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Abstract

Macroeconomic or financial data are often modelled with cointegration
and GARCH. Noticeable examples include those studies of price discovery,
in which stock prices of the same underlying asset are cointegrated and they
exhibit multivariate GARCH. Modifying the asymptotic theories developed
in Li, Ling and Wong (2001) and Sin and Ling (2004), this paper proposes a
WLS(weighted least squares) for the parameters of an ECM(error-correction
model). Apart from its computational simplicity, by construction, the consis-
tency of WLS is insensitive to possible misspecification in conditional variance.
Further, asymmetrically distributed deflated error is allowed, at the expense
of more involved asymptotic distributions of the statistics. Efficiency loss
relative to QMLE(quasi-maximum likelihood estimator) is discussed within
the class of LABF(locally asymptotically Brownian functional) models. The
insensitivity and efficiency of WLS in finite samples are examined through
Monte Carlo experiments. We also apply the WLS to an empirical example
of HSI(Hang Seng Index), HSIF(Hang Seng Index Futures) and TraHK(Hong
Kong Tracker Fund).
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1 Introduction

Throughout this paper, we consider an m−dimensional autoregressive (AR) process

{Yt}, which is generated by

Yt = Φ1Yt−1 + · · ·+ ΦsYt−s + εt, (1.1)

E(εt | Σt−1) = E((ε1t, . . . , εmt)
′ | Σt−1) = 0, (1.2)

where Φj’s are constant matrices, and Σt−1 is an increasing σ-algebra.

Assuming the εt’s are i.i.d., under further conditions on Φj’s (See Assumptions

2.1, 2.2 and 2.3 below), Johansen (1988) (see also Ahn and Reinsel, 1990) shows that,

although some component series of {Yt} exhibit nonstationary behaviour, there are

r linear combinations of {Yt} that are stationary. This phenomenon, which is called

cointegration in the literature of economics, was first investigated in Granger (1983)

(see also Engle and Granger, 1987). The partially nonstationary multivariate AR

model or cointegrating time series models without GARCH have been extensively

discussed over the past twenty years. Other noticeable examples include Phillips

and Durlauf (1986), Stock and Watson (1993), Johansen (1996), and Rahbek and

Mosconi (1999).

Economic time series related to financial markets often exhibit time-varying vari-

ances. As far as we know, Li, Ling and Wong (2001) (henceforth LLW (2001)) first

investigate multivariate time series that exhibit both cointegration and time-varying

variances. In LLW (2001), the heteroskedasticity part is the random coefficient AR

model [see e.g. Tsay (1987)] and thus the scope of applications is relatively limited.

Sin and Ling (2004) modify LLW (2001)’s model a bit and consider a multivariate

GARCH model first suggested by Bollerslev (1990) and widely used in many pa-

pers in the literature. More precisely, the conditional variance-covariance matrix,

denoted as Vt is modelled as DtΓDt, where Dt = diag(
√
h1t, . . . ,

√
hmt) and:

hit = ai0 +
q∑

j=1

aijε
2
it−j +

p∑

k=1

bikhit−k, (1.3)
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Γ ≡ (σij)m×m, a symmetric positive definite matrix with σii = 1. (1.4)

Following Sin and Ling (2004), this paper assumes the existence of some pseudo

true parameters of this multivariate GARCH process, which satisfies Assumptions

2.4-2.5 below. However, in view of the possible misspecification in variance (see,

for instance, the GJR model first suggested in Glosten, Jagannathan and Run-

kle, 1993 and the time-varying correlation model first suggested in Tse and Tsui,

2002), instead of a QMLE(quasi-maximum likelihood estimator), we consider a

WLS(weighted least squares), which is computationally simpler. Unlike Sin and

Ling (2004), asymmetrically distributed deflated error is allowed, at the expense of

a more involved distribution. Efficiency loss relative to QMLE is discussed within

the class of LABF(locally asymptotically Brownian functional) models.

In this paper, we first investigate the full rank and the reduced rank WLS. Using

these two estimators, we construct a Wald-type test for reduced rank. We show

that the asymptotic distribution of this test is a functional of a standard Brownian

motion and a standard normal vector with d unknown nuisance parameters, where

d ≡ m − r. The critical value can thus be simulated via Monte Carlo method. It

is expected that the test based on the WLS of process (1.1)-(1.4) is more powerful

than Johansen’s test or Reinsel-Ahn’s test which ignores GARCH.

This paper proceeds as follows. Section 2 discusses the structure of model (1.1)-

(1.4). Section 3 and section 4 derive the asymptotic distribution of the full rank

estimators and the reduced rank estimators, respectively. Section 5 devises a test

for reduced rank. The extension to asymmetric distribution, the efficiency loss, the

Monte Carlo experiments and an illustrative empirical example are discussed in the

subsequent sections. We conclude in the last section.
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2 Basic Properties of Models

Denote L as the lag operator. Refer to (1.1)-(1.2) and define Φ(L) = Im−∑s
j=1 ΦjL

j.

We first make the following assumption:

Assumption 2.1. | Φ(z) |= 0 implies that either | z |> 1 or z = 1. 2

Define Wt = Yt − Yt−1, Φ∗
j = −∑s

k=j+1 Φk and C = −Φ(1) = −(Im −∑s
j=1 Φj). By

a Taylor’s formula, Φ(L) can be decomposed as:

Φ(z) = (1 − z)Im − Cz −
s−1∑

j=1

Φ∗
j(1 − z)zj . (2.1)

Thus, we can reparameterize process (1.1) as:

Wt = CYt−1 +
s−1∑

j=1

Φ∗
jWt−j + εt. (2.2)

Following Johansen (1988,1996) and Reinsel and Ahn (1990), we can decompose

C = AB, where A and B are respectively m × r and r × m matrices of rank r.

Define d = m− r. Denote B⊥ as a d×m matrix of full rank such that BB′
⊥ = 0r×d,

B̄ = (BB′)−1B and B̄⊥ = (B⊥B
′
⊥)−1B⊥, and A⊥ as an m × d matrix of full rank

such that A′A⊥ = 0r×d, Ā = A(A′A)−1 and Ā⊥ = A⊥(A′
⊥A⊥)−1. We impose the

following condition:

Assumption 2.2. | A′
⊥(Im −∑s−1

j=1 Φ∗
j)B

′
⊥ |6= 0. 2

Assumption 2.3. E(εtε
′
t) <∞ and E(vec[εtε

′
t]vec[εtε

′
t]
′) <∞. 2

By the proof of Theorem (4.2) in Johansen (1996),

Φ̃(L)

[
(1 − L)B⊥Yt

BYt

]
= (Ā⊥, Ā)′εt, (2.3)

where Φ̃(z) = (Ā⊥, Ā)′Φ(z)(B̄′
⊥, B̄

′(1 − z)−1) is invertible for | z |< 1 + ρ for some

ρ > 0. Denote Q′ = [Q1, Q2], where Q′
1 = B⊥ and Q′

2 = B. Let P = Q−1 = [P1, P2],

where P1 = B̄′
⊥ and P2 = B̄′. Thus,

P1Q
′
1 + P2Q

′
2 = Im, Q

′
1P1 = Id, Q

′
1P2 = 0d×r, Q

′
2P1 = 0r×d and Q

′
2P2 = Ir.
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Define Zt = QYt ≡ (Z1t, Z2t)
′. As in Johansen (1988, 1996) and Ahn and Reinsel

(1990), we have the following decomposition:

Z1t = Q′
1Yt = Z1t−1 + u1t, and Z2t = Q′

2Yt = u2t, (2.4)

where ut = (u′1t, u
′
2t)

′ = ψ(L)at, ψ(L) ≡ Φ̃−1(L) and at ≡ (Ā⊥, Ā)′εt. By Assump-

tion 2.3, εt is an I(0) process. Thus, Z1t is I(1) while Z2t is I(0).

