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Abstract

Theoretical literature in finance has shown that quantifying the risk of financial time

series amounts to measuring their expected shortfall, also known as tail Value at Risk.

Unfortunately, little empirical work has been devoted to the problem of modeling and

inference of such risk measures and, in particular, to their estimation. In this paper,

we construct a parametric estimator for the expected shortfall based on a new family of

densities, which we call the Asymmetric Power Distribution (APD).

The APD family extends the Generalized Power Distribution to cases where the data

exhibits asymmetry. We provide a detailed description of the properties of an APD ran-

dom variable, such as its quantiles, moments and moment related parameters. Moreover,

we discuss the problem of simulation of such random variables and provide maximum

likelihood estimates of the APD density parameters. The study of asymptotic properties

of the latter falls outside the standard framework due to the non-differentiability of the

APD log-likelihood.
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An empirical application to six daily financial market series reveals that returns tend

to be asymmetric, with innovations which cannot be modeled by either Laplace (double-

exponential) or Gaussian distribution, even if we allow the latter to be asymmetric. Under

a more general assumption that the return innovations are APD, we are able to compute

expected shortfalls and corresponding confidence intervals and thus compare the riskiness

of the series examined.

Keywords: Asymmetric Power Distribution, expected shortfall, risk.

1 Introduction

What is the tail behavior of financial time series and, in particular, whether we can quantify it,

is a question of fundamental importance in risk management. Ultimately, this question cannot

be answered without having an appropriate measure of risk. It is therefore not surprising that a

large literature has been devoted to studying the properties of risk measures such as volatility,

Value at Risk (VaR) or expected shortfall (also known as tail VaR). An important number

of theoretical results is today available on these three measures of risk (see, e.g. Markowitz

1952, Bawa 1978, Hanoch and Levy 1969, Artzner, Delbaen, Eber and Heath 1999, Follmer

and Schied 2003). Unfortunately, empirical literature has primarily focused on the first two

leaving the problem of estimation and inference of expected shortfall mainly unanswered. In

this paper, we propose a parametric estimator for the expected shortfall based on a new family

of densities, which we call the Asymmetric Power Distribution (APD). The main feature of

the APD family is that it combines the flexible tail decay property with the asymmetry, which

makes it particularly suited for modeling the behavior of financial returns.

Starting with the work of Markowitz (1952), virtually all risk-return models over the past

40 years, have used volatility as the main measure of risk. The shortcomings of volatility as

a risk measure for the purposes of portfolio optimization are however well established in the

literature. Early on, Hanoch and Levy (1969), e.g., have shown that the volatility was a good

risk measure only if the returns were elliptically distributed. This serious limitation of volatility
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has further prompted researchers to define more generally valid risk measures, as witnessed,

e.g., by the work of Bawa (1978). More recently, Artzner, Delbaen, Eber and Heath (1999)

and Follmer and Schied (2003), have raised the question if VaR qualifies as such a measure.

Their common finding is that VaR - defined as a prespecified quantile of the distribution of

portfolio returns - is not an adequate measure of risk. Unlike the VaR, the expected shortfall

(or tail VaR) - defined as expected portfolio tail return - has been shown to have all necessary

characteristics of a good risk measure.1 These recent findings agree with the results on Lower

Partial Moments (LPMs), derived by the early literature.2 For example, Bawa (1978) has

shown that portfolios with low expected shortfall second order stochastically dominate those

with high expected shortfall.

Despite a theoretical appeal of the expected shortfall for the purposes of risk measurement,

relatively little work has been done on its estimation. We try to fill this literature gap by

proposing a parametric estimator for the expected shortfall of a given variable of interest. An

alternative approach to estimation would be to estimate the latter non-parametrically. Such an

approach would, however, involve non-parametric density estimation, and would as such inherit

all of its difficulties, which is why we choose not to pursue this line of research here. A yet

different approach would consist in estimating the expected shortfall semi-parametrically, by

using an M-estimator for example. The related literature, however, proposes no estimators for

LPMs in general and for the expected shortfall in particular, despite its success with estimating

quantiles. Left are therefore fully parametric methods, on which we focus in this paper.

The main drawback of any parametric estimator for the expected shortfall is that it imposes

strong constraints on the shape of the density of interest, and in particular on its tails. For

example, a double-exponential (Laplace) assumption imposes exponential decay of the density

(see, e.g., Govindarajulu 1966, Birnbaum and Mike 1970, Bain and Engelhardt 1973, Sheynin
1Requirements for coherence or convexity of a given risk measure can be found in Artzner et al. (1999) and

Follmer and Schied (2003).
2Given n ∈ N, the LPM of order n of a real random variable X, evaluated at some x ∈ R, is defined as

LPMn(X,x) ≡ E[(x−X)n|X 6 x].
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1977, Jakuszenkow 1979, Lingappaiah 1988, Johnson, Kotz and Balakrishnan 1994 p.193,

Balakrishnan and Basu 1995, Balakrishnan, Chandramouleeswaran and Ambagaspitiya 1996,

Kotz, Kozubowski and Podgorski 2001), while a Gaussian implies exponential square decay. An

example of density which allows for a flexible decay parameter has been know in the literature

as the Generalized Power Distribution (GPD).3 In finance, the GPD family has already been

used by Nelson (1991), e.g., in the context of exponential ARCH volatility modeling. Despite

its flexibility in modeling the tail behavior, the GPD does not allow for any asymmetry in

the data, which can potentially affect the precision of the corresponding expected shortfall

estimates. This drawback is particularly severe in the context of financial return time series,

which are known to have nonzero skewness.

In this paper, we propose a new family of distributions, which we call the Asymmetric

Power Distribution (APD), and which contains the GPD as a special symmetric case. In what

follows, we show that members of the APD family are able to generate a wide variety of values

for the first four moments of the variable of interest, and are hence suited for modelling financial

return series. More importantly, we derive analytic expressions for the expected shortfall of an

APD random variable and construct the corresponding maximum likelihood estimator.

The remainder of the paper is organized as follows: Section 2 gives a formal definition of

an APD density and studies basic properties of random variables which are APD distributed.

Section 3 derives different moments and moment related parameters, such as the expected

shortfall. Section 4 describes how to simulate an APD random variable and how to recover its

true parameters by using a maximum likelihood approach. Finally, Section 5 gives an empirical

application to several daily financial return series and concludes the paper. Technical details

are provided in the appendices at the end of the paper.
3Also known as the Exponential Power Distribution (EPD) or the Generalized Error Distribution (GED).
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2 Definition and Basic Properties

The new family of distributions proposed in this paper combines the flexible tail decay property

of the GPD family, measured by a parameter denoted λ, with the asymmetry, quantified by a

parameter α, 0 < α < 1. Hence, it can be viewed as a generalization of the GPD family, which

corresponds to the special case α = 1/2, to any degree of asymmetry. We therefore call it the

Asymmetric Power Distribution (APD) family of densities. A formal definition of a probability

density function (pdf) of an APD random variable is as follows.

Definition 1 (APD pdf) Consider a function f : R→ R∗+, u 7−→ f(u) such that

f(u) =


δ
1/λ
α,λ

Γ(1 + 1/λ)
exp[−δα,λ

αλ
|u|λ], if u 6 0,

δ
1/λ
α,λ

Γ(1 + 1/λ)
exp[− δα,λ

(1− α)λ
|u|λ], if u > 0,

(1)

where 0 < α < 1, λ > 0 and δα,λ ≡ 2αλ(1− α)λ

αλ + (1− α)λ
. The function f thus defined is a probability

density function and any random variable U with density f is called standard APD.

We can easily verify that ∀u ∈ R, f(u) > 0 and
Z
R
f(u)du = 1, which ensure that f is

a probability density.4 The function f is moreover continuously differentiable on R∗. The

parameter λ controls the tail decay whereas α measures the degree of asymmetry.

When α equals one half, the APD pdf defined in equation (1) is symmetric around zero.

In this important special case f reduces to the standard GPD density (see, e.g., Johnson,

Kotz and Balakrishnan 1994 p.194-195, Kotz, Kozubowski and Podgorski 2001 p.219). The

GPD family, indexed by a single parameter λ, includes distributions that change gradually

from short-tailed distributions, for ∞ > λ > 2, to fat-tailed ones, when 2 > λ > 0, as the

exponent λ decreases. Special cases of the GPD include: uniform (λ =∞), Gaussian (λ = 2)
and Laplace (λ = 1) distributions.

4Note that for any α and λ such that 0 < α < 1 and λ > 0, we have 0 < 2αλ(1− α)λ 6 α2λ + (1− α)2λ <

αλ + (1− α)λ, so that 0 < δα,λ < 1.
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When α is different from one half, the APD pdf is asymmetric. Special cases λ = 1 and

λ = 2 have already been studied in the literature. They correspond to the asymmetric Laplace

distribution (also known as two-piece double exponential distribution), obtained when λ = 1

(see, e.g., Johnson, Kotz and Balakrishnan 1994 p.193), and the two-piece normal distribution,

obtained when λ = 2 (see, e.g., Johnson, Kotz and Balakrishnan 1994, vol 1 p.173 and vol 2

p.190). The original motivation for introducing such distributions was mainly to generalize the

simple Laplace (double exponential) and Gaussian cases to situations in which the two halves

of the distribution have different averages.

Figure 1 plots the standard APD density for fixed values of the tail parameter λ.
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Figure 1: APD density: X = u and Y = f(u) for α = 0.1, 0.2, 0.3, 0.5 and λ = 0.7, 1, 2, 4

Note that we can easily generalize the APD family in order to accommodate for different

location and scale, by using the location-scale property of the pdf f in equation (1). For given

values of α and λ, such that 0 < α < 1 and λ > 0, let X be an APD random variable defined
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as

X ≡ θ + φU, (2)

with a location parameter θ, θ ∈ R, and a positive scale φ, φ > 0. It is straightforward to show
that X has density fX ,

fX(x) = φ−1f(φ−1[x− θ]), for any x ∈ R, (3)

where f is as defined in equation (1). Note that when θ = 0 and φ = 1, X reduces to a standard

APD random variable U in Definition 1, and we have fX(x) = f(x). In the most general case,

the APD density fX depends on the four parameters α, λ, θ and φ, with 0 < α < 1, λ > 0,

θ ∈ R and φ > 0.

