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1. Introduction

Over the years, target zones for exchange rates have been a reality in, for exam-

ple, the Bretton Woods system, the gold standard, the Exchange Rate Mechanism

(ERM) of the European Monetary System, Hungary, Scandinavian countries exclud-

ing Denmark, and a number of South American countries. In some of the latter, the

zone has been a ”crawling band” whose centre has been adjusted daily in mini-steps

that have been known to the agents in advance. As an example, see Brooks and

Revéiz (2002) for a description of such a crawling band for the Colombian peso. For

more information, see Darvas (1998).

There is a vast literature about the target zones, both theoretical and empirical.

For useful surveys, see Svensson (1992) and Taylor (1995). The modern theoretical

literature has its starting point in the target zone model of Krugman (1991) that

will be outlined below. The model has later been modified to situations in which

its basic assumption, that the interventions of the central bank only occur at the

boundaries of the zone, are not satisfied. Examples include Delgado and Dumas

(1992) and Torres (2000). The Krugman model has been tested in different ways in

many empirical contributions, and a general observation has been that it has failed

to adequately characterize the movements of exchange rates in a target zone.

The Krugman model is a continuous time model, and there have been many at-

tempts to fit it to various daily exchange rate series using the simulated method of

moments: see for example Smith and Spencer (1992), de Jong (1994), Iannizzotto

and Taylor (1999) and Taylor and Iannizzotto (2001). Another, discrete-time, ap-

proach ( Bekaert and Gray, 1998) has been to model the conditional distribution of

the exchange rate within a target zone assuming that the distribution is a truncated

normal one, truncation being a result of the existence of a credible zone. In this

paper we consider another discrete time model for this problem that we call the

smooth transition autoregressive target zone (STARTZ) model. Our aim has been

to develop a model that will allow the investigator to both consider the validity to

the assumptions of Krugman’s model and, at the same time, adequately charac-

terize the dynamic behaviour of an exchange rate fluctuating within a target zone.

In order to evaluate the estimated STARTZ model, something that should not be

overlooked when carrying out empirical investigations, we construct a number of

misspecification tests to tests its adequacy. The plan of the paper is as follows. The

classical Krugman model is discussed in Section 2. The STARTZ model is defined

in Section 3 and its specification and estimation are considered in Section 4. Sec-
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tion 5 contains misspecification tests for evaluation and Section 6 an application of

the model to two Nordic exchange rates. In Section 7, density forecasts from the

estimated model are considered. Finally, Section 8 concludes.

2. The Krugman model and empirical applications

Consider the following continuous-time model for the exchange rate s :

s = f + αE{ds
dt
|Ft} (2.1)

where f = m+v is the so-called fundamental and E{dsdt |Ft} is the expected change of
the exchange rate at time t given the information set Ft. The fundamental consists
of two components: m represents the policy instruments that the central bank

controls, and v contains all the other factors that affect the exchange rate. This

component is assumed to follow a Brownian motion. If there is no currency band

and the currency floats freely, the central bank does not intervene (m = 0) so that

f and thus s follow a Brownian motion. This being the case, the expected change of

the exchange rate equals zero. Krugman (1991) assumes that there exists a target

zone, sL ≤ s ≤ sU , and that the authorities intervene throughm when the exchange

rate reaches either boundary value sL or sU . This changes the agents’ expectations

when the zone is credible. When the exchange rate lies near either boundary, the

probability of the exchange rate to move towards the centre is perceived to be

higher than the probability that it moves even closer to the boundary. The agents

anticipate the intervention, E{dsdt |Ft} 6= 0, so that the zone creates a nonlinearity

called the ”honeymoon effect” in the behaviour of the rate as a function of the

fundamental. Instead of a straight line, the relationship between the exchange rate

and fundamental is characterized as a smooth S-curve. This is a much investigated

detail of the model in the empirical literature. A consequence of the S-curve is

that the exchange rate will spend more time close to the boundaries that in other

segments of the zone, so that the marginal distribution of the exchange rate will

be ∪-shaped. Finally, the conditional variance should have an ∩-shape. We shall
investigate the last two implications of the Krugman model in the empirical section

of the paper.

As briefly mentioned in the Introduction, a number of authors have fitted the

continuous-time model (2.1) to exchange rate data. The formal solution of the

symmetric model has the form; see, for example, Krugman (1991), Lindberg and
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Söderlind (1994b) or Taylor (1995),

s = m+ v + 2A sinh{δ(m+ v)}

where δ = (2/α)1/2σ, with σ being the standard deviation of the innovation in

the fundamental and A is a function of the smoothness conditions determining

how s approaches the boundaries (”smooth pasting”). The relevant parameters of

the model are estimated using the method of simulated moments as described in

Lindberg and Söderlind (1994b), Iannizzotto and Taylor (1999) and other articles.

Recently, Chung and Tauchen (2001) estimated target zone models with an implicit

band using the efficient method of moments. A typical finding is that there is

little evidence of the S-shape in the relationship between the exchange rate and the

fundamental.

In this paper we construct a discrete time model that is applicable to daily

exchange rate series. Monthly series used by many authors who are typically in-

terested in modelling the conditional mean of the process, are too short for our

purposes. A central feature of our model is joint modelling of the conditional mean

and the conditional variance of the exchange rate in a target zone. Perhaps the

closest equivalent to our approach is the one adopted in Bekaert and Gray (1998),

henceforth BG, see also Forbes and Kofman (2000), and Klaster and Knot (2002) for

a recent application. A feature that our approach shares with theirs is that we also

explicitly model the conditional variance of the exchange rate. Furthermore, as in

BG, the fundamental is not explicitly observed. BG consider the whole conditional

distribution of the first difference of the exchange rate. As they assume normality,

this implies modelling the first two moments of the distribution. A simplified form

of the model of ∆st has the following form

f(∆st|Ft) =
Φ

µ
∆st−mt

h
1/2
t

¶
1

h
1/2
t

Φ

µ
∆Ut−1−mt

h
1/2
t

¶
− Φ

µ
∆Lt−1−mt

h
1/2
t

¶ (2.2)

where Φ is the cumulative distribution function of a standard normal variable, mt

is the conditional mean and ht the conditional variance. Furthermore, ∆Ut−1 =

sU − xt−1, the largest possible change of the exchange rate (the zone is perfectly
credible), and∆Lt−1 = s

L−xt−1 smallest possible change. Thus, (2.2) is a truncated
normal density where the boundaries define the truncation points. The conditional

mean mt is a linear function of PBt−1, the position of the exchange rate in the band
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at t − 1, and the conditional variance ht is described by a GARCH(1,1) process
augmented by |PBt−1|. Density (2.2) at time t is in fact a density forecast of the
change in st from t−1 to t. Forbes and Kofman (2000) make use of the same general
set-up but relax the assumption of a perfectly credible zone by allowing a positive

probability for the exchange rate to venture outside the boundaries.