We close this section with the following assumptions on (1.3)-(1.4).

Assumption 2.4. For i = 1, . . . , m, ai0 > 0, ai1, . . . , aiq, bi1, . . . , bip ≥ 0, and

∑q
j=1 aij +

∑p
k=1 bik < 1. 2

Assumption 2.5. For i = 1, . . . , m, define ηit ≡ εt/
√
hit. All eigenvalues of

E(Ait ⊗ Ait) lie inside the unit circle, where ⊗ denotes the Kronecker product and

Ait =




ai1η
2
it . . . aiqη

2
it bi1η

2
it . . . bipη

2
it

Iq−1 0(q−1)×1 0(q−1)×p

ai1 . . . aiq bi1 . . . bip
0(p−1)×q Ip−1 0(p−1)×1


 . 2

Assumption 2.6. ηt ≡ (η1t, . . . , ηmt)
′ is symmetrically distributed. 2

3 Full Rank Estimation

We first let Xt−1 ≡ [Y ′
t−1,W

′
t−1, . . . ,W

′
t−s+1]

′, ϕ ≡ vec[C,Φ∗
1, . . . ,Φ

∗
s−1] and δ ≡

[δ′1, δ
′
2]
′, where δ1 ≡ [a′0, a

′
1, . . . , a

′
q, b

′
1, . . . , b

′
p]
′, aj ≡ [a1j , ..., amj]

′, bk ≡ [b1k, ...,

bmk]
′, j = 0, 1, ..., q, k = 1, ..., p, and δ2 ≡ ν̃(Γ), which is obtained from vec(Γ)

by eliminating the supradiagonal and the diagonal elements of Γ [see Magnus (1988,

p.27)].

Given {Yt : t = 1, · · · , n}, conditional on the initial values Ys = 0 for s ≤ 0, the

normal log-likelihood function (LF) (with a constant ignored) can be written as

l(ϕ̃, δ̃) =
n∑

t=1

l̃t and l̃t = −1

2
ε̃′tṼ

−1
t ε̃t −

1

2
ln |Ṽt|, (3.1)

where Ṽt = D̃tΓ̃D̃t. In (3.1), ε̃t and Ṽt are functions of the generic parameter (ϕ̃, δ̃).

Further denote h̃t = (h̃1t, . . . , h̃mt)
′ and ~̃ht = (h̃−1

1t , . . . , h̃
−1
mt)

′. Using the Hadamard
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product � [see Magnus and Neudecker (1988, p.27)], the score function, with respect

to ϕ̃, can be written as

∇ϕl̃t = −1

2
∇ϕh̃t(ι− w(ε̃tε̃

′
tṼ

−1
t )) � ~̃

ht + (Xt−1 ⊗ Im)Ṽ −1
t ε̃t, (3.2)

where ∇xf denotes ∂f/∂x, ι = (1, 1, . . . , 1)′m×1 and w(A) is a vector containing the

diagonal elements of the square matrix A. In Sin and Ling (2004), the score function

(3.2) is used. As one can see in that paper, the algorithm for the one-step estimator

is quite involved. More importantly, if the multivariate GARCH is misspecified-

specified and for all (ϕ̃, δ̃), Prob{E[∇ϕh̃t(ι − w(ε̃tε̃
′
tṼ

−1
t )) � ~̃

ht | Σt−1] = 0} < 1, it

is unclear what the asymptotic properties of the one-step estimator carries. In view

of that, for our WLS, we only consider the second part of the score function:

f̃t ≡ (Xt−1 ⊗ Im)Ṽ −1
t ε̃t. (3.3)

Denote Q̄∗ = diag(Q ⊗ Im, I(s−1)m2) and D̄∗ = diag(nIdm,
√
nIrm+(s−1)m2). For

any fixed positive constantK, let Θn ≡ {(ϕ̃, δ̃) : ‖D̄∗Q̄∗′−1(ϕ̃−ϕ)‖ ≤ K and ‖
√
n(δ̃−

δ)‖ ≤ K}, where (ϕ, δ) is the true parameter. Using Assumptions 2.1-2.5 and a sim-

ilar method as in Ling and Li (1998), the derivative of f̃t on Θn can be simplified as

follows:

D̄∗−1Q̄∗(
n∑

t=1

∇ϕ′ f̃t)Q̄
∗′D̄∗−1 =

n∑

t=1

D̄∗−1Q̄∗F̃tQ̄
∗′D̄∗−1 + op(1), (3.4)

where op(1) denotes convergence to zero in probability, and F̃t ≡ −(Xt−1X
′
t−1⊗Ṽ −1

t ).

Similar to the arguments in Ling et al. (2003) and Ling and Li (2003), we can

show that the following results hold uniformly in Θn:

n∑

t=1

D̄∗−1Q̄∗(F̃t − Ft)Q̄
∗′D̄∗−1 = op(1), (3.5)

n∑

t=1

D̄∗−1Q̄∗(f̃t − ft) =
n∑

t=1

D̄∗−1Q̄∗Ft(ϕ̃− ϕ) + op(1), (3.6)

In practice, we first find an initial estimator (ϕ̃, δ̃) such that D̄∗Q̄∗′−1(ϕ̃−ϕ) = Op(1)

and
√
n(δ̃ − δ) = Op(1). For instance, it can be obtained following the procedure

6



in LLW (2001) and Ling et al. (2003). Using this initial estimator and a one-step

iteration as in Ling and Li (2003), we obtain a new estimator (ϕ̇, δ̇) such that:

D̄∗Q̄∗′−1(ϕ̇− ϕ) = −(
n∑

t=1

D̄∗−1Q̄∗FtQ̄
∗′D̄∗−1)−1(

n∑

t=1

D̄∗−1Q̄∗ft) + op(1). (3.7)

Let (W ′
m(u), W ∗′

m(u))′ be a 2m−dimensional Brownian motion (BM) with the co-

variance matrix:

uΩ ≡ u

(
V∗ Im
Im Ω∗

1

)
,

where V∗ = Eεtε
′
t, and Ω∗

1 = E(V −1
t εtε

′
tV

−1
t ). LetBd(u) = Ω−1/2

a1
[Id, 0] Ω1/2

a V
−1/2
∗ Wm(u),

where Ωa = E(ata
′
t) and Ωa1 = [Id, 0]Ωa[Id, 0]′. We first give the following basic

lemma, which resembles Lemma 3.1 in Sin and Ling (2004).