We now derive expressions for the cumulative distribution function (cdf) F of a standard

APD random variable U and for its quantile function F−1. The expressions for the cdf FX of

X and its inverse F−1X are then easily obtained from

FX(x) = F (φ
−1[x− θ]), for any x ∈ R, (4)

and

F−1X (v) = θ + φ−1F−1(v), for any v ∈ (0, 1). (5)

In the following lemma we derive F .

Lemma 2 (APD cdf) For given values of α and λ, 0 < α < 1 and λ > 0, let U be a standard

APD random variable with pdf f as defined in equation (1). For any u ∈ R, the cumulative
distribution function F of U then equals

F (u) =


α[1− I(δα,λ

αλ

√
λ|u|λ, 1/λ)], if u 6 0,

1− (1− α)[1− I( δα,λ
(1− α)λ

√
λ|u|λ, 1/λ)], if u > 0,

where δα,λ is as in Definition 1 and I(x, γ) is Pearson’s (1922) incomplete gamma function,

I(x, γ) ≡ [Γ(γ)]−1 R x√γ

0
tγ−1 exp(−t)dt.
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Note that in the special case of an asymmetric Laplace distribution (λ = 1), the cdf F

above simplifies to F (u) = α exp[2(1−α)u], if u 6 0, and 1− (1−α) exp(−2αu), if u > 0 (see,
e.g., Johnson, Kotz and Balakrishnan 1994 p.193).

We now derive expressions for different quantiles qv of U , where qv ≡ F−1(v) and v cor-
responds to some probability level, v ∈ (0, 1). In the following lemma we derive the quantile
function F−1 and give a probabilistic interpretation for the parameter α.

Lemma 3 (APD quantiles) For any probability v, v ∈ (0, 1), the v-quantile of the standard
APD random variable U , F−1(v), equals

F−1(v) =


−[ αλ

δα,λ
√
λ
]1/λ · [I−1(1− v

α
, 1/λ)]1/λ, if v 6 α,

[
(1− α)λ

δα,λ
√
λ
]1/λ · [I−1(1− 1− v

1− α
, 1/λ)]1/λ, if v > α,

where δα,λ is as in Definition 1 and I−1(y, γ) is the inverse of the Pearson’s (1922) incomplete

gamma function, i.e. x = I−1(y, γ) is equivalent to y = I(x, γ). In particular, F−1(α) = 0.

As previously, in the asymmetric Laplace case, the quantile function F−1 simplifies to

F−1(v) = −[2(1− α)]−1 ln(α/v), if v 6 α, and (2α)−1 ln((1− α)/(1− v)), if v > α.

It is important to note that, for any α and λ fixed, 0 < α < 1 and λ > 0, the α-quantile of

a standard APD random variable equals zero. Therefore, the parameter α has a probabilistic

interpretation: it corresponds to the probability v such that the v-quantile of U equals zero,

i.e. α = F (0). Using the equality (5), this property can be generalized to any APD random

variable X in (2), yielding α = FX(θ). In other words, the probability α is such that the

location θ of the APD density fX corresponds exactly to the α-quantile of X. For example, in

the symmetric case case where θ is the median of X, the probability α equals one half.
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3 Moments and Related Parameters

We now turn to the study of different moments and related parameters of an APD random

variable. The following lemma derives non-centered moments of the standard APD random

variable U . In principle, those can be used in order to fit the parameters of the APD density

by a Generalized Method of Moments (GMM), however, we choose not to follow this approach

here.

Lemma 4 (APD moments) For any r ∈ N we have

E(U r) =
Γ((1 + r)/λ)

Γ(1/λ)

(1− α)1+r + (−1)rα1+r
δ
r/λ
α,λ

. (6)

For example, the mean and variance of U are given by

E(U) =
Γ(2/λ)

Γ(1/λ)
[1− 2α]δ−1/λα,λ , (7)

var(U) =
Γ(3/λ)Γ(1/λ)[1− 3α+ 3α2]− Γ(2/λ)2[1− 2α]2

[Γ(1/λ)]2
δ
−2/λ
α,λ . (8)

When α = 1/2 and λ > 0, the random variable U has the GPD density and results on its

moments are already established in the literature (see, e.g., Johnson, Kotz and Balakrishnan

1994 p.194-195, Kotz, Kozubowski and Podgorski 2001 p.219). In the asymmetric Laplace

case, obtained when 0 < α < 1 and λ = 1, the third and fourth centered moments of U are

bounded: −2 6 sk(U) 6 2 and 6 6 ku(U) 6 9. Note that the bounded values for sk(U)

and ku(U) make the asymmetric Laplace distribution unsuitable for financial applications, in

which it is often the case that the series of interest exhibit non-zero skewness and high values

of kurtosis. In the symmetric case α = 1/2, the random variable U is standard Laplace and

we obtain the well known results: E[U ] = 0, var(U) = 2, sk(U) = 0 and ku(U) = 6. Table 1

summarizes all the moment results.

[Table 1]
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In Figure 2 we plot the first four moments of a standard APD random variable U . Expres-

sions for different centered moments of X follow directly from equation (6): for example, we

have E(X) = θ + φE(U), var(X) = φ2 var(U), sk(X) = sk(U) and ku(X) = ku(U).
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Figure 2: Moments of a standard APD random variable: X = α, 0 < α < 1, and Y = E(U),

var(U), sk(U) and ku(U), for λ = .7, 1, 2, 4.

We now derive an important moment related parameter of the standard APD random

variable U : its Lower Partial Moment (LPM) of order n, n ∈ N. The nth order LPM of U

computed at a given value q, LPMn(U, q), is defined as

LPMn(U, q) ≡ E[(q − U)n|U 6 q], (9)

for q ∈ R. An important special case of the above quantity is the ᾱ-expected shortfall of U ,

LPM1(U, F
−1(ᾱ)), obtained when n = 1 and when the value q corresponds to the ᾱ-quantile of

U , 0 < ᾱ < 1. For example, when ᾱ = α, the α-expected shortfall, E(−U |U 6 0), corresponds
to the lower-tail mean value of U evaluated at zero. In other words, it is the expected value
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of U conditional on the fact that U is lower than its α-quantile, i.e. zero. Given that we

are particularly interested in measuring the left-tail of U , we derive analytic expressions for

ᾱ-expected shortfalls with probabilities ᾱ smaller than α.

Lemma 5 (LPM) For any probability ᾱ smaller than α, 0 < ᾱ 6 α, the ᾱ-expected shortfall

of the standard APD random variable U , equals

E(q̄ − U |U 6 q̄) = α

ᾱ

α

δ
1/λ
α,λ

Γ(2/λ)

Γ(1/λ)
[1− I(

I−1(1− ᾱ

α
, 1/λ)

√
2

, 2/λ)] + q̄, (10)

where q̄ corresponds to the ᾱ-quantile of U , i.e. q̄ = −[ αλ

δα,λ
√
λ
]1/λ[I−1(1− ᾱ

α
, 1/λ)]1/λ, I(x, γ)

is the Pearson’s (1922) incomplete gamma function, I−1(y, γ) its inverse and the constant δα,λ

is as in Definition 1. In particular, the α-expected shortfall of U , E(−U |U 6 0), is given by

E(−U |U 6 0) = Γ(2/λ)

Γ(1/λ)

α

δ
1/λ
α,λ

. (11)

Taking into account the location-scale property of the pdf fX , the above results are easily

transposable to any APD random variable X in (2). For example, the α-expected shortfall

of X is given by E(θ − X|X 6 θ) = [Γ(2/λ)/Γ(1/λ)]φαδ
−1/λ
α,λ . In the asymmetric Laplace

case (λ = 1), the equation (11) becomes E(−U |U 6 0) = 1/[2(1 − α)]. Similarly, we have

E(θ −X|X 6 θ) = φ/[2(1− α)].

Finally, we use the moment results in equations (7) and (8) to compute a density fZ of a

standardized APD random variable Z.

Lemma 6 (Standardized a-Quantile density) Let Z be an APD random variable which

is standardized, i.e. E[Z] = 0 and var(Z) = 1. Then the density of Z, denoted fZ, is given by

fZ(z) =


λ

µ

Γ(2/λ)

Γ(1/λ)2
exp[−( Γ(2/λ)

αΓ(1/λ)
)λ| z
µ
+ 1− 2α|λ], if z 6 −(1− 2α)µ,

λ

µ

Γ(2/λ)

Γ(1/λ)2
exp[−( Γ(2/λ)

(1− α)Γ(1/λ)
)λ| z
µ
+ 1− 2α|λ], if z > −(1− 2α)µ,

(12)

where 0 < α < 1, λ > 0 and µ is a positive constant defined as µ ≡ Γ(2/λ){Γ(3/λ)Γ(1/λ)[1−
3α+ 3α2]− Γ(2/λ)2[1− 2α]2}−1/2.
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The above quantity −(1−2α)µ corresponds to the α-quantile of the random variable Z, i.e.
F−1Z (−(1−2α)µ) = α, where FZ is the cdf of Z. Note that in the special case α = 1/2, the den-

sity fZ reduces to the standardized GPD density, fZ(z) = [λ/(ΛΓ(1/λ)21+1/λ)] exp[−|z/Λ|λ/2],
for z ∈ R, where Λ = [2−2/λΓ(1/λ)/Γ(3/λ)]1/2 (see, e.g., Nelson, 1991).5

As previously, we derive the α-expected shortfall of the standardized APD random variable

Z,

E[(2α− 1)µ− Z|Z 6 (2α− 1)µ] = αµ, (13)

with µ as in Lemma 6.6

In particular, provided consistent estimates of α and λ, we can use the equality (13) in

order to estimate the α-expected shortfall of Z. Before proceeding with the estimation of the

latter, we need a consistent estimator for the parameter (α,λ) of an APD distribution. In the

next section, we propose one such estimator and derive its asymptotic distribution.

