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Abstract

We give necessary and sufficient conditions for the existence of symmetric equilibrium
without ties in common values auctions, with multidimensional independent types and no
monotonic assumptions. When the conditions are not satisfied, we are still able to prove the
existence of pure strategy equilibrium with an exogenous and explicit tie breaking mechanism.
As a basis for these results, we obtain a characterization lemma that is valid under a general
setting, that includes non-independent types, asymmetrical utilities and any attitude towards
risk. Such characterization gives a basis for an intuitive interpretation for the behavior of the
bidder: to bid in order to equalize the marginal benefit and the marginal cost of bidding.

JEL Classification Numbers: C62, C72, D44, D82.
Keywords: auctions, pure strategy equilibria, non-monotonic bidding functions, tie-breaking

rules

1 Introduction
The main contributions of this paper are the following: (1) a general lemma of characterization of
the optimum bidding behavior; (2) necessary and sufficient conditions for the existence of regular
equilibria in auctions, that is, equilibria without ties with positive probability or gaps in the support
of the winning bids; (3) a tie-breaking rule to ensure the existence of pure strategy equilibria when
these necessary and sufficient conditions do not hold, that is, when ties with positive probability
are inevitable. Additionally, we provide some models to analyze auctions with multidimensional
bids.
The rest of this introduction describes the results, as well as the assumptions, relevance and

the method of proof. Section 2 describes the general model, while section 3 presents the character-
ization lemma which is valid in the context of this general model. Section 4 describes the Indirect
Auction Approach, which allows us to prove the existence of equilibrium for multidimensional,

∗We are grateful to Sergio O. Parreiras and Flavio Menezes for helpful comments. This research was supported
by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq).
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non-monotonic auctions. Also in section 4, we present the (exogenous) tie-breaking rule, which
ensures the existence of equilibrium for all auctions in our class. Section 5 exemplifies how to use
the approach described in section 4 to analyze auctions with multidimensional bids. Section 6
concludes with a discussion about the limits of our results and reviews the contributions of the
paper in light of the related literature.

1.1 Basic Principle of Bidding

Many experimental and empirical works suggest that the participants of auctions do (or at least
may) not follow their equilibrium strategies.1 Although there is a considerable debate about this
point, it highlights the assumption that equilibrium behavior might be too strong. An alternative
approach is to assume only that the players follow rationalizable strategies, instead of equilibrium
strategies. Pursuing this idea, Battigalli and Siniscalchi (2003) show that some empirical and ex-
perimental findings can be explained. Nevertheless, they still assume what Harsanyi (1967-8) calls
consistency of beliefs, that is, the subjective probability that players attribute to the distribution
of types of the opponents is just a conditional distribution and the conditional distribution of all
players comes from the same prior distribution.2 This is almost always assumed in game theory,
but does not need to be true, as Harsanyi stresses. Indeed, at the beginning of the iteration be-
tween players, they may have inconsistent beliefs. As a result, the first rounds of the game do not
satisfy the consistency of beliefs and have to be discarded in order to use the received theory.
Of course, one may think that nothing can be said without this basic assumption. We show,

on the contrary, that something interesting can be said. If we adhere to the even weaker assump-
tion that bidders are rational, then we prove that they act in order to equalize their marginal
utility to the marginal cost of bidding. This basic principle can provide insights for empirical and
experimental studies, since every bid (even the initial or the apparently inconsistent ones) bears
valuable information about the beliefs of the players. Also, the principle holds under fairly general
conditions, which are given by the Characterization Lemma.
The Characterization Lemma is valid for dependent types (with arbitrary dimension), asym-

metric utilities with any attitude towards risk and does not require assumptions as to monotonicity
or separability of transfers. The model embraces all kind of sealed-bid auctions where each player
is interested in just one object (to buy or sell).
When one introduces the additional hypotheses of risk neutrality, symmetry and monotonicity

of the utility function, the characterization provided by the Lemma reduces to the first-order
conditions obtained by Milgrom and Weber (1982) for first- and second-price auctions, by Krishna
and Morgan (1997) for the all-pay auction and war of attrition, and by Williams (1991) for buyers’-
bids double auctions.

1.2 Multidimensional and Non-Monotonic Equilibria Existence

Two long-standing assumptions in auction theory are that types (private information) are unidi-
mensional and that utilities (the value of the object being auctioned) are monotonic with types.
Although there have been recent efforts to generalize the equilibria existence for multidimensional
types (e.g. McAdams (2003a)), we are not aware of any theoretical construction for non-monotonic
auctions.3

1For a survey of experimental works, see Kagel (1995) and for the empirical literature on auction data, see Laffont
(1997).

2This is also called common prior assumption.
3Zheng (2001) analyzes a model where private information is the budget constraint, and the bidding behavior

can be non-monotonic. Nevertheless, there is also a monotonic equilibrium. McAdams (2003b) gives an example
with three bidders and affiliated types, where a non-monotonic equilibrium can exist. Athey and Levin (2001)
and Ewerhart and Fieseler (2003) also give examples of non-monotonic bidding functions, but where the bids are
multidimensional – a setting that we consider in section 5. None of these papers sets out to build a theory for
non-monotonic equilibria.
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This is probably due to the understanding that monotonicity seems a reasonable assumption
when dealing with unidimensional types. Nevertheless, it is clearly less appealing when multidi-
mensional types are considered.4 So, it is desirable that a theory of multidimensional auctions
should deal with non-monotonic assumptions.
Nevertheless, even for the unidimensional setting, things are not simple. An example provided