Lemma 3.1. Suppose Assumptions 2.1-2.6 hold. Then

(a)
n∑

t=1

D̄∗−1Q̄∗∇ϕlt −→L
{
vec[(

∫ 1

0
Bd(u)dW

∗
m(u)′)′Ω1/2

a1
ψ′

11]
′, [N(0,Ω∗

2)]
′
}′
,

(b) −
n∑

t=1

D̄∗−1Q̄∗FtQ̄
∗D̄∗−1 −→L diag

{
ψ11Ω

1/2
a1

∫ 1

0
Bd(u)Bd(u)

′Ω1/2
a1
ψ′

11 ⊗ Ω1,Ω2

}
,

where −→L denotes convergence in distribution, ψ11 ≡ [Id, 0](
∑∞

k=1 ψk)[Id, 0]′, Ω1 ≡

E(V −1
t ), Ω2 ≡ E(Ut−1U

′
t−1 ⊗ V −1

t ), Ω∗
2 ≡ E(Ut−1U

′
t−1 ⊗ V −1

t εtε
′
tV

−1
t ), and Ut =

[(BYt)
′,W ′

t , · · · ,W ′
t−s+2]

′. 2

The following theorem comes from Lemma 3.1.

Theorem 3.1. Under the assumptions in Lemma 3.1,

(a) n(Ċ − C)P1 −→L Ω−1
1 M∗,

(b)
√
nvec[(Ċ − C)P2, (Φ̇

∗
1 − Φ∗

1), . . . , (Φ̇
∗
s−1 − Φ∗

s−1)] −→L N(0,Ω−1
2 Ω∗

2Ω
−1
2 ),

where M∗ = (
∫ 1
0 Bd(u)dW

∗
m(u)′)′(

∫ 1
0 Bd(u)Bd(u)

′du)−1Ω−1/2
a1

ψ−1
11 . 2

When E(εtε
′
t | Σt−1) = Vt, Ω∗

1 = Ω1 and Ω∗
2 = Ω2. On the other hand, when the

hit’s are not constant, Ċ is more efficient than the LSE of C in Ahn and Reinsel

(1990), in the sense discussed in Ling and McAleer (2003b). Moreover, the simplic-

ity of the distributions in Theorem 3.1(a)-(b) relies on the symmetry assumption

(Assumption 2.6). Detailed discussions on these and the related issues can be found

in subsequent sections below.
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4 Reduced Rank Estimation

We first rewrite (2.2) in a reduced rank form:

Wt = ABYt−1 +
s−1∑

j=1

Φ∗
jWt−j + εt, (4.1)

where A and B are defined as in section 2. Denote α = [α′
1, α

′
2]
′ with α1 ≡ vec[B]

and α2 ≡ vec[A,Φ∗
1, . . . ,Φ

∗
s−1]. In the next sub-section, we first show the asymptotic

properties of Johansen’s estimator, which is used as an initial estimator for the

reduced rank estimation that incorporates GARCH.

4.1 Initial Estimator for Parameters in AR Part

Johansen’s estimator is essentially the QMLE which ignores the possible GARCH,

i.e., the maximizer of the LF in (3.1) with Vt(ϕ̃, δ̃) replaced by a constant ma-

trix Ṽ∗. Denote this estimator as α̂ = [α̂′
1, α̂

′
2]
′ with α̂1 = vec[B̂] and α̂2 =

vec[Â, Φ̂∗
1, . . . , Φ̂

∗
s−1]. Similar to Lemma 13.2 in Johansen (1996), we obtain the

asymptotic distributions of the normalized estimators for α1 and α2 as follows. The

details are omitted.

Theorem 4.1. Suppose Assumptions 2.1-2.5 hold. Then

(a) n((B̂B̄′)−1B̂ − B)P1 −→L (A′V −1
∗ A)−1A′V −1

∗ (A⊥, A)M,

(b)
√
nvec[(Â(B̂B̄′) − A), (Φ̂∗

1 − Φ∗
1), . . . , (Φ̂

∗
s−1 − Φ∗

s−1)] −→L N(0,Σ−1
2 Σ∗

2Σ
−1
2 ),

where M = Ω1/2
a (

∫ 1
0 Bd(u)dBm(u)′)′(

∫ 1
0 Bd(u)Bd(u)

′du)−1Ω−1/2
a1

ψ−1
11 ,

Bm(u) = V
−1/2
∗ Wm(u), Σ2 = E(Ut−1U

′
t−1 ⊗ Im), Σ∗

2 = E(Ut−1U
′
t−1 ⊗ εtε

′
t), and the

remaining variables are defined as in Lemma 3.1. 2

It should be emphasized that the results above does not rely on the symme-

try assumption (Assumption 2.6). From Theorem 4.1(b), one can see that in case

of conditional heteroskedasticity, E(εtε
′
t | Σt−1) 6= V∗, a constant matrix, the as-

ymptotic distribution of the normalized estimator for α2 is different from that in

Johansen (1988,1996). In fact, the distribution here is also different from that in
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Theorem 4.1(b) of Sin and Ling (2004), who assume correct specification in vari-

ance. On the other hand, one can see from Theorem 4.1(a) that the asymptotic

distribution of (B̂B̄′)−1B̂P1 is the same as that in Johansen (1988,1996), regardless

of the presence of GARCH. As in Ahn and Reinsel (1990), if the components of Yt

can be arranged so that the last d components are non-cointegrated, then we can

impose the structure B = [Ir, B0]. Decompose B̂ = [B̂1, B̂2], where B̂1 is rxr and

B̂2 is rxd. Provided that B̂1 is invertible, it is easy to show that

n(B̂−1
1 B̂2 −B0) −→L (A′V −1

∗ A)−1A′V −1
∗ (A⊥, A)MP−1

21 , (4.2)

√
nvec[(ÂB̂1 − A), (Φ̂∗

1 − Φ∗
1), . . . , (Φ̂

∗
s−1 − Φ∗

s−1)] −→L N(0,Σ−1
2 Σ∗

2Σ
−1
2 ), (4.3)

where P21 is a d × d matrix such that [0d×r, Id]P = [P21, P22]. The distribution in

(4.2) is exactly the same as that in Ahn and Reinsel (1990), if their Jordan canonical

form applies and A = P2 up to an rxr invertible matrix.

4.2 Reduced Rank Estimation that Incorporates GARCH

This sub-section uses Johansen’s estimator α̂ and some estimator δ̃ to obtain a new

reduced rank estimation that incorporates GARCH. The LF based on the error-

correction form (4.1) is the same as that in (3.1), but now it is a function of the

generic parameter α̃ and δ̃. Denote U∗
t ≡ [(Yt ⊗ A′)′, (Ut ⊗ Im)′]′. Similar to (3.2),

∇α l̃t = ∇αlt(α̃, δ̃) = −1

2
(∇αh̃t)(ι− w(ε̃tε̃

′
tṼ

−1
t )) � ~̃ht + Ũ∗

t−1Ṽ
−1
t ε̃t. (4.4)

For the same reasons discussed in Section 3, our WLS only considers the second

term in (4.4), that is:

r̃t ≡ (r̃′1t, r̃
′
2t)

′ ≡ Ũ∗
t−1Ṽ

−1
t ε̃t. (4.5)

Denote D̄∗∗ ≡ diag(nIrd,
√
nIrm+(s−1)m2) and Q̄∗∗ ≡ diag((Q′

1⊗ Ir), Irm+(s−1)m2).