4 Simulation and Maximum Likelihood Estimation

In this section we discuss two problems: (1) how to simulate a random variable which is APD

distributed, and (2) how to estimate its true parameters. These problems often arise together

in cases of Monte Carlo studies, for example.

Random variates from the APD family can be obtained by direct transformation of Gamma

variates. For given values of α and λ, 0 < α < 1 and λ > 0, the method for generating standard

APD random variates is as follows: (1) generate a Gamma variateW with shape parameter 1/λ

and pdf fW (w) = Γ(1/λ)−1w1/λ−1 exp(−w); (2) divide W by δα,λ and raise to 1/λ power, thus

obtaining V ≡ (W/δα,λ)1/λ; (3) generate a random sign variable S equal to +1 with probability
(1−α) and to −1 with probability α; finally (4) let U ≡ −αW ·1(S 6 0)+(1−α)W ·1(S > 0).

5When α = 1/2 we have µ = Γ(2/λ)/[4Γ(3/λ)Γ(1/λ)]1/2 and Λ = µ21+1/λΓ(2/λ)/Γ(1/λ).
6Note that we can write Z = θZ + φZU , where the location of Z equals θZ = −(1 − 2α)µ and its scale is

φZ = Γ(1/λ)[Γ(2/λ)]
−1δ1/λα,λµ, with µ as in Lemma 6.
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It is straightforward to show that such random variable U has density f as defined in equation

(1) and is hence standard APD distributed. Note that this method requires a Gamma random

number generator that accepts values of the shape parameter greater than zero.

Alternatively, having determined the expressions of the standard APD cdf F and its inverse

F−1 in Lemmas 2 and 3 respectively, standard APD random variates can be generated by

using an inversion method. The inversion method can be summarized as follows: (1) generate

a Uniform variate V in (0, 1); then (2) let U ≡ F−1(V ). Note that the inversion method only
requires a uniform random number generator.

We now turn to the problem of estimating the parameters of the APD density fX , which

is a function of the asymmetry parameter α, 0 < α < 1, the exponent λ, λ > 0, the location

θ, θ ∈ R, and the scale φ, φ > 0. Let β denote the parameter vector, β ≡ (α,λ, θ,φ)0. We
follow the usual convention and let β0 be the true value of β which needs to be estimated,

β0 ≡ (α0,λ0, θ0,φ0)0. In this paper, we focus on the method of maximum likelihood, leaving the
discussion of other methods of estimation, such as the GMM mentioned in Section 3, outside

its scope.

Recall that for any given α and λ, 0 < α < 1 and λ > 0, the APD random variable

X in equation (2) has density fX as given by equation (3). Let then X1, . . . , XT be an

i.i.d. random sample from an APD distribution with density fX parametrized by β, and

let x1, . . . , xT be the corresponding observations. The APD normalized log-likelihood LT (β),

LT (β) ≡ T−1
PT

t=1 ln fX(xt|β), takes the form

LT (β) = − lnφ+ 1
λ
ln δα,λ − lnΓ(1 + 1/λ)

−δα,λ

φλ
T−1

TX
t=1

[
|xt − θ|λ

αλ
1(xt 6 θ) +

|xt − θ|λ
(1− α)λ

1(xt > θ)],
(14)

where δα,λ is as in Definition 1, i.e. δα,λ =
2αλ(1− α)λ

αλ + (1− α)λ
.

Let β̂T be a solution to the problem maxβ∈B LT (β) where B is a compact parameter set,

B ⊂ (0, 1) × R∗+ × R × R∗+. The standard asymptotic normality results for maximum like-

lihood estimators (MLEs) require that the objective function LT (β) be twice continuously
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differentiable, which is not the case here. There exist, however, asymptotic normality results

for non-smooth functions and we will hereafter use the one proposed by Newey and McFadden

(1994). The basic insight of their approach is that the smoothness condition on the objective

function LT (β) can be replaced by the smoothness of its limit, which in the standard maximum

likelihood case corresponds to the expectation L0(β) ≡ E[ln fX(Xt|β)], with the requirement
that certain remainder terms are small. Hence, the standard differentiability assumption is

replaced by a “stochastic differentiability” condition, which can then be used to show that the

MLE β̂T is consistent and asymptotically normal. This is the result of the following proposition.

Proposition 7 (MLE) Let X1, . . . , XT be i.i.d. from the APD distribution with an unknown

parameter β0, β0 ∈ B̊ with B compact. Then, the MLE β̂T of β0 is consistent and asymptoti-

cally normal,
√
T (β̂T − β0)

d→ N (0, J−1),

where J is the Fisher Information matrix, J ≡ E[(∇β ln fX(Xt|β))(∇β ln fX(Xt|β))0], and can
be consistently estimated by ĴT , ĴT ≡ T−1

PT
t=1(∇β ln fX(xt|β̂T ))(∇β ln fX(xt|β̂T ))0. Analytic

expressions of the scores, St ≡ ∇β ln fX(Xt|β), are provided in the Appendix A.

We study the performance of the above MLE - small sample bias and 95% confidence

interval empirical coverage - by conducting a Monte Carlo experiment. For a given value of

parameter β0 ≡ (α0,λ0, θ0,φ0)0, we generate N = 10000 replications of the sequence x1, . . . , xT

from the APD random variable X with density fX . The simulations are performed by using

Matlab gamma random number generator with default seed values, which are obtained when

the state of Matlab pseudo-random number generator is set to zero.7 The parameter α0 is taken

to be equal to 0.1, 0.25 and 0.5, while λ0 takes the values 0.7, 1, 2 and 4. The parameters θ0

and φ0 are held fixed to 0 and 1, respectively, in all of the performed replications. The sample

size T is chosen to be 100, 500, 1000 and 5000. For each replicate n, 1 6 n 6 N , the true
7All computations are performed in Matlab version 6.5.0. release 13 (June 2002).
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parameter β0 is estimated by β̂T,n ≡ (α̂T,n, λ̂T,n, θ̂T,n, φ̂T,n)
0 and for each of the components

of β̂T,n we compute the 95% confidence intervals, using the covariance matrix estimator ĴT,n

defined in Proposition 7. In Tables 2 - 5 we report the mean value of the MLEs as well as the

empirical levels of the 95% confidence intervals.

[Tables 2 - 5]

As expected, the mean values of the Monte Carlo MLEs converge with the sample size T to

the true values of β0 in all of the configurations studied in this experiment. Also, the empirical

levels of the 95% confidence intervals for α̂T,n, λ̂T,n and φ̂T,nconverge with T to the nominal

coverage, i.e. 95%. However, in the case of θ̂T,n the convergence is particularly slow for the

true values of λ smaller than one.

5 Empirical Application

We study six financial time series obtained from the Center for Research in Security Prices

(CRSP) during a period from 01/02/1990 to 12/31/2002. These consist of daily prices of

two indices: S&P500 and NASDAQ, two individual securities: IBM and Microsoft, and two

exchange rates: British pound (BP/USD) and Japanese yen (JY/USD), expressed in terms

of the US dollar. For each series of prices Pt we construct the series of log-returns, Yt ≡
100 ln(Pt/Pt−1), which we adjust to take into account events such as stock splits on individual

securities. In Table 6 we report first four unconditional moments of returns Yt.

[Table 6]

As can be seen from Table 6, all series exhibit high values of kurtosis, ranging from 5.649

(BP/USD) to 138.579 (Microsoft). Skewness of the series studied here are generally negative.
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As a first step of our analysis, we estimate a standard GARCH(1,1) model for the returns

Yt,

Yt = µ+ σtεt, (15)

σ2t = ω0 + ω1σ
2
t−1 + ω2Y

2
t−1, (16)

where the innovations εt are assumed to be independent and identically distributed with some

distribution D which has zero mean and unit variance, i.e. E(εt) = 0 and E(ε2t ) = 1. The

parameter vector ω ≡ (ω0,ω1,ω2)0 satisfies ω0 > 0, 0 < ω1,ω2 < 1 and 0 < ω1+ω2 < 1, which

are the standard stationarity and invertibility conditions for the time series of squared returns

Y 2t . We estimate ω and µ by using a Gaussian quasi-maximum likelihood estimator (QMLE)

(ω̂0T , µ̂T )
0, which is consistent and asymptotically normal (see, e.g. Bollerslev and Wooldridge,

1992). Table 7 reports the values of the QMLE (ω̂0T , µ̂T )
0 and its consistent standard errors.

[Table 7]

In Table 8 we report the first four unconditional moments of the residuals ε̂t ≡ σ̂−1t (yt−µ̂T ),
where σ̂2t = ω̂0T + ω̂1T σ̂

2
t−1 + ω̂2Ty

2
t−1.

[Table 8]

The unconditional distribution of the residuals is skewed and leptokurtic, which tends to

reject the assumption that the residuals are GPD distributed. Moreover, one can reject the

assumption that the latter are Laplace distributed since in five cases out of six, their kurtosis

lies outside the interval [6, 9].

We now use the maximum likelihood result of the previous section to estimate the para-

meters of the distribution of residuals, by assuming it belongs to the APD family. Given that

the innovations εt are standardized, their density is parametrized by only two parameters α

and λ, as in (12). We estimate the true value of (α,λ) by the maximum likelihood approach
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described in the previous section. For each estimate (α̂T , λ̂T )0, we compute the location θ̂T

and scale φ̂T of the density of εt, by using the restrictions of zero mean and unit variance.