Function (2.2) only forms a part of the BG model because that model also

includes a parameterization of jump behaviour of the exchange rate. In this respect

it differs from the STARTZ model that does not have such a feature. In this paper

we concentrate on modelling the dynamic behaviour of the exchange rate within

the band, and in our empirical examples the exchange rate series do not contain

jumps. Even if they did, we would have to make the unattractive assumption that

all jumps are generated by the same mechanism and that the policy of the central

bank remains unchanged after any jump or realignment. The STARTZ model will

be considered in detail in the next section.

3. The Model

The basic idea that the STARTZ model share with the model of BG is that the

dynamics of both the conditional mean and the conditional variance change when

the process approaches the boundary of the target zone. We assume that degree of

change depends nonlinearly on the distance between the value of the process and

the central parity of the target zone. For example, one might expect the conditional

mean to behave as a random walk process close to the central parity, whereas close

to the boundary the process will have a tendency to move towards the central parity

due to interventions by the central bank.

In general terms, the conditional mean of the model is defined as

yt = mt(ϕ, γa, θa, µ;yt−1) + εt (3.1)

where yt is the deviation of the exchange rate from the centre of the target zone

and yt−1 = (yt−1, ..., yt−p)0. The function mt = mt(ϕ, γa, θa, µ;yt−1) is assumed to

be bounded and at least twice continuously differentiable for its parameters almost

everywhere in the parameter space for any yt−1 belonging to the corresponding

sample space. The error process of the model is parameterized as

εt = zt
p
ht(ϕ, γa, θa, µ,η, γb, θb, δ;Et−1) (3.2)
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where {zt} ∼ iid(0, 1) and ht = ht(ϕ, γa, θa, µ,η, γb, θb, δ) is a positive-valued func-
tion with Et−1 = (εt−j : j ≥ 1). The structure of (3.2) implies that there is no
autocorrelation in the error process {εt}. Furthermore, εt = yt − mt such that

ϕ is assumed not to depend on η. The conditional variance ht is at least twice

continuously differentiable for the parameters almost everywhere in the parameter

space. It is also assumed that the moments of yt necessary for the inference exist

and that the parameters are subject to restrictions such that the process defined by

(3.1) and (3.2) is stationary and ergodic. This assumption will be satisfied because

{yt} is bounded both from below and above due to the target zone.

In order to define mt and ht (and to consider the misspecification tests in Lund-

bergh and Teräsvirta (2002)), let

GL(st; γ, θ, c) = (1 + exp(−γ(c− st))−θ , γ > 0, θ > 0 (3.3)

GU (st; γ, θ, c) = (1 + exp(−γ(st − c))−θ , γ > 0, θ > 0

where st is the transition variable, γ a slope parameter, θ an asymmetry parameter

and c is a location parameter. The parameter restrictions γ > 0, and θ > 0 are

identifying restrictions. Function (3.3) is a generalized logistic function; see Nelder

(1961) and Sollis, Leybourne and Newbold (1999). It contains as a special case

(θ = 1) the standard logistic function. The asymmetry parameter θ is essential

in this application where the movements of the exchange rate are restricted by the

boundaries of the target zone. Note the slight reparameterization (γ instead of γ/θ)

compared to Sollis et al. (1999). In growth curve literature, the generalized logistic

function is called the Richards growth curve, see Richards (1959).

According to theoretical target zone models, the conditional mean should be a

nonlinear function (S-shaped) of the underlying fundamentals with local nonlinear-

ity emerging close to the band (”the honeymoon effect”). This requirement can be

met by the following model specification

mt = ϕ0xt

+(µsL −ϕ0xt)GL(yt−1; γa, θa, µsL) (3.4)

+(µsU −ϕ0xt)GU (yt−1; γa, θa, µsU )

where xt = (1, yt−1, ..., yt−n)0 is an (n + 1) × 1 intercept-lag vector and ϕ =

(ϕ0,ϕ1, ...,ϕn)
0 the corresponding parameter vector. Vector xt implicitly contains

all information about the fundamentals at t = 1. The linear autoregressive compo-
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nent in (3.4) is complemented by two terms that help to characterize the behaviour

of the conditional mean close to the lower (sL) and the upper (sU ) boundary of the

target zone. It is assumed in (3.4) that mt is symmetric in the sense that the local

behaviour of the exchange rate is similar in the neighborhood of both boundaries.

This assumption can be relaxed, however. Parameter µ, 0 < µ < 1, adds flexibility

to the specification and allows the investigator, among other things, to estimate an

implicit band inside the official one, should such a band exist. The slope parameter,

γa > 0 and the asymmetry parameter θa > 0 jointly tell us how pronounced is the

change in the local dynamic behaviour of the exchange rate when one moves from

the centre of the target zone to the neighborhood of either boundary.

The conditional mean model (3.4) has the following interpretation. Near the

centre of the band the behaviour of the exchange rate is characterized, at least

approximately, by a linear combination of its lags, ϕ0xt as both GL ≈ 0 and GU ≈ 0.
Close to both the upper and the lower boundary of the target zone the exchange

rate depends nonlinearly on xt. For example, in the case when the exchange rate

approaches the upper boundary, GU → 1, and there is a smooth transition from

the autoregressive behaviour represented by ϕ0xt towards white-noise like behaviour

around µsU . Obviously, 1−µ > 0 is small. The speed of the transition is determined
by γ, θ and c.When the test approaches the lower boundary, GL → 1 and similar

conclusion follows.

According to theoretical target zone models the conditional variance should have

a ∩-shaped distribution, as the conditional variance of the process must be small
close to the boundaries if the band is credible. We parameterize this requirement

in a way similar to what was used for the conditional mean. Thus,

ht = η0wt

+(δ − η0wt)GL(yt−1; γb, θb, µsL) (3.5)

+(δ − η0wt)GU (yt−1; γb, θb, µsU )

where constants sL and sU again represent the lower and the upper boundary.

Parameters γb and θb are different from γa and θa respectively, whereas for sim-

plicity, µ is assumed to be the same as in (3.4). This has the technical consequence

that when the parameters of (3.4) and (3.5) are estimated by (quasi) maximum

likelihood, the information matrix not block diagonal. The conditional mean and

variance thus have to be estimated simultaneously. The generalized logistic func-
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tions are defined in the same way as they are for the conditional mean. Setting

η = (α0,α1, ...,αq,β1, ...,βp)
0 and wt = (1, ε2t−1, ..., ε2t−q, ht−1, ..., ht−p)0, where

ht > 0 almost everywhere, makes η
0wt in (3.5) a standard GARCH(p,q) type spec-

ification. Assuming δ > 0 together with the restrictions α0 > 0, αj ≥ 0, j = 1, ...q;
βj ≥ 0, j = 1, .., p; is sufficient for positivity of the conditional variance.
Specification (3.5) implies that the conditional variance is a nonlinear function

of the elements of wt. For example, in the case when the exchange rate approaches

the upper boundary there is a smooth transition from a standard GARCH type

behaviour represented by η0wt towards a constant δ > 0 that is expected to be

close to zero.