For any fixed positive constant K, let Ξn ≡ {(α̃, δ̃) : ‖D̄∗∗Q̄∗∗′−1(α̃ − α)‖ ≤

K and ‖
√
n(δ̃ − δ)‖ ≤ K}. Similar to (3.4), on Ξn, the derivative of r̃t can be
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simplified as follows:

D̄∗∗−1Q̄∗∗
n∑

t=1

∇α′ r̃tQ̄
∗∗′D̄∗∗−1 = D̄∗∗−1Q̄∗∗

n∑

t=1

R̃tQ̄
∗∗′D̄∗∗−1 + op(1), (4.6)

where R̃t = diag{R̃1t, R̃2t}, R̃1t = −(Yt−1Y
′
t−1⊗ Ã′Ṽ −1

t Ã), R̃2t = −(Ũt−1Ũ
′
t−1⊗ Ṽ −1

t ).

Similar to (3.5)-(3.6), the following results hold uniformly in Ξn:

D̄∗∗−1Q̄∗∗
n∑

t=1

(R̃t −Rt)Q̄
∗∗′D̄∗∗−1 = op(1), (4.7)

D̄∗∗−1Q̄∗∗
n∑

t=1

(r̃t − rt) = D̄∗∗−1Q̄∗∗
n∑

t=1

Rt(α̃− α) + op(1), (4.8)

where Rt and rt are R̃t and r̃t evaluated at the true parameters α and δ. Conse-

quently, with the initial estimators α̂ and δ̃, we perform a one-step iteration:

α̇1 = α̂1 − (
n∑

t=1

R1t|α̂,δ̃)
−1(

n∑

t=1

r1t|α̂,δ̃), (4.9)

α̇2 = α̂2 − (
n∑

t=1

R2t|α̂,δ̃)
−1(

n∑

t=1

r2t|α̂,δ̃). (4.10)

The asymptotic distributions of the normalized estimators for α are given as follows.

Theorem 4.2. Suppose the assumptions in Lemma 3.1 hold. Then

(a) n((ḂB̄′)−1Ḃ − B)P1 −→L (A′Ω1A)−1A′M∗,

(b)
√
nvec[(Ȧ(ḂB̄′) − A), (Φ̇∗

1 − Φ∗
1), . . . , (Φ̇

∗
s−1 − Φ∗

s−1)] −→L N(0,Ω−1
2 Ω∗

2Ω
−1
2 ),

where M∗ is defined as in Theorem 3.1, and the remaining variables are defined as

in Lemma 3.1. 2

As one can see in a section below, in fact the result in Theorem 4.2(b) does

not rely on the symmetry assumption (Assumption 2.6). Decompose Ḃ = [Ḃ1, Ḃ2],

where Ḃ1 is rxr and Ḃ2 is rxd. If the components of Yt can be arranged as in Ahn

and Reinsel (1990) such that the last d components are non-cointegrated, and Ḃ1 is

invertible, it is easy to show that

n(Ḃ−1
1 Ḃ2 −B0) −→L (A′Ω1A)−1A′M∗P−1

21 , (4.11)

√
nvec[(ȦḂ1 − A), (Φ̇∗

1 − Φ∗
1), . . . , (Φ̇

∗
s−1 − Φ∗

s−1)] −→L N(0,Ω−1
2 Ω∗

2Ω
−1
2 ), (4.12)
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where P21 is defined around (4.2). The distribution in (4.11) is essentially the same

as that in LLW (2001), with slightly different definitions of Ω1 and W ∗
m(u) because

of the different ARCH-type errors and we do not assume correct specification in

variance.

5 Testing for Reduced Rank

This section applies the asymptotic distributions in Theorems 3.1 and 4.2 to con-

struct tests for reduced rank. The null and the alternative hypotheses are:

H0 : rank(C) = r < m vs Ha : rank(C) = m. (5.1)

We first consider the Wald-type test statistic:

WG ≡ vec(Ċ − ȦḂ)′(−
n∑

t=1

F̃t)vec(Ċ − ȦḂ), (5.2)

Recall that Ċ is the full rank estimator defined in Section 3, Ȧ and Ḃ are the reduced

rank estimators defined in Sub-section 4.2, while F̃t = −(Xt−1X
′
t−1 ⊗ Ṽ −1

t ), where

Ṽt is evaluated at some estimator on Θn or Ξn. See Sections 3 and 4. The following

lemma gives the asymptotic distribution of WG.

Lemma 5.1. Suppose the assumptions in Lemma 3.1 hold. Then under the null

H0, the Wald-type test for rank,

WG −→L tr[(
∫ 1

0
Bd(u)dV

∗
d (u)′)′(

∫ 1

0
Bd(u)Bd(u)

′du)−1(
∫ 1

0
Bd(u)dV

∗
d (u)′)],

where V ∗
d (u) = ΥBd(u)+[(A′

⊥Ω−1
1 A⊥)−1/2A′

⊥Ω−1
1 Ω∗

1Ω
−1
1 A⊥(A′

⊥Ω−1
1 A⊥)−1/2−ΥΥ′]1/2

Vd(u), Υ = (A′
⊥Ω−1

1 A⊥)1/2(A′
⊥V∗A⊥)−1/2, and (B′

d(u), V
′
d(u))

′ is a 2d−dimensional

standard Brownian motion. 2

When Ω∗
1 = Ω1, the distribution of WG can be simplified as follows.

Theorem 5.1. If the assumptions in Lemma 5.1 hold and Ω∗
1 = Ω1, then

WG −→L tr{[ζ(Id − Λd)
1/2 + ΦΛ

1/2
d ]′[ζ(Id − Λd)

1/2 + ΦΛ
1/2
d ]}, (5.3)

11



where Λd is a diagonal matrix containing the d eigenvalues of (Id − ΥΥ′), Φ ∼

N(0, Id) and independent of ζ = [
∫ 1
0 Bd(u)Bd(u)

′du]−1/2
∫ 1
0 Bd(u)dBd(u)

′. 2

Some of the critical values are tabulated in Appendix A. When the εt’s are

conditional homoskedastic, Ω∗
1 = Ω1 = V −1

∗ and hence Λd = 0d×d. The distribution

of WG is exactly the same as that in Johansen (1988,1996) and Reinsel and Ahn

(1992). On the other hand, when Ω∗
1 6= Ω1, we may define a modified Wald-type

test statistic:

W ∗
G ≡ vec(Ċ∗ − ȦḂ∗)′(−

n∑

t=1

F̃ ∗
t )vec(Ċ∗ − ȦḂ∗), (5.4)

where vec(Ċ∗) = (
∑n

t=1 F̃
∗
t )−1(

∑n
t=1 F̃t)vec(Ċ), Ḃ∗ = (Ȧ′Ω̇∗

1Ȧ)−1(Ȧ′Ω̇1Ȧ)Ḃ. F̃ ∗
t =

−(Xt−1X
′
t−1 ⊗ Ṽ −1

t ε̇tε̇
′
tṼ

−1
t ). The following corollary gives the asymptotic distribu-

tion of W ∗
G.

Corollary 5.1. Suppose the assumptions in Lemma 5.1 hold.

W ∗
G −→L tr{[ζ(Id − Λ∗

d)
1/2 + ΦΛ

∗1/2
d ]′[ζ(Id − Λ∗

d)
1/2 + ΦΛ

∗1/2
d ]}, (5.5)

where Λ∗
d is a diagonal matrix containing the d eigenvalues of (Id − (A′

⊥Ω∗−1
1 A⊥)1/2

· (A′
⊥V∗ A⊥)−1(A′

⊥Ω∗−1
1 A⊥)1/2). 2

The critical values of the distribution in (5.3) can be simulated via Monte Carlo

method. Using 100,000 replications and sample size, n = 2, 000 of i.i.d. normal

processes, we simulate the critical values when d = 1 and d = 2 and (λ1, λ2) range

from 0.0 to 0.9. (λ1, λ2) are the diagonal elements of Λ2 (see Theorem 5.1) or

those of Λ∗
2 (see Corollary 5.1). The critical values are given in Appendix A. For

intermediate values of (λ1, λ2), the critical values could be obtained by interpolation.