by Jacskon, Simon, Swinkels and Zame (2002) (henceforth JSSZ) illustrates the difficulties.5 The
example is a first-price auction with two bidders, whose signals are uniformly distributed in [0, 1]
and utilities are given by ui (t) = v (ti, t−i) = 5 + ti − 4t−i. They show that such an example
does not have an equilibrium without a special tie-breaking rule.
While developing the theory for general multidimensional and non-monotonic auctions, we

find the reason why this example does not possess equilibrium. Indeed, it does not satisfy the
necessary and sufficient conditions for the existence of pure strategy equilibrium that we present in
our Theorem 3. Theorem 3 applies to a class of symmetric interdependent values auctions (where
the separable utilities case above is a particular example) with independent types.6 Contrary to
what one would expect, the conditions are in general easy to check.
If the necessary and sufficient conditions of Theorem 3 are not satisfied, the received literature

can ensure the existence of equilibrium just through the result of JSSZ. This result gives the
existence in mixed strategies and accepts an endogenous tie-breaking rule as the solution concept.
In Theorem 4, we prove that if the conditions of Theorem 3 are not met, there exists a fixed and
previously known tie-breaking rule that it is capable of implying the equilibrium existence in pure
strategies. We call this the modified second-price auction tie-breaking rule and it applies to all
kinds of auctions considered.
Our approach also provides expressions for the multidimensional strategies (even under the

occurrence of ties), for auction formats that include, as special cases, the first-price, second-price,
(first-price) all-pay auctions and war of attrition (second-price all-pay auction). The expressions
are simple, due to the method that we follow to simplify the problem. We call it the Indirect
Auction Approach and describe it below. We emphasize that it is of interest even to unidimensional
auctions, as we discuss in section 6.

1.3 Detailed Description of the Indirect Auction Approach

Under the standard rule of auctions, higher bids correspond to higher probability of winning. If
a bidding function b (·) is fixed and followed by all participants in a symmetric auction, we can
associate to each bid (and so, to each type), a probability of winning. All types that bid the same
bid under b (·) have the same probability of winning. This allows us to introduce the concept of
conjugation. If b (t) = b (s), and hence, t and s have the same probability of winning, we say that
t and s are conjugated.7

The use of the probability of winning as analytical tool is not new in auction theory. Sometimes
in the literature, what we call conjugation is named “reduced form”: “The function relating a
bidder’s type to his probability of winning is the reduced form of the auction.” (Border, 1991, p.
1175). See also Matthews (1984) and Chen (1986). So, what we will call “indirect auction” can be
also called “reduced form auction”. These papers analyze problems related to the characterization
and existence of optimal auctions. So, the auction is treated, as do Myerson (1981), only by
considering the probability of winning and the payments. In turn, our problem is that of finding
the equilibrium for fixed auction rules. It is in light of these differences and in the attempt to
do not confuse terms that we decided to maintain our original terminology. A further reason
for the adoption of a different terminology comes from the fact that the indirect auction is not

4See examples 8, 9 and 10 in section 4.
5Their example was developed from Example 3 of Maskin and Riley (2000).
6The assumptions of Theorem 3 are related to a condition of Dasgupta and Maskin (2000). Theorems 1 and 2

hold under more general conditions.
7The use of conjugations is an idea borrowed from Araujo and Moreira (2000).
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“equivalent” to the direct one. So, it is not a merely “reduced form” of the auction. (See Remark
1 on subsection 4.3).
Returning to the description of the method, the main idea is to reparametrize the types and

to associate to all conjugated types s ∈ S, the probability of winning the auction. As stated, this
idea should seem unpromising since the probability of winning will be different for each different
bidding function that we begin with. Moreover, we cannot talk about conjugation if we do not
previously fix a bidding function.
To overcome these problems, we define conjugations without needing to mention bidding func-

tions. The definition comes from an insight acquired from the above notion of conjugation. We
define conjugations as a suitable reparametrization of the types. Once we have defined conjuga-
tions in subsection 4.1, we can define in subsection 4.2 the Indirect Auction.8 For this, we simply
integrate the utilities of the direct auction for all types that are conjugated. From our definition
of conjugation, the indirect auction is now an auction (of the same format as the direct auction,
that is, a first-price auction if the original auction is a first-price auction), between two players
with independent signals, uniformly distributed in [0, 1]. This makes the analysis of equilibrium
existence easier. An important result of the subsection 4.2 is the relationship between the payoffs
of direct and indirect auctions, which is made in Proposition 2.
With these preparatory results, we can finally deal with the problem of equilibrium existence in

subsection 4.3. First, we prove that the existence of a regular equilibrium implies nice properties
for the conjugation that it defines. This is the content of Theorem 1. These properties are almost
sufficient for the existence of the equilibrium, which is proved in Theorem 2: since we have defined
the conjugation without mentioning a bidding function, then whenever we can find a conjugation
that meets the conditions of Theorem 2, there exists a regular equilibrium of the direct auction.
These conditions are just slightly stronger than the necessary conditions given by Theorem 1.
Thus, Theorem 2 turns the problem of equilibrium existence into that of finding a conjugation
that meets its conditions. If we manage to find the correct conjugation, we are done. We show
how to perform this task in two examples (6 and 7) at the end of subsection 4.3.
In subsection 4.4, we treat a case of utilities that include the separable utilities as a special case,

that is, v (ti, t−i) = v1 (ti) + v2 (t−i). For the setting defined there, we are able to give necessary
and sufficient conditions for the existence of regular equilibrium (Theorem 3). This is very useful,
because it explain why Example 1 of JSSZ fails. But it raises the question: what can be done if
the necessary and sufficient conditions of Theorem 3 are not met?
Theorem 4 provides the answer. If we conduct a modified second-price auction, the equilibrium

exists in pure strategies with ties of positive probability. This last result has advantages over the
result of JSSZ: it is in pure strategies, the tie-breaking rule is exogenously given, it is valid for all
kind of auctions, it is fairly simple and it does not require the announcement of types. Concluding
section 4, we show in subsection 4.5 that our approach can be extended to the case of risk aversion.

