ACD models is that the
conditional intensity is only specified by the mean equation Ψi that is able
to summarize the whole dependence structure and is in general defined as

λ
¡
t|N (t) , t1, t2, ..., tN (t)

¢
= λ

µ
t− tN (t)−1
ΨN (t)

¶
· 1

ΨN(t)
,
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where

λ (.) =
f (.)

1− F (.)

is the so-called baseline-hazard, whose slope depends on the respective dis-
tribution function. While Engle (2000) was preferring an Exponential or
a Weibull distribution, other authors favoured more flexible alternatives
like the Burr- or F-distribution (Fernandes and Grammig (2003), Hautsch
(2002b)). Of course, mixture models are also possible (see De Luca and
Gallo (2004)). In this paper, a flexible Generalized Gamma distribution
(see Johnson, Kotz and Balakrishnan (1994) and Kleiber and Kotz (2003))

fGGamma (εi|Fi−1; θ1) = fGGamma

µ
Xi

Ψi
|Fi−1;θ1

¶

=
γ

Xi · Γ (λ)

Xi

Ψi
·
Γ
³
λ+ 1

γ

´
Γ (λ)

γλ

· exp
−

Xi

Ψi
·
Γ
³
λ+ 1

γ

´
Γ (λ)

γ
was proposed, with λ and γ as the shape parameters of the density func-
tion (both also included in θ1, see figure (5)). Γ (.) denotes the incomplete

Gamma function. The scope parameter is replaced by
³
Γ
³
λ+ 1

γ

´
/Γ (λ)

´
,

yielding unit expectation. This distribution allows a non-monotonic hazard
function, for example, a U-shaped slope for λγ < 1 and γ > 1 and vice
versa. Clearly, it nests the Gamma distribution for γ = 1, the Weibull for
λ = 1, the log-normal for λ → ∞, the Exponential for γ = λ = 1, and the
χ2 (v) distribution for λ = v

2 and γ = 1 and Γ
³
λ+ 1

γ

´
/Γ (λ) = 2.

In fact, the assumption of linearity for financial durations is often too
restrictive to capture the conditional duration’s adjustment process. Hence,
several recent models for transaction data have been developed via other de-
pendence structures of the conditional mean to account for nonlinear impacts
of past durations (see Bauwens et al. (2003), Hautsch (2004)). Generally,
different new types of ACD models can be created by varying the functional
form g (.) of Ψi in the model’s equation

Xi = g (Ψi) · εi .

Bauwens and Giot (2001), for example, introduced the Log-ACD(p,q)
with two possible modifications to explain over and under dispersion and
cluster structures as well as ACD models, but without any parameter re-
strictions:

Ψi = ω +

pX
j=1

αjϕ (εi−j) +
qX

k=1

βk ln (Ψi−k)
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(see also Bauwens, Galli and Giot (2003)). The new assumption here is that
the lagged innovations enters the conditional mean additively, not multiplic-
atively as considered in the common ACD model. Thus, to imply concave
news impact curves, define ϕ (εi) = ln (εi), otherwise just set ϕ (εi) = εi to
get convexity. Obviously, this specification allows nonlinear dependency in
the conditional mean, but also imposes a very strict adjustment process of
the conditional mean to recent durations. Due to the asymptotic conver-
gence to minus infinity at zero of the logarithmic function, one may have an
over-adjustment of the conditional mean after very short durations.

Certainly, alternative nonlinear dependence structures are also possible
(see, for example, Russell, Tsay and Zhang (2001) or Fernandes and Gram-
mig (2003)), such like the more flexible Box-Cox-ACD, originally introduced
by Dufour and Engle (2000), modified and extended by Hautsch (2002b)

Ψκ1
i − 1
κ1| {z }
ΨBC
i

= ω +

pX
j=1

αj

Ã
εκ2i−j − 1

κ2

!
| {z }

εBCi−j

+

qX
k=1

βk

µ
Ψκ1
i−k − 1
κ1

¶
| {z }

ΨBC
i−k

, (4)

with ΨBC
i and εBCi as the Box-Cox-transformed durations. The Box-Cox

version nests both logarithmic ACD models and, thus, provide a more ac-
curate description for the adjustment process of the conditional mean to
past durations. In contrast to the basic ACD, it allows additive innovation
shocks (without any interaction with Ψi) with κ1 = κ2 = 1 as well as nonlin-
ear impact curves for κ1 < 1 and κ2 ≤ 1. For κ1 → 0 and κ2 → 0, it would
mean that the news impact difference between small innovations (εi < 1) is
more extensive than between the large ones (εi > 1).

Improving the model’s fit once more, a new Box-Tukey-ACD(1,1) model
is proposed in this paper. Instead of the common intercept ω, two new
location parameters η1 and η2 were introduced to tailor to the data more
precisely. Theoretically, it allows even negative observations by shifting the
waiting times with the (positive) Box-Tukey parameters η1 and η2 and covers
the Box-Cox version for η1 = η2 = 0:

(Ψi + η1)
κ1 − 1

κ1| {z }
Ψ∗i

=

pX
j=1

αj

µ
(εi−j + η2)

κ2 − 1
κ2

¶
| {z }

ε∗i−j

+

qX
k=1

βk

µ
(Ψi−k + η1)

κ1 − 1
κ1

¶
| {z }

Ψ∗i−k

.