Refer to Theorem 5.1 and Corollary 5.1. In actual empirical applications, one

needs to estimate the d eigenvalues of Id−(A′
⊥Ω−1

1 A⊥)1/2(A′
⊥V∗A⊥)−1(A′

⊥Ω−1
1 A⊥)1/2,

or those of Id − (A′
⊥Ω∗−1

1 A⊥)1/2(A′
⊥V∗A⊥)−1(A′

⊥Ω∗−1
1 A⊥)1/2. By the definition of V∗

(see around (3.10) above), it can be consistently estimated by n−1∑n
t=1 ε̇tε̇t

′, where ε̇t

is the residual in Sub-section 4.2. Similarly, by the definition of A⊥ (see around (2.2)

12



above), it can be consistently estimated by (Im−c(Ȧ′c)−1Ȧ′)c⊥, where c = (Ir, 0rxd)
′

and c⊥ = (0dxr, Id)
′. See p.48 of Johansen (1996) for details. Lastly, refer to the

definitions of Ω1 and Ω∗
1 (see Lemma 3.1 and around (3.10) respectively), they can

respectively be consistently estimated by 1
n

∑n
t=1 Ṽ

−1
t and 1

n

∑n
t=1 Ṽ

−1
t ε̇tε̇t

′Ṽ −1
t .

6 Conclusions

Macroeconomic or financial data are often modelled with cointegration and GARCH.

Noticeable examples include those studies of price discovery, in which stock prices of

the same underlying asset are cointegrated and they exhibit multivariate GARCH.

Modifying the asymptotic theories developed in Li, Ling and Wong (2001) and Sin

and Ling (2004), this paper proposes a WLS(weighted least squares) for the parame-

ters of an ECM(error-correction model). Apart from its computational simplicity,

by construction, the consistency of WLS is insensitive to possible misspecification in

conditional variance. Further, asymmetrically distributed deflated error is allowed,

at the expense of more involved asymptotic distributions of the statistics. Efficiency

loss relative to QMLE(quasi-maximum likelihood estimator) is discussed within the

class of LABF(locally asymptotically Brownian functional) models. The insensi-

tivity and efficiency of WLS in finite samples are examined through Monte Carlo

experiments. We also apply the WLS to an empirical example of HSI(Hang Seng

Index), HSIF(Hang Seng Index Futures) and TraHK(Hong Kong Tracker Fund).
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A Appendix: Critical Values

TABLE A.1

Quantiles of the Limiting Distribution (5.3) or (5.5)

d = 1, no Constant Term

α−th simulated quantiles
λ1 .500 .750 .800 .850 .900 .950 .975 .990

0.0 0.602 1.550 1.891 2.343 2.995 4.153 5.357 7.018
0.1 0.575 1.539 1.869 2.315 2.978 4.140 5.365 6.941
0.2 0.553 1.511 1.850 2.308 2.964 4.138 5.362 6.939
0.3 0.533 1.489 1.824 2.282 2.941 4.108 5.305 6.921
0.4 0.515 1.462 1.800 2.254 2.914 4.083 5.286 6.929
0.5 0.499 1.441 1.770 2.223 2.883 4.043 5.242 6.895
0.6 0.490 1.414 1.743 2.197 2.845 4.013 5.225 6.824
0.7 0.481 1.385 1.718 2.171 2.811 3.963 5.174 6.839
0.8 0.470 1.364 1.693 2.139 2.782 3.920 5.097 6.774
0.9 0.461 1.354 1.674 2.105 2.746 3.867 5.047 6.718
1.0 0.455 1.326 1.649 2.078 2.711 3.827 5.068 6.633
The table values were computed from 100, 000 simulations with n = 2, 000.
λ1 is the eigenvalue of Λ1 in (5.3) or Λ∗

1 in (5.5).
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TABLE A.2

Quantiles of the Limiting Distribution (5.3) or (5.5)

d = 2, no Constant Term

α−th simulated quantiles
λ1 λ2 .500 .750 .800 .850 .900 .950 .975 .990

0.0 0.0 5.508 7.844 8.522 9.365 10.479 12.286 14.065 16.278
0.0 0.1 5.405 7.739 8.413 9.267 10.386 12.237 13.971 16.144
0.0 0.2 5.298 7.645 8.313 9.159 10.312 12.158 13.886 16.041
0.0 0.3 5.189 7.541 8.210 9.062 10.234 12.073 13.793 15.986
0.0 0.4 5.068 7.440 8.112 8.959 10.119 11.987 13.722 15.895
0.0 0.5 4.952 7.330 8.008 8.865 10.003 11.887 13.659 15.802
0.0 0.6 4.839 7.216 7.909 8.744 9.906 11.789 13.542 15.716
0.0 0.7 4.726 7.112 7.783 8.647 9.796 11.676 13.440 15.623
0.0 0.8 4.619 6.981 7.668 8.525 9.680 11.559 13.354 15.530
0.0 0.9 4.504 6.867 7.542 8.410 9.551 11.446 13.230 15.435
0.0 1.0 4.393 6.745 7.417 8.268 9.443 11.306 13.172 15.450
0.1 0.1 5.287 7.635 8.325 9.172 10.295 12.140 13.885 16.105
0.1 0.2 5.178 7.534 8.229 9.079 10.217 12.071 13.817 15.991
0.1 0.3 5.058 7.440 8.123 8.979 10.125 11.987 13.736 15.920
0.1 0.4 4.945 7.341 8.023 8.865 10.018 11.902 13.612 15.806
0.1 0.5 4.832 7.224 7.920 8.750 9.919 11.818 13.539 15.643
0.1 0.6 4.718 7.108 7.791 8.643 9.808 11.692 13.422 15.552
0.1 0.7 4.605 6.987 7.677 8.533 9.679 11.578 13.296 15.482
0.1 0.8 4.498 6.856 7.559 8.413 9.561 11.434 13.179 15.337
0.1 0.9 4.382 6.749 7.430 8.290 9.455 11.284 13.064 15.247
0.1 1.0 4.278 6.627 7.307 8.157 9.307 11.147 12.950 15.229
0.2 0.2 5.070 7.445 8.137 8.987 10.116 11.973 13.707 15.898
0.2 0.3 4.945 7.336 8.037 8.881 10.028 11.879 13.601 15.812
0.2 0.4 4.828 7.225 7.916 8.761 9.916 11.791 13.501 15.647
0.2 0.5 4.711 7.111 7.807 8.658 9.819 11.691 13.383 15.556
0.2 0.6 4.596 6.998 7.682 8.532 9.691 11.566 13.298 15.405
0.2 0.7 4.488 6.881 7.560 8.415 9.579 11.433 13.191 15.319
0.2 0.8 4.383 6.753 7.435 8.288 9.453 11.293 13.027 15.191
0.2 0.9 4.266 6.621 7.309 8.165 9.322 11.141 12.902 15.023
0.2 1.0 4.160 6.502 7.190 8.031 9.182 10.985 12.768 15.020
0.3 0.3 4.830 7.232 7.929 8.781 9.931 11.752 13.491 15.702
0.3 0.4 4.717 7.118 7.809 8.657 9.816 11.669 13.411 15.609
0.3 0.5 4.598 7.001 7.688 8.540 9.693 11.570 13.285 15.471
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TABLE A.2 (Continued)

