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Introduction

Estimators based on moment conditions of the form IE[g(Xi, θ)], where θ is a finite-dimensional

parameter vector of interest, are a popular tool in applied econometrics. Unlike likelihood-

based estimators, moment-based estimators do not require the researcher to specify the

probability distribution of the random vector Xi in detail. While the use of inappropriate

auxiliary assumptions about the distribution of Xi potentially leads to misspecification bias,

reasonable distributional assumptions may improve the precision of the estimator substan-

tially, in particular in small samples.

In the literature on moment-based estimation, information-theoretic estimators such as

empirical likelihood (EL) estimators have emerged as an attractive alternative to generalized

method of moments (GMM) estimators. For instance, Kitamura (2001) showed that the

empirical likelihood ratio test for moment restrictions is asymptotically optimal under the

Generalized Neyman-Pearson criterion. Newey and Smith (2001) find that the asymptotic

bias of EL estimators does not grow with the number of moment conditions and that bias-

corrected EL estimators have higher-order efficiency properties. A detailed discussion of

empirical likelihood methods in econometrics and statistics is provided in the monograph

by Owen (2001).

In this paper we propose a method to combine the empirical likelihood function with a

prior distribution over the parameters θ and the probability measures for Xi. Rather than

imposing beliefs about the distributional form of the Xi’s dogmatically by specifying a fully

parametric likelihood function, we only use these additional restrictions loosely.

We consider the following approach: in addition to the actual data we generate artifi-

cial draws from a version of the model in which we make a specific assumption about the

distribution of Xi. We apply empirical likelihood-based estimation methods to the com-

bined sample of actual and artificial data. Such mixed estimation has a long tradition in

econometrics dating back to Theil and Goldberger (1961). From a Bayesian perspective,

the artificial observations induce a prior distribution for the parameters that are estimated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7355249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


H.R. Moon and F. Schorfheide: Extended Abstract 2

Some Background

Del Negro and Schorfheide (2002) use the notion of mixed estimation to specify a prior for

a vector autoregression (VAR) that is based on a dynamic stochastic general equilibrium

(DSGE) model. DSGE models impose strong cross-parameter restrictions on vector autore-

gressive representations that are, to some extent, misspecified. However, if these restrictions

are only assumed to be approximately correct and the VAR estimates are shrunk toward

them, one can obtain VAR estimates that lead to better predictive performance than either

the unrestricted VAR or the DSGE model alone.

Let θ be the DSGE model parameters and φ be the VAR parameters. The VAR repre-

sentation of the DSGE model is obtained by the mapping φ̃ = f(θ). The likelihood function

of the data Y only depends on the VAR parameters and the posterior density is given by

(∝ denotes proportionality):

p(θ, φ|Y ) ∝ p(Y |φ)p(φ|θ)p(θ), (1)

where p(φ|θ) and p(θ) are prior densities. Heuristically, the prior p(φ|θ) is constructed

by simulating n∗ artificial observations from the DSGE model and fitted a VAR to the

artificial observations. This prior has the property that it is not restricted to the subset

Φ∗ = {φ : φ = f(θ), θ ∈ Θ} of the VAR parameter space. However, it concentrates increasing

mass in the neighborhood of Φ∗ as n∗ −→ ∞. Del Negro and Schorfheide (2002) establish

the following results. As n∗ −→ ∞ the inference becomes equivalent to inference based on

the restricted likelihood function p(Y |f(θ)). In large samples the posterior estimate of θ

can be interpreted as projection of the estimate of φ onto the restricted subspace Φ∗. A

Bayesian selection criterion can be used to choose the size n∗ of the artificial sample based

on the available data.

We will use the idea of mixed estimation based on the parametric completion of the

moment-based model to conduct Bayesian inference.

Bayesian Limited Information Analysis

Typically, Bayesian inference methods are applied to models that provide a parametric

likelihood function. However, in many applications, there are reasons to be skeptical about

the auxiliary assumptions, e.g., the specific distribution of Xi, that are needed to obtain a

parametric probability model for the endogenous variables. Unfortunately, there is no widely
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accepted Bayesian inference procedure (such as Generalized Method of Moments under the

frequentist paradigm) for models that are specified in terms of a few moment conditions.

Recently, Kim (2002a, 2002b) proposed Bayesian inference methods based on limited

information likelihood functions or posterior distributions. In the latter case, Kim restores

the unknown posterior of the parameters of interest from some moment conditions. Within

a set of candidate posteriors that satisfy the desired moment conditions he finds the one

that is closest to the “true” yet unknown posterior in an information distance. Lazar (2000)

on the other hand, suggests to use the empirical likelihood function directly to conduct

Bayesian inference. Our approach follows this second route.

Prior Distributions.

The empirical likelihood

LEL(θ, p1, . . . , pn) =

{
n∏

i=1

pi

∣∣∣∣pi > 0,

n∑

i=1

pi = 1,

n∑

i=1

pig(Xi, θ) = 0

}
(2)

is a function of the parameter vector θ and the multinomial probabilities p1, . . . , pn. The

parameter of interest is θ, whereas the probability masses pi are nuisance parameters in many

applications. While Lazar (2000) focuses on the approach that concentrates the empirical

likelihood function with respect to the pi’s and combines the profile likelihood function with

a prior for θ, we plan to carefully construct a prior for the pi’s as well. In our moment-based

framework, it is natural to factorize the prior as follows

p(θ, p1, . . . , pn) = p(θ)p(p1, . . . , pn|θ). (3)

A desirable property of p(θ)p(p1, . . . , pn|θ) is that it concentrates most of its mass on values

of pi for which the moment condition IE[g(Xi, θ)] = 0 is at least approximately satisfied.

A common approach in non-parametric Bayesian analysis is to use a Dirichlet distri-

bution as a prior for the pi’s (see, for instance, Ferguson (1973, 1974) and Rubin (1981)).

We will use the following heuristic to obtain a prior p(p1, . . . , pn|θ). Starting from an unin-

formative prior distribution, we generate a “posterior” for the probability masses based on

n∗ artificial observations from the parametric completion of the moment-based econometric

model. Similar to the approach taken in Del Negro and Schorfheide (2002) the “posterior”

distribution obtained from the simulated observations is used as a “prior” for the analysis of

the actual data. This approach has the advantage of not dogmatically imposing a parametric

form for the distribution of the endogenous variables, yet at the same time supplementing
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the sample information by model-consistent beliefs about likely values of the probability

masses. The first step of our analysis will be to formalize the heuristic description of the

prior distribution.

Posterior Analysis.

The proposed prior distribution is combined with the empirical likelihood function (2) to

obtain a posterior distribution. We plan to address the following issues: (i) consistency of

the Bayes estimate of θ. (ii) We will derive a large-sample approximation for the posterior

distribution of θ and compare our results to other limit-information approaches, such as Kim

(2002a, 2002b) and Lazar (2000). (iii) Develop a Markov-Chain-Monte-Carlo algorithm to

generate draws from the posterior distribution of the pi’s and θ. (iv) Assess to what extent

the parametric completion of the moment-based model is misspecified.
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