(5)
Here, Ψ∗i = Ψ

BT
i and ε∗i = εBTi are the Box-Tukey-transformed durations.

In case of nonlinearity, i.e. the Box-Cox parameter κ1, κ2 < 1, stationarity
in both cases is ensured for

qX
k=1

βk < 1

(see also Russell (1999), Dufour and Engle (2000)).
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As illustrated in Engle (2000) and many other studies, the stochastic
properties of the trade arrival process and in particular their durations are
a decisive reason for volatility. But only examining the trade and its impact
on prices and returns is not enough. In fact, most univariate models of
ultra-high frequency data is focusing partially on the trades’ dimension such
as its durations, volumes or price movements, whereas recent studies also
demonstrated the importance of the quote’s timing and information content
(see Engle and Lunde (2003)). While transaction data often only mirror the
state of the order book at the intersection of the supply and demand side,
quotes allow a deeper insight into the market participants’ prior intentions
to trade. Therefore, multivariate approaches should be applied to explore
the whole electronic limit order books more precisely, taking a closer look at
the timing and the content of the bid and ask side. The statistical analysis
of the dynamic market process must incorporate not only the distribution of
waiting times but also further essential information in the limit order book.
It is often neglected that financial electronical markets are constructed for
a rapid matching of buyers and sellers of assets. In contrast to former
research in market microstructure that is studying preferentially the (“ex-
post”) consequences, this paper is trying to find the (“ex-ante”) reasons for
a trader’s decision to submit orders.

2.2 The ACL Model

In financial transaction data, a plethora of additional information Z =
(Z1, ..., Zm)

0 can be observed at the arrival times t (for example, price,
volume, quotes, depth, etc.). In this case, the point process (ti,Zi)i∈N will
become “marked”, where both the points and the marks are of interest. In
general, the common ACD model can be extended by including the marks
Zi in the mean equation for investigating market microstructure hypothesis.
Therefore, one just have to add in the market information Zi directly into
Ψi. However, it turns out that the linear specification proposed in Engle
and Russell (1997, 1998)

Ψi = ω +

pX
j=1

αjXi−j +
qX

k=1

βkΨi−k +
mX

w=1

τwZw,i−1 (6)

is insufficient, as the order types (bid or ask) themselves, included in Zi,
also may depend on the past bid and ask durations and other explanatory
variables. To analyze the market participant’s preference for a specific order
type after observing the limit order book’s continuous adjustment process,
one needs a separate function Υ (.) that is able to describe his order choice.
Regarding a given state of the order book upon arrival, each trader may
enter the market as either a buyer or a seller of an asset. Therefore, first
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denote

Yi = ith order type, signaling the market side of the trader

=

½
0
1

if order = ask order
if order = bid order .

Obviously, (ti, Yi)i∈N is also a marked point process. Since Yi is a dummy
variable representing the market side at ti, one can model its binary marks
by their respective probabilities. Assume that the probability of a bid and
an ask order conditioned on Zi−1 is given by

P (Yi = 1|Zi−1) ≡ exp (Zi−1τ)
1 + exp (Zi−1τ )

(7)

and

P (Yi = 0|Zi−1) ≡ 1− P (Yi = 1|Zi−1) (8)

=
1

1 + exp (Zi−1τ )

with

Zi−1τ =
mX

w=1

τwZw,i−1

= τ1Z1,i−1 + τ2Z2,i−1 + ...+ τmZm,i−1 .

Here, equation (7) represents the distribution function of the standard lo-
gistic distribution that is often used in panel data and microeconometrics.
Moreover, from the respective survival function (8) one can derive

P (Yi = yi|Zi−1) = P (Yi = 1|Zi−1)Yi · P (Yi = 0|Zi−1)1−Yi (9)

= fLogistic (Zi−1τ )

as the density of the logistic distribution which is very important for the
model’s joint density later on (see Johnson, Kotz and Balakrishnan (1995)).
Now define a more comprehensive filtration F∗i representing a σ-field that
contains the information of all past arrival times and marks till ti

Fi ⊂ F∗i = σ (t0, t1, ..., ti; Y0, Y1, ..., Yi;Z0,Z1, ...,Zi) ∀i .

Empirically, traders modify their order placement as soon as the market
conditions change. Of course, these strategies depend on the available in-
formation when submitting their orders. Monitoring the book and using all
new public information, they try to update their information set to optim-
ize further order activities in the whole trading mechanism. Using “static”
logit-regressions with lagged variables for modelling this dummy variable
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(sell or buy) might be a good choice but not necessary the best. First, con-
sidering a time horizon of only one period from ti−1 to ti may be not enough.
Indeed, one have to consider that traders do not have a fixed memory limit
and are not forced to forget the knowledge they have before ti−1. In fact,
they also take the previous information set (in ti−2, ti−3, ...) into account
when making new decisions. Secondly, similar changes of the underlying
information set in dissimilar (irregular spaced) time intervals Xi may have
different time-varying impacts on the market’s dynamics. Formally, one
should condition the execution probability on the last state Zi−1 and on
the history of the order book. Furthermore, recent studies found out that
the probability that an order of a certain type is followed by an order of the
same type is relatively high (see figure (7)). It is assumed that the reason for
these “order type clusters” often lies in order splitting strategies, imitating
behavior, or similar strategic actions by market participants (for example,
herding effects, see also Cao, Hansch and Wang (2004) and Foucault, Kadan
and Kandel (2003)).