Equations (3.1), (3.2), (3.4) and (3.5) jointly define a Smooth Transition Autore-

gressive Target Zone (STARTZ) model. Near the boundaries the STARTZ process

behaves like an iid process with mean µsL or µsU and a (small) variance δ. The

process is thus bounded in probability, stationary and ergodic. Furthermore due to

the boundness, all moments of {yt} exists.
Although the STARTZ model is aimed at modelling exchange rates restricted

by a target zone, it does follow that the exchange rate remain inside the target

zone with probability 1. At the boundary the conditional variance of the STARTZ

model is small but still positive, as δ > 0. Thus, a shock such that the exchange

rate breaks through the boundary of the zone does have a positive probability.

This is not unrealistic: even when there is no realignment the exchange rate can

momentarily leave the band by a small margin and be quickly brought back again.

There is evidence of such events in our data sets.

4. Specification and estimation

The nonlinear STARTZ model defined by (3.1-3.5) is our most general parameter-

ization of the target zone model. In order to carry out the empirical work in an

orderly fashion, we propose a modelling strategy that can be described as follows.

1. Select an AR(n) model for the conditional mean according to some suitable

criterion such as the AIC (Akaike, 1974) or BIC (Rissanen, 1978, Schwarz,

1978). Select a low-order ARCH or GARCH model for the conditional vari-

ance.

2. Estimate an AR(n)-GARCH(p, q) model, reduce the size of the model if nec-

essary and re-estimate for the series to obtain initial values for estimating the

STARTZ model.
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3. Estimate the parameters of the STARTZ model and test the adequacy of both

the conditional mean and the conditional variance specification by appropriate

misspecification tests.

4. If the model passes the tests, tentatively accept it. In the opposite case try

another specification search or choose another family of models.

All parameter estimates are obtained by maximizing the log-likelihood under

the assumption that {zt} is a sequence of independent standard normal errors. In
that case the (quasi) log-likelihood function at time t equals

lt = const− 1
2
lnht − 1

2

ε2t
ht

(4.1)

where εt and ht are defined in (3.5). We assume that the model under consider-

ation satisfies the necessary regularity conditions needed for the consistency and

asymptotic normality of the estimators. In the following section we consider the

evaluation of this model. The derivates of the log-likelihood function (4.1) are to

be found in Appedix A.

5. Evaluation by misspecification tests

Once we have specified and estimated a model it is important to investigate the

validity of the assumptions used in the estimation. We can modify the misspec-

ification tests in Teräsvirta (1994) and Lundbergh and Teräsvirta (2002) for the

present situation. The tests in this section only consider misspecification of the

AR(n)-GARCH(p, q) parameterization within the target zone. The target zone it-

self is assumed known. In order to describe the tests we first introduce a general

structure and thereafter briefly consider each test separately.

5.1. General

Consider the STARTZ model as defined in (3.1) and (3.2). A ”quasi-additive”

extension of the model may be written as

yt = ϕ0xt +A(xt;πa) (5.1)

+(µsL −ϕ0xt −A(xt;πa))GL(yt−1; γa, θa, µsL)
+(µsU −ϕ0xt −A(xt;πa))GU (yt−1; γa, θa, µsU ) + εt

εt = zt
p
ht
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ht = η0wt +B(wt;πb)

+(δ − η0wt −B(wt;πb))GL(yt−1; γb, θb, µsL)
+(δ − η0wt −B(wt;πb))GU (yt−1; γb, θb, µsU )

where functions A(xt;πa) and B(wt;πb) are assumed twice continuously differen-

tiable for all πa and πb everywhere in the corresponding sample spaces. For nota-

tional simplicity and without loss of generality we assume A(xt;0) = B(wt;0) ≡ 0.
Furthermore, η0wt+B(wt;πb) is assumed to be positive-valued almost everywhere

and {zt} is a sequence of independent standard normal variables. Model (5.1) forms
a unifying framework for our tests.

The null hypothesis of no additional structure in (3.1) and (3.2) now has the

form H0 : πa = 0 and πb = 0 in (5.1). Let ω = (ϕ0, γa, θa, µ,η0, γb, θb, δ)0, which

comprises all the parameters of the model under this null hypothesis. It is assumed

that the maximum likelihood estimator of ω is consistent and asymptotically normal

under any null hypothesis to be considered, which requires {yt} to be stationary and
ergodic and that the log-likelihood function satisfies the standard regularity condi-

tions. Since {yt} is restricted by the boundaries of the target zone the necessary
moments of {εt} implied by the Hessian matrix and required for the asymptotic
distribution theory to work do exist. The Lagrange multiplier (or score) statistic is

defined as

LM = T


1
T

P ∂lt
∂πa

|H0
0

1
T

P ∂lt
∂πb

|H0


0

bI (πa, bω,πb)−1 |H0


1
T

P ∂lt
∂πa

|H0
0

1
T

P ∂lt
∂πb

|H0

 (5.2)

wherebI is a consistent estimator of the information matrix under the null hypothesis.
The partial derivatives defining the score can be found in Appendix A. Under the

null hypothesis, statistic (5.2) is asymptotically χ2- distributed with dim(πa) +

dim(πb) degrees of freedom.

As (4.1) indicates the likelihood is constructed under the assumption of nor-

mality. It is not certain, however that this assumption is satisfied in the present

situation. For this reason we construct a robust version of the LM test following

Wooldridge (1990). The test is carried out in a TR2 form as follows:

1. Regress 1√bht ∂εt
∂πa

on 1√bht ∂εt
∂ω and 1√bht ∂ht∂πb

on 1√bht ∂ht∂ω . This results in two

residual vectors
..

λπa,tand
..

λπb,t of dimensions πa and πb respectively.

2. Regress 1 on (bεt/qbht)..λπa,t and ((bε2t − bht)/√2bht)..λπa,t and compute the sum
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of squared residuals (SSR).

3. Compute the test statistic, T − SSR, which is asymptotically χ2- distributed
with dim(πa) + dim(πb) degrees of freedom under the null hypothesis.

This is the form in which we compute our LM and LM-type misspecification

tests.

5.2. Test against misspecified lag lengths

To test the null hypothesis of misspecified lag lengths in either the conditional

mean or the conditional variance or both, the alternative is stated as remaining lag

lengths of order na in the ordinary error process and of order pb in the squared

(and standardized) errors. In the general case, this gives the extended model (5.1)

with A(xt;πa) = π0av
a
t and B(wt;πb) = π0bv

b
t where πa = (πa,1, ...,πa,na)

0, vat =

(yt−n−1, ..., yt−n−na)
0, πb = (πb,1, ...,πb,pb)

0, and vbt = (ht−(p+1), ..., ht−(p+pb))
0.

That is, the alternative in the conditional mean is an AR process of order n + na

and the alternative to test against in the conditional variance the alternative is a

higher order GARCH, see Bollerslev (1986). The null hypothesis of no remaining

higher dependence in either the conditional mean or in the conditional variance is

equivalent to πa = 0 and πb = 0. Under this null hypothesis, the LM-statistic

(5.2) is asymptotically χ2- distributed with dim(πa)+dim(πb) degrees of freedom.