α−th simulated quantiles
λ1 λ2 .500 .750 .800 .850 .900 .950 .975 .990

0.3 0.6 4.489 6.877 7.570 8.415 9.565 11.432 13.179 15.318
0.3 0.7 4.369 6.758 7.442 8.281 9.442 11.296 13.051 15.202
0.3 0.8 4.263 6.636 7.302 8.160 9.310 11.158 12.897 15.021
0.3 0.9 4.152 6.505 7.187 8.042 9.163 11.010 12.743 14.870
0.3 1.0 4.052 6.374 7.045 7.882 9.046 10.819 12.592 14.853
0.4 0.4 4.600 7.006 7.695 8.549 9.707 11.557 13.290 15.510
0.4 0.5 4.486 6.877 7.577 8.420 9.576 11.438 13.180 15.374
0.4 0.6 4.373 6.760 7.444 8.287 9.440 11.310 13.061 15.231
0.4 0.7 4.255 6.631 7.318 8.148 9.313 11.171 12.881 15.087
0.4 0.8 4.150 6.506 7.179 8.012 9.176 11.024 12.733 14.928
0.4 0.9 4.040 6.378 7.050 7.883 9.018 10.847 12.567 14.747
0.4 1.0 3.941 6.233 6.911 7.735 8.875 10.678 12.395 14.651
0.5 0.5 4.376 6.751 7.437 8.298 9.444 11.322 13.053 15.298
0.5 0.6 4.261 6.625 7.299 8.171 9.310 11.176 12.919 15.115
0.5 0.7 4.151 6.497 7.178 8.016 9.177 11.049 12.759 14.954
0.5 0.8 4.036 6.362 7.039 7.870 9.030 10.854 12.567 14.820
0.5 0.9 3.937 6.235 6.907 7.727 8.866 10.693 12.398 14.612
0.5 1.0 3.836 6.098 6.758 7.588 8.685 10.541 12.202 14.486
0.6 0.6 4.152 6.495 7.161 8.015 9.153 11.035 12.781 14.993
0.6 0.7 4.045 6.356 7.027 7.874 9.015 10.894 12.580 14.809
0.6 0.8 3.930 6.214 6.890 7.719 8.857 10.713 12.401 14.622
0.6 0.9 3.828 6.086 6.749 7.577 8.698 10.529 12.218 14.480
0.6 1.0 3.733 5.959 6.612 7.428 8.512 10.358 12.002 14.298
0.7 0.7 3.936 6.213 6.885 7.721 8.847 10.719 12.432 14.668
0.7 0.8 3.827 6.082 6.738 7.564 8.688 10.555 12.247 14.435
0.7 0.9 3.724 5.933 6.598 7.413 8.520 10.353 12.036 14.259
0.7 1.0 3.630 5.811 6.464 7.251 8.347 10.151 11.794 14.091
0.8 0.8 3.728 5.934 6.586 7.400 8.526 10.342 12.053 14.255
0.8 0.9 3.626 5.791 6.434 7.240 8.345 10.144 11.857 14.064
0.8 1.0 3.528 5.666 6.303 7.084 8.154 9.952 11.588 13.825
0.9 0.9 3.531 5.655 6.286 7.071 8.166 9.932 11.656 13.770
0.9 1.0 3.446 5.521 6.142 6.913 7.972 9.703 11.390 13.553
1.0 1.0 3.359 5.378 5.977 6.734 7.777 9.471 11.120 13.264
The table values were computed from 100, 000 simulations with n = 2, 000.
λ1 ≤ λ2 are the eigenvalues of Λ2 in (5.3) or Λ∗

2 in (5.5).
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B Appendix: Technical Proofs

Lemma B.1. Under the assumptions in Theorem 4.2, it follows that

(a) (B̂B̄′)−1(Ḃ − B̂) = Op(n
−1/2),

(b) Â(ḂB̄′) = Â(B̂B̄′) +Op(n
−1/2) = A +Op(n

−1/2),

(c) (ḂB̄′)−1B̂P1 = (B̂B̄′)−1B̂P1 +Op(n
−3/2) = BP1 +Op(n

−1),

(d) (ḂB̄′)−1B̂P2 = (B̂B̄′)−1B̂P2 +Op(n
−1/2) = BP2 +Op(n

−1/2). 2

Proof. (a). We first denote Dα1 = diag(nIrd,
√
nIr2) and Q̂∗∗ = Q(Im⊗(B̂B̄′)′),

with Q = (Q⊗Ir). Also denote α̂1 = vec(B̂), α̌1 = vec((B̂B̄′)−1B̂) and α̇1 = vec(Ḃ).

α̂2, α̌2 and α̇2 are defined accordingly. α̂, α̌ and α̇ are also defined accordingly. Since

Q̂∗∗′−1 = (P ′ ⊗ Ir)(Im ⊗ (B̂B̄′)−1), we have

(Im ⊗ (B̂B̄′)−1)(α̇1 − α̂1) = Q′D−1
α1
Dα1(P

′ ⊗ Ir)(Im ⊗ (B̂B̄′)−1)(α̇1 − α̂1)

= Q′D−1
α1

[Dα1Q̂
∗∗′−1(α̇1 − α̂1)].

As Q′D−1
α1

= O(n−1/2), it suffices to show Dα1Q̂
∗∗′−1(α̇1 − α̂1) = Op(1). By (4.9),

Dα1Q̂
∗∗′−1(α̇1 − α̂1)

= −[
n∑

t=1

D−1
α1
Q̂∗∗(R1t|α̂,δ̇)Q̂

∗∗′D−1
α1

]−1[
n∑

t=1

D−1
α1
Q̂∗∗(r1t|α̂,δ̇)]

= −[
n∑

t=1

D−1
α1
Q(R1t|α̌,δ̇)Q

′D−1
α1

]−1[
n∑

t=1

D−1
α1
Q(r1t|α̌,δ̇)].

By Theorem 4.1 and Theorem 3.1(c), n(α̌1 − α1) = Op(1),
√
n(α̌2 − α2) = Op(1),

and
√
n(δ̇ − δ) = Op(1). Similar to the arguments for (4.7), it follows that:

n∑

t=1

D−1
α1
Q(R1t|α̌,δ̇)Q

′D−1
α1

=
n∑

t=1

D−1
α1
QR1tQ′D−1

α1
+ op(1). (B. 1)

On the other hand, by a Taylor’s expansion and (B.1), with R∗
1t and r∗1t being

evaluated at a mid-point of (α̌, δ̇) and (α, δ),

n∑

t=1

D−1
α1
Q(r1t|α̌,δ̇)
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=
n∑

t=1

D−1
α1
Qr1t +

n∑

t=1

D−1
α1
Q(R∗

1t)(α̌1 − α1) +
n∑

t=1

D−1
α1
Q(∇α′

2
r∗1t)(α̌2 − α2)

=
n∑

t=1

D−1
α1
Q1r1t + [

n∑

t=1

D−1
α1
QR1tQ′D−1

α1
+ op(1)]

1

n
Dα1(P

′ ⊗ Ir)[n(α̌1 − α1)]

+[
1√
n

n∑

t=1

D−1
α1
Q(∇α′

2
r∗1t)]

√
n(α̌2 − α2). (B. 2)

It is not difficult to show that 1√
n

∑n
t=1D

−1
α1
Q(∇α′

2
r∗1t) is Op(1). So is the RHS of

(B.2). By Lemmas 3.1(a)-(b), (B.1) and (B.2), (a) holds.