Therefore, to model the dynamic order type process (Yi)i∈N, the or-
der type probability is conditioned on the natural filtration F∗i in a re-
cursive manner, similar to the idea of GARCH and ACD. To emphasize
the analogy of this autoregressive conditional structure with the common
ACD(p, q) model, just define a general “Autoregressive Conditional Logit”
model, ACL(u,v), as

Υi ≡ P
¡
Yi = 1|F∗i−1

¢
(10)

= Υ (Yi−1, ..., Y1,Zi−1, ...,Z1; θ2)
= Υ

¡
α01Yi−1 + ...+ α0uYi−u + β01Υi−1 + ...+ β0vΥi−v +Zi−1τ

¢
= Υ

 uX
j=1

α0jYi−j +
vX

k=1

β0kΥi−k +Zi−1τ


=

1 + exp
−

 uX
j=1

α0jYi−j +
vX

k=1

β0kΥi−k +Zi−1τ

−1 .
Alternatively, equation (10) can be rewritten as

ln

µ
Υi

1−Υi

¶
=

uX
j=1

α0jYi−j +
vX

k=1

β0kΥi−k +Zi−1τ .

It is to be stressed that Υi represents the time varying conditional prob-
ability P

¡
Yi = 1|F∗i−1

¢
of a bid order which depends on (a) the last state

Zi−1 of the order book, (b) the last u order types and finally (c) the last
v probabilities, containing previous market information prior to ti−1. For
β0k = 0∀k, the ACLmodel will reduce to the common (“non-autoregressive”)
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logit model. As implied in the general Autoregressive Conditional frame-
work, this specification suggests that the dynamic conditional probability
adjusts to all recent information, but their influence will decay over time.
The statistical problem now is to estimate the probability of an order type
dynamically, which requires (a) to specify the stochastic process of their ar-
rival times and (b) to estimate all parameters recursively by computing the
likelihood function.

To reconstruct the original structure of the order book more accurately,
as shown in figure (2), it is recommended to generate certain indicators Zi
entering the process (10) to reflect the state of the order book at a certain
time. Displaying the temporal distance between the order submission of
the two market sides, one can introduce the two new interesting duration
variables

DurAski = (cumulated) waiting time since the last ask order

=

½
ti − ti−1
DurAski−1 + ti − ti−1

if last order is also ask-initiated
if last order is bid-initiated

and

DurBidi = (cumulated) waiting time since the last bid order

=

½
ti − ti−1
DurBid

i−1 + ti − ti−1
if last order is also bid-initiated
if last order is ask-initiated .

Their purpose is to measure the respective order frequency of each market
side. Further, introduce an integer variable CType

i summarizing the number
of asks (bids) at time ti since the last bid (ask):

CBid
i =

½
0
CBid
i−1 + 1

if last order is ask-initiated
if last order is bid-initiated

= number of new incoming bids since last ask

and

CAsk
i =

½
0
CAsk
i−1 + 1

if last order is bid-initiated
if last order is ask-initiated

= number of new incoming asks since last bid .

It is obvious that CType
i is a counting variable, cumulating the number of

identical order types clustering on each market side until ti. In case of
order type alteration, this counting variable will be reset to zero for the
corresponding side (although there could be more unmatched orders since
the last transaction). As a proxy for the buyers’ and sellers’ order splitting,
its aim is to show the bid and ask’s cluster length and its switching in the
order book.
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Since the outstanding volume characterizes the demand and supply side
in the limit order book and, thus, displays the market’s liquidity, it is usually
a good proxy for the execution probability in the particular queues. As
it heavily affects the trader’s submission behavior, one should include the
variables

QV olAski = cumulated, unmatched ask volume

QV olBidi = cumulated, unmatched bid volume

and

QOrdAski = number of unmatched ask orders

QOrdBidi = number of unmatched bid orders

or

AV olAski =
QV olAski

QOrdAski

= average ask volume per order

AV olBidi =
QV olBidi

QOrdBidi

= average bid volume per order

to describe the so-called “order aggressiveness” (high volume orders that
induce a large shock and thus move prices). Obviously, QOrdi and QV oli
represent the thickness of the limit order book and are important factors for
describing price effects. In his study of order aggressiveness, Ranaldo (2004)
clearly recognizes that “...patient traders become more aggressive when the
own (opposite) side book is thicker (thinner), the spread wider, and the tem-
porary volatility increases.” In general, order aggressiveness influences the
liquidity in an order-driven market essentially, because high-volume orders
consume nearly the whole (temporal) liquidity in the market whereas non-
aggressive orders provide it.