Note that vbt may be replaced by v
b∗
t = (ε2t−(q+1), ..., ε

2
t−(q+r))

0 as in Bollerslev

(1986). The test can also be carried out separately for the conditional mean and

the conditional variance.

5.3. Test against remaining nonlinearity

If an estimated STARTZ model adequately characterizes all nonlinearity in the

exchange rate series, there should be no unmodelled nonlinearity left after fitting

the model to the data. This can be checked by testing the hypothesis of no remaining

additive nonlinearity. The alternative to this null hypothesis is assumed to be an

additive smooth transition component. This alternative is obtained as a special

case of (5.1) and with

A(xt;ϕa, ρa, ca) = ϕ0axtH
∗
a(yt−1; ρa, ca) (5.3)

B(wt;ηb, ρb, cb) = η0bεt−1H
∗
b(εt−1; ρb, cb) (5.4)
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where H
∗
i = H

∗
i − 1

2 where i = a, b. Subtracting 1/2 from H∗i is just a notational

convenience in deriving the test and does not affect the generality of the argument.

The definitions of functions A(xt;ϕa, ρa, ca) and B(wt;ηb, ρb, cb) are the same as in

Lundbergh and Teräsvirta (2002). Function H∗i is defined as function G
U in (3.3)

with ρi = γ, ci, i = a, b, and θ ≡ 1. The joint null hypothesis of no additional

nonlinearity in the conditional mean and the conditional variance can be expressed

as H0 : ρa = ρb = 0.

Parameters in A(xt;ϕa, ρa, ca) and B(wt;ηb, ρb, cb) are not identified under the

null hypothesis. For example when ρa = 0, parameters ϕa and ca in (5.3) are

unidentified nuisance parameters. Following Luukkonen, Saikkonen and Teräsvirta

(1988), see also Eitrheim and Teräsvirta (1996) and Lundbergh and Teräsvirta

(2002), we circumvent this identification problem under the null hypothesis by ex-

panding functions A(xt;ϕa, ρa, ca) and B(wt;ηb, ρb, cb) into a Taylor series around

the null hypothesis. Using the first-order expansion this yields, after reparameter-

ization, a transformed model with A(xt;ϕa, ρa, ca) = eπ0avat + R1(xt;ϕa, ρa, ca,ω)
and B(wt;ηb, ρb, cb) = eπ0bvbt + R2(wt;ηb, ρb, cb,ω) where vat = (xnct yt−1)

0, eπb =
(τ b,1, τ b,2)

0 and vbt = (εt−1, ε3t−1)
0 where xt = (1, (xnct )

0)0. The two remainders of

the Taylor expansions, R1(xt;ϕa, ρa, ca,ω) and R2(wt;ηb, ρb, cb,ω), do not affect

the asymptotic distribution theory because both are identically equal to zero under

H0. The new null hypothesis is eπa = 0 and eπb = 0, under which the LM-type test
statistic (5.2) is asymptotically χ2- distributed with dim(eπa) + dim(eπb) degrees of
freedom.

In practice it is most often useful to divide this joint test into separate tests

for the conditional mean and the conditional variance. This helps to locate the

problem, if any, and thus makes it easier to find a remedy to it.

5.4. Test against nonconstant parameters

We assume that the alternative to constant parameters in either the conditional

mean or the conditional variance or both is that the parameters change smoothly

over time, see Lin and Teräsvirta (1994) and Lundbergh and Teräsvirta (2002). The

changing parameters replacing ϕ in (3.4) and η in (3.5) are defined as follows:

ϕt = ϕ∗ + λϕH
∗
ϕ(t; ρϕ , cϕ) (5.5)

ηt = η∗ + ληH
∗
η (t; ρη , cη ) (5.6)
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Again we define H
∗
i = H∗i − 1

2 where i = ϕ, η. H∗i is the logistic function de-

fined as function GU in (3.3) with st ≡ t, γ = ρi, θ ≡ 1 and c = ci. The null

hypothesis of parameter constancy can be stated as H0 : ρϕ = ρη = 0 under

which ϕ∗ = ϕ and η∗ = η. Setting A(xt;λϕ , ρϕ , cϕ ) = λϕHϕ(t; ρϕ , cϕ) and

B(wt;λη , ρη , cη ) = ληHη (t; ρη , cη ) it is seen that this alternative is a special case

of (5.1). The identification problem under the null hypothesis is circumvented as

before by expanding Hi(t; ρi, ci) into a Taylor series around the null hypothesis,

ρi = 0. Using the first-order expansion we obtain the extended model (5.1) with

A(xt; ρϕ , cϕ) = eπ0avat + R1(xt; ρϕ , cϕ) and B(wt; ρη , cη ) = eπ0bvbt + R2(wt; ρη , cη )
where vat = xtt and v

b
t = wtt. The joint null hypothesis of parameter constancy

in both the conditional mean and variance consists of the restrictions eπa = 0 andeπb = 0. As in the preceding section the two remainder terms of the Taylor expan-
sions R1(xt; ρϕ , cϕ ,ω) ≡ R2(wt; ρη , cη ,ω) ≡ 0 under the null hypothesis so that
they do not affect the asymptotic distribution theory. The LM-type test statistic

(5.2) is thus asymptotically χ2- distributed with dim(eπa)+dim(eπb) degrees of free-
dom, when the null hypothesis holds. Even here, testing the conditional mean and

variance separately is advisable for the same reason as before.

It is also possible to test constancy of µ and δ. The alternative model, in this

case, is not a special case of (5.1) but the parameterization is similar to (5.5) and

(5.6). Under the alternative,

µt = µ∗ + λµH
∗
µ(t; ρµ, cµ)

δt = δ∗ + λδH
∗
δ(t; ρδ, cδ)

where H
∗
µ and H

∗
δ are defined as before. The null hypothesis of parameter con-

stancy can be stated as H0 : ρµ = 0 and ρδ = 0. Once again the identifi-

cation problem is circumvented by expanding the H
∗
µ and H

∗
δ into Taylor se-

ries around the null hypothesis. This yields µt = µ∗ + πµt + R3(xt; ρµ, cµ) and

δt = δ∗ + πδt + R4(xt; ρδ, cδ). Even here, the two remainder terms of the Taylor

expansions R3(xt; ρµ, cµ) ≡ R4(xt; ρδ, cδ) ≡ 0 under the null hypothesis. The La-
grange multiplier type statistic is obtained as in the previous cases. The relevant

elements of the score for observations t can be found in Appendix A. A robust

version of the test statistic is used in the applications.
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6. Modelling two Nordic currencies

In this section the STARTZ model is applied to the Norwegian and Swedish cur-

rencies. In the second half of the 1980s these currencies had unilateral target zones

against a trade weighted currency basket. We focus on periods with no realignments

and no policy changes. The data for all currencies are daily observations and we

model the deviation, in percent, of the exchange rate index from the central parity.

6.1. The Swedish krona: 1985-1991

The daily series of the Swedish exchange rate index contains 1472 observations

and covers the period from July 1, 1985 to May 17, 1991. A graph of the index

can be found in Figure B.1. The starting point of the series coincides with the

introduction of an explicit target zone. In May 1991 the trade weighted currency

basket was replaced by the ECU-index. The index under consideration was based

on a basket of currencies, so that what is modelled is not a bilateral exchange rate.