1.4 Multidimensional Bids

As an illustration of the Indirect Auction Approach, in section 5 we generalize two models of
procurement auctions with multidimensional bids, as proposed by Che (1993) and by Ewerhart
and Fieseler (2003). The analysis can also be adapted to timber auctions, described by Athey and
Levin (2001). Nevertheless, this paper does not treat multi-unit auctions.

8This terminology comes from the “Taxation Principle” which allows us to implement the optimal direct truthful
mechanism through some convenient indirect one. In this case, we are implementing the equilibrium in the auction
using an indirect auction obtained from reparametrizing types through the probability of winning.
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2 The Model
There are N players.9 Player i (i = 1, ...,N) receives a private information, ti, and chooses an
action that is a real number (i.e., he submits a bid bi). The “auction house” computes the bids and
determines who “wins” and who “looses”. If player i wins, he receives ui (t, b) and if she looses,
she receives ui (t, b), where t = (ti, t−i) is the profile of all signals and b = (bi, b−i) is the profile of
bids submitted.10

Information
We assume that the private signal of each player, ti, lives in an arbitrary probabilistic space,

(Ti,=i, τ i). We assume that the product space, (T,=, τ), is such that τ is absolutely continuous
with respect to the product ×Ni=1τ i of its marginals.
Bidding
After receiving the private information, each player submits a sealed proposal, that is, a bid

(or offer) that is a real number. A negative bid is equivalent to the non-participation decision (in
which case the payoff is normalized to zero).11 We assume that the maximum permitted bid is M ,
to rule out behaviors (equilibria) in which one bidder bids arbitrarily high and the others bid zero.
This is a weak assumption, although it imposes some restriction on certain auction formats such
as third-price auctions.

Mechanism of allocation
We suppose that each bidder sees a number that depends only on the bids submitted by the

opponents and that determines the threshold of the winning and losing events. We denote such
number as b(−i). For instance, if the auction is a one-object auction where all players are buyers,
b(−i) is the maximum bid of the opponents, that is, b(−i) ≡ maxj 6=i bj . If there are K objects

for selling and a reserve price b0 > 0, then b(−i) ≡ max
n
b0, b

−i
(K)

o
, where b−i(m) is the m-th order

statistic of (b1, ..., bi−1, bi+1, ..., bN ), that is, b−i(1) > b
−i
(2) > ... > b

−i
(N−1).

12

Double auctions among S sellers (players 1, 2, ..., S) and N−S buyers (players S+1, ..., N) can
be described similarly. There are two cases to consider. If S > N − S, then buyers get the object
as long as they bid at least the minimum bid of the sellers. So, we put b(−i) ≡ minj=1,...,S bj if
player i is a buyer. There is competition among sellers. Then, a player i 6 S sells the object if and
only if bi is below the minimum bid of buyers and if it is among the N − S lowest bids of sellers.
In other words, b(−i) ≡ min

n
b−i,s(N−S),minj=S+1,...,N bj

o
, where b−i,s(m) is m-th order statistic among

all sellers but player i. The case when there are more buyers (that is, S 6 N − S) is similar. If
the player i is a buyer, b(−i) ≡ max

n
b−i,b(S) ,minj=S+1,...,N bj

o
, where b−i,b(m) is m-th order statistic

among all buyers but player i. If the player i is a seller, b(−i) ≡ minj=S+1,...,N bj .
A third part (the auction house) computes the bids and determines what is the result of the

game for each player. If bi < 0 (that is, player i does not participate), the payoff is 0. If bi > b(−i),
the auction house declares player i “holder of an object” (and he has an ex-post payoff ui (t, b) in
this situation). If 0 6 bi < b(−i), the auction house declares that player i is not a holder of an
object (and he receives ui (t, b)).

13

9Our model is inspired in auction games, although it can encompass a general class of discontinuous games. For
convenience and easy understanding, we will use the terminology of auction theory, such as “bidding functions” and
“bids” for strategies and actions, respectively.
10We consider the dependence on b instead of bi because we want to include in our results auctions where the

payoff depends on bids of the opponents, such as the second-price auction, for instance. Also, this allows the study
of “exotic” auctions, i.e., auctions where the payment is an arbitrary function of all bids.
11We are implicitly assuming a reserve price of at least zero. This is not essential, but multiple equilibria may

exist without it, as pointed out by Milgrom and Weber (1982).
12 If there is no reserve price, simply omit b0.
13 In most auctions, ui is normalized as 0. However, in double and all-pay auctions or if there is an entry fee, this

is not the case.
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Observe that if player i is a seller, he begins with an object and if bi < b(−i), he sells his object.
If he is a buyer, the situation bi < b(−i) corresponds to maintaining his previous situation: without
the object. We can therefore treat buyers and sellers with the same formulation. It is possible
to distinguish them, through the following conditions: if player i is a buyer, then ∂biui (t, b) ,
∂biui (t, b) 6 0 for all (t, b). If player i is a seller, we can assume that ∂biui (t, b) , ∂biui (t, b) > 0
for all (t, b). The motivation for this definition is clear. Without changing the event of winning or
losing, a higher bid may (weakly) benefit the seller and hurt a buyer. In auctions, this is a very
natural discrimination, although in more general games it can be less appealing. We emphasize
that these assumptions are only for purposes of interpretation. We do not use them in the results
below.
If bi = b(−i), there is a tie, and a specific rule – which may include a random device and/or the

requirement of a further action ai – determines if the player is a winner or a loser.14 We model
this by saying that the player receives uTi (t, b, a), a value between ui (t, b) and ui (t, b).

