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Abstract

In this paper we extend the setting analysed in Hahn and Hausman (2002a)
by allowing for conditionally heteroscedastic disturbances. We start by consid-
ering the type of conditional variance-covariance matrices proposed by Engle
and Kroner (1995) and we show that, when we impose a GARCH specifica-
tion in the structural model, some conditions are needed to have a GARCH
process of the same order in the reduced form equations. Later, we propose
a modified-2SLS and a modified-3SLS procedures where the conditional het-
eroscedasticity is taken into account, that are more asymptotically efficient
than the traditional 2SLS and 3SLS estimators. We recommend to use these
modified-2SLS and 3SLS procedures in practice instead of alternative estima-
tors like LIML/FIML, where the non-existence of moments leads to extreme
values (in case we are interested in the structural form). We show theoreti-
cally and with simulation that in some occasions 2SLS, 3SLS and our proposed
2SLS and 3SLS procedures can have very severe biases, and we present the bias
correction mechanisms to apply in practice.

1 Introduction

Following the seminal work of Engle (1982), a large number of papers have dealt with
conditionally heteroscedastic disturbances in many different settings. Most of the the-
ory has been developed in a univariate framework, although more recently multivari-
ate models have been explored. In relation to simultaneous equations, Baba, Engle,
Kraft and Kroner (1991), Harmon (1988), and Engle and Kroner (1995) have intro-
duced the theoretical framework of simultaneous equation models with conditional
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heteroscedastic disturbances, although the theoretical approach is still not well devel-
oped. In this paper we provide a theoretical and simulation study of the behaviour
of 2SLS, LIML/FIML and 3SLS estimators in the context of simultaneous equations
with ARCH disturbances in the framework of Hausman (1983), Phillips (2003) and
Hahn and Hausman (2002a, 2002b, 2003). We will compare the behaviour of 2SLS
and 3SLS with alternative 2SLS and 3SLS estimators that take account of the ARCH
structure and which have better asymptotic and finite sample properties. We show as
well that LIML can have problems because of the non-existence of moments, whereby
the modified-2SLS and 3SLS estimation procedures proposed in this paper are pre-
ferred for practical application. As stated in Hahn and Hausman (2002a) in relation
to LIML, "these results should be a caution about using LIML estimates...without
further investigation or specification tests in a given empirical problem". This is a
problem that specially has been reported in the presence of weak instruments in the
literature (see Hahn, Hausman and Kuersteiner (2002)). The same type of conclu-
sion is found in this paper in the context of conditional heteroscedastic disturbances,
although we find the same problem even already without weak instruments.

The structure of the paper is as follows. Section 2 examines how, in a very simple
framework, it is possible to allow for conditional heteroscedasticity within the con-
text of a 2SLS estimation procedure following which we develop a modified procedure
which is asymptotically more efficient. The improved efficiency of the modified pro-
cedure is then confirmed in a set of Monte Carlo simulations. The simulations show
that the small sample biases in both 2SLS and in the modified-2SLS estimator that we
propose can be very severe in some circumnstances, and we consider a bias-correction
mechanism for practical application. In Section 3 we present the results of LIML
estimation. We find simulation evidence of the problem of non-existence of moments
in LIML, and recommend in practice the use of our modified-2SLS procedure. Sec-
tion 4 examines a more general simultaneous system with conditional heteroscedastic
disturbances, where we extend our approach to 3SLS and again find that a modi-
fied version is more asymptotically efficient. Section 5 explores the context of weak
instruments in this setting, and finally, Section 6 concludes.

2 Efficient 2SLS estimation of a simultaneous equa-

tion system with the presence of conditional het-

eroscedastic disturbances

Engle and Kroner (1995) noted that a simultaneous equation system can be consis-
tently estimated with 2SLS or 3SLS while ignoring the conditionally heteroscedastic
structure, although they do not analyse the theoretical properties of the estimators.
We proceed now to analyse 2SLS in a simple framework. We will consider first 2SLS
where we do not take into account the ARCH structure and then a modified 2SLS
(2SLSM) which makes use of the conditional heteroscedastic characteristics of the
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disturbances to estimate the system more efficiently. We shall, initially, follow the
set up employed by Hausman (1983), Hahn and Hausman (2002a, 2002b, 2003) and
Phillips (2003) which analysed a very simple model

y1t = β
1
y2t + ε1t

y2t = β
2
y1t + x′

t
γ
1
+ ε2t

y2t = x′
t
π2 + v2t (1)

where the third equation corresponds to the reduced form, π2 is K×1 with K≥ 2
and T is the sample size. In this case, only the first of the equations is identified;
in fact it is overidentified of order at least 2. The variables in xt are assumed to be
strongly exogenous and bounded. The main novelty of this paper is that we are going
to allow for conditional heteroscedasticity in the structural disturbances according to
the following

h11t = E(ε2
1t
|It−1), h22t = E(ε2

2t
|It−1), h12t = E(ε1tε2t|It−1) (2)

Before proceeding with our analysis we examined the characteristics of the reduced
form disturbances when the structural disturbances are conditionally heteroscedas-
tic. For this simple case we find in the next Proposition that when the structural
distrubances follow a multivariate-ARCH process, the reduced form disturbances may
also be a multivariate-ARCH process of the same order but only under quite strict
conditions. In particular, the variance parameters in the ARCH processes must be
the same. This appears to run counter to Proposition 3.1 in Engle and Kroner (1995)
which asserts that the result holds generally.