During the observation period the index was allowed to vary within ±1.5% from its

central parity.

Riksbanken (Bank of Sweden) intervened intramarginally during this period; see

Lindberg and Söderlind (1994a) for a detailed description of the intervention policy

of the Bank. The assumptions of the original Krugman (1991) model are thus not

satisfied. When Lindberg and Söderlind (1994b) estimated the parameters of their

continuous time model for the period 27 June 1985 to 15 November 1990 they found

practically no evidence of the S-shape in the relationship between the exchange rate

and the fundamentals.

Figure B.1 shows that the currency index has not approached the upper bound

of the zone at any time during the observation period. As the STARTZ model is

symmetric, the behaviour of the index at this end of the zone is estimated solely

on the basis of the observations close to its lower boundary. The estimates of the

parameters of the STARTZ model for the Swedish krona can be found in Table B.1.

Note that the value of γa, the slope parameter of the transition functions G
L and

GU found in (3.3), has been set to 300. Estimating γa and θa jointly turned out to

be very difficult as the log-likelihood around the maximum was very flat. This is an

indication of the fact that a number of parameter combinations yields the transition

functions that have the same shape. Conditioning on one of the parameters was

therefore necessary. The standard deviation of bθa remains large even thereafter,
which is another indication of the flatness of the log-likelihood around its maximum
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value.

It is seen from the estimates and Figure B.11(a) that the transition from the

dynamic behaviour of the index in the centre of the zone to the boundary behaviour

is abrupt and occurs only very close to the boundaries. The sum of the estimates

of the autoregressive parameters bϕ1 + bϕ2 = 0.996, so that most of the time (note

that bµ = 0.99) the behaviour of the index is dominated by a near unit root. This
accords with the results of Lindberg and Söderlind (1994b) and the intramarginal

interventions. It also suggests that the mean reversion in the exchange rate is in

this case extremely weak. Note that previous results suggesting mean reversion such

as the ones in Svensson (1993) are obtained by fitting linear autoregressive models

without any restrictions to the central parity adjusted series, so that they are not

comparable to the ones reported here.

The conditional variance mostly displays rather mild GARCH effects with low

persistence: bα1+ bβ1 = 0.88. The estimate of δ is very small (= 0.0010) as expected.
Even here, the slope parameter γb of the transition functions was restricted to 300

to allow the estimation algorithm to converge. The functions are graphed in Figure

B.11(a) and show the same abrupt change of behaviour near the boundaries as was

discovered in the conditional mean. Figure B.3 shows the 1472 deviations from the

central parity graphed against the conditional variances estimated from (3.5). Not

unexpectedly, the ∩-shape of the conditional variance is very weak.
Some properties of the standardized residuals can be found in Table B.2. It is

seen that the residuals contain some outliers as the kurtosis exceeds five. The results

of the misspecification tests of the conditional mean appear in Table B.3, the ones

of the conditional variance in Table B.4 and the one of both the conditional mean

and variance in Table B.5. The model passes the tests of misspecified lag structure,

no additional nonlinearity and constancy of ϕ1,ϕ2 (conditional mean) and δ,α0,α1

and β1 (conditional variance). Also the model passes the misspecification test of

constancy of µ (both in the conditional mean and variance).

In order to illustrate the behaviour of the model in terms of the marginal distri-

bution of the exchange rate, 100000 observations are generated from the estimated

STARTZ model and the density of the observations is smoothed using a standard

kernel smoother. Figure B.7 shows that the density is hump-shaped. The small

earlobes at both tails suggest that there have been interventions close to the lower

boundary to offset the pressure on the index to cross the boundary. The shape of

the extreme tail is due to the kernel [Epanechnikov] selected for this application

and should therefore be interpreted with caution.
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6.2. The Norwegian krone: 1986-1988

The Norwegian exchange rate index analyzed in this paper covers the period from

October 1, 1986 to October 22, 1990. A graph of the index can be found in Figure

B.2. The starting point of the series coincides with a realignment of the zone and,

as in the case of Sweden, the observation period ends when the trade weighted

currency basket was replaced by the ECU-index. The index as allowed to vary

within ±2.25% from its central parity.

Information about the intervention policy of Norges Bank (Central Bank of

Norway) can be found in Lysebo and Mundaca (1997) and Mundaca (2000). From

October 1986 onwards the Bank first intervened mainly when the index was close

to either boundary. In mid-June 1988, a change in the intervention policy was

announced, and for the rest of the period the interventions were intramarginal.

Late in 1988 Norges Bank started to maintain an implicit target zone that was

narrower than the official one. This can be seen from Figure B.2. Obviously, this

inofficial ”soft zone” was introduced to protect the krone from speculation; for a

discussion see Bartolini and Prati (1999) and Ringbom (2003).

The change in the policy regime makes it necessary to split the observation

period into three subperiods. The first one, consisting of the observations from

October 1, 1986 to June 17, 1988, 431 observations in all, is one during which the

crucial assumption in Krugman (1991) of interventions at the boundaries is satisfied.

The second period consists of the observations until the end of 1988. According to

Lysebo and Mundaca (1997) the wide fluctuations during this period are due to a

falling oil price and domestic turbulence, and we leave them unmodelled. The third

period with an inofficial zone, contains the observations from January 2, 1989, until

the end, in total 449 observations.

We fit a STARTZ model to the first and third period and begin by the first one.

The estimates of the parameters of the STARTZ model for the Norwegian krone can

be found in Table B.1. Even here, the values of γa and γb the slope parameters of the

transition functions for the conditional mean and variance respectively, have been

set to 300 for the same reason as before. Note that the number of observations

available for the estimation of parameters is much smaller than in the Swedish

case. Functions GL and GU , in the conditional mean model, however, now have a

shape different from the previous model, and the same is true for the model for the

conditional variance. This can be seen, from Figure B.11(b), that the transition

from the centre of the zone to the boundaries is smooth. The local random walk
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behaviour apparent in Bank of Sweden’s currency index is absent here: note thatbϕ1 = 0.75. Figure B.4 shows the value of the time-varying AR-coefficient as a

function of the observations in the series.

As to the conditional variance specification, the heteroskedasticity consists of a

decrease in the conditional variance to a small value when the values of the index

change from the central parity to values close to the boundaries. There are no

ARCH effects to speak of. As seen from Figure B.5, the conditional variance as a

function of the location of the index in the zone has a distinct ∩-shape as the theory
prescribes.

Statistics on the standardized residuals in Table B.2 are similar to what has

been observed for the Swedish krona. The residuals again contain some outliers as

the kurtosis exceeds five. The model passes the misspecification tests: the results

appear in Table B.3, Table B.4 and Table B.5. The lowest p-value can be found in

the test of parameter constancy but it is still relatively high, 0.07.

The marginal distribution of the exchange rate is investigated as before: 100000

observations are generated from the estimated STARTZ model and the empirical

density function of the observations is smoothed using a standard kernel smoother.