15 We do
not need to specify uTi (t, b, a) for the first two results.

This setting is very general and applies to a broad class of discontinuous games. For example,
ui (t, b) = vi (t) − bi and ui (t, b) = 0 correspond to a first-price auction with risk neutrality.16 If
ui (t, b) = vi (t) − bi and ui (t, b) = −bi we have the all-pay auction. If ui (t, b) = vi (t) − b(−i)
and ui (t, b) = −bi, this is the war of attrition. As pointed out by Lizzeri and Persico (2000), we
can have also combinations of these games. For example, ui (t, b) = vi (t)−αbi − (1− α) b(−i) and
ui (t, b) = 0, with α ∈ (0, 1), gives a combination of the first- and second-price auctions. Another
possibility is the third-price auction or an auction where the payment is a general function of the
others’ bids. It is also useful to consider K-unit auctions with unitary demand, among N buyers,
1 < K < N . Then, b(−i) = b−i(K). Then, a pay-your-bid auction is given by ui (t, b) = vi (ti)− bi
and ui (t, b) = 0. If it is a uniform price with the price determined by the highest looser’s bid,
ui (t, b) = vi (ti)− b(−i) and ui (t, b) = 0. If it is a uniform price with the price determined by the
lowest winner’s bid, ui (t, b) = 0, ui (t, b) = vi (ti)− b(−i) if bi > b−i(K−1) and ui (t, b) = vi (ti)− bi
otherwise. Observe that even in this last case, ui (t, b) is continuous if vi (ti) is.

Notation
In order to avoid confusion, we will use bold letters to denote bidding functions, i.e., b =

(bi)i∈I ∈ ×i∈I L1 (Ti, [−1,M ]). If we fix the other’s strategies, b−i, let Fb(−i) (bi|ti) ≡ τ−i ({t−i :
b−i (t−i) < bi} | ti) and fb(−i) (·|ti) be its Radon-Nykodim derivative with respect to the Lebesgue
measure, i.e., the density function.17 We use the notation F⊥b(−i) (·|ti) for the distribution function
of the singular part of the measure Fb(−i) (·|ti) , that is, the part that assigns positive measure to
sets of bids with zero Lebesgue measure.
If the profile b−i is fixed, the expected payoff of bidder i of type ti, when bidding bi, is:

Πi(ti, bi,b−i) ≡
Z h

ui (t, bi,b−i (t−i)) 1[bi>b(−i)(t−i)] (1)

+ uTi (t, bi,b−i (t−i) , a) 1[bi=b(−i)(t−i)]

+ui (t, bi,b−i (t−i)) 1[bi<b(−i)(t−i)]
i
τ−i (dt−i|ti) .

14The required action can be the submission of another bid for a Vickrey auction (as in Maskin and Riley (2000))
or the announcement of the type (as in JSSZ). Since the only revealed information in the case of a tie is its occurrence,
the action can be required together with the submission of the bid.
15The specification of a tie-breaking rule is important for the existence of equilibria, as shown by Jackson et

al. (2002). With this terminology, the proposal of an “endogenous tie-breaking rule” of Simon and Zame (1990)
corresponds to specifying endogenously uTi in order to ensure the equilibrium existence.
16 If we put ui (t, b) = Ui (vi (t)− bi) we can have any attitude towards risk.
17Note that, with such convention, the cumulative distribution functions - c.d.f.’s - are left continuous.
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if bi ∈ [0,M ] and Πi(ti, bi,b−i) = 0 if bi < 0. It is worth observing that if the probability of bid
bi being equal to b(−i), conditional on ti, is zero, the tie-breaking rule is not important and the
second term in the integral may be omitted.
Again, when there is no possibility of confusion, we will write Πi(ti, bi) for Πi(ti, bi,b−i) and

omit the arguments and the measure. So, we have

Πi(ti, bi)

=

Z n
ui1[bi>b(−i)] + u

T
i 1[b(−i)=bi] + ui

³
1− 1[bi>b(−i)] − 1[b(−i)=bi]

´o
=

Z n
ui1[bi>b(−i)] +

¡
uTi − ui

¢
1[b(−i)=bi] + ui

o
=

Z
ui1[bi>b(−i)] +

Z ¡
uTi − ui

¢
1[b(−i)=bi] +

Z
ui.

where ui ≡ ui − ui is the net payoff.

3 The Basic Principle of Bidding
Our first result is a characterization of the payoff through its derivative with respect to the bid
given by an integral expression, i.e., a kind of fundamental theorem of calculus. For this, we will
need the following assumption:

(H) ui and ui are absolutely continuous on bi and ∂biui and ∂biui are essentially bounded.