(b). By the
√
n-consistency of Â(B̂B̄′) for A, and (a) of this lemma,

Â(ḂB̄′) = Â(B̂B̄′) + Â(B̂B̄′)(B̂B̄′)−1(Ḃ − B̂)B̄′ = Â(B̂B̄′) +Op(1)Op(n
−1/2).

Thus, (b) holds.

(c) and (d). Denote B̌ = (B̂B̄′)−1B̂.

(ḂB̄′)−1B̂ = [(B̂B̄′)−1ḂB̄′]−1(B̂B̄′)−1B̂ = [(B̂B̄′)−1ḂB̄′]−1B̌. (B. 3)

Using the formula dF−1 = −F−1(dF )F−1 for the r×r matrix F with F (x) = [xB̄]−1,

and applying a Taylor’s expansion to [(B̂B̄′)−1ḂB̄′]−1 around B̌B̄′, we have

[(B̂B̄′)−1ḂB̄′]−1 = [B̌B̄′]−1 − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1,

where B∗ lies between (B̂B̄′)−1Ḃ and B̌. Therefore, the RHS of (B.3) equals:

[(B̂B̄′)−1B̂B̄′]−1(B̂B̄′)−1B̂ − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌

= (B̂B̄′)−1B̂ − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌. (B. 4)

By (a) of this lemma, (B̂B̄′)−1Ḃ − B̌ = Op(n
−1/2). From this, we can show that

[B∗B̄′]−1 = Op(1). B̄ and B̌ are also OP (1). By (B.4), (d) holds. By Theorem 4.1,

B̌P1 = Op(n
−1) because BP1 = 0. By (B.4),

[(B̂B̄′)−1B̂B̄′]−1(B̂B̄′)−1B̂P1 − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌P1

= (B̂B̄′)−1B̂P1 +Op(n
−3/2).

Thus, (c) holds. This completes the proof. 2
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Proof of Theorem 4.2. Denote Q̇∗∗
1 = (Q′

1 ⊗ Ir)(Im ⊗ (ḂB̄′)′), Q̇∗∗
2 =

diag((ḂB̄′)−1 ⊗ Im, I(s−1)m2), ὰ1 = vec((ḂB̄′)−1B̂), ὰ2 = vec[Â(ḂB̄′), Φ̂∗
1, . . . , Φ̂

∗
s−1],

and ὰ = [ὰ′
1, ὰ

′
2]
′. By Lemmas B.1(b)-(c), (ὰ, δ̇) ∈ Ξn. Thus by (4.7),

n−2
n∑

t=1

Q̇∗∗
1 (R1t|α̂,δ̇)Q̇

∗∗′
1 = n−2

n∑

t=1

(Q′
1 ⊗ Ir)(R1t|ὰ,δ̇)(Q1 ⊗ Ir)

= n−2
n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir) + op(1), (B. 5)

n−1
n∑

t=1

Q̇∗∗
2 (R2t|α̂,δ̇)Q̇

∗∗′
2 = n−1

n∑

t=1

(R2t|ὰ,δ̇) = n−1
n∑

t=1

R2t + op(1). (B. 6)

Refer to (4.6). Due to the block-diagonality of R̃t, by (4.8),

1

n

n∑

t=1

Q̇∗∗
1 (r1t|α̂,δ̇) =

1

n

n∑

t=1

(Q′
1 ⊗ Ir)(r1t|ὰ,δ̇)

=
1

n

n∑

t=1

(Q′
1 ⊗ Ir)r1t + (

1

n

n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir))(P

′
1 ⊗ Ir)(ὰ1 − α1) + op(1), (B. 7)

1√
n

n∑

t=1

Q̇∗∗
2 (r2t|α̂,δ̇) =

1√
n

n∑

t=1

(r2t|ὰ,δ̇)

=
1√
n

n∑

t=1

r2t + (
1√
n

n∑

t=1

R2t)(ὰ2 − α2) + op(1). (B. 8)

(a). Recall that Q̇∗∗′−1
1 α̂1 = (P ′

1 ⊗ Ir)ὰ1. By (4.9), (B.5) and (B.7),

nQ̇∗∗′−1
1 α̇1 = nQ̇∗∗′−1

1 α̂1 − [n−2
n∑

t=1

Q̇∗∗
1 (R1t|α̂,δ̇)Q̇

∗∗′
1 ]−1[n−1

n∑

t=1

Q̇∗∗
1 (r1t|α̂,δ̇)]

= n(P ′
1 ⊗ Ir)ὰ1 − [n−2

n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir)]

−1[n−1
n∑

t=1

(Q′
1 ⊗ Ir)r1t]

−n(P ′
1 ⊗ Ir)(ὰ1 − α1) + op(1)

= n(P ′
1 ⊗ Ir)α1 − [

1

n2

n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir)]

−1[
1

n

n∑

t=1

(Q′
1 ⊗ Ir)r1t]

+op(1). (B. 9)

Note that Q̇∗∗′−1
1 α̇1−(P ′

1⊗Ir)α1 = vec[((ḂB̄′)−1Ḃ−B)P1]. By (B.9) and Lemma 3.1(a)-

(b), (a) holds.

(b). By (4.10), (B.6) and (B.8),

√
nQ̇∗∗′−1

2 α̇2 =
√
nQ̇∗∗′−1

2 α̂2 − [n−1
n∑

t=1

Q̇∗∗
2 (R2t|α̂,δ̇)Q̇

∗∗′
2 ]−1[n−1/2

n∑

t=1

Q̇∗∗
2 (r2t|α̂,δ̇)]
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=
√
nὰ2 − [n−1

n∑

t=1

R2t]
−1[n−1/2

n∑

t=1

r2t] −
√
n(ὰ2 − α2) + op(1)

=
√
nα2 − [n−1

n∑

t=1

R2t]
−1[n−1/2

n∑

t=1

r2t] + op(1). (B. 10)

By (B.10) and Lemma 3.1(a)-(b), (b) holds. This completes the proof. 2

Proof of Lemma 5.1. Let ϕ̇∗ = vec[CP1, ĊP2, Φ̇
∗
1, · · · , Φ̇∗

s−1], and l∗(ϕ̇∗, δ̇) be

l(ϕ̇, δ̇) with ĊP1Z1t−1 replaced by CP1Z1t−1. By Lemma 3.1, Theorem 3.1 and a

Taylor’s expansion, we can show that

2[l(ϕ̇, δ̇) − l∗(ϕ̇∗, δ̇)] = vec[n(Ċ − C)P1]
′[

1

n2

n∑

t=1

L1t]vec[n(Ċ − C)P1] + op(1),(B. 11)

where L1t = (Z1t−1Z
′
1t−1⊗V −1

t )+
∑t−1

l=1[Z1t−l−1Z
′
1t−l−1⊗((Γ−1�Γ+Im)�νlν

′
l �Πlt)].

Denote Ä = Ȧ(ḂB̄′) and B̈ = (ḂB̄′)−1Ḃ. Note ȦḂ = ÄB̈. Moreover,

ÄB̈ − AB = (Ä− A)B + A(B̈ − B) + (Ä− A)(B̈ − B).