Furthermore, one has to take into consideration that traders differ by
their patience and seek to minimize their trading costs in their order place-
ment strategies. They often weigh between market and limit orders, which
is their trade-off between the cost of immediacy and the cost of delayed
execution, because a limit order takes time to fill and may fail to fill. A
limit order defines a particular price at which the market participant shows
his willingness to trade. Certainly, a limit order offers the trader a better
price than a market order, but there are costs to submit a limit order and it
does not guarantee that it will be executed. Unfilled limit orders are stored
in the order book to wait for future execution till being canceled. In con-
trast, a market order fills immediately at the most attractive price posted
by previous limit orders. To find out, whether a price limit was set, denote
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LimType
i =

½
0

PriceTypei

if the order was a market order
if the order was a limit order

with Type = Ask or Bid

to analyze the limit’s impact on the trader’s order choice due to the in-
fluenced waiting times as costs of transactions. Sometimes traders used
to “jump” the queue by setting orders with limit prices bettering existing
quotes. Of course, one may add further covariates to improve the ACL
model’s fit (such as the volatility or the spread, etc.) or use other suitable
distribution functions.

2.3 The Bivariate Model

To describe the order choice and order intensity jointly, one has to combine
the ACD model with the ACLmodel. The aim is to model the stochastics of
the duration process of all time stamped orders in the order book as well as
the dynamics of their order type. The idea is similar to former decomposition
approaches, originally proposed by Rydberg and Shepard (2002) to study
price movements. In general, these models are two-stage processes, where
the first step describes the arrival time (usually the trade duration) and the
second explains the marks conditional on the contemporaneous duration.
For example, Engle and Russell’s Autoregressive Conditional Multinomial-
ACD model (2004) investigates price developments by generating a duration
process and applying a multinomial distribution for tick movements given
the duration. This combination of ACD and ACM jointly models the dis-
tribution of trade durations and possible prices, yielding a price process for
transaction data. Likewise, Pohlmeier and Liesenfeld’s Integer Count Hurdle
model (2003) is splitting the general transaction price process into two com-
ponents indicating the size and the direction of discrete price changes con-
ditional on the past filtration. But sometimes, we have several different
limit prices at the same (transaction) time, as illustrated before (see chapter
2, figure(2)). In this case, one observes prices changes without “temporal
changes” which is difficult to explain with decomposition models, because
the duration as the basic element is missing here. One can not move to the
second stage without passing the first one.

In this paper, the ACD×ACL models the duration and the order choice
simultaneously. The crucial difference here is that both components are
not hierarchically structured, allowing a bidirectional dependence structure.
Alternatively to the ACMD model suggested by Tay et al. (2004), this
framework also concentrates on describing the duration and its marks (here,
the order type) jointly. Hence, the ACD×ACL can be written as a system
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of equations

Ψi =

pX
j=1

αjεi−j +
qX

k=1

βkΨi−k + δ1Υi−1 (11)

and

Υi = Υ

 uX
j=1

α0jYi−j +
vX

k=1

β0kΥi−k + Zi−1τ + δ2Ψi−1

 (12)

(see also the ACD-GARCH model suggested by Ghysels and Jasiak (1997)).
This ACD×ACLmodel investigates the interesting relationship between the
order choice and its duration. One process is indicating the kind of the event
(sell or buy), another its time, but none of them is conditioned on the other.
It is assumed that both the arrival time and the market side of each order
are influenced by the past history of both processes. In particular, the joint
distribution of the marked duration process (Xi, Yi)i∈N suggested in this
framework is modelled as

FXi,Yi (xi, yi) = FXi|Yi=yi,F∗i−1 (xi) · FYi|Xi=xi,F∗i−1(yi) (13)

which leads to the interesting mixed density function

fXi,Yi (xi, yi) = fXi|Yi=yi,F∗i−1 (xi) · fYi|Xi=xi,F∗i−1(yi) (14)

= fXi|Yi=yi,F∗i−1 (xi) · ([Υi] · [1−Υi])

= fXi|Yi=yi,F∗i−1 (xi)| {z }
fGGamma

· P ¡Yi = yi|Xi = xi,F∗i−1
¢| {z }

fLogistic

.

In this bivariate model, the main dependence structure is captured by
(11) and (12), each containing and influencing the information for the other
process, both adapted to the common filtration F∗i−1. This specification
suggests that the order activity depends on the order decision, and this in
turn affects the order frequency again, the history of the book is embedded
in both components. Economically, it is assumed that the market behaves
asymmetrically if δ1 6= 0. For δ1 > 0, the demand side is acting more
frequently and providing more liquidity than the supply side, vice versa for
δ1 < 0. For δ2 6= 0, the ACL implies an impact of the expected duration
on the order submission: if δ2 > 0, bid spells tend to take more time, again
signalling a higher activity on the opposite market side, vice versa for δ2 < 0.
For either δ1 = 0 or δ2 = 0, the bivariate process will be reduced to a quasi-
decomposed model, where one part represents a subordinated component of
the overall transaction process.