Figure B.8 shows a very clear ∪-shape with a hump in the centre. This is clear
evidence in favour of Krugman’s original model. When the interventions of the

central bank mostly occurs at the boundaries, the theory predicts an ∪-shape, and
this is exactly what we see in the figure. The hump in the middle is not anticipated

by the basic Krugman model. It simply indicates that during the observation period

the Norwegian index has spent less time in transit to and from the boundaries than

either close to the boundaries and near the central parity. Again, the shape of the

extreme tail where the density falls to zero should be interpreted with caution.

6.3. The Norwegian krone: 1989-1990

As explained earlier, Central Bank of Norway maintained an inofficial target zone

within the official one from the beginning of 1989 till the ECU connection in October

1990. The behaviour of the exchange rate can now be expected to be quite different

from what it in 1986-1988. The results from specifying and estimating a STARTZ

model for the latest period appear in Table B.1. The currency index shows random

walk type behaviour in the sense that bϕ1 + bϕ2 = 0.98 near the central parity.

The transition is about as abrupt as in the Swedish case; see Figure B.11(c). The

estimate bµ = 0.21, which together with the fact that the transition is abrupt gives
us an estimate of the width of the implicit zone that is only about one fifth of the
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official zone (about ±0.45%). In the case of an implicit zone it is useful to check
whether or not the zone is symmetric around the central parity, that is to test the

nypothesis µ = µlower = µupper. The likelihood ratio test against the alternative

µlower 6= µupper, results in a p-value equal to 0.95. The conditional mean component
of the model passes our misspecification tests.

The equation for the conditional variance at first sight seems like a standard

GARCH(1,1) equation augmented with diminishing variance near the inofficial

boundaries. However, the estimate of the ARCH parameter α1 is not significant.

If the coefficient were zero, then the GARCH model would not be identified. That

again would mean that the standard deviation estimates, including the one for bα1,
would not be based on standard asymptotic theory. On the other hand, the number

of observations is rather small, given the GARCH-type structure of the variance

equation, and that could explain the large uncertainty of the estimate while in fact

α1 6= 0. The estimate of α0 is also insignificant, but the previous arguments ap-

ply to it as well. Besides, in Table B.4 there is evidence (if we first assume that

the model is identified) of instability of the parameters of the conditional variance

model. Finally, it is seen from Figure B.6 that the conditional variance does not

display any ∩-shape.
The marginal distribution of the index is again considered by generating 100000

observations from the estimated STARTZ model and smoothing the empirical den-

sity function with kernel estimation. The graph of the distinctly unimodal density

in Figure B.9 deviates from the previous ones in the sense that the density decays

smoothly to zero at the tails. Since the policy of Norges Bank was to keep the cur-

rency index inside an inofficial zone, there did not exist any need for a stiff ultimate

line of defence, and this fact is clear from the figure. In other words, when the

currency is defended well inside the official target zone, there is no reason to expect

the dynamic properties of the currency index to correspond to the ones predicted

by a standard target zone model.

7. Density forecasts

In order to illustrate the conditional distributions of the exchange rates we generated

density forecasts from each model in turn from one up to 55 steps ahead. The models

were simulated by drawing from the appropriate error distribution and computing

the forecasts numerically as in Granger and Teräsvirta (1993). The forecasts have

been generated from two starting points. One lies at the central parity, whereas the
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other one lies close to the upper boundary of the zone. This means 1.45% for the

Swedish krona and 2.15% for the Norwegian krone. For the latter index under the

implicit zone regime, the starting point has been 0.5%. Following Wallis (1999),

the density forecasts in Figure B.10 are presented as percentiles. The solid curve in

the middle is the median, and the remaining ones are the 10, 20, ..., 90% percentiles

of the cumulative distribution.

The results show that the strongest mean reversion can be found for the Norwe-

gian krone during the latter period when Norges Bank defended an inofficial zone.

In this case the conditional densities, when the starting point is the central parity,

are very concentrated even after 55 steps. Density forecasts for the Swedish krona

agree with the previous results in that the mean reversion is weak. However, owing

to the existence of the boundary, the forecasts densities are strongly skewed when

the starting point of the index is the value near it. In that sense, one can speak of

mean reversion but then, median reversion of the krona has been remarkably weak.

Obviously, the model of Bekaert and Gray (1998) that builds on the idea of trun-

cated densities, would yield similar results. The Norwegian krone has had a stronger

tendency to fluctuate than the Swedish krona, and the densities are therefore flatter

than in the Swedish case. As can be expected, median reversion is stronger for the

former than the latter currency.

8. Conclusions

In the target zone literature, the emphasis has been on theoretical models. This

paper proposes a rather flexible, empirical, time series model that is capable of

characterizing the behaviour implied by theoretical target zone models. The model

also enables the investigator to estimate the boundaries of an implicit band, should

such a band exist. In order to model empirical data in a systematic way it is

important to have a coherent modelling strategy and such a strategy is designed

and applied to data here. A statistical advantage of the proposed strategy is that

the misspecification tests we use only require standard asymptotic theory and are

easy to perform.

The empirical examples indicate that there is structure in data that accords

well with theoretical target zone models. For the Swedish krona the behaviour of

the currency index within the target zone is in line with what theory suggests for

a currency when the central bank intervenes intramarginally. In the case of the

Norwegian krone 1986-88, where the Central Bank intervened only at the edges
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of the band, the behaviour of the estimated model is in harmony with the results

implied by the basic target zone model. For the remaining period of the Norwegian

krone, consisting of observations in 1989-1990, the estimated model suggests that

the implicit band maintained by the Central Bank during this period was not strictly

enforced by the bank.

The STARTZ model may also be used to model other economic variables re-

stricted by explicit or implicit boundaries, such as unemployment or interest rate

series. The single-equation STARTZ model may also easily be made multivariate.

In the present case this would allow the possibility of incorporating fundamentals

into the time series target zone model, a topic which is left for further research.
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A. Analytical derivatives

In this section we consider the analytical derivatives of the suggested model. These

first-order derivatives are used in the estimation and later on in the evaluation of the

estimated model. The derivatives of the model are straightforward to compute, see

for example Fiorentini, Calzolari and Panattoni (1996). Letω = (ϕ0, γa, θa, µ,η0, δ, γb, θb)0;

consider the model defined by (3.1-3.5):

yt = mt + εt

εt = zt
p
ht

where mt = mt(ϕ
0, γa, θa, µ) and ht = ht(ϕ

0, γa, θa, µ,η0, δ, γb, θb) are the func-

tions of the conditional mean and the conditional variance. It is worth noting that

ϕ0, γa, θa are associated with the conditional mean and that η0, δ, γb, θb with the

conditional variance, whereas the parameter µ is associated with both. Only in

the special case when we condition the model on µ, do we have block diagonality

between the conditional mean and variance. Assuming that {zt} is a sequence of
independent standard normal errors, the log-likelihood function for observation t is:

lt = const− 1
2
lnht − 1

2

ε2t
ht

where εt = yt −mt.