Consistent standard errors for (α̂T , λ̂T )0 are obtained from ĴT defined in Proposition 7. We

report the estimation results in Table 9.

[Table 9]

As can be seen from Table 9, values of the asymmetry parameter α range from 0.462 (Mi-

crosoft) to 0.586 (NASDAQ). A simple Wald test of the restriction α = 1/2 shows that in three

cases out of six (NASDAQ, Microsoft and JY/USD), the value of α is significantly different

from 1/2 (with probability 95%). In other words, the residuals for those series are found to

be asymmetric. Another interesting finding is that in all six cases the values of the exponent

λ are found to be significantly different from both 1 and 2, thus invalidating the assumptions

that the innovations εt are double-exponential (Laplace) or normally distributed. Note that

this conclusion holds even if we allow for asymmetry in the density of εt. Consistent with

our previous results on the asymmetry parameter, we find that any time α is not significantly

different from zero, the same holds for the location parameter θ. This result is as we would

expect since any symmetric distribution with mean zero, necessarily has its median equal to

zero. Finally, we find that in three cases out of six (IBM, BP/USD and JY/USD), the value of

the scale parameter φ is not significantly different from one (with 95% probability), although

this conclusion holds weakly (with 90% probability) in the case of IBM.

At last, we are able to compute the α-expected shortfall for each of the six series of inno-

vations, LPM1(εt, θ), which we report in Table 10. Figure 4 plots time series of conditional

α-expected shortfalls of returns Yt. We construct the latter by using the fact that in condi-

tional heteroskedasticity models such as GARCH(1,1) defined in equations (15)−(16), we have
LPM1(Yt, µ+ θσt) = σtLPM1(εt, θ).

[Table 10 and Figure 4]
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It is important to note that in order to compare the riskiness of two different portfolios

with returns Y1t and Y2t we need to compare, at each point in time t, LPM1(Y1t, q1t) and

LPM1(Y2t, q2t), with q1t = q2t. In other words, we need to make sure that the two LPMs are

computed at a same value.

6 Conclusion

This paper introduces a new family of probability distributions called the Asymmetric Power

Distribution (APD). The APD family generalizes the GPD distributions to cases where the

density function is asymmetric. For a given value of the asymmetry parameter α, 0 < α < 1,

the mode of the APD probability density at zero no longer corresponds to the distribution

median, as in the GPD case, but rather to its α-quantile.

Expressions for quantiles, moments and moment related parameters of APD distributed

random variables are also derived. The simulation of APD random variables is easily performed

by using gamma or uniform random number generators. The estimation of the four parameters

α, λ, θ and φ of the APD distribution is conducted by maximum likelihood. The APD MLE is

shown to be consistent and asymptotically normally distributed with the asymptotic covariance

matrix equal to the inverse of the Fisher information matrix J . A consistent estimator of J

is easily obtained by computing the covariance matrix of the APD scores, whose analytic

expressions are provided in the paper. We confirm our theoretical findings in a Monte Carlo

experiment which shows that: (1) the small sample bias of the MLE disappears, and (2) the

empirical coverage of estimated confidence intervals converges to the nominal value, as the

sample size increases.

An empirical application to six financial market series reveals that daily return innovations

tend to be asymmetric, with asymmetry parameter α significantly different from one half. For

all the series examined, the exponent parameter λ is found to be within [1.21, 1.55]. This invali-

dates the assumption that the return innovations are Laplace (double-exponential) or normally

distributed, even if we allow the latter to be asymmetric. Based on the above estimates for α
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and λ, we are able to compute the α-expected shortfalls and their standard errors.

Robustness of our results to departures from an APD density assumption, i.e. an extension

to a quasi-maximum likelihood framework, and relative performances of semi-, non- and fully

parametric estimators for the expected shortfall are important open questions which are left

for future research.
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Appendix A

Lemma 8 (Scores) For any β = (α,λ, θ,φ)0 ∈ B, the score, St ≡ ∇β ln fX(Xt|β), of an APD
random variable Xt with density fX(x|β) ≡ φ−1f(φ−1[x−θ]), where f is as defined in equation

(1), is given by

St,α ≡ ∂
∂α
ln fX(Xt|β) = ∂δα,λ

∂α
{ 1
λδα,λ

− |Xt−θ|λ
φλ

[ 1
αλ
1(Xt 6 θ) + 1

(1−α)λ1(Xt > θ)]}
+λδα,λ

|Xt−θ|λ
φλ

[ 1
αλ+1

1(Xt 6 θ)− 1
(1−α)λ+11(Xt > θ)]

St,λ ≡ ∂
∂λ
ln fX(Xt|β) = 1

λ2
[− ln δα,λ + λ

δα,λ

∂δα,λ
∂λ

+Ψ(1 + 1/λ)]

−[∂δα,λ
∂λ

+ δα,λ ln
|Xt−θ|

φ
] |Xt−θ|

λ

φλ
[ 1
αλ
1(Xt 6 θ) + 1

(1−α)λ1(Xt > θ)]

+δα,λ
|Xt−θ|λ

φλ
[ lnα
αλ
1(Xt 6 θ) + ln(1−α)

(1−α)λ 1(Xt > θ)]

St,θ ≡ ∂
∂θ
ln fX(Xt|β) = λ |Xt−θ|

λ−1

φλ
[

δα,λ
(1−α)λ − 2 · 1(Xt 6 θ)]

St,φ ≡ ∂
∂φ
ln fX(Xt|β) = − 1

φ
{1− λδα,λ

|Xt−θ|λ
φλ

[ 1
αλ
1(Xt 6 θ) + 1

(1−α)λ1(Xt > θ)]},

where δα,λ =
2αλ(1−α)λ
αλ+(1−α)λ ,

∂δα,λ
∂α

= λδα,λ[
(1−2α)
α(1−α) − αλ−1−(1−α)λ−1

αλ+(1−α)λ ], ∂δα,λ
∂λ

= δα,λ{ln[α(1 − α)] −
αλ lnα+(1−α)λ ln(1−α)

αλ+(1−α)λ } and Ψ(1 + 1/λ) ≡ Γ0(1+1/λ)
Γ(1+1/λ)

is a digamma function.

Appendix B (proofs can be omitted from publication)
Notation:

if V is a real n-vector, V ≡ (V1, . . . , Vn)0, then |V | denotes the L2-norm of V , i.e. |V |2 ≡ V 0V =Pn
i=1 V

2
i . If M is a real n×n-matrix,M ≡ (Mij)16i,j6n, then |M | denotes the L∞-norm of M ,

i.e. |M | ≡ max16i,j6n |Mij|.

Proof of Lemma 8. Recall that we have

ln fX(x|β) = − lnφ+ 1
λ
ln δα,λ − lnΓ(1 + 1/λ)− δα,λ

φλ
[
|x− θ|λ

αλ
1(x 6 θ) +

|x− θ|λ
(1− α)λ

1(x > θ)],
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where δα,λ ≡ 2αλ(1− α)λ

αλ + (1− α)λ
. Straightforward though tedious computations show that:

∂

∂α
ln fX(x|β) = 1

λδα,λ

∂δα,λ
∂α
− 1

φλ

∂δα,λ
∂α

[
|x− θ|λ

αλ
1(x 6 θ) +

|x− θ|λ
(1− α)λ

1(x > θ)]

−δα,λ

φλ
[−λ |x− θ|λ

αλ+1
1(x 6 θ) + λ

|x− θ|λ
(1− α)λ+1

1(x > θ)]

=
∂δα,λ
∂α

{ 1

λδα,λ
− |x− θ|λ

φλ
[
1

αλ
1(x 6 θ) +

1

(1− α)λ
1(x > θ)]}

+λδα,λ
|x− θ|λ

φλ
[
1

αλ+1
1(x 6 θ)− 1

(1− α)λ+1
1(x > θ)],

where
∂δα,λ
∂α

= λδα,λ[
(1− 2α)
α(1− α)

− αλ−1 − (1− α)λ−1

αλ + (1− α)λ
].

Similarly, we have

∂

∂λ
ln fX(x|β) = − 1

λ2
ln δα,λ +

1

λδα,λ

∂δα,λ
∂λ

+ 1
λ2
Γ0(1 + 1/λ)
Γ(1 + 1/λ)

−∂δα,λ
∂λ

[
|x− θ|

φ
]λ[
1

αλ
1(x 6 θ) +

1

(1− α)λ
1(x > θ)]

−δα,λ ln( |x− θ|
φ

)[
|x− θ|

φ
]λ[
1

αλ
1(x 6 θ) +

1

(1− α)λ
1(x > θ)]

+δα,λ[
|x− θ|

φ
]λ[
lnα

αλ
1(x 6 θ) +

ln(1− α)

(1− α)λ
1(x > θ)]

=
1

λ2
[− ln δα,λ + λ

δα,λ

∂δα,λ
∂λ

+Ψ(1 +
1

λ
)]

−[∂δα,λ
∂λ

+ δα,λ ln(
|x− θ|

φ
)]
|x− θ|λ

φλ
[
1

αλ
1(x 6 θ) +

1

(1− α)λ
1(x > θ)]

+δα,λ
|x− θ|λ

φλ
[
lnα

αλ
1(x 6 θ) +

ln(1− α)

(1− α)λ
1(x > θ)],

where
∂δα,λ
∂λ

= δα,λ{ln[α(1−α)]− αλ lnα+ (1− α)λ ln(1− α)

αλ + (1− α)λ
} and Ψ(1+1/λ) ≡ Γ0(1+1/λ)

Γ(1+1/λ)
is a

digamma function, i.e. the logarithmic derivative of the gamma function Γ. Note that there are

several different analytic expressions for Ψ. For example, for z > 0, we have Ψ(z+1) = d
dz
(z−

1)!, so that by using a series expansion of the factorial function, Ψ(z+1) = −γ+P∞
n=1

z
n(n+z)

,
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where γ is the Euler-Mascheroni constant, i.e. γ ' 0.577. Finally,
∂

∂θ
ln fX(x|β) = −λδα,λ

φλ
[
|x− θ|λ−1

αλ
1(x 6 θ)− |x− θ|λ−1

(1− α)λ
1(x > θ)]

= −λδα,λ
φλ
|x− θ|λ−1[ 1

αλ
1(x 6 θ)− 1

(1− α)λ
1(x > θ)]

= −λδα,λ
φλ
|x− θ|λ−1[ (1− α)λ + αλ

αλ(1− α)λ
1(x 6 θ)− 1

(1− α)λ
]

= λ
|x− θ|λ−1

φλ
[

δα,λ
(1− α)λ

− 2 · 1(x 6 θ)],

and

∂

∂φ
ln fX(x|β) = −1

φ
+ λ

δα,λ

φ1+λ
[
|x− θ|λ

αλ
1(x 6 θ) +

|x− θ|λ
(1− α)λ

1(x > θ)]

= −1
φ
{1− λδα,λ

|x− θ|λ
φλ

[
1

αλ
1(x 6 θ) +

1

(1− α)λ
1(x > θ)]}.