Proposition 2.1. If εt = (ε1t, ε2t)́ is a multivariate conditional heteroscedastic
process in (1), and vt = B−1εt is the reduced form disturbance vector where B =(

1 −β
1

−β
2

1

)
then, under appropriate conditions, vt may follow a multivariate

conditional heteroscedastic process of the same order as εt, but the result is not true
generally.
Proof. Given in Appendix 1.

We return now to the analysis of the system given in (1). While we generally
give proofs of our theoretical results in the appendices, it will be appropriate here to
motivate our approach by considering how efficiency can be gained by taking account
of the conditional heteroscedasticity in the context of 2SLS estimation.

Consider the first equation of (1), and to take account of the conditional het-
eroscedasticity in this equation we transform it to

y1t√
h11t

= β1

y2t√
h11t

+
ε1t√
h11t

(3)
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where now the disturbances have mean zero and variance unity and they continue
to be serially uncorrelated. In the usual 2SLS procedure the endogenous regressor
is replaced by its predicted value obtained from regressing the endogenous regres-
sor on all the predetermined variables. In this case the endogenous regressor has
been standardised by

√
h11t and so the corresponding predicted value comes from the

regression

y2t√
h11t

=
x′

t√
h11t

π2 +
v2t√
h11t

(4)

Writing the predicted value as ( ŷ2t√
h11t

) = x′

t√
h11t

π̂2, where
y2t√
h11t

= x′

t√
h11t

π̂2 +
v̂2t√
h11t

and
the residuals are orthogonal to the predicted values, we find that a modified-2SLS
estimator is given by

β1,2SLSM
=
∑(

ŷ2ty1t
h11t

)
/
∑

(
ŷ2t√
h11t

)2 (5)

= β1 +
∑(

ŷ2tε1t
h11t

)
/
∑

(
ỹ2t√
h11t

)2

= β1 +
∑ x′tπ̂2ε1t

h11t
/
∑

(
x′tπ̂2√
h11t

)2

where it is easy to show that this estimator is consistent and its asymptotic vari-
ance is

avar
√
T (β1,2SLSM

− β1) =
1

E( 1√
h11t

)
lim(
∑

T−1(π′2xtx
′
tπ2))

−1 (6)

=
1

E( 1√
h11t

)
(π′2
∑
xx

π2))
−1

where we have used lim
∑

T−1xtx
′
t =
∑

xx
, a finite positive definite matrix.

The usual 2SLS which we write as β∗1 has asymptotic variance given by

avar
√
T (β∗1 − β1) = σ11(π

′
2

∑
xx

π2))
−1 (7)

so that the asymptotic relative efficiency of the modified 2SLS estimator is given by
the ratio of the asymptotic variances 1

E( 1√
h11t

)
/σ11. Noting that E( 1√

h11t
) > 1

E(
√
h11t)

>

1√
σ11

, it follows that 1
E( 1√

h11t

)
/σ11 < 1, thus demonstrating the advantage, in terms of

asymptotic efficiency, of accounting for the conditional heteroscedasticity. In practice
the modified estimator discussed here is infeasible since the conditional variances are
unknown and must be estimated. However with appropriate assumptions the above
asymptotics will still hold. In the context of the model in (1) and the multivariate
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ARCH process in (2), the operational 2SLSM estimator is then given by the following
procedure

STEP 1: Obtain the residuals by running a first round of the traditional 2SLS
without taking into account the ARCH effects.

STEP 2: Regress these residuals in a multivariate ARCH system to get the esti-
mates of ĥ11t.

STEP 3: Regress y2t√
̂h11t

on xt√
̂h11t

to find ŷ2t√
̂h11t

=
xt́π̂2√
̂h11t

which is orthogonal to

v̂2t√
̂h11t

.

STEP 4: Put y1t√
̂h11t

= β
1

ŷ2t√
̂h11t

+
ε1t√
̂h11t

+
v̂2t√
̂h11t

, where
T∑
t=1

ŷ2t√
̂h11t

v̂2t√
̂h11t

= 0, and

regress y1t√
̂h11t

on ŷ2t√
̂h11t

to obtain

β
1,2SLSM

=

⎡
⎣ T∑

t=1

⎛
⎝ ŷ2t√

ĥ11t

⎞
⎠

2⎤
⎦
−1

T∑
t=1

ŷ2t√
ĥ11t

y1t√
ĥ11t

=

β
1
+

T∑
t=1

[
ŷ2tε1t

ĥ11t
/
ŷ2
2t

ĥ11t

]

Being straightforward to show that it is consistent: p limβ
1,2SLSM

= β
1
+

p lim 1

T

T∑
t=1

ŷ2tε1t
̂h11t

p lim 1

T

T∑
t=1

ŷ2
2t

̂h11t

.