3 Estimation and Diagnostics

It is well-known that financial markets pass through hectic periods of in-
creased activity as well as calm slowdowns, reflecting different degrees of
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the asset’s liquidity. Former studies have found a persisting diurnal pattern
of trading activities over the course of a trading day, due to institutional
characteristics of organized financial markets (like predetermined opening
and closing hours or intraday auctions). For example, in the data set used
in this study, the observed waiting times tend to be short in the opening
hours of XETRA and NYSE, and tend to be long during lunch time and in
the evening hours, as discernible in figure (3). As the rate of information
arrival will also vary over the trading day, one has to pay regard to the
regular daily seasonality. Therefore, smoothing techniques are required to
get deseasonalized observations. Let X̃i denote the observed duration. In
this paper, a nonlinear kernel regression with an optimal bandwidth hCVT
was performed. After minimizing the Crossvalidation function

CV (hT ) =
1

n

nX
i=1


X̃i −

P
j 6=iK

³
tj−ti
h

´
X̃jP

j 6=iK
³
tj−ti
h

´
2

w (ti)


with w (.) as a nonnegative weighting function and K (.) as the Gaussian
kernel function, the diurnal periodic component can be computed by the
Nadaraya-Watson estimator

m (ti) = E
³
X̃i|ti

´
=

Pn
i=1 x̃i ·K

³
t−ti
hCVT

´
Pn

i=1K
³
t−ti
hCVT

´
(see Härdle et al. (2004)). Thus,

Xi ≡ X̃i

m (ti)

is the deseasonalized duration and should have no diurnal pattern and a
mean near unity. To estimate the bivariate model, one must maximize the
general likelihood function (see equation (13) and (14)) which is obtained
by

LBIV = L ((x1, y1) , ..., (xn, yn) ;θ1,θ2)

=
nY
i=1

fXi,Yi (xi, yi;θ)

=
nY
i=1

fGGamma

¡
xi|yi,F∗i−1; θ1

¢| {z }
ACD

· fLogistic
¡
yi|xi,F∗i−1; θ2

¢| {z }
ACL

.
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Taking the logarithm, one gets

LBIV = lnL ((x1, y1) , ..., (xn, yn) ; θ1, θ2)

=
nX
i=1

ln (fXi,Yi (xi, yi; θ))

=
nX
i=1

ln ¡fGGamma

¡
xi|yi,F∗i−1;θ1

¢¢| {z }
ACD

+ ln
¡
fLogistic

¡
yi|xi,F∗i−1;θ2

¢¢| {z }
ACL

 .

Hence, the likelihood of the ACD part generally is

LACD = L (x1, ..., xn;θ1)

=
nY
i=1

fGGamma

¡
xi|yi,F∗i−1;θ1

¢

=
nY
i=1

γ

xi·Γ (λ)

 xi
Ψi
·
Γ
³
λ+ 1

γ

´
Γ (λ)

γλ

· exp
−

 xi
Ψi
·
Γ
³
λ+ 1

γ

´
Γ (λ)

γ ,

from which one can derive the log-likelihood

LACD = lnL (x1, ..., xn;θ1)

=
nX
i=1

ln
¡
fGGamma

¡
xi|yi,F∗i−1;θ1

¢¢
=

nX
i=1

ln

µ
γ

xi·Γ (λ)
¶
+ γλ · ln

 xi
Ψi
·
Γ
³
λ+1

γ

´
Γ (λ)

−
 xi
Ψi
·
Γ
³
λ+1

γ

´
Γ (λ)

γ

.

To check the ACD model’s diagnostics, one can examine the properties
of the standardized duration such as the mean of unity or their correlation
structure. For example, Engle and Russell (1998) and Bauwens and Giot
(2001) suggest simply examining the Ljung-Box statistic, although other
types of dependence can be investigated, such as nonlinear transformations
of the residuals εi, for example, squares ε2i or square roots

√
εi. Likewise,

theoretical moments suggested by the respective distribution can be com-
pared with the empirical ones. As εi is assumed to be Generalized Gamma
distributed with λ and γ, the moments of εi can be obtained by

E (εmi ) =
Γ (λ)m−1 · Γ

³
λ+ m

γ

´
Γ
³
λ+ 1

γ

´ .

Another general test is based on the integrated intensity

Λi =

Z ti

s=ti−1
λ
¡
s|FN(s)

¢
ds (15)
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over the duration that must be Exp (λ = 1) standard exponential distrib-
uted under the correct model specification as illustrated in Russell (1999).
Providing a transformation of the time scale (from any Non-Poisson process
to a homogenous Poisson process), this cumulated hazard function repres-
ents - strictly speaking - a Poisson process. The interpretation of this con-
struction is that the original point process does not cease at some point in
time which means that further events will definitely occur afterwards. This
is realistic for financial point processes, because traders do not stop to sub-
mit orders under usual market conditions. Last not least, one can use the
probability integral transform

ξi =

Z Xi

−∞
fi
¡
s|FN(s)

¢
ds (16)

as proposed by Bauwens et al. (2003) for density forecast. Here, under
correct model specification, ξi must be i.i.d. R (0; 1) uniform distributed.
Therefore, one can easily derive χ2-goodness-of-fit tests to check their uni-
formity or compute the ACF of ξi to analyze their correlation structure.
Likewise, simple graphical methods can also be applied.