This completes the proof of Lemma 8.

Proof of Lemma 2. By definition F (u) ≡
uR

−∞
f(v)dv where f is given by equation (1).

We have

F (u) =
δ1/λα,λ

Γ(1 + 1/λ)
· {

uZ
−∞

exp[−δα,λ
αλ

|v|λ]1(v 6 0)dv +
uZ

−∞

exp[− δα,λ
(1− α)λ

|v|λ1(v > 0)dv},

where δα,λ =
2αλ(1− α)λ

αλ + (1− α)λ
. First consider the case u 6 0: F (u) then becomes

F (u) =
δ
1/λ
α,λ

Γ(1 + 1/λ)
·

uZ
−∞

exp[−δα,λ
αλ

|v|λ]dv

=
δ
1/λ
α,λ

Γ(1 + 1/λ)
· α

λδ
1/λ
α,λ

·
+∞Z
b

t1/λ−1 exp(−t)dt,

where b ≡ δα,λ
αλ
|u|λ. Hence,

F (u) = α[1− I(δα,λ
αλ

√
λ|u|λ, 1/λ)],

where I(x, γ) is Pearson’s (1922) incomplete gamma function,

I(x, γ) ≡ 1

Γ(γ)

x
√
γZ

0

tγ−1 exp(−t)dt.
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In the same manner, for u > 0, F (u) becomes

F (u) =
δ
1/λ
α,λ

Γ(1 + 1/λ)
· {

0Z
−∞

exp[−δα,λ
αλ

|v|λ]dv +
uZ
0

exp[− δα,λ
(1− α)λ

|v|λ]dv}

= α+ (1− α)I(
δα,λ

(1− α)λ

√
λ|u|λ, 1/λ)

= 1− (1− α)[1− I( δα,λ
(1− α)λ

√
λ|u|λ, 1/λ)].

Hence

F (u) =


α[1− I(δα,λ

αλ

√
λ|u|λ, 1/λ)], if u 6 0,

1− (1− α)[1− I( δα,λ
(1− α)λ

√
λ|u|λ, 1/λ)], if u > 0,

which proves the Lemma 2.

Proof of Lemma3. In order to compute the inverse of F we again separately consider

the two cases u 6 0 and u > 0. For all (u, v) ∈ R×(0, 1) we have

u 6 0 AND F (u) = v

⇐⇒ u 6 0 AND v = α[1− I(δα,λ
αλ

√
λ|u|λ, 1/λ)]

⇐⇒ u 6 0 AND |u| = [ αλ

δα,λ
√
λ
]1/λ[I−1(1− v

α
, 1/λ)]1/λ

⇐⇒ v 6 α AND u = H(v),

where the constant δα,λ is as in Definition 1, H(v) ≡ −[ αλ

δα,λ
√
λ
]1/λ[I−1(1 − v

α
, 1/λ)]1/λ and

I−1(y, γ) is the inverse of the Pearson’s (1922) incomplete gamma function. Similarly,

u > 0 AND F (u) = v ⇐⇒ v > α AND u = K(v),

where K(v) ≡ [ (1− α)λ

δα,λ
√
λ
]1/λ[I−1(1− 1− v

1− α
, 1/λ)]1/λ. Thus, for any 0 < α < 1, the inverse F−1

of F is given by

F−1(v) =


−[ αλ

δα,λ
√
λ
]1/λ[I−1(1− v

α
, 1/λ)]1/λ, if v 6 α,

[
(1− α)λ

δα,λ
√
λ
]1/λ[I−1(1− 1− v

1− α
, 1/λ)]1/λ, if v > α,

which completes the proof of Lemma 3.
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Proof of Lemma 4. For every r ∈ R+, we have

E[U r] =

+∞Z
−∞

urf(u)du

=
δ
1/λ
α,λ

Γ(1 + 1/λ)
· {

0Z
−∞

ur exp[−δα,λ
αλ

|u|λ]du+
+∞Z
0

ur exp[− δα,λ
(1− α)λ

|u|λ]du}

=
δ
1/λ
α,λ

Γ(1 + 1/λ)
· {

+∞Z
0

(−1)rvr exp[−δα,λ
αλ
vλ]dv +

+∞Z
0

ur exp[− δα,λ
(1− α)λ

uλ]du},

where we have let v = −u. Note that
+∞Z
0

vr exp[−δα,λ
αλ
vλ]dv =

+∞Z
0

vr exp[−δα,λ
αλ
vλ]dv

= (
α

δ
1/λ
α,λ

)r+1
1

λ

+∞Z
0

t(1+r)/λ−1 exp[−t]dt

= (
α

δ1/λα,λ

)r+1
1

λ
Γ(
1 + r

λ
),

where t ≡ (δα,λ/αλ) · vλ so that v = (α/δ1/λα,λ) · t1/λ and dv = (α/δ1/λα,λ) · t1/λ−1/λ. Hence,

E[Ur] =
δ
1/λ
α,λ

λΓ(1 + 1/λ)
· {(−1)r[δα,λ

αλ
]−(1+r)/λΓ(

1 + r

λ
) + [

δα,λ
(1− α)λ

]−(1+r)/λΓ(
1 + r

λ
)}

=
Γ((1 + r)/λ)

Γ(1/λ)
· δ−r/λα,λ [(−1)rα1+r + (1− α)1+r],

which completes the proof of Lemma 4.

Proof of Lemma 5. For a given probability ᾱ, 0 < ᾱ 6 α, let q̄ denote the ᾱ-quantile

of U , i.e. q̄ ≡ F−1(ᾱ). We then have, for any u ∈ R

Pr(U 6 u|U 6 q̄) = Pr(U 6 u, U 6 q̄)
Pr(U 6 q̄) ,

so that Pr(U 6 u|U 6 q̄) = 1, if u > q̄ and Pr(U 6 u|U 6 q̄) = F (u)/ᾱ, otherwise. Hence, the
ᾱ-expected shortfall of U equals

E(q̄ − U |U 6 q̄) = 1

ᾱ

q̄Z
−∞
(q̄ − u)f(u)du. (17)
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Recall that ᾱ 6 α so that q̄ = F−1(ᾱ) 6 F−1(α) = 0. In that case the equation (17) above

becomes

E(q̄ − U |U 6 q̄) =
1

ᾱ

δ
1/λ
α,λ

Γ(1 + 1/λ)

q̄Z
−∞
(q̄ − u) exp[−δα,λ

αλ
(−u)λ]du

=
1

ᾱ

δ
1/λ
α,λ

Γ(1 + 1/λ)

+∞Z
0

v exp[−δα,λ
αλ
(v − q̄)λ]dv

where we have set v ≡ q̄ − u. Note that we have u 6 q̄ 6 0 so that v > 0 > q̄. Now let

s ≡ δα,λ
αλ
(v − q̄)λ so that v = [ α

λ

δα,λ
s]1/λ + q̄ and dv =

1

λ
[
αλ

δα,λ
]1/λs1/λ−1ds. The integral above

becomes

E(q̄ − U |U 6 q̄) = 1

ᾱ

α

λΓ(1 + 1/λ)

+∞Z
b

(
α

δ
1/λ
α,λ

s1/λ + q̄)s1/λ−1 exp(−s)ds,

where b ≡ δα,λ
αλ
(−q̄)λ. Hence,

E(q̄ − U |U 6 q̄) =
1

ᾱ

α

λΓ(1 + 1/λ)
[
α

δ
1/λ
α,λ

+∞Z
b

s2/λ−1 exp(−s)ds+ q̄
+∞Z
b

s1/λ−1 exp(−s)ds]

=
α

ᾱ
{ α

δ
1/λ
α,λ

Γ(2/λ)

Γ(1/λ)
[1− I(δα,λ

αλ
(−q̄)λ

p
λ/2, 2/λ)] + q̄[1− I(δα,λ

αλ
(−q̄)λ

√
λ, 1/λ)]}.

Recall from Lemma 3 that q̄ = −[ αλ

δα,λ
√
λ
]1/λ · [I−1(1− ᾱ

α
, 1/λ)]1/λ so that

E(q̄ − U |U 6 q̄) = α

ᾱ

α

δ
1/λ
α,λ

Γ(2/λ)

Γ(1/λ)
[1− I(

I−1(1− ᾱ

α
, 1/λ)

√
2

, 2/λ)] + q̄,

which shows that (10) holds. In the special case where ᾱ = α so that q̄ = 0 we have

E(U |U 6 0) = − α

δ
1/λ
α,λ

Γ(2/λ)

Γ(1/λ)
,

which proves (11) and thus completes the proof of Lemma 5.