While the asymptotic relative efficiency of the 2SLSM procedure has been demon-
strated in the simplest case, the result extends directly to cases where the equation
has more endogenous and exogenous variables which is discussed again in Section 4.

2.1 Small sample properties of 2SLS and modified-2SLS: ev-

idence from simulations in a simple model

In relation to the finite sample biases, the modified-2SLS procedure proposed in this
paper and the standard 2SLS procedure, are both biased. We give below simulation
evidence of how both procedures, can yield estimators with very severe biases in some
circumstances, and bias-correction is often necessary. It is already well known in the
literature that the 2SLS is biased. In relation to the traditional 2SLS, the Nagar
(1959) bias approximation for 2SLS in the simple model where only the first equation
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is identified, and where the disturbances are normally, independently and identically
distributed, specialises to

E(β∗

1
− β

1
) = tr [(PX − PW − 1)]

1

π′
2
X ′Xπ2

σ11β2 + σ12

1− β
1
β
2

+ o(T−1). (8)

where β
1
and β

2
are given in (1), and PX is the projection matrix based on the matrix

X and PW is the projection matrix based on W , the non-stochastic part of y2. Its
trace is equal to the number of variables in X, i.e. the number of exogenous variables
including the constant. In this case what is called W is just a vector so trace(PW ) is
just equal to one and tr [(PX − PW − 1)] is just equal to the order of overidentification
minus one.

The above bias approximation results as a corollary of the analysis given in Phillips
(2003), where it was shown that it is sufficient for the structural disturbances to have
Gauss Markov properties unconditionally for the bias approximation to be valid.
Since the ARCH disturbances are unconditionally Gauss Markov, we can assert that
the above bias approximation is valid for the model here also.

While it is straightforward to bias correct the usual 2SLS estimator based upon
an estimate of the Nagar bias, we do not have a bias approximation for the modified
estimator, 2SLS

M̂
,and so an alternative approach is necessary. Bias correction by

the bootstrap is possible and here we set out how the method might be used. A later
version of this paper will explore this this further and, in particular, present some
Monte Carlo evidence of the value of the approach.

Returning to the simple model (1) of section 2, the 2SLSM was given as

β1,2SLS
M̂

=

[
T∑
t=1

(
ŷ2t√
̂h11t

)2
]
−1 T∑

t=1

ŷ2t√
̂h11t

y1t√
̂h11t

. Substituting

y1t√
̂h11t

= β
1

ŷ2t√
̂h11t

+ ε1t√
̂h11t

+ v̂2t√
̂h11t

and noting that the vector of components containing ŷ2t√
̂h11t

is orthogonal to the

vector containing the components of v̂2t√
̂h11t

,we find that

β
1,2SLS

M̂

− β
1
=

[
T∑
t=1

ŷ2
2t

̂h11t

]−1
T∑
t=1

ŷ2t√
̂h11t

ε1t√
̂h11t

so that the bias of β
1,2SLS

M̂

is given by the expected value of this expression.

To apply the bootstrap, we first estimate the structural equation by the usual
2SLS method and retain the reduced form and structural equation residuals. Re-
sampling with replacement from these residuals and constructing the pseudo data
making use of the original parameter estimates will provide a bootstrapped bias cor-
rection for 2SLS. To find a bootstrap bias correction for the modified estimator
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proceeds along exactly similar lines except that in each sample of pseudo data the
β
1,2SLS

ˆM

estimate is obtained and the average of these subtracted from the original
estimate provides the bias correction. This approach will be explored in more detail
in the next version of the paper.

We proceed now to present some simulation results which confirm that the modified-
2SLS procedure is more efficient than the traditional 2SLS procedure, but which also
show that both methods can be severely biased in some circumnstances and that
bias-correction in both cases may be necessary. Table 1 provides simulations for a
sample of size 100 based on 5000 replications, and the structure we consider is of the
form

Y B +XΓ + ε = 0

where B =

(
−1 0.267
0.222 −1

)
and Γ =

(
0 0 0

4.40 0.74 0.13

)
.́

The matrix X contains a first column of ones, while the other two exogenous
variables correspond to normal random variables that have been generated with a
mean of zero and variance 10. The model has been estimated by 2SLS and 2SLSM .

To represent the behaviour of the disturbances in the structural system we have
selected, for reasons of operational simplicity, the model of Wong and Li (1997) that
follows the structure

E
(
ε2
1t/It−1

)
= α0 + α1ε

2

1t−1 + α2ε
2

2t−1

E
(
ε2
2t/It−1

)
= γ

0
+ γ

1
ε2
1t−1 + γ

2
ε2
2t−1

In our simulations we also provide the bias approximation results of the formula
given in Phillips for the traditional 2SLS procedure. In the Wong and Li model,
in which the disturbances are contemporaneously and serially uncorrelated and ho-
moscedastic, the bias approximation will imply σ12 = 0 in the formula given in (8).
Thus the bias will then depend directly on β

2
and σ11. Results are given in Table 1

below.