Further, the likelihood function of the dynamic logit model is given by

LACL = L (y1, ..., yn; θ2)

=
nY
i=1

fLogistic
¡
yi|xi,F∗i−1;θ2

¢
=

nY
i=1

[Υi]
yi · [1−Υi]

(1−yi) ,

or, in the logarithmic form

LACL = lnL (y1, ..., yn;θ2)

=
nX
i=1

ln
¡
fLogistic

¡
yi|zi,F∗i−1; θ2

¢¢
=

nX
i=1

yi · ln [Υi] + (1− yi) · ln [1−Υi]

with

Υi =

1 + exp
−

 uX
j=1

α0jyi−j +
vX

k=1

β0kΥi−k +Zi−1τ+δ2Ψi−1

−1 .

To value the ACL model, one can apply various convenient measures that
are often used in logit regression, based on modified R2-s, or just simply
count the correctly forecasted order types in a fourfold-table.
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To keep the computational burden acceptable, this paper concentrates
on a Box-Tukey-ACD(1,1) combined with a simple ACL(1,1). The functions
to be maximized jointly in this bivariate ACD ×ACL process are

LACD =
nX
i=1

ln

µ
γ

xi · Γ (λ)
¶
+γλ·ln

 xi
Ψi
·
Γ
³
λ+ 1

γ

´
Γ (λ)

−
 xi
Ψi
·
Γ
³
λ+ 1

γ

´
Γ (λ)

γ

with
Ψ∗i = α1ε

∗
i−1 + β1Ψ

∗
i−1 + δ1Υi−1 (17)

and

LACL =
nX
i=1

yi · ln [Υi] + (1− yi) · ln [1−Υi]

with
Υi = Υ

¡
α01Yi−1 + β01Υi−1 +Zi−1τ + δ2Ψi−1

¢
, (18)

where

Zi−1τ = τ1CAsk
i−1 +τ2CBid

i−1
+τ3DurAski−1 +τ4DurBidi−1
+τ5 ln

¡
QV olAski−1

¢
+τ6 ln

¡
QV olBidi−1

¢
+τ7 ln

¡
AV olAski−1

¢
+τ8 ln

¡
AV olBid

i−1
¢

+τ9Lim
Ask
i−1 +τ10Lim

Bid
i−1 .

4 Dataset and Empirical Results

The transaction data of the Deutsche Telekom stock is extracted from the
open order book of the German XETRA system, which is an order-driven
market without market makers. The sample includes the whole history of
34419 orders from 21st until 25th August 2000, observed in 5 trading days in
1 week. The continuous trading phase starts after the opening auction at 9
a.m. and ends before the closing auction at 8 p.m. Further, it is interrupted
by (at least) two intraday auctions at 1 p.m. and 5 p.m., each lasting at
most 120 seconds, as visible in figure (3). The electronic trading is based
on an automatic matching algorithm, generally following a strict price-time
priority of orders. The ultra-high frequency order book data does not only
show the price, the volume and the time stamp (with an accuracy up to one
hundreth second) of the transaction but also the initial buy or sell order.
Hence, the XETRA data set allows the reconstruction of all submitted (and
uncanceled) orders and resulting trades in real time, for it contains the time
stamp of all original bid and ask limit orders. The CML-procedure of the
Aptech software GAUSS 5.0 was used for the crossvalidation and the joint
estimation of the bivariate model proposed above. Descriptive statistics of
the durations are listed in table 2. All estimates and their standard errors
are reported in table 1 and 4.
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Figure 3: Diurnal pattern of inter-order durations

In the market microstructure theory, the trading and ordering process
represents a source of information. Uninformed market participants have
to take part to update their pool of information, whereas informed traders
only enter the market when they have private information and, therefore,
prefer high trading volumes or several orders to capitalize their knowledge
before it becomes public. That means, sometimes they are able to exhaust
the temporarily existing consumer or producer surplus in the market, due
to different price settings. As both informed and uniformed traders are as-
sumed to be indistinguishable upon arrival, this spread between the bid and
the ask limit can be viewed as compensation for the risk referred to trad-
ing with potentially better informed agents. Informed traders always will
make profits to the debit of the uninformed. Other reasons for asymmetric
informed market participants are their incapability to study all information
in detail at a ultra-high frequency level and, hence, partially ignore them,
because supervising and analyzing the whole book will become relatively ex-
pensive. If traders are expected to make their decision by using all available
information in the order book, one must conclude that different traders have
different knowledge due to their different arrival times. Finally, traders of-
ten overrate their submission strategy and their own appraisal of the stock’s
present value.

Knowing the “trends” means reducing the risk. The more information
there is in the market, the faster traders have to react. The interesting eco-
nomic variable here is the time to enter the market. According to the theory,
long durations simply suggests that uninformed traders (still) believe that
the underlying value of the asset has not changed and only trade because of
their own portfolio optimization. Usually, these “noise traders” just want
to minimize transaction costs. Contrary, short durations and hence intens-
ive trading signalize the presence of asymmetric information but offer low
waiting costs. In other words, long durations signalize a lack of market
activities that in turn indicate a longer period of no news, whereas short
durations imply the existence of informed trading, where informed traders
are assumed to make money by using their informational advantage. Thus,
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an understanding of the time varying speed of transactions is important in
practice in order to determine when to enter the trading platform to demand
or supply liquidity. In this study, the ACD part (17) of the model detects a
strong duration cluster structure (see table (1)).