Proof of Lemma 6. In order to derive the density fZ of a standardized APD random

variable Z ≡ θZ + φZU we use the moment results in (7) and (8). Using E[Z] = 0 and

var(Z) = 1 together with the equations (7) and (8) we get that

φZ = Γ(1/λ)[Γ(3/λ)Γ(1/λ)[1− 3α+ 3α2]− Γ(2/λ)2[1− 2α]2]−1/2δ1/λα,λ ,
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and

θZ = −Γ(2/λ)[Γ(1/λ)]−1(1− 2α)φZδ−1/λα,λ .

We let

µ ≡ Γ(2/λ){Γ(3/λ)Γ(1/λ)[1− 3α+ 3α2]− Γ(2/λ)2[1− 2α]2}−1/2,

which is positive due to the positivity of the variance in (8), i.e. µ > 0. By using the above

notation the scale of Z then equals φZ = Γ(1/λ)[Γ(2/λ)]−1δ1/λα,λµ and its location is given by

θZ = −(1 − 2α)µ. We can now substitute the values of θZ and φZ in the general expression

of an APD density fZ(z) = fZ(θZ + φZu) = f(u)/φZ where f is as defined in (1). Hence

fZ(z) = φ−1Z f(φ
−1
Z [z − θZ ]), i.e.

fZ(z) =


Γ(2/λ)

µΓ(1/λ)Γ(1 + 1/λ)
· exp[− Γ(2/λ)λ

αλΓ(1/λ)λ

¯̄̄̄
z

µ
+ (1− 2α)

¯̄̄̄λ
], if z 6 −(1− 2α)µ,

Γ(2/λ)

µΓ(1/λ)Γ(1 + 1/λ)
· exp[− Γ(2/λ)λ

(1− α)λΓ(1/λ)λ
| z
µ
+ (1− 2α)|λ], if z > −(1− 2α)µ.

By noting that Γ(1 + 1/λ) = Γ(1/λ) · 1/λ we get the equation (12) which completes the proof
of Lemma 6.

Proof of Proposition 7. We start by showing that β̂T , obtained as a solution to the

problem maxβ∈B LT (β) with LT (β) as defined in equation (14), is a consistent estimate of β0.

In order to do so we use the MLE consistency result by Newey and McFadden (1994, p 2131)

and show that all the assumptions of their Theorem 2.5 hold. We first need to show that the

identification condition (i) of Theorem 2.5 holds, i.e. if β 6= β0 then for every t = 1, . . . , T we

have fX(Xt|β) 6= fX(Xt|β0) (meaning Pr({fX(Xt|β) 6= fX(Xt|β0)}) > 0), where X1, . . . , XT

are i.i.d. random variables drawn from an APD distribution with density fX parametrized by β.

We prove the converse of the above implication: consider the case where fX(Xt|β) = fX(Xt|β0)
(meaning Pr({fX(Xt|β) = fX(Xt|β0)}) = 1). In that case

1

φ
f(
Xt − θ

φ
|α,λ) = 1

φ0
f(
Xt − θ0

φ0
|α0,λ0),

where f(·|α,λ) is the standard APD density in (1) with parameters α and λ. Note that

Xt = θ0 + φ0Ut, where U1, . . . , UT are i.i.d. standard APD random variables with density
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f(·|α0,λ0). Hence, the above equality becomes

φ0
φ
f(

θ0 − θ

φ
+

φ0
φ
Ut|α,λ) = f(Ut|α0,λ0). (18)

Let Vt ≡ θ0−θ
φ
+ φ0

φ
Ut. Then Vt is APD distributed with density

fV (v) =
φ

φ0
f(
v − θ0−θ

φ

φ0
φ

|α0,λ0). (19)

Using the equation (18) we then have that fV (v) = f(v|α,λ) which combined with (19) yields
α = α0, λ = λ0, φ/φ0 = 1 and (θ0 − θ)/φ = 0. Hence β = β0 which shows identification.

The compactness condition (ii) of Theorem 2.5 is ensured by considering a compact parameter

set B. The continuity condition (iii) of Theorem 2.5 is trivially verified since ln fX(Xt|β) is
continuous at each β ∈ B with probability one (indeed, discontinuity arises only when θ = Xt

which is of measure zero). Finally, the boundednes condition (iv) of Theorem 2.5 requires that

for all β ∈ B, E[| ln fX(Xt|β)|] 6 K < ∞ (see Lemma 2.4 in Newey and McFadden, 1994, p

2129). Recall that

ln fX(Xt|β) = − lnφ+ ln
δ
1/λ
α,λ

Γ(1 + 1/λ)
− δα,λ

φλ
· [ |Xt − θ|λ

αλ
1(Xt 6 θ) +

|Xt − θ|λ
(1− α)λ

1(xt > θ)],

Note that, for every β ∈ B, we have

| ln fX(Xt|β)| 6 | lnφ|+ | ln δ1/λα,λ

Γ(1 + 1/λ)
|+ δα,λ

[αλ + (1− α)λ]

αλ(1− α)λ
· |Xt − θ

φ
|λ

6 | lnφ|+ | ln δ
1/λ
α,λ

Γ(1 + 1/λ)
|+ 2|Xt − θ

φ
|λ. (20)

By using an argument similar to the one in Lemma 4 we can show that the λ-moment of the

absolute value of a standard APD random variable Ut = (Xt − θ)/φ with parameters (α0,λ0)

is given by

E(|Ut|λ) = Γ((1 + λ)/λ0)

Γ(1/λ0)
· δ−λ/λ0α0,λ0

[α1+λ0 + (1− α0)
1+λ]. (21)
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Indeed,

E(|Ut|λ) =

+∞Z
−∞

|u|λf(u)du

=
δ
1/λ0
α0,λ0

Γ(1 + 1/λ0)
· {

0Z
−∞

(−u)λ exp[−δα0,λ0
αλ0
0

|u|λ0]du+
+∞Z
0

uλ exp[− δα0,λ0
(1− α0)λ0

|u|λ0 ]du}

=
δ
1/λ0
α0,λ0

Γ(1 + 1/λ0)
· {

+∞Z
0

vλ exp[−δα0,λ0
αλ0
0

vλ0 ]dv +

+∞Z
0

uλ exp[− δα0,λ0
(1− α0)λ0

uλ0 ]du},

where, in the first integral of the right hand side of the above equality, we let v = −u. Hence,

E(|Ut|λ) =
δ
1/λ0
α0,λ0

λ0Γ(1 + 1/λ0)
· {[δα0,λ0

αλ0
0

]−(1+λ)/λ0Γ(
1 + λ

λ0
) + [

δα0,λ0
(1− α0)λ0

]−(1+λ)/λ0Γ(
1 + λ

λ0
)}

=
Γ((1 + λ)/λ0)

Γ(1/λ0)
· δ−λ/λ0α0,λ0

[α1+λ0 + (1− α0)
1+λ],

which shows that (21) holds.

We therefore get that

E(|Ut|λ) 6 Γ((1 + λ)/λ0)

Γ(1/λ0)
· 2δ−λ/λ0α0,λ0

. (22)

Hence, the inequality (20) becomes

E[| ln fX(Xt|β)|] 6 | lnφ|+ | ln
δ1/λα,λ

Γ(1 + 1/λ)
|+ 4δ−λ/λ0α0,λ0

Γ((1 + λ)/λ0)

Γ(1/λ0)
.

Let K ≡ supβ∈B{| lnφ| + | ln
δ
1/λ
α,λ

Γ(1+1/λ)
| + 4δ−λ/λ0α0,λ0

Γ((1+λ)/λ0)
Γ(1/λ0)

}. By compactness of B we have

K <∞, so that for every β ∈ B, we have E[| ln fX(Xt|β)|] 6 K <∞. We can now apply the
result of Theorem 2.5 in Newey and McFadden (1994, p 2131) to show that β̂T is consistent,

i.e. β̂T
p→ β0.

We now proceed and show that β̂T is asymptotically normal with asymptotic covariance matrix

J−1 with J as defined in Proposition 7, i.e. J = E[[∇β ln fX(Xt|β0)][∇β ln fX(Xt|β0)]0]: in order
to do so we use the asymptotic normality result for the MLE contained in Theorem 7.1 of Newey

and McFadden (1994, p 2185). It is important to note that the main difficulty in applying the

existing asymptotic normality results lies in the fact that the objective function here is not
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everywhere differentiable. The first condition to be satisfied for the asymptotic normality to

hold is the maximum condition (i): β0 = argmaxβ∈B E[ln fX(Xt|β)]. This condition is trivially
satisfied by assuming that X1, . . . , XT are i.i.d. from the APD distribution with parameter β0

(i.e. there is no distributional misspecification). The interior condition (ii) of Theorem 7.1 is

equivalent to the assumption β0 ∈ B̊ (interior of B). The twice differentiability condition (iii)
also holds with the 4×4 Hessian matrix of second derivatives, H ≡ E[∆ββ ln fX(Xt|β0)], being
nonsingular. We checked the nonsingularity condition by first computing analytic expressions of

the elements of∆ββ ln fX(x|β0), and then numerically integrating them with respect to the four
parameter APD probability density with the true parameter β0. Our numerical computations

of H have shown that for β0 ∈ B = [0.01, 0.99] × [0.5, 5] × [−10, 10] × [0.1, 10], we have
det(H) 6= 0. Due to the length of analytic expressions for different elements of H we choose

not to report them here. We now show that condition (iv) of Theorem 7.1 is satisfied, i.e. that
√
TDT

d→ N(0, J), where DT is a gradient of LT (β) at β0, i.e. DT ≡ T−1
PT

t=1∇β ln fX(xt|β0).
For that, we use a standard Lindeberg-Levy Central Limit Theorem (CLT) for iid sequences

(see, e.g., Theorem 5.2 in White, 2001, p 114) for which we need to show that all the elements

of the asymptotic covariance matrix J are finite. Note that we have

|[∇β ln fX(Xt|β0)][∇β ln fX(Xt|β0)]0| = |
∂

∂βi0
ln fX(Xt|β0)| · |

∂

∂βj0
ln fX(Xt|β0)|,

where 1 6 i0, j0 6 4 are such thatmax16i,j64 | ∂
∂βi
ln fX(Xt|β0)· ∂

∂βj
ln fX(Xt|β0)| = | ∂

∂βi0
ln fX(Xt|β0)·

∂
∂βj0

ln fX(Xt|β0)|. Hence, by norm equivalence we know that there exist a positive constant c,
such that

|[∇β ln fX(Xt|β0)][∇β ln fX(Xt|β0)]0| 6 c2 · |∇β ln fX(Xt|β0)|2.