Table 1: Simulation results for 2SLS and 2SLSM

2SLS ignoring ARCH 2SLS without ignoring ARCH

bias(β̂) s.e.(β̂) bias(β̂) s.e.(β̂)
α0 = 0.81, α1 = 0.25, α2 = 0.49 0.002 0.038 0.000 0.029
γ
0
= 0.64, γ

1
= γ

2
= 0.49 (0.001)

α0 = 9, α1 = 0.25, α2 = 0.49 0.014 0.101 -0.012 0.095
γ
0
= 0.64, γ

1
= γ

2
= 0.49 (0.004)

α0 = 0.81, α1 = 0.49, α2 = 0.49 0.005 0.053 0.002 0.048
γ
0
= 0.64, γ

1
= γ

2
= 0.49 (0.004)

α0 = 144, α1 = 0.25, α2 = 0.49 0.130 0.309 -0.099 0.292
γ
0
= 0.64, γ

1
= γ

2
= 0.49 (0.058)
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In brackets we provide the numerical value of the Nagar approximation for the
bias. The first interesting result to note, is that indeed the modified-2SLS procedure
is more efficient than the traditional 2SLS procedure. In addition, the 2SLSM esti-
mator has a smaller absolute bias while both procedures can have very severe biases
especially when the unconditional variance of the disturbance of the first equation
is large. Then, bias correction will be necessary. If the researcher uses 2SLS with-
out taking account the ARCH system, then the Nagar bias approximation should be
helpful (although it does not account for more than about half of the bias in some
scenarios). In case the researcher follows our suggested procedure, Table 1 shows that,
although it has less bias than the traditional 2SLS, bias correction is still necessary
and we recommend to apply it through the boostrap.

3 LIML estimation of a simultaneous equation sys-

tem with conditional heteroscedasticity

In the setting that we have been analysing so far, where only the first of the equa-
tions is identified, 2SLS and 3SLS provide the same result. Engle and Kroner (1995)
propose to estimate the system more efficiently as well through full information max-
imum likelihood or an instrumental variable estimator. In this case, because in our
context the second of the equations is not identified, FIML will be equal to LIML. In
this section we proceed now to consider this estimation method.

Table 2 provides results based on 5000 replications and a sample size of 100, for
LIML for the case where we do not take account of the ARCH effects

Table 2: Simulation results for LIML

LIML ignoring ARCH

bias(̂β) s.e.(̂β)
α0 = 0.81, α1 = 0.25, α2 = 0.49 -0.001 0.035
γ
0
= 0.64, γ

1
= γ

2
= 0.49

α0 = 9, α1 = 0.25, α2 = 0.49 -0.010 0.091
γ
0
= 0.64, γ

1
= γ

2
= 0.49

α0 = 0.81, α1 = 0.49, α2 = 0.49 -0.005 0.053
γ
0
= 0.64, γ

1
= γ

2
= 0.49

α0 = 144, α1 = 0.25, α2 = 0.49 -2.812 0.355
γ
0
= 0.64, γ

1
= γ

2
= 0.49

Care is needed in interpreting these results since it is unclear that estimator mo-
ments exist. It is well known that in the classical simultaneous model with normal
disturbances, finite sample LIML estimators do not have moments of any order and
a similar non-existence of moments problem may exist here. Indeed extreme values
were present in the simulations especially for the fourth structure examined. If we
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were to consider LIML estimation taking account of the presence of ARCH effects
explicitly in the LIML procedure, this seems likely to produce a Quasi-LIML estima-
tor where the moments would not exist either (considering ARCH effects imply even
fatter tails for the disturbances than under normality). That is why in this paper,
when conditional heteroscedasticity is present and we are interested in the structural
parameters, we recommend to use in practice of a 2SLS procedure that takes into
account the ARCH effects rather than LIML. Because this type of 2SLS uses the
disturbance standardised, it has moments even when the disturbance presents ARCH
effects. It would exist as well the possibility of estimating the reduced form coefficients
using a Full Information Maximum Likelihood (FIML) approach after standardising
the reduced form equations individually. However, in this paper we are interested in
the structural-form coefficients and, as it is seen in Table 2, sometimes the estimates
that can be obtained through FIML can be heavily affected by the non-existence of
moments mainly when the variance of the first disturbance is quite large (a problem
which is also documented in Hahn and Hausman (2002a) for the case of unconditional
correlation when they do not allow for conditional heteroscedasticity).