Table 1: The ACD Model

parameter coefficient std. error t-value

θ1
α1 last standardized duration 0.1178813381 0.0064846351 18.1785615992

β1 last conditional duration 0.9711609893 0.0025579608 379.6621928857

η1 Box-Tukey1 -0.0717181247 0.0045927347 -15.6155600399

η2 Box-Tukey2 0.3853612046 0.0254903051 15.1179518189

κ1 Box-Cox1 0.4585801408 0.0600686751 7.6342642850

κ2 Box-Cox2 0.5051402760 0.0663805127 7.6097676140

δ1 P(Yi = Bid ) 0.0419168039 0.0051032014 8.2138250705

γ shape of GGamma distr. 0.6018250970 0.0134601513 44.7116145129

λ shape of GGamma distr 2.1596758659 0.0855392595 25.2477737067

Table 2: Descriptive statistics of durations

Durations [sec] X̃i Xi εi

Mean 5.7262382388 1.0890774719 1.0000544571

Median 2.9200000000 0.4835879169 0.6315259036

Variance 104.9368503432 7.4664327905 1.3517846836

Std. dev. 10.2438689148 2.7324774090 1.1626627557

Skewness 8.6430212679 17.0274472369 3.3274679151

Kurtosis 135.0495570623 538.6616915122 28.4053318022

Empirically, we can clearly see (inter-order) duration clusters (in figure
(4)), which means that there is a systematic structure in the order book’s
activity, signalling a certain behavioral pattern of traders. Generally, long
durations tend to be followed by long ones and short durations by short
ones, α̂1, β̂1 > 0. Because of β̂1 < 1, stationarity is ensured, but the
duration process shows strong persistence. As both Box-Cox parameters
κ̂1, κ̂2 < 1, the dependence structure is assumed to be nonlinear, implying
concave news impact curves. This would mean that the conditional duration
has to be adjusted more extensively during hectic periods (short durations)
than in calm spells (long durations). Likewise, both Box-Tukey parameters
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Figure 4: Duration process and ACFs

η̂1, η̂2 6= 0, which indicates that the conditional and standardized durations
have to be shifted differently in the overall adjustment process. Standard-
ized duration have to be enlarged with η̂2, while the conditional duration
must be reduced with η̂1. It seems that the demand and the supply side
behave asymmetrically in the actual bearish market, as δ̂1 > 0: bid orders
tend to decelerate the process, whereas ask orders accelerate it. The errors
ε̂i = xi/Ψ̂i are Generalized Gamma-distributed with γ̂ and λ̂ and seem to
have a mean of unity with ε̄ = 1.0000544571 (see table 2 and figure (5)). The
hazard function is monotonously decreasing at a slow rate. As the Gamma
distribution function has no closed form, the integrated intensity was com-
puted by using the exponential formula Λ̂i = − ln (1− F (ε̂i)) and seems
to be standard exponential distributed as expected (see figure (6) middle).
Finally, the computed probability integral transforms ξ̂i tend to follow a
uniform distribution (χ210−1 = 0.4657, see figure (6) left).

Table 3: Comparison of moments

Distribution Moments Theoretical Empirical

εi ∼ GG
³
λ̂; γ̂

´
E (εi) = 1.0000 1.0001

V ar (εi) = 1.3687 1.4454

Λi ∼ Exp (1) E (Λi) = 1.0000 1.0001
V ar (Λi) = 1.0000 1.0046

ξi ∼ R (0; 1) E (ξi) = 0.5000 0.5008
V ar (ξi) = 0.8333̄ 0.8380
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Figure 5: Generalized Gamma distribution of ε̂i

Figure 6: Histogram of ξ̂i and Λ̂i and their ACFs

As illustrated in the economic theory, the dynamic behavior of durations
also influences the time-varying information set of traders. But the ACD
part of the model only describes the temporal distances between events
without distinguishing between different possible kinds of incidents. The
characteristics associated with the trading intensity as well as the market’s
liquidity have a significant impact on the next trader’s order choice and
his subsequent (more or less) aggressive submission volume. We must have
in mind that only different activities of different market participants make
trade possible (one sells, one buys). The next step is to investigate the
market side from which we observe activities. The new question is not only
when but also “where” to (re-)act (see table (5)).

According to the theoretical findings, large traded quantities on the par-
ticular sides of the market are strong proxies for the existence of information
at the current time. It is assumed that informed traders can deduce addi-
tional information from the volume that is not noticeable in the price move-
ment. Usually, informed market participants optimize their order placement
as the bid-ask spread widens by submitting more limit orders on the opposite
market side of the uninformed traders. As illustrated, they try to capitalize
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their information as fast as possible before it becomes public in order to
make profits at the expense of the uninformed. The higher the differences
are, the more volume is absorbed from the particular queue. After the li-
quidity is taken from the book by one market side, the probability of the
occurrence of a trade of the same type in the next instant should decrease.