Lemma 1 (Payoff Characterization)– Assume (H). Fix a profile of bidding functions b−i.
The payoff can be expressed by

Πi(ti, bi) = E
h¡
uTi − ui

¢
(ti, bi, ·) 1[b(−i)=bi]|ti

i
+

Z
[0,bi)

E[ui (ti, bi, ·) |ti,b(−i) = β]dF⊥b(−i) (β|ti) +
Z
[0,bi)

∂biΠi(ti,β)dβ.

where ∂biΠi(ti,β) exists for almost all β and in this case it is given by

∂biΠi(ti,β) = E
h
∂biui (ti,β, ·) 1[β>b(−i)] + ∂biui (ti,β, ·) 1[β<b(−i)]|ti

i
(2)

+E[ui (ti,β, ·) |ti,b(−i) = β]fb(−i) (β|ti) .
Proof. The proof follows the demonstration of the Leibiniz rule. The main point is the use

of a theorem of Rudin (1966) on the derivatives of measures and its integral expression. See the
details in the Appendix A.¥

The most important part of Lemma 1 is the expression of ∂biΠi(ti,β). One of the best ways to
understand Lemma 1 is through the following:

Corollary 2 (The Basic Principle of Bidding) – Under regularity assumptions, the op-
timum bid is such that the marginal cost of bidding is equal to the marginal utility from bidding.
More formally: if Πi(ti, ·) is differentiable at bi ∈ argmaxβ Πi(ti,β) and there is no tie with positive
probability at bi, then

E[ui|ti,b(−i) = bi]fb(−i) (bi|ti) = −E
h
∂biui1[bi>b(−i)] + ∂biui1[bi<b(−i)]|ti

i
. (3)

7



Obverse that E[ui|ti,b(−i) = bi]fb(−i) (bi|ti) represents the marginal benefit of bidding, that
is, the marginal utility that a bidder has from changing from losing to winning events. On the

other hand, E
h
−∂biui1[bi>b(−i)]|ti

i
represents the marginal cost of changing the bid in all the

events where a bidder is already winning. In the same manner, E
h
−∂biui1[bi<b(−i)]|ti

i
represents

the marginal cost of changing the bid in the events where he is loosing. Thus, we can read the
above condition in an intuitive and simple manner: at the optimum of the best-reply problem,
the marginal benefit of bidding, E[ui|ti,b(−i) = bi]fb(−i) (bi|ti), must be equal to its marginal cost,
−E

h
∂biui1[bi>b(−i)] + ∂biui1[bi<b(−i)]|ti

i
. Note that we do not require separability in the monetary

transfer (risk neutrality) to reach such an interpretation.
This interpretation is useful for understanding the bidding behavior. In first-price auctions,

the marginal cost of bidding is what implies a decreasing in the way bidders bid. In second-price
auctions, the marginal cost of bidding is zero (because ∂biui = 0), so that each bidder bids until
its marginal utility of bidding became zero.
Corollary 1 is a generalization of the necessary conditions first-order for the first- and second-

price auctions presented in Milgrom and Weber (1982), for the war of attrition and all-pay auctions
presented in Krishna and Morgan (1997), as we show in Examples 1- 4 below. Example 5 shows
how the Basic Principle of Bidding is concise. Such an example is the application of Corollary 1 for
double auctions and it presents a comparison with the equivalent expression obtained by Williams
(1991).

Example 1 – First-price auction

When we restrict ourselves to the case of the first-price auction with risk neutrality (i.e., ui = 0
and ui = vi − bi), then ∂biui = −1 and ∂biui = 0. The condition (3) becomes:

bi = E[vi|ti,b(−i) = bi]−
Fb(−i) (bi|ti)
fb(−i) (bi|ti)

. (4)

This (necessary) first-order condition provides a useful way to determine best-reply bids. Note
that this expression admits non-monotonic bidding functions b(−i), contrary to Milgrom and We-
ber’s model. It also encompasses asymmetries in utilities and distribution of types. Assuming
affiliation and monotonic utilities, Milgrom and Weber (1982) can restrict themselves to the space
of non-decreasing symmetric bidding functions (i.e., bi = b∗, for all i ∈ I). Thus,

b(−i) (t−i) = max
j 6=i

b∗ (tj) = x⇐⇒ t(−i) ≡ max
j 6=i

tj = (b
∗)−1 (x) ,

i.e., conditioning on b(−i) = bi is the same to conditioning on t(−i) = ti. Also, fb(−i) (bi|ti) =
ft(−i) (ti|ti) / (b∗ (ti))0 and Fb(−i) (bi|ti) = Ft(−i) (ti|ti). With this, (4) becomes

b∗0 (s) = {E £v|ti = s, t(−i) = s¤− b∗ (s)} ft(−i) (s|s)
Ft(−i) (s|s)

whose solution is shown to be an equilibrium under affiliation.

Example 2 – Second price auction

8



In the second price auction, Milgrom and Weber’s model is equivalent to ui (t, b) = vi (t)−b(−i)
and ui (t, b) = 0. Then, ∂biui = ∂biui = 0 and (3) reduces to E[vi − bi|ti,b(−i) = bi] fb(−i) (bi|ti) =
0 which can be simplified to

bi = E[vi|ti,b(−i) = bi].

Again with monotonicity and symmetry assumptions, Milgrom and Weber’s expression for the
equilibrium bid function can be obtained:

b∗ (s) = E
£
v|ti = s, t(−i) = s

¤ ≡ v̄ (s, s) .
Example 3 – All-pay auction

Krishna and Morgan (1997) extend the method of Milgrom and Weber (1982) to the cases
of war of attrition and all-pay auctions. In the all-pay auction, their model is equivalent to
ui (t, b) = vi (t)− b(−i) and ui (t, b) = −bi. Then, ∂biui = 0 and ∂biui = −1. So, (3) reduces to

E[vi (t) |ti,b(−i) = bi]fb(−i) (bi|ti) = 1.

Under the same hypothesis of monotonicity and symmetry, they find the following differential
equation:

b∗0 (s) = E
£
v|ti = s, t(−i) = s

¤
ft(−i) (s|s) ,

whose solution they show to be an equilibrium under affiliation.

Example 4 – War of attrition

In the war of attrition, Krishna and Morgan (1997) model is equivalent to ui (t, b) = vi (t)−b(−i)
and ui (t, b) = −bi. Then, ∂biui = 0 and ∂biui = −1. So, (3) reduces to

E[vi (t) |ti,b(−i) = bi]fb(−i) (bi|ti) = 1− Fb(−i) (bi|ti) .