4 Modified 2SLS and 3SLS estimation of a general

simultaneous equation system

So far, we have carried out the analysis in the context of (1) to make easier the
interpretation of the analysis. In this section we develop the theoretical approach in
a more general setting such as

y1t = β1y2t + x′
1t
γ1 + ε1t

y2t = β
2
y1t + x′

2t
γ
2
+ ε2t (9)

In this context, the structural form can be alternatively written

y1t = z´
1t
α1 + ε1t

y2t = z´
2t
α2 + ε2t (10)

where
z´
1t
= (y2t : x1́) , z´2t = (y1t : x2́) .

We shall assume that each equation omits at least two exogenous variables and
so is overidentified at least of order 2. As before, we assume that

h11t = E(ε2
1t

|It−1), h22t = E(ε2
2t

|It−1), h12t = E(ε1tε2t|It−1) (11)

and that the structural disturbances are unconditionally Gauss Markov. Although
this is again a simple two-equation model it proves to be completely appropriate for
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our purposes since all our results can be extended directly to a general simultaneous
equation model containing G equations.

Before we proceed to examine the modified -2SLS estimator, we first consider the
estimation of the reduced form parameters. The reduced form equations will be

y1t = x′
t
π1 + v1t

y2t = x′
t
π2 + v2t (12)

In obtaining the 2SLS estimator for the parameters of the first structural equation
we require to estimate the reduced form equation for y2.To find a modified estimator
of the vector of reduced form pararmeters π2,we rewrite the equation as

y2t√
hv
2t

=
x′π2√
hv
2t

+
v2t√
hv
2t

, t = 1, 2, ..., T. (13)

where the variables have been standardised by the conditional standard deviation of
the disturbance v2t and not by

√
h11t as is required in the modified 2SLS procedure.

The modified-OLS estimator here is more asymptotically efficient than OLS which is
summed up in the following:

Theorem 4.1. The modified-OLS estimator of the reduced form parameter vector
π2 in (13) , is asymptotically more efficient than the OLS estimator which ignores
the presence of conditional heteroscedasticity.
Proof. Given in Appendix 2.

We now consider the modified-2SLS procedure in the context of the model (9)
and (11) for which the first stage regression is conducted in (12). This estimator is
referred to as 2SLSM .The fact that estimation is improved by taking the conditional
heteroscedasticity into account is summed up in the following

Theorem 4.2. Under the simultaneous equation system defined in (9) and (11),
2SLSM is more asymptotically efficient than 2SLS.
Proof. Given in Appendix 3.

Note that when using the modified-2SLS estimator the first round regression is
not based on equation (13) but on

y2t√
h11t

=
x′π2√
h11t

+
v2t√
h11t

, t = 1, 2, ..., T

where, in order to have orthogonality between the residuals and the predicted value
of y2t√

h11t
which enters the second stage regression, the variables are standardised by

the conditional standard deviation of the structural disturbance and not the reduced
form disturbance. Although the resulting estimator of π2 is not explicitly used, it is
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of interest to compare its asymptotic efficiency with that which results in Theorem
4.2. We do this in the following

Theorem 4.3. If the alternative modified-OLS estimator of π2 which results from
the regression in (13) is used to construct an alternative modified 2SLS estimator, the
resulting estimator may be more or less asymptotically efficient than the estimator
in Theorem 4.2.
Proof. Given in Appendix 4.

We know from the standard literature that 3SLS is always more efficient than 2SLS
when the equations are overidentified and the disturbances are contemporaneously
correlated. Thus, in the model of this section, 3SLS is more asymptotically efficient
than 2SLS and so might be preferred. However, we shall see that it too is less
asymptotically efficient than a modified-3SLS (3SLSM ) procedure. This 3SLSM
procedure will imply in practical applications to follow a similar procedure than the
traditional 3SLS, but where again we standardise by the conditional variances of the
structural disturbances.

First consider again the structural equations

y1t = β
1
y2t + x′

1t
γ
1
+ ε1t

y2t = β2y1t + x′
2t
γ2 + ε2t, t = 1, 2, ......, T. (14)

We shall write the system as(
y1
y2

)
=

(
Z1 0
0 Z2

)(
α1

α2

)
+

(
ε1
ε2

)

where Zi = (yi : Xi), αi = ( βi
γ ′
i )

′, i = 1.2.
Premultiplying byX ′,the matrix which contains all the exogenius variables, yields

the system(
X ′y1
X ′y2

)
=

(
X ′Z1 0
0 X ′Z2

)(
α1

α2

)
+

(
X ′ε1
X ′ε2

)

where the covariance matrix of the transformed disturbances is

E

(
X ′ε1
X ′ε2

)(
X ′ε1
X ′ε2

)
′

=

(
σ11X

′X σ12X
′X

σ21X
′X σ22X

′X

)

= Σ⊗ (X ′X)

where Σ =

(
σ11 σ12

σ21 σ22

)
.