Figure 7: "Order Type Cluster" and ACF of Yi and Υ̂i

In fact, the data shows that a certain order type (bid or ask) is followed
by the same order type sometimes, signalling a certain pattern of repeated
order setting (see also Foucault, Kadan and Kandel (2003)). Computing
the ACF of the variable “order type” Yi and its estimated probability Υ̂i,
figure (7) show that the dummy is not highly, but always positively auto-
correlated. As mentioned above, the reason may lie in order splitting, where
traders modify their strategy to maximize the execution probability of all
their orders at a minimum cost in order to increase their profitability. Of
course, imitating strategies or herding behavior by traders are also possible.
Usually, if traders are breaking high-volume orders up into a sequence of
smaller orders to execute at a more attractive price overall, these consecut-
ive rows of buys or sells often lead to a sequence of transactions that move
the price in the same direction. In this paper, the results of the ACL part
(18) of the model shows the following order type process (see table (4)):

The probability of a bid order will increase, if the last order type was also
a bid , α̂01 > 0 (vice versa for ask). Secondly, the bid order probability will
be the larger, (a) the smaller the preceding bid order probability, β̂

0
1 < 0,

(b) the longer the ask sequence’s length, τ̂1 > 0, and (c) the shorter the
bid sequence’s length, τ̂2 < 0. Further, a bid order is also more likely, (d)
the longer ago the last ask and bid order, τ̂4 > τ3 > 0, and (f) the longer
the expected duration, δ̂2 > 0, again showing asymmetric behavior of both
market sides. Likewise, Υ̂i will generally increase, if (g) the log-volume goes
down, with τ̂5 < τ̂6 < 0, or if (h) the log-average volume per order increases,
whereby τ̂8 > τ̂7 > 0. Finally, the bid order probability will be the larger, (i)
the lower the ask limit price, τ̂9 < 0, and (j) the higher the bid limit price,
τ̂10 > 0. To value the model’s prediction, the fourfold-tables indicate that
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Table 4: The ACL Model

parameter coefficient std. error t-value

θ2
α01 last order type 0.0984101424 0.0162965929 6.0386943026

β01 last order type probability -0.0183088520 0.0008040544 -22.7706635020

τ1 ask sequence length 0.0273248626 0.0039147935 6.9798988710

τ2 bid sequence length -0.0437771875 0.0094736745 -4.6209300864

τ3 duration since last ask 0.0030175462 0.0002153646 14.0113371438

τ4 duration since last bid 0.0098633631 0.0016401193 6.0138082483

τ5 ln(cumulated ask volume) -0.1833589062 0.0106635220 -17.1949667628

τ6 ln(cumulated bid volume) -0.0299650039 0.0011491461 -26.0758860838

τ7 ln(average ask volume) 0.1126181585 0.0139881571 8.0509646476

τ8 ln(average bid volume) 0.2025960135 0.0266302116 7.6077508102

τ9 ask limit price -0.0430913882 0.0026728989 -16.1215928576

τ10 bid limit price 0.0698061098 0.0036372368 19.1920716750

δ2 conditional duration 0.0496884446 0.0083512205 5.9498422775

the dynamic ACL model performs a better forecasting than the common
logit model (see table 5).

ACL Logit regression
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Table 5: The market side

Model ACD×ACL Common Logit Observed

Order Type [%] Ask
Υ̂i≤0.5

Bid
Υ̂i>0.5

Ask
Υ̂i≤0.5

Bid
Υ̂i>0.5

P
Bid
Yi=1

2.7922 54.8653 3.8586 53.7990 57.6576

Ask
Yi=0

39.5851 2.7574 3.6958 38.6466 42.3424P
42.3773 57.6227 7.5544 92.4456 100.0000

Correct forecasting 94.4504% 57.4948%

5 Conclusion

This paper develops a new bivariate modelling framework for analyzing the
arrival process of ask and bid orders in an electronic order book market.
The econometric approach consists of two parts: On the one hand side, a
modified ACD(1,1) model with a flexible Box-Tukey transformation (17)
was performed to recover the whole temporal structure of all time stamped
events which avoids the occurrence of zero-durations. On the other hand
side, a new dynamic ACL(1,1) model (18) was affixed in order to analyze
the determinants of the time varying order choice conditioned on the past
durations and additional covariates, reflecting the information flow and the
market’s activity. The main idea was to base both conditional functions on
two components jointly, one to model duration clusters, one to describe the
dynamic order type with a time dependent probability function, revealing
the order book’s continuous adjustment process. In contrast to decompos-
ition approaches, both processes are modelled simultaneously which allows
bidirectional dependence structures. It is neither a pure duration approach,
nor a strict intensity model.

Using detailed transaction data from the German XETRA system, the
empirical results show that traders obviously pay strong attention to the
order arrival process and the growing queues of the order book before de-
termining when and on which side of the market to act. Facing the available
information in the book, they develop their order placement strategies de-
pending on the current thickness of the limit order book and the speed of
the overall matching process. The inclusion of the dynamic logit component
(10) essentially surpasses the common ACD model (6) and the simple lo-
git regression (7), providing deeper insights into the traders’ dynamic order
placement strategy and the asymmetric behavior between the supply and
demand sides of the market.
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