Again, with monotonicity and symmetry, they derive the equation

b∗0 (s) = E
£
v|ti = s, t(−i) = s

¤ 1− Ft(−i) (s|s)
ft(−i) (s|s)

,

and the equilibrium is shown to exist under affiliation.

Example 5 – Double auction

In the analysis of a double auction with private values, risk neutrality, independent types and
symmetry among buyers and sellers, Williams (1991) assumes that the payment is determined by
the buyer’s bid. So, it is optimum for the seller to bid her value. To analyze the behavior of the
buyer i, Williams (1991) reaches the following expression:

∂biΠi(ti,β) =
£
nf1 (β)Kn,m

¡
b−1 (β) ,β

¢
(5)

+(m− 1) f2 (vb)
b0 (β)

Ln,m
¡
b−1 (β) ,β

¢¸
(v − β)

−Mn,m

¡
b−1 (β) ,β

¢
9



where f1 is the common density function of sellers, f2 is the common density function of buyers, n
is the number of sellers and m is the number of buyers. We will reproduce only the Mn,m (·, ·):18

Mn,m (v,β) ≡
X

i+j=m,
06i6m−1

µ
n
j

¶µ
m− 1
i

¶
F1 (β)

j
F2 (v)

i
(1− F1 (b))n−j (1− F2 (v))m−1−i .

The expression (5) is just a special case of (3). In fact, the expression in brackets in (5) is just
fb(−i) (β) and Mn,m (vb, b) is Fb(−i) (β).

19

An important application of the Characterization Lemma will be given in the next section
where we give necessary and sufficient conditions to the existence of equilibrium in common-value
auctions with multidimensional independent types and non-monotonic utilities.
Another possibility is the investigation of how far auction theory can lead us under a weaker

hypothesis. For instance, the Characterization Lemma can be understood as a general condition
for bidding behavior, able to describe the behavior of rational bidders without assuming that
bidders follow their equilibrium strategies. We have exposed such a possibility in the introduction
(subsection 1.1).

4 The Indirect Auction Approach
Now we turn to the problem of the existence of equilibrium. We will consider a particularization
of the model in the previous section, that is, we will work according to the following setting:

ui (t, b) = v (ti, t−i)− pW
¡
bi, b(−i)

¢
;

ui (t, b) = −pL
¡
bi, b(−i)

¢
;

uTi (t, b) =
v (ti, t−i)− bi

m
,

where m is the number of bidders tying and functions pW and pL are the payments made in
the events of winning and losing, respectively. The specification of uTi comes from the standard
solutions to ties: the payment bi = b(−i) is required for any bidder that receives the object, and
the object is split with equal probability among the bidders that are tying.
For further reference, we define

v1 (s) ≡ E [v (ti, t−i) |ti = s] .
We consider an auction with a reserve price of zero.20 We will assume the following natural

conditions for pW and pL:

(H0) Over the domain R+ × R, pW and pL are non-negative, differentiable, and at least one
of them is non-constant. If bi < 0, then pW

¡
bi, b(−i)

¢
= pL

¡
bi, b(−i)

¢
= 0.

Observe that assumption (H0) is rather weak. It is possible, for instance, for the payment to
be non-monotonic with the bid. Nevertheless, we are mainly interested in the following four kinds
of auctions:
18 Indeed, the other expressions are similar. To obtain Kn,m (·, ·) just substitute n − 1 for n where it occurs in

Mn,m (·, ·). To obtain Ln,m (·, ·), substitute m− 2 for m− 1 where it occurs in Mn,m (·, ·).
19Remember that the independency implies fb(−i) (β|ti) = fb(−i) (β).
20We can relax this assumption. Indeed, most of our results hold for any positive reserve prices, but the expressions

may need some modifications.
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(F) First-price auctions: pW
¡
bi, b(−i)

¢
= bi and pL

¡
bi, b(−i)

¢
= 0.

(S) Second-price auctions: pW
¡
bi, b(−i)

¢
= b(−i) and pL

¡
bi, b(−i)

¢
= 0.

(A) All-pay auctions: pW
¡
bi, b(−i)

¢
= bi and pL

¡
bi, b(−i)

¢
= bi.

(W) War of attrition: pW
¡
bi, b(−i)

¢
= b(−i) and pL

¡
bi, b(−i)

¢
= bi.

In addition to (H0), we will assume the following hypotheses:

(H1) The types are independent and identically distributed, so that T1 = ... = TN = S and
τ1 = ...= τN = σ, with S a compact set and σ a probability measure.

(H2) v is non-negative, continuous and symmetric in its last N − 1 arguments, that is, if t0−i
is a permutation of t−i, v

¡
ti, t

0
−i
¢
= v (ti, t−i).

Observe that we are considering a symmetric auction. Thus, throughout this section, when
we talk about a strategy, we always mean a symmetric one. For instance, Theorem 3 states
that the equilibrium is unique, although it is well known that second-price auctions have multiple
asymmetric equilibria.
We denote the auction above by (S,σ, v). Note that we are still considering multidimensional

types and non-monotonic utilities, with N bidders. Under these assumptions we will introduce
a new approach to prove existence of equilibria in auctions. We call it the “Indirect Auction
Approach”. This is the subject of the following subsections.

4.1 Conjugations

We will be interested in regular bidding functions as defined below:

Definition 1 – A bounded measurable function b : S → R is regular if the c.d.f.