Applying GLS to this system yields the 3SLS-GLS estimator

(
σ11Z1́PXZ1 σ12Z1́PXZ2

σ21Z2́PXZ1 σ22Z2́PXZ2

)
−1(

σ11Z1́PXy1 + σ12Z1́PXy2
σ22Z2́PXy2 + σ21Z2́PXy1

)
(15)

To obtain the modified 3SLS estimator we first define two diagonal matrices given
by
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Λ1 =

⎛
⎜⎜⎜⎝

1√
h111

0 ... 0

0 1√
h112

... 0

... ... ... 0
0 0 ... 1√

h11T

⎞
⎟⎟⎟⎠ , Λ2 =

⎛
⎜⎜⎜⎝

1√
h221

0 ... 0

0 1√
h222

... 0

... ... ... 0
0 0 ... 1√

h22T

⎞
⎟⎟⎟⎠

These matrices are used to standardise the variables in the system so that the
system becomes(

Λ1y1
Λ2y2

)
=

(
Λ1Z1 0
0 Λ2Z2

)(
α1

α2

)
+

(
Λ1ε1
Λ2ε2

)

Premultiplying by X ′yields(
X ′Λ1y1
X ′Λ2y2

)
=

(
X ′Λ1Z1 0

0 X ′Λ2Z2

)(
α1

α2

)
+

(
X ′Λ1ε1
X ′Λ2ε2

)

where the covariance matrix of the transformed disturbances is

E

(
X ′Λ1ε1
X ′Λ2ε2

)(
X ′Λ1ε1
X ′Λ2ε2

)′
=

(
X ′X ρ12X

′X
ρ
21
X ′X X ′X

)

= ΣM ⊗ (X ′X)
where

ΣM =

(
1 ρ

12

ρ
21

1

)
with ρ

12
=

σ12√
σ11
√
σ22

. (16)

Applying GLS to this transformed system will yield the modified-3SLS-GLS esti-
mator(

α̃1

α̃2

)
=

(
Z1́Λ1PxΛ1Z1 −ρ

12
Z1́Λ1PxΛ2Z2

−ρ21Z2́Λ2PxΛ1Z1 Z2́Λ2PxΛ2Z2

)−1(
Z1́Λ1PxΛ1y1 − ρ

12
Z1́Λ1PxΛ2y2

Z2́Λ2PxΛ2y2 − ρ12Z2́Λ2PxΛ1y1

)

We may now state the following:

Theorem 4.4. Under the simultaneous equation system defined in (9) and (11),
3SLSM is more asymptotically efficient than 3SLS.
Proof. Given in Appendix 5.

The results in Theorems 4.2 and 4.4 are given in the context of the estimators
2SLSM and 3SLSM both of which are non-operational since the standardising con-
ditional standard deviations are unknown. However, the conditional standard de-
viations can be consistently estimated from the residuals obtained following first
round estimation so that operational versions are readily found. These operational
estimators will have the same asymptotic distribution as the 2SLSM and 3SLSM
counterparts. This matter will be considered further in the next version of the paper.

5 Simultaneous equations and weak instruments

under conditional heteroscedasticity

To be completed in a later version of the paper.
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6 Conclusions

In this paper we have studied simultaneous equation systems and how 2SLS and
3SLS behave in this framework. First we have shown, that linear combinations of
ARCH processes do not produce always ARCH processes of the same order, unless
some conditions are hold. We have also proposed modified 2SLS and 3SLS proce-
dures that are more asymptotically efficient than the traditional procedures. When
the researcher is interested in estimating the structural parameters, we recommend
to use our modified procedures instead of LIML (or FIML) where the existence of
extreme values can produce misleading results in practice (due to the non-existence of
moments, and even more under the context of conditional heteroscedasticy where the
tails are fatter than in the regular case). We have also showed through Monte Carlo
simulations how all the procedures can produce important biases, mainly when the
disturbances are very volatile, and we provide bias mechanisms to apply in practice.

7 Appendices

Appendix 1

Proof. of Proposition 2.1.

In this appendix we show that if the structural disturbances follow a multivariate-
ARCH(1) process, the reduced form disturbances may also follow a multivariate-
ARCH(1) process but only under strict conditions. To show this we suppose that the
disturbances in (1) follow, for example, a diagonal representation (for simplicity, but
without loss of generality)

h11t = E(ε21t|It−1) = α0 + α1ε
2
1t−1, h22t = E(ε22t|It−1) = θ0 + θ1ε

2
2t−1,

h12t = E(ε1tε2t|It−1) = λ1 + λ2ε1,t−1ε2,t−1

Note that v2t, the reduced form disturbance in the second equation, is defined by

v2t =
(β2ε1t + ε2t)

1− β1β2

, β1β2 �= 1.