A.1. Partial derivative of lt

The first-order partial derivative (the gradient) of the log likelihood function at time

t is
∂lt
∂ω0

=
εt
ht

∂mt

∂ω0
+

1

2ht

µ
ε2t
ht
− 1
¶
∂ht
∂ω0

The expectation of the matrix of the second-order partial derivatives of the

log-likelihood function (the Hessian) at time t equals

E

·
∂2lt

∂ω∂ω0

¸
= −E

·
1

ht

∂mt

∂ω

∂mt

∂ω0
+

1

2h2t

∂ht
∂ω

∂ht
∂ω0

¸

A.2. Partial derivative of the conditional mean mt

The conditional mean is defined as in (3.1) and (3.4). For notational convenience

let m∗t = ϕ0xt, ξLa = γa(µs
L − yt−1)/2 and ξUa = γa(yt−1 − µsU )/2. We can then
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write the conditional mean as

mt = m
∗
t + (µs

L −m∗t )GLa + (µsU −m∗t )GUa

where GLa = exp(ξ
L
a θa)/(2 cosh ξ

L
a )

θa and GUa = exp(ξ
U
a θa)/(2 cosh ξ

U
a )

θa . The first-

order partial derivatives with respect to the conditional mean parameters are

∂mt

∂ϕ0
= (1−HL

a −HU
a )

∂m∗t
∂ϕ0

∂mt

∂γa
=

θae
−ξLa

(2 cosh ξLa )
(−yt−1 + µsL)(µsL −m∗t )GLa +

θae
−ξUa

(2 cosh ξUa )
(yt−1 − µsU )(µsU −m∗t )GUa

∂mt

∂θa
= (ξLa − ln(2 cosh ξLa ))(µsL −m∗t )GLa +

(ξUa − ln(2 cosh ξUa ))(µsU −m∗t )GUa .

The corresponding partial derivatives with respect to µ equals

∂mt

∂µ
= (1 +

γaθae
−ξLa

(2 cosh ξLa )
(µsL −m∗t ))sLGLa +

(1− γaθae
−ξUa

(2 cosh ξUa )
(µsU −m∗t ))sUGUa .

The necessary derivatives evaluated under the null hypothesis used in the mis-

specification tests are easily obtained by replacingm∗t withmalt
t = ϕ0xt+A(xt;πa).

A.3. Partial derivative of the conditional variance ht.

The conditional variance is parameterized as in (3.2) and (3.5). We rewrite the

expression in the same way as the one for the conditional mean. Thus by setting

gt = η0wt, ξLb = γb(−yt−1 + µsL)/2 and ξUb = γb(yt−1 − µsU )/2 the conditional
variance becomes

ht = gt + (δ − gt)GLb + (δ − gt)GUb

where GLb = exp(θbξ
L
b )/(2 cosh ξ

L
b )

θb and GUb = exp(θbξ
U
b )/(2 cosh ξ

U
b )

θb . To initial-

ize the iterative computation of ht, the conditional variance is estimated with the

sample (unconditional) variance in the pre-sample case. This is done for all t ≤ 0
by setting ht = ε2t =

1
T

TP
i=1

ε2i where εi = yi −mi. The first-order derivatives may

be computed iteratively by using the following expressions:
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The derivatives with respect to conditional mean parameters:

∂ht
∂ϕ0

= (1−GLb −GUb )
∂gt
∂ϕ0

∂ht
∂γa

= (1−GLb −GUb )
∂gt
∂γa

∂ht
∂θa

= (1−GLb −GUb )
∂gt
∂θa

The derivatives with respect to µ:

∂ht
∂µ

= (1−GLb −GUb )
∂gt
∂µ

+

γbθbe
−ξLb

(2 cosh ξLb )
(δ − gt)sLGLb −

γbθbe
−ξUb

(2 cosh ξUb )
(δ − gt)sUGUb

The derivatives with respect to the conditional variance parameters :

∂ht
∂η0

= (1−GLb −GUb )
∂gt
∂η0

∂ht
∂δ

= (1−GLb −GUb )
∂gt
∂δ

+ (GLb +G
U
b )

∂ht
∂γb

= (1−GLb −GUb )
∂gt
∂γb

+

θbe
−ξLb

(2 cosh ξLb )
(−yt−1 + µsL)(δ − gt)GLb +

θbe
−ξUb

(2 cosh ξUb )
(yt−1 − µsU )(δ − gt)GUb

∂ht
∂θb

= (1−GLb −GUb )
∂gt
∂θb

+

(ξLb − ln(2 cosh ξLb ))(δ − gt)GLb +
(ξUb − ln(2 cosh ξUb ))(δ − gt)GUb

where the necessary derivatives under the null hypothesis used in the evaluation

tests are easily obtained by replacing gt with g
alt
t = η0wt +B(wt;πb).
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A.4. Partial derivatives of the mean and variance model

A.4.1. GARCH(1,1) type

Note that the GARCH type of model is constructed in such a way that the volatility

model gt is driven by the total volatility ht (including the target zone structure).

gt = η0wt = α0 + α1ε
2
t−1 + βht−1

where εt = yt−mt wheremt = m
∗
t+(µs

L−m∗t )HL
a +(µs

U−m∗t )HU
a . The derivatives

then becomes:

∂gt
∂ϕ0

= −2α1εt−1 ∂mt−1
∂ϕ0

+ β
∂ht−1
∂ϕ0

∂gt
∂γa

= −2α1εt−1 ∂mt−1
∂γa

+ β
∂ht−1
∂γa

∂gt
∂θa

= −2α1εt−1 ∂mt−1
∂θa

+ β
∂ht−1
∂θa

∂gt
∂µ

= −2α1εt−1 ∂mt−1
∂µ

+ β
∂ht−1
∂µ

∂gt
∂α0

= 1 + β
∂ht−1
∂α0

∂gt
∂α1

= ε2t−1 + β
∂ht−1
∂α1

∂gt
∂β

= h∗t−1 + β
∂ht−1
∂β

∂gt
∂δ

= β
∂ht−1
∂δ

∂gt
∂γb

= β
∂ht−1
∂γb

∂gt
∂θb

= β
∂ht−1
∂θb

A.5. Parameter constancy of µ and δ

The alternative to test µ against is µt = µ∗ + πµt + R3(xt; ρµ, cµ) and under the

null hypothesis is πµ = 0. The partial derivatives, under H0, with respect to πµ

are:

∂mt

∂πµ
= (1 +

γaθae
−ξLa

(2 cosh ξLa )
(µsL −m∗t ))tsLGLa +

(1− γaθae
−ξUa

(2 cosh ξUa )
(µsU −m∗t ))tsUGUa

∂ht
∂πµ

= (1−GLb −GUb )
∂gt
∂πµ

+
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γbθbe
−ξLb

(2 cosh ξLb )
(δ − gt)tsLGLb −

γbθbe
−ξUb

(2 cosh ξUb )
(δ − gt)tsUGUb

The alternative to test δ against is δt = δ∗ + πδt+R4(xt; ρδ, cδ) and under the

null hypothesis is πδ = 0. The partial derivative, under H0, with respect to πµ are:

∂ht
∂πδ

= (1−GLb −GUb )
∂gt
∂πδ

+ t(GLb +G
U
b )

B. Tables and Figures

Parameter SEK NOK NOK
(85-91) (86-88) (89-90)

ϕ1 0.85
(0.030)

0.75
(0.065)

0.69
(0.048)

ϕ2 0.15
(0.030)

. 0.29
(0.047)

α0 0.00092
(0.0041)

0.047
(0.013)

0.00012
(0.0054)

α1 0.17
(0.034)

0.10
(0.11)

0.0051
(0.071)

β1 0.71
(0.029)

. 0.92
(0.025)

µ 0.99
(0.0052)

0.96
(0.0049)

0.21
(0.0057)

γa 300
(.)