Fb (c) ≡ Pr {s ∈ S : b (s) < c}
is absolutely continuous and strictly increasing in its support, [b∗, b∗].21

From the fact that Fb (·) is absolutely continuous, we conclude that Fb (c) = Pr {s ∈ S :
b (s) 6 c}. Let S denote the set of regular functions. Observe that S contains non-monotonic
bidding functions. It is formed by functions b that do not induce ties with positive probability
(because Fb is absolutely continuous) and that do not have gaps in the support of the bids (because
Fb is increasing).
If a bidding function b ∈ S is fixed, let us call the c.d.f. of the maximum bid of the opponents

P̃ b. That is, we define the transformation P̃ b : R+ → [0, 1] by:

P̃ b (c) = (Pr {ti ∈ S : b (ti) < c})N−1 (6)

= Pr
©
t−i ∈ SN−1 : b (tj) < c, j 6= i

ª
= Pr

©
t−i ∈ SN−1 : b (tj) 6 c, j 6= i

ª
.

By the definition of S, P̃ b is strictly increasing and its image is the whole interval [0, 1].
Now, we will denote by P b : S → [0, 1] the composition P b = P̃ b ◦ b. So, for a fixed b ∈ S,

followed by all players, P b (ti) is the probability of player i of type ti winning the auction:

P b (ti) = Pr
©
t−i ∈ SN−1 : b(−i) (t−i) < b (ti)

ª
(7)

= Pr
©
t−i ∈ SN−1 : b(−i) (t−i) 6 b (ti)

ª
.

21The reader should note that we are changing our notation from the previous sections. Since we are now dealing
with the symmetric case, we will note use subscripts. Also, we are not using bold letters to denote functions.
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The following observation is important: from H1, the above function does not depend on i and
P b (ti) S P b (tj) if and only if b (ti) S b (tj). Obviously, two players have the same probability of
winning if and only if they play the same bids. So, we have the following:©

t−i ∈ SN−1 : b(−i) (t−i) < b (ti)
ª
=
n
t−i ∈ SN−1 : P b(−i) (t−i) < P b (ti)

o
,

where, as natural, P b(−i) (t−i) ≡ maxj 6=i P b (tj). The equality of these events implies that

P b (ti) = Pr
n
t−i ∈ SN−1 : P b(−i) (t−i) < P b (ti)

o
.

This observation is what will allow us to define conjugations without mentioning bidding functions.
This will be very important in order to state our results. We have the following:

Definition 2 – A conjugation for the auction (S,σ, v) is a measurable and surjective function
P : S → [0, 1] such that for each i = 1, ... N ,

P (ti) = Pr{t−i ∈ SN−1 : P(−i) (t−i) 6 P (ti)} = [Pr{tj ∈ S : P (tj) < P (ti)}]N−1 . (8)

Observe that in the above definition, we do not need to mention the strategy b ∈ S. It is
also clear, from the previous discussion, that the definition is not empty, that is, for any regular
function b ∈ S there exists a conjugation defined by (7) that satisfies the above definition.
Observe also that, since the range of P is [0, 1], we have, for all c ∈ [0, 1],

Pr
©
t−i ∈ SN−1 : P(−i) (t−i) < c

ª
= c. (9)

The above equation will be important in the sequel. It simply means that the distribution of
P(−i) (t−i) is uniform in [0, 1].
A natural question that arises is which consistency is necessary between the bidding function

b ∈ S and a conjugation P in order that they become compatible. Equation (7) gives the condition
in one direction. The other direction is very simple, requiring only that the bidding function be
an increasing function of the conjugation. That is, we have the following:

Proposition 1 – Given a conjugation P : S → [0, 1], for any increasing function h : [0, 1]→
R+, the function given by b (ti) = h (P (ti)) is consistent with P , that is,

P (ti) = Pr {t−i : b (tj) < b (ti) ,∀j 6= i} .
Proof. For an increasing function h : [0, 1] → R+, the function b (ti) = h (P (ti)) is such that

b (ti) S b (tj) if and only if P (ti) S P (tj). Then, {t−i : b (tj) < b (ti) , ∀j 6= i} = {t−i : P (tj) 6
P (ti) , ∀j 6= i} and the result follows.¥

Proposition 1 says that given a conjugation P , there are many bidding functions that are
consistent with it. In particular, b = P is a bidding function consistent with P . On the other
hand, given a bidding function, there is just a conjugation P b that is consistent with it.

4.2 Indirect Auctions

We proceed to define the indirect auction. We begin by the definition of (indirect) strategies. To
justify the definitions, remember that, given a direct strategy b, we have defined P b as P̃ b ◦ b. We
want the indirect strategy, when composed with the reparametrized type, given by the conjugation
P b, to lead to the same bid. That is, if b̃ is the indirect strategy, we would like to have b (s) =

b̃
¡
P b (s)

¢
= b̃ ◦ P b (s) = b̃ ◦ P̃ b ◦ b (s). Then, since P̃ b is increasing, we must have b̃ =

³
P̃ b
´−1

,

12



which will also be increasing. On the other hand, given a conjugation P and an indirect strategy
b̃, we should define the related direct strategy as b = b̃ ◦ P . So the following definitions are the
natural ones.

Definition 3 – (i) An indirect bidding function is a bounded increasing function b̃ : [0, 1]→
R+.
(ii) Given a (direct) bidding function b : S → R+, the indirect bidding function b̃ : [0, 1]→ R+

associated to b is

b̃ (φ) =
³
P̃ b
´−1

(φ) , (10)

where P̃ b is given by (6).
(iii) Conversely, given an indirect bidding function b̃ : [0, 1] → R+ and a conjugation P of

(S,σ, v), the direct bidding function associated to b̃ and P is b : S → R+ given by

b (s) = b̃ ◦ P (s) . (11)

Now, we define the indirect utility function.