Also E(v22t) =
β2
2
σ11+2β2σ12+σ22

(1−β
1
β
2
)2

, while the conditional variance is given by

E(v22t|It−1) =
β2
2

(1 − β1β2)
2
(α0 + α1ε

2
1,t−1) +

2β2

(1 − β1β2)
2
(λ1 + λ2ε1,t−1ε2,t−1)

+
1

(1 − β1β2)
2
(θ0 + θ1ε

2
2,t−1)

=
β2
2

(1 − β1β2)
2
h1t +

2β2

(1− β1β2)
2
h12t +

1

(1− β1β2)
2
h2t

13



Next we have v22t−1 =
β2
2
ε2
1t−1

+2β
2
ε1,t−1ε2,t−1+ε

2

2,t−1

(1−β1β2)
2 , from which it is apparent that it

is not possible to write E(v22t|It−1) = φ1 + φ2v
2
2t−1 for some φ1, φ2 unless restrictions

are placed on the original ARCH(1) processes. In particular, for v2t to follow an
ARCH(1) process of the usual kind the component ARCH processes will have to
have the same variance parameter. Clearly this is a severe restriction to impose, and
this proves the proposition.

Similarly we may show that the 2× 1 vector v =

[
v1t
v2t

]
has a conditional covari-

ance matrix given by

E(vv′|It−1) =
[
hv1t hv12t
hv21t hv2t

]
, where

hv1t =
β21

(1 − β1β2)
2
h2t +

2β1
(1− β1β2)

2
h12t +

1

(1 − β1β2)
2
h1t

hv12t = hv21t = β2h1t + (1 + β1β2)h12t + β1h2t

hv2t =
β22

(1 − β1β2)
2
h1t +

2β2
(1− β1β2)

2
h12t +

1

(1 − β1β2)
2
h2t

Appendix 2

Proof. of Theorem 4.1.
We shall write rewrite the equation in (12) by putting y2t√

hv
2t

= y∗2t,
x′π2√
hv
2t

= x∗t and
v2t√
hv
2t

= v∗2t.With T observations we may write the regression as

y∗2 = X∗π2 + v∗2 .
Then the GLS (because we have standardised) estimator for π2is given by
π̂2 = ((X∗)′X∗)−1(X∗)′y∗1
= π2 + ((X∗)′X∗)−1(X∗)′v∗1
from which

√
T (π̂2 − π2) has an asymptotic covariance matrix given by

lim
T→∞

(T−1(X∗)′X∗)−1 =
1

E( 1
hv
2t
)
lim
T→∞

(T−1X ′X)−1 (17)

The asymptotic covariance matrix for the OLS estimator is :
limT→∞ σ22(T−1X ′X)−1(being σ22 the unconditional variance). Hence the rela-

tive efficiency is σ22
E( 1

hv
2t
)
(or

E( 1

hv
1t
)

σ11
). We know from Jensen’s inequality that E( 1

hv
2t

) >

1
E(hv

2t)
= 1

σ11
so that σ11

E( 1

hv
2t
)
> 1, and so the result is proved. A similar result will hold

for π̂1 .
If in addition, the disturbances are jointly symmetric, it is possible to prove

straightforwardly that the modfiied-OLS reduced form parameter estimator is un-
biased.
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Appendix 3

Proof. of Theorem 4.2.
In the structural system defined by (9) and (11), let’s define α∗ = (α∗

1
, α∗

2
)́ to be

the 2SLS estimator. Then
α∗
1
=
(
Z1́X (X́X)−1 X́Z1

)−1
Z1́X (X́X)−1 X́y1

α∗
2
=
(
Z2́X (X́X)−1 X́Z2

)−1
Z2́X (X́X)−1 X́y2

Analysing the distrubution of
√
T (α∗

1
− α1), the asymptotic covariance matrices

are given by (where σ11 and σ22 are the two unconditional variances of the structural
disturbances)

avar
(√

T (α∗
1
− α1)

)
= σ11p limT

(
Z1́X (X́X)−1 X́Z1

)−1
avar

(√
T (α∗

2
− α2)

)
= σ22p limT

(
Z2́X (X́X)−1 X́Z2

)−1
In the case of our modified-2SLS procedure, let’s define α̃ = (α̃1, α̃2) to be the

modified-2SLS estimator. Then, put

Λ1 =

⎛
⎜⎜⎜⎝

1√
h111

0 ... 0

0 1√
h112

... 0

... ... ... 0
0 0 ... 1√

h11T

⎞
⎟⎟⎟⎠ , Λ2 =

⎛
⎜⎜⎜⎝

1√
h221

0 ... 0

0 1√
h222

... 0

... ... ... 0
0 0 ... 1√

h22T

⎞
⎟⎟⎟⎠

We may show that
α̃1 = (Z1́Λ1PXΛ1Z1)

−1
Z1́Λ1PXΛ1y1

α̃2 = (Z2́Λ2PXΛ2Z2)
−1

Z2́Λ2PXΛ2y2
where we have written PX = X(X ′X)−1X ′. The asymptotic covariance matrix of

α̃1 is avar
(√

T (α̃1 − α1

)
) = p limT (Z1́Λ1PXΛ1Z1)

−1 = 1(
E

(
1√
h11t

))2 p lim
(
1

T
Z1́PxZ1

)−1

Using Jensen’s inequality(
E
(

1√
h11t

))
2

≥ 1

(E(
√
h11t))

2

E
((√

h11t
)2)

= σ11 ≤
(
E
(√

h11t
))2 ⇒ 1

(E(
√
h11t))

2 ≤ σ11.