Recall that BP1 = 0. By Theorem 4.2, (B̈ − B)P1 = Op(n
−1) and (Ä − A) =

Op(n
−1/2) under H0. Hence,

n(ÄB̈ − AB)P1 = n(Ä− A)BP1 + nA(B̈ − B)P1 + (Ä− A)n(B̈ − B)P1

= nA(B̈ −B)P1 +Op(n
−1/2). (B. 12)

Let α̇∗ = vec[ABP1, ȦḂP2, Φ̇
∗
1, · · · , Φ̇∗

s−1], and l∗(α̇∗, δ̇) be l(α̇, δ̇) with ȦḂP1Z1t−1

replaced by ABP1Z1t−1 = CP1Z1t−1. By Lemma 3.1, Theorem 4.2, a Taylor’s

expansion and (A.12), we can show that:

2[l(α̇, δ̇) − l∗(α̇∗, δ̇)]

= vec[n(ÄB̈ − AB)P1]
′[n−2

n∑

t=1

L1t]vec[n(ÄB̈ − AB)P1] + op(1)

= vec[nA(B̈ −B)P1]
′[n−2

n∑

t=1

L1t]vec[nA(B̈ −B)P1] + op(1). (B. 13)

It is straightforward to show that l∗(ϕ̇∗, δ̇) − l∗(α̇∗, δ̇) = op(1). Furthermore, by

(A.11), (A.13) and Lemma 3.1, it follows that

LRG −→L vec[Ω−1
1 M∗]′[Z ⊗ Ω1]vec[Ω

−1
1 M∗] − vec[DM∗]′[Z ⊗ Ω1]vec[DM

∗]
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= vec[Ω−1
1 M∗]′vec[Ω1Ω

−1
1 M∗Z] − vec[DM∗]′vec[Ω1DM

∗Z]

= tr[M∗′Ω−1
1 M∗Z] − tr[M∗′DΩ1DM

∗Z]

= tr[(Ω−1
1 − A(A′Ω1A)−1A′)M∗ZM∗′]. (B. 14)

where D ≡ A(A′Ω1A)−1A′, Z ≡ ψ11Ω
1/2
a1

∫ 1
0 Bd(u)Bd(u)

′Ω1/2
a1
ψ′

11 and M∗ is defined

as in Theorem 3.1. Following the lines on p.359 of Reinsel and Ahn (1992), we can

rewrite Ω−1
1 − A(A′Ω1A)−1A′ as:

Ω−1
1 (Ω1 − Ω1A(A′Ω1A)−1A′Ω1)Ω

−1
1 = Ω−1

1 A⊥(A′
⊥Ω−1

1 A⊥)−1A′
⊥Ω−1

1 .

Therefore, we can rewrite the asymptotic distribution in (A.13) as:

tr[(
∫ 1

0
Bd(u)dV

∗
d (u)′)′(

∫ 1

0
Bd(u)Bd(u)

′du)−1(
∫ 1

0
Bd(u)dV

∗
d (u)′)],

where V ∗
d (u) ≡ (A′

⊥Ω−1
1 A⊥)−1/2A′

⊥Ω−1
1 W ∗

m(u). Note E[Bd(u)V
∗
d (u)′] =

uΩ
−1/2
a1 (A′

⊥Ω−1
1 A⊥)1/2 = uΥ′. Thus, we can rewrite V ∗

d (u) as a linear combination

of two independent d−dimensional standard BMs:

ΥBd(u) + [(A′
⊥Ω−1

1 A⊥)−1/2A′
⊥Ω−1

1 Ω∗
1Ω

−1
1 A⊥(A′

⊥Ω−1
1 A⊥)−1/2 − ΥΥ′]1/2Vd(u).(B. 15)

The proof is complete. 2

Proof of Theorem 5.1. When Ω∗
1 = Ω1, (A.15) in the proof of Lemma 5.1 can

be simplified as ΥBd(u)+ [Id−ΥΥ′]1/2Vd(u). Thus, the asymptotic distribution can

be simplified as:

tr{[
∫ 1

0
ΥBd(u)dBd(u)

′Υ′ +
∫ 1

0
ΥBd(u)dVd(u)

′(Id − ΥΥ′)1/2]′

·[
∫ 1

0
ΥBd(u)Bd(u)

′Υ′du]−1[
∫ 1

0
ΥBd(u)dBd(u)

′Υ′ +
∫ 1

0
ΥBd(u)dVd(u)

′(Id − ΥΥ′)1/2]}.

However, ΥBd(u) ∼ N(0,ΥΥ′). Abusing the notation, we write ΥBd(u) as (ΥΥ′)1/2

Bd(u), where Bd(u) is (another) d−dimensional standard BM independent of Vd(u).

Therefore, cancelling some of the (ΥΥ′)1/2 terms, the asymptotic distribution

can be expressed as:

tr{[
∫ 1
0 Bd(u)dBd(u)

′(ΥΥ′)1/2 +
∫ 1
0 Bd(u)dVd(u)

′(Id − ΥΥ′)1/2]′

[
∫ 1
0 Bd(u)Bd(u)

′du]−1[
∫ 1
0 Bd(u)dBd(u)

′(ΥΥ′)1/2 +
∫ 1
0 Bd(u)dVd(u)

′(Id − ΥΥ′)1/2]}.
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Since (Id−ΥΥ′) is a real symmetric matrix, we can decompose it as ΘΛdΘ
′, where Θ

is an orthogonal matrix such that Θ′Θ = Id. In view of (ΥΥ′)1/2 = Θ(Id − Λd)
1/2Θ′

and (Id − ΥΥ′)1/2 = ΘΛ
1/2
d Θ′ and due to the orthogonality of Θ, we can write the

asymptotic distribution as:

tr{[
∫ 1

0
Θ′Bd(u)dBd(u)

′Θ(Id − Λd)
1/2Θ′ +

∫ 1

0
Θ′Bd(u)dVd(u)

′ΘΛ
1/2
d Θ′]′

·[
∫ 1

0
Θ′Bd(u)Bd(u)

′duΘ]−1

·[
∫ 1

0
Θ′Bd(u)dBd(u)

′Θ(Id − Λd)
1/2Θ′ +

∫ 1

0
Θ′Bd(u)dVd(u)

′ΘΛ
1/2
d Θ′]}.

Since Θ′Bd(u) ∼ N(0,Θ′Θ) = N(0, Id), similar to the previous arguments, and abus-

ing the notation, we can write Θ′Bd(u) and Θ′Vd(u) as two independent standard

BMs Bd(u) and Vd(u) respectively. Cancelling the orthogonal Θ, we have:

tr{[
∫ 1

0
Bd(u)dBd(u)

′(Id − Λd)
1/2 +

∫ 1

0
Bd(u)dVd(u)

′Λ
1/2
d ]′

·[
∫ 1

0
Bd(u)Bd(u)

′du]−1[
∫ 1

0
Bd(u)dBd(u)

′(Id − Λd)
1/2 +

∫ 1

0
Bd(u)dVd(u)

′Λ
1/2
d ]}

= tr{[ζ(Id − Λd)
1/2 + ΦΛ

1/2
d ]′[ζ(Id − Λd)

1/2 + ΦΛ
1/2
d ]}.

This completes the proof. 2
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