In order to show that all the elements of J are finite, it suffices to show thatE[| ∂
∂βi
ln fX(Xt|β0)|2] <

∞ for 1 6 i 6 4: based on the results from Lemma 8, we have

| ∂
∂α
ln fX(Xt|β0)|2 6 4[

∂δα0,λ0
∂α

]2[
1

λ20δ
2
α0,λ0

+
|Xt − θ0|2λ0

φ2λ00

4

δ2α0,λ0
]

+4λ20δ
2
α0,λ0

|Xt − θ0|2λ0
φ2λ00

4

α20(1− α0)2δ
2
α0,λ0

,
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where [∂δα0,λ0
∂α

]2 6 16λ20δ
2
α0,λ0

α20(1−α0)2 . Hence

| ∂
∂α
ln fX(Xt|β0)|2 6

64

α20(1− α0)2
[1 + 2λ20|Ut|2λ0],

where as previously Ut = (Xt − θ0)/φ0 denotes a standard APD random variable with para-

meters (α0,λ0). By using the moment inequality in (22) we therefore have

E[| ∂
∂α
ln fX(Xt|β0)|2] 6

64

α20(1− α0)2
[1 + 4λ20

Γ((1 + 2λ0)/λ0)

δ2α0,λ0Γ(1/λ0)
] <∞. (23)

By using the same reasoning as above, we have

| ∂
∂λ
ln fX(Xt|β0)|2 6 4

λ40
[(ln δα0,λ0)

2 +
λ20

δ2α0,λ0
(
∂δα0,λ0
∂λ

)2 + (Ψ(1 + 1/λ0))
2]

+4[(
∂δα0,λ0
∂λ

)2 + δ2α0,λ0(ln
|Xt − θ0|

φ0
)2]
|Xt − θ0|2λ0

φ2λ00

4

δ2α0,λ0

+δ2α0,λ0
|Xt − θ0|2λ0

φ2λ00

[ln(α0(1− α0))]
2 4

δ2α0,λ0
,

where [
∂δα0,λ0

∂λ
]2 = 4δ2α0,λ0[ln(α0(1− α0))]

2. Hence,

| ∂
∂λ
ln fX(Xt|β0)|2 6 4

λ40
{[ln δα0,λ0]2 + 4λ20[ln(α0(1− α0))]

2 + (Ψ(1 + 1/λ0))
2}

+16{5[ln(α0(1− α0))]
2 + [ln |Ut|]2}|Ut|2λ0 .

Note that [ln |Ut|]2 6 2(|Ut|2 + 1/|Ut|2), so that

| ∂
∂λ
ln fX(Xt|β0)|2 6 4

λ40
{[ln δα0,λ0 ]2 + 4(λ20 + 20)[ln(α0(1− α0))]

2 + (Ψ(1 + 1/λ0))
2}

+32{|Ut|2(λ0+1) + |Ut|2(λ0−1)}.

Hence, by inequality (22) we have

E[| ∂
∂λ
ln fX(Xt|β0)|2] 6

4

λ40
{[ln δα0,λ0 ]2 + 4(λ20 + 20)[ln(α0(1− α0))]

2 + (Ψ(1 + 1/λ0))
2}

+
64

Γ(1/λ0)
{Γ((3 + 2λ0)/λ0)

δ
2(λ0+1)/λ0
α0,λ0

+
Γ((2λ0 − 1)/λ0)

δ
2(λ0−1)/λ0
α0,λ0

}

< ∞. (24)

Similarly, we have

| ∂
∂θ
ln fX(Xt|β0)|2 6 4λ20

|Xt − θ0|2(λ0−1)
φ2λ00

=
4λ20
φ20
|Ut|2(λ0−1),
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and

E[| ∂
∂θ
ln fX(Xt|β0)|2] 6

8λ20
φ20

Γ((2λ0 − 1)/λ0)
δ
2(λ0−1)/λ0
α0,λ0

Γ(1/λ0)
<∞. (25)

Finally,

| ∂
∂φ
ln fX(Xt|β0)|2 6

2

φ20
[1 + 4λ20

|Xt − θ0|2λ0
φ2λ00

] =
2

φ20
[1 + 4λ20|Ut|2λ0 ],

so that by using again the result of inequality (22) we get

E[| ∂
∂φ
ln fX(Xt|β0)|2] 6

2

φ20
[1 + 8λ20

Γ((1 + 2λ0)/λ0)

δ2α0,λ0Γ(1/λ0)
] <∞. (26)

Inequalities (23)−(26) imply that all the elements of J are finite, therefore we can use Theorem
5.2 in White (2001, p 114) to show that condition (iv) of Theorem 7.1 is satisfied. Finally, the

stochastic differentiablity condition (v) of the same theorem can be shown to hold by using

the results obtained by Andrews (1994) for the special case λ0 = 1 and extending them to

any λ0 > 0. We can now apply the results of Theorem 7.1 in Newey and McFadden (1994) to

show that
√
T (β̂T − β0)

d→ N(0, J−1), since in the maximum likelihood case H = −J . This
completes the proof of Proposition 7.
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Tables and Figures

Table 1: Moments of a standard APD random variable U

Symmetric case α = 1/2 General case 0 < α < 1

λ > 0

GPD

E(U) = 0

var (U) =Γ(3/λ)
Γ(1/λ)

sk (U) = 0

ku (U) =Γ(5/λ)Γ(1/λ)
[Γ(3/λ)]2

see above

λ = 1

Laplace

E(U) = 0

var (U) = 2

sk (U) = 0

ku (U) = 6

E(U) = (1− 2α) 1
2α(1−α)

var (U) = (1−α)2+α2
[2α(1−α)]2

sk (U) = (1− 2α) 2(α2−α+1)
[(1−α)2+α2]3/2

ku (U) = 3{3− [ 2α(1−α)
(1−α)2+α2 ]

2}

λ = 2

Gaussian

E(U) = 0

var (U) =1
2

sk (U) = 0

ku (U) = 3

E(U) = − (1− 2α)
√
(1−α)2+α2√
2πα(1−α)

var (U) = [(3π−8)(3α2−3α+1)+2][(1−α)2+α2]
12πα2(1−α)2

sk (U) = − (1− 2α)
√
54[(5π−16)(5α2−5α+1)−4]
5[2+(3π−8)(3α2−3α+1)]3/2

ku (U) =9[(15π2+16π−192)(5α4−10α3+10α2−5α+1)]
5[2+(3π−8)(3α2−3α+1)]2
−9[5(7π−24)(4α2−4α+1)−π+12]

5[2+(3π−8)(3α2−3α+1)]2
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Table 2: MLE probability limits and empirical levels (T = 250) 

α0 λ0 plim αT plim λT plim θT plim φT pTα pTλ pTθ pTφ 
0.1 0.7 0.1005 0.7084 0.0201 1.0054 0.8936 0.9570 0.2402 0.9390 
0.25 0.7 0.2496 0.7067 0.0062 1.0074 0.8987 0.9546 0.1793 0.9317 
0.5 0.7 0.4986 0.7045 -0.0011 1.0042 0.8983 0.9566 0.1162 0.9373 
0.1 1 0.0987 1.0209 0.0032 0.9787 0.9097 0.9552 0.8458 0.9161 
0.25 1 0.2496 1.0186 0.0039 0.9965 0.9190 0.9569 0.8530 0.9389 
0.5 1 0.5000 1.0160 -0.0007 0.9992 0.9204 0.9520 0.8343 0.9412 
0.1 2 0.0939 2.0727 -0.0332 0.9297 0.9198 0.9582 0.8999 0.9168 
0.25 2 0.2480 2.0811 -0.0026 0.9806 0.9368 0.9669 0.9348 0.9309 
0.5 2 0.4987 2.0607 -0.0040 0.9817 0.9484 0.9696 0.9500 0.9592 
0.1 4 0.0848 4.3378 -0.1107 0.8411 0.9934 0.9682 0.8378 0.9913 
0.25 4 0.2403 4.3202 -0.0324 0.9474 0.9287 0.9746 0.9229 0.9139 
0.5 4 0.4987 4.3453 -0.0025 0.9385 0.9452 0.9712 0.9432 0.9680 
NB: Monte Carlo results are obtained with N = 10000 replications of the time series {Xt} with t = 1,…,T, and where Xt ’s are 
iid APD distributed with TDGP values: α0 , λ0 , θ0 = 0 and φ0 = 1. 
 