300
(.)

300
(.)

θa 0.42
(0.82)

0.0049
(0.00092)

0.63
(1.5)

δ 0.0010
(0.00057)

0.0048
(0.00089)

0.0070
(0.0014)

γb 300
(.)

300
(.)

300
(.)

θb 0.11
(0.090)

0.032
(0.018)

0.083
(0.039)

Table B.1: Parameter estimates of the STARTZ models (standard deviations in
parentheses) for the Swedish krona (SEK) and the Norwegian krone (NOK).

SEK NOK NOK
(85-91) (86-88) (89-90)

Characteristics:
Min -5.5 -4.5 -3.3
Max 4.8 4.7 2.4
Mean -0.016 -0.028 0.058
Variance 1.0 1.0 1.0
Skewness 0.16 0.44 -0.25
Kurtosis 5.1 5.3 3.2

Table B.2: Characteristics of the standardized residuals of the STARTZ model.



30

SEK NOK NOK
(85-91) (86-88) (89-90)

Misspecified lag length (p-values)

pa = 1 0.47 0.92 0.22
pa = 2 0.38 0.86 0.65

Parameter constancy (p-values)

0.65 0.96 0.27

Remaining nonlinearity (p-values)

0.46 0.84 0.58

Table B.3: p-values of specification tests for the conditional mean for the estimated
STARTZ model. LM tests for the conditional mean. The test of misspecified lag
lengths is computed against the alternative of additional lags up to the given lag,
pa. The test of parameter constancy is computed against an alternative of time
dependence given by a logistic function with time as the transition variable. The
test against nonlinearity is of LSTAR type.

SEK NOK NOK
(85-91) (86-88) (89-90)

Misspecified lag length (p-values)

pb = 1 0.15 0.08 0.36
pb = 2 0.34 0.22 0.34
pb = 3 0.27 0.23 0.50

Parameter constancy (p-values)

ARCH/GARCH 0.55 0.07 0.01
δ 0.89 0.95 0.51

Remaining nonlinearity of STGARCH type (p-values)

All parameters 0.48 0.11 0.27
Without intercept 0.38 0.13 0.11

Table B.4: p-values of specification tests for the conditional variance of the esti-
mated STARTZ model. LM tests for the conditional variance. The tests of no
remaining serial dependence in the squared and standardized residuals are com-
puted against the alternative of remaining dependence up to the given lag, pb. The
test of parameter constancy is computed against an alternative of time dependence
given by a logistic function with time as the transition variable. The test against
remaining nonlinearity is a test against an STGARCH structure.

SEK NOK NOK
(85-91) (86-88) (89-90)

Parameter constancy (p-values)

µ 0.67 0.37 0.69

Table B.5: p-values of specification tests for both the conditional mean and variance
of the estimated STARTZ model. LM tests for parameter constancy is computed
against an alternative of time dependence given by a logistic function with time as
the transition variable.
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Figure B.1: The deviation (in percent) from central parity for the daily Swedish
exchange rate index, July 1, 1985 to May 17, 1991. During this period the central
parity of the target zone was 132 and the exchange rate index was allowed to vary
within ±1.5 percent from the central parity.
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Figure B.2: The deviation (in percent) from the central parity for the daily Norwe-
gian exchange rate index, October 1, 1986 to October 19, 1990. During this period
the central parity of target zone was 112 and the exchange rate index was allowed to
vary within ±2.25 percent from the central parity. The first dashed line corresponds
to June 17, 1988. At that date the authorities changed their intervention policy.
The second dashed line corresponds to January 2, 1989.

Figure B.3: The daily Swedish exchange rate index, July 1, 1985 to May 17, 1991.
The parameterization of conditional variance, ht, on the y-axis is plotted against
the observed deviation from the central parity (in percent) on the x-axis.
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Figure B.4: The daily Norwegian exchange rate index, October 1, 1986 to
June 17, 1988. The value of the restricted parameter in the conditional mean£
ϕ0 −ϕ0GL −ϕ0GU¤ on the y-axis is plotted against the observed deviation from
the central parity (in percent) on the x-axis.

Figure B.5: The daily Norwegian exchange rate index, October 1, 1986 to June
17, 1988. The parameterization of conditional variance, ht, on the y-axis is plotted
against the observed deviation from the central parity (in percent) on the x-axis.
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Figure B.6: The daily Norwegian exchange rate index, January 2, 1989 to October
21, 1990. The parameterization of conditional variance, ht, on the y-axis is plotted
against the observed deviation from the central parity (in percent) on the x-axis.

Figure B.7: Simulated marginal density from the STARTZ model for the Swedish
krona for the period July 1, 1985 to May 17, 1991. A kernel estimate of the marginal
density based on 100000 generated data points is plotted in the figure.
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Figure B.8: Simulated marginal density from the STARTZ model for the Norwegian
krone in the period October 1, 1986 to June 17, 1988. A kernel estimate of the
marginal density based on 100000 generated data points is plotted in the figure.

Figure B.9: Simulated marginal density for the STARTZ model for the Norwegian
krone for the period January 2, 1989 to October 21, 1990. A kernel estimate of the
marginal density based on 100000 generated data points is plotted in the figure.
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(a) Fan charts for the Swedish krona:1985-1991

(b) Fan charts for the Norwegian krone: 1986-1988

(c) Fan charts for the Norwegian krone:1989-1990

Figure B.10: Fan charts of forecast densities from one to 55 steps ahead for the
Swedish krona and the Norwegian krone. The fan charts on the left-hand side have
the central parity as the starting point. The fan charts on the right-hand side
represent forecasts given that the index is close to the official or inoffical (lowest
panel) boundary. The deciles on the y-axis are plotted against the number of steps
ahead on the x-axis. The solid line in the middle is the median forecast. The fan
charts are generated using 1000 independent realisations for 55 steps ahead.
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(a) Estimated functions GL and GU : Swedish krona 1985-1991

(b) Estimated functions GL and GU : Norwegian krone 1986-1988

(c) Estimated functions GL and GU : Norwegian krone 1989-1990

Figure B.11: Left-hand panels: Transition functions GL and GU for the conditional
mean process. Right-hand panels: Transition functions GL and GU for the condi-
tional variance process. Value of the transition on the vertical axis and the deviation
from the central parity (in percent) on the horizontal axis.