Thus we have proved that this non-operational 2SLSM is more asymptotically
efficient than 2SLS. The same would hold for α̃2.

Appendix 4

Proof. of Theorem 4.3.
Suppose we now use the modified OLS estimator of π̂2 to construct the modified

2SLS estimator. We now have the equation:
y∗∗
1

= β
1
ŷ∗∗
2
+ ε∗∗

1
+ β

1
v̂∗∗
2
,

The usual situation does not apply here: ŷ∗∗
2

= X∗∗π̂2 is not orthogonal to the
second component of the error term β

1
v̂2. However, the implied 2SLS estimator will

still be
β̃1 = [(π̂2)′(X∗∗)′X∗∗π̂2}−1(π̂2)′(X∗∗)′y∗∗

1

= β
1
+ [(π̂2)′(X∗∗)′X∗∗π̂2}−1(π̂2)′(X∗∗)′(ε∗∗

1
+ β

1
v̂∗∗
2
) =

15



β
1
+ [(π̂2)′(X∗∗)′X∗∗π̂2}−1(π̂2)′(X∗∗)′ε∗∗

1
+ [(π̂2)′(X∗∗)′X∗∗π̂2}−1(π̂2)′(X∗∗)′β

1
v̂∗∗
2
)

Then as T →∞√
T ( β̃

1
− β

1
) ∼ [(π2)

′ 1
T
(X∗∗)′X∗∗π2]

−1(π2)
′T−1/2(X∗∗)′(ε∗∗

1
+ β

1
v∗∗
2
),

which has asymptotic covariance matrix given by

AsyV ar(
√
T ( β̃

1
− β

1
)) = var(ε∗∗

1t + β
1
v∗∗
2t )

1

(E( 1

hw
11t

))
lim
T→∞

[(π2)
′ 1

T
(X ′X)π2]

−1

which may be more or less asymptotically efficient than the usual 2SLSM depending
on whether or not var(ε∗∗

1t + β
1
v∗∗
2t ) � 1.

Appendix 5

Proof. of Theorem 4.4.
In the structural system defined by (9) and (11), let α∗∗ = (α∗∗

1
, α∗∗

2
)́ to be the

3SLS estimator. Then, the asymptotic covariance matrix will be given by

avar

(√
T

(
α∗∗
1
− α1

α∗∗
2
− α2

))
= p limT

(
σ11Z1́PXZ1 σ12Z1́PXZ2

σ21Z2́PXZ1 σ22Z2́PXZ2

)−1
.

= p limT

(
1

1−ρ2
12

1

σ11
Z1́PxZ1 − σ12

σ11σ22
1

1−ρ2
12

Z1́PxZ2

− σ12
σ11σ22

1

1−ρ2
12

Z2́PxZ1

1

1−ρ2
12

1

σ22
Z2́PxZ2

)−1
= (1− ρ2

12
) p limT

(
1

σ11
Z1́PxZ1 − σ12

σ11σ22
Z1́PxZ2

− σ12
σ11σ22

Z2́PxZ1

1

σ22
Z2́PxZ2

)−1
on which makes use of the result that the unconditional variance/covariance ma-

trix can be written as

Σ−1 =

(
σ11 σ12

σ21 σ22

)
= 1

1−ρ2
12

(
1

σ11
− σ12

σ11σ22− σ12
σ11σ22

1

σ22

)
Here we have defined the unconditional correlation coefficient as ρ

12
. On the

other hand, if we define the modified-3SLS estimator by ˜̃α =
(˜̃α1, ˜̃α2

)
, then, the

asymptotic covariance matrix is given by

avar

(
√
T

( ˜̃α1 − α1˜̃α2 − α2

))
= p limT

(
1

1−ρ2
12

Z1́Λ1PXΛ1Z1

−ρ
12

1−ρ2
12

Z1́Λ1PXΛ2Z2

−ρ21
1−ρ2

12

Z2́Λ2PXΛ1Z1
1

1−ρ2
12

Z2́Λ2PXΛ2Z2

)−1
=

(1−ρ2
12
)p limT

⎛⎝ (
E
(

1√
h11t

))2
Z1́PXZ1 −ρ12E

(
1√
h11t

)
E
(

1√
h22t

)
Z1́PXZ2

−ρ
12
E
(

1√
h11t

)
E
(

1√
h22t

)
Z2́PXZ1

(
E
(

1√
h22t

))2
Z2́PXZ2

⎞⎠−1

By repeated application of Jensen’s inequality, we may show that

avar
(√

T (α∗∗ − α)
)
−avar

(√
T
(˜̃α − α

))
is positive semi-definite, thus proving

that 3SLSM is asymptotically more efficient than 3SLS.
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