 
 
 

Table 3: MLE probability limits and empirical levels (T = 500) 

α0 λ0 plim αT plim λT plim θT plim φT pTα pTλ pTθ pTφ 
0.1 0.7 0.1003 0.7048 0.0108 1.0071 0.9009 0.9558 0.2349 0.9343 
0.25 0.7 0.2498 0.7032 0.0029 1.0035 0.9053 0.9469 0.1935 0.9400 
0.5 0.7 0.4997 0.7004 0.0000 0.9964 0.8985 0.9483 0.1276 0.9410 
0.1 1 0.0994 1.0072 0.0007 0.9857 0.9207 0.9543 0.8945 0.9361 
0.25 1 0.2495 1.0060 0.0005 0.9937 0.9415 0.9471 0.9019 0.9397 
0.5 1 0.4998 1.0049 0.0004 0.9954 0.9307 0.9524 0.9047 0.9388 
0.1 2 0.0971 2.0390 -0.0177 0.9659 0.9265 0.9533 0.9282 0.9278 
0.25 2 0.2486 2.0396 -0.0032 0.9901 0.9467 0.9564 0.9454 0.9452 
0.5 2 0.4999 2.0317 0.0008 0.9922 0.9360 0.9600 0.9408 0.9544 
0.1 4 0.0943 4.1383 -0.0409 0.9376 0.9358 0.9513 0.9052 0.9322 
0.25 4 0.2465 4.1550 -0.0093 0.9800 0.9432 0.9644 0.9472 0.9392 
0.5 4 0.5000 4.1583 -0.0006 0.9710 0.9480 0.9648 0.9472 0.9736 
NB: Monte Carlo results are obtained with N = 10000 replications of the time series {Xt} with t = 1,…,T, and where Xt ’s are 
iid APD distributed with TDGP values: α0 , λ0 , θ0 = 0 and φ0 = 1. 
 
 



Table 4: MLE probability limits and empirical levels (T = 1000) 

α0 λ0 plim αT plim λT plim θT plim φT pTα pTλ pTθ pTφ 
0.1 0.7 0.1000 0.7025 0.0060 1.0007 0.9046 0.9581 0.2773 0.9388 
0.25 0.7 0.2501 0.7016 0.0016 1.0016 0.9126 0.9470 0.2088 0.9430 
0.5 0.7 0.5001 0.7011 0.0005 1.0018 0.9083 0.9395 0.1410 0.9339 
0.1 1 0.0997 1.0048 0.0012 0.9961 0.9415 0.9516 0.9152 0.9343 
0.25 1 0.2497 1.0034 0.0003 0.9983 0.9332 0.9496 0.9238 0.9401 
0.5 1 0.4997 1.0017 -0.0026 0.9961 0.9368 0.9500 0.9192 0.9508 
0.1 2 0.0989 2.0142 -0.0066 0.9864 0.9424 0.9583 0.9486 0.9417 
0.25 2 0.2499 2.0202 0.0012 0.9967 0.9429 0.9582 0.9467 0.9463 
0.5 2 0.5002 2.0164 -0.0002 0.9965 0.9488 0.9508 0.9440 0.9500 
0.1 4 0.0971 4.0655 -0.0221 0.9688 0.9429 0.9582 0.9462 0.9426 
0.25 4 0.2489 4.0591 -0.0024 0.9925 0.9496 0.9616 0.9488 0.9464 
0.5 4 0.4993 4.0623 -0.0017 0.9862 0.9552 0.9624 0.9568 0.9672 
NB: Monte Carlo results are obtained with N = 10000 replications of the time series {Xt} with t = 1,…,T, and where Xt ’s are 
iid APD distributed with TDGP values: α0 , λ0 , θ0 = 0 and φ0 = 1. 
 
 
 
 

Table 5: MLE probability limits and empirical levels (T = 5000) 

α0 λ0 plim αT plim λT plim θT plim φT pTα pTλ pTθ pTφ 
0.1 0.7 0.1000 0.7001 0.0014 0.9988 0.9193 0.9519 0.4182 0.9566 
0.25 0.7 0.2501 0.7006 0.0007 1.0015 0.9184 0.9482 0.3884 0.9478 
0.5 0.7 0.5001 0.7006 0.0009 1.0017 0.9051 0.9544 0.2854 0.9528 
0.1 1 0.1000 1.0010 0.0012 1.0001 0.9392 0.9520 0.9340 0.9409 
0.25 1 0.2499 0.9995 0.0001 0.9980 0.9415 0.9466 0.9373 0.9471 
0.5 1 0.5001 1.0010 0.0003 1.0004 0.9397 0.9426 0.9314 0.9494 
0.1 2 0.0999 2.0025 -0.0003 0.9988 0.9505 0.9531 0.9494 0.9486 
0.25 2 0.2498 2.0041 -0.0007 0.9989 0.9518 0.9526 0.9564 0.9495 
0.5 2 0.4998 2.0022 -0.0004 0.9989 0.9564 0.9600 0.9548 0.9560 
0.1 4 0.0995 4.0150 -0.0032 0.9950 0.9491 0.9528 0.9484 0.9496 
0.25 4 0.2497 4.0140 -0.0010 0.9984 0.9496 0.9576 0.9476 0.9492 
0.5 4 0.4999 4.0132 -0.0003 0.9974 0.9576 0.9528 0.9556 0.9576 
NB: Monte Carlo results are obtained with N = 10000 replications of the time series {Xt} with t = 1,…,T, and where Xt ’s are 
iid APD distributed with TDGP values: α0 , λ0 , θ0 = 0 and φ0 = 1. 
 
 



Table 6: Descriptive statistics for the unconditional distribution of returns yt 

Return Series  Mean  Variance  Skewness Kurtosis T 

S&P500 Composite Index   0.027 1.105 -0.117 6.814 3278 
NASDAQ Composite Index   0.033 2.606 -0.014 8.554 3278 

IBM  0.036 4.508 0.037 9.021 3277 

Microsoft  0.087 7.135 -5.214 138.579 3272 

BP/USD Exchange Rate   0.000 0.331 0.243 5.649 3263 
JY/USD Exchange Rate  -0.007 0.511 -0.562 7.177 3263 

NB: number of observations: T. 
 
 
 
 

Table 7: Gaussian QMLE of the GARCH(1,1) model  

Return Series   ω0 ω1 ω2 µ 

S&P500 Composite Index  0.006 0.933 0.063 0.053 
  (0.002) (0.010) (0.009) (0.014) 
  [3.076] [94.164] [6.716] [3.806] 

NASDAQ Composite Index  0.019 0.891 0.103 0.088 
  (0.005) (0.016) (0.015) (0.018) 
  [3.678] [56.082] [6.689] [4.808] 

IBM  0.125 0.908 0.068 0.074 
  (0.038) (0.017) (0.012) (0.039) 
  [3.328] [54.162] [5.803] [1.908] 

Microsoft  0.234 0.866 0.095 0.159 
  (0.059) (0.022) (0.016) (0.037) 
  [3.950] [38.492] [6.103] [4.254] 

BP/USD Exchange Rate  0.004 0.941 0.047 -0.003 
  (0.001) (0.009) (0.007) (0.009) 
  [3.522] [102.156] [6.717] [-0.351] 

JY/USD Exchange Rate  0.008 0.941 0.042 -0.003 
  (0.002) (0.011) (0.007) (0.014) 
  [3.413] [88.544] [6.082] [-0.180] 

NB: Gaussian QMLE for the GARCH(1,1) model:  yt = µ + σtεt, where σt
2 = ω0 + ω1σt-1

2 + ω2yt-1
2 and 

εt ~D(0,1). Consistent standard errors ( ) and t statistics [ ] are in parentheses. Values of the gaussian 
quasi log-likelihood: S&P500, 1.397; NASDAQ, 1.400; IBM, 1.371, Microsoft, 1.405, BP/USD, 1.394; 
JY/USD, 1.383. 
 



Table 8: Descriptive statistics for the residuals 

Return Series   Mean Variance Skewness Kurtosis 

S&P500 Composite Index  -0.027 1.000 -0.405 5.191 
NASDAQ Composite Index  -0.034 0.999 -0.482 4.521 
IBM  -0.025 1.000 -0.050 7.830 
Microsoft  -0.021 1.000 0.131 4.711 
BP/USD Exchange Rate  0.005 1.000 0.065 4.692 
JY/USD Exchange Rate  0.008 1.000 -0.521 5.568 

 
 
 
 
 
 
 

Table 9: MLE for the parameters of the APD density of the innovations  

Return Series   α λ θ φ 

S&P500 Composite Index  0.512 1.380 0.035 1.076 
  (0.011) (0.042) (0.031) (0.035) 
  [45.511] [32.667] [1.143] [30.681] 

NASDAQ Composite Index  0.586 1.541 0.263 1.136 
  (0.011) (0.047) (0.033) (0.033) 
  [53.461] [32.676] [7.877] [33.916] 

IBM  0.486 1.214 -0.041 0.934 
  (0.009) (0.031) (0.024) (0.034) 
  [53.241] [38.690] [-1.751] [27.096] 

Microsoft  0.462 1.494 -0.117 1.149 
  (0.010) (0.043) (0.031) (0.035) 
  [46.187] [35.081] [-3.773] [33.259] 

BP/USD Exchange Rate  0.495 1.319 -0.016 1.028 
  (0.010) (0.044) (0.028) (0.038) 
  [49.000] [29.913] [-0.564] [27.171] 

JY/USD Exchange Rate  0.530 1.278 0.090 0.988 
  (0.010) (0.041) (0.027) (0.037) 
  [51.045] [31.155] [3.327] [26.819] 

NB: ADP MLE for the distribution of the residuals εt. Consistent standard errors ( ) and t 
statistics [ ] are in parentheses.  

 
 



Table 10: MLE of the α-expected shortfall of the innovations 

Return Series   LPM1(εt,θ) 

S&P500 Composite Index  0.774 
(0.018) 

NASDAQ Composite Index  0.895 
(0.016) 

IBM  0.718 
(0.014) 

Microsoft  0.707 
(0.017) 

BP/USD Exchange Rate  0.743 
(0.015) 

JY/USD Exchange Rate  0.790 
(0.017) 

NB: Consistent standard errors obtained by simulation are reported in 
parentheses.  