Definition 4 – Fix a conjugation P for an auction (S,σ, v). The indirect utility function of
bidder i associated to this conjugation is ṽ : [0, 1]2 → R, given by

ṽ(x, y) ≡ E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y]. (12)

Our method is to construct an auction that will have the above (indirect) utility function. The
reader should keep in mind that the indirect auction is just an auxiliary and fictitious auction that
will help in the analysis of the direct one.
Fix a conjugation P and define the following function:

Π̃ (x, c) ≡ E [Π (ti, c) |P (ti) = x] , (13)

where, Π (ti, c) is the interim payoff of the direct auction, given by (1) in section 2. The notation
should suggest to the reader that Π̃i (x, c) will be the payoff function of the indirect auction.
Indeed, the indirect auction will be defined in the sequel in such a way for this to become true. In
Appendix A we prove the following crucial result for our approach:

Proposition 2 – Given b ∈ S, consider the corresponding conjugation P = P b (as defined

by (7)) and the indirect bidding function b̃ =
³
P̃ b
´−1

. Alternatively, given a conjugation P and

an indirect bidding function b̃, let b = b̃ ◦ P be the corresponding direct bidding function. In any
case, we have the following:
(i)

Π̃ (x, c) =

Z b̃−1(c)

0

h
ṽ (x,α)− pW

³
c, b̃ (α)

´i
dα−

Z 1

b̃−1(c)
pL
³
c, b̃ (α)

´
dα. (14)

(ii) Assume that P is such that for all s with P (s) = x, and for all x, y ∈ [0, 1],

ṽ (x, y) = E[v(t)|P (ti) = x, P(−i)(t−i) = y] = E[v(t)|ti = s, P(−1)(t−i) = y]. (15)
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Then, for all ti such that P (ti) = x and for all c ∈ R, we have:
Π̃ (x, c) = Π (ti, c) . (16)

Observe that, because (14), Π̃ (x, c) is formally equivalent to the interim payoff of an auction
between two bidders, with signals uniformly distributed in [0, 1], where the opponent is following
the strategy b̃ (·) and the (common-value) utility function is given by ṽ (x,α). So, we define the
indirect auction as follows:

Definition 5 – Given an auction (S,σ, v) and a conjugation P for it, the associated indirect
auction is an auction between two players with independent types uniformly distributed in [0, 1]

and where the utility function is ṽ defined by (12). The indirect auction is denoted by
³
S̃, σ̃, ṽ

´
where σ̃ is the Lebesgue measure in S̃ = [0, 1].

It is clear through definitions 1-4 how a conjugation relates the direct auction and the indirect
auction. Obviously, a function b̂ : [0, 1] → R+ is equilibrium of the indirect auction if for almost

all x ∈ [0, 1], Π̃
³
x, b̂ (x)

´
> Π̃ (x, c), ∀c ∈ R+. Equivalently, b̂ : [0, 1] → R+ is equilibrium of the

indirect auction if for almost all x, y ∈ [0, 1], Π̃
³
x, b̂ (x)

´
> Π̃

³
x, b̂ (y)

´
. Indeed, to bid above the

support of b̂ cannot improve the probability of winning and to bid below leads to a zero payoff.22

4.3 Characterization and Sufficient Conditions for Regular Equilibria

The results and definitions of the two previous subsections allow us to show that the existence
of a direct equilibrium implies the existence of the indirect one (Theorem 1, below). Conversely,
(with an extra relatively weak assumption of consistency of payoffs), the existence of equilibrium
in indirect auctions allows us to prove the existence in direct ones (Theorem 2).

Theorem 1 – Assume (H0), (H1) and (H2). If there is a pure strategy equilibrium b ∈ S for
the direct auction (S,σ, v) and there exists ∂bΠ (s, b (s)) for all s, then:
(i) the associated conjugation P = P b (given by (7)) satisfies the following property: if s ∈ S

is such that P (s) = x, then:23

E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = x] = E[v(ti, t−i)|ti = s, P(−i)(t−i) = x]; (17)

(ii) the indirect bidding function b̃ =
³
P̃ b
´−1

, where P̃ b is given by (6), is the increasing

equilibrium of the indirect auction. Moreover, if it is differentiable at x, it satisfies the following:

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i ; (18)

(iii) for all x and y ∈ [0, 1], Z x

y

[ṽ (x,α)− ṽ (α,α)] dα > 0; (19)

22We are using the implicit assumption that the reserve price is weakly above the minimum utility. See appendix
B for details.
23This condition is related to a condition of Araujo and Moreira (2001).
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(iv) the expected payment of a bidder of type ti is given by

p (ti) =

Z P (ti)

0

ṽ (α,α) dα.

Remark 1 – One can understand Theorem 1 as saying that if a multidimensional auction
has a regular equilibrium, then it can be reduced to a unidimensional auction (the indirect one).
However, the reader should note that such reduction is non-trivial and that the indirect auction
is not equivalent to the direct one. The indirect auction is a “fictitious” game, where each bidder
is facing up a “fictitious” player, the “opponent”. The “opponent” does not correspond to a real
player. So, the dimension reduction is meant in this particular sense and it is valid even when bids
are multidimensional, but there are just two situations considered for each bidder: to receive or
not the object. This is shown in section 5, where we analyze multidimensional bids.
Observe that the expression in condition (iv) does not depend on the specific format of the

payment rules, pW and pL. This is interesting, and implies a kind of Revenue Equivalence Theorem.
Nevertheless, the payment still depends on the conjugation. So, it can be different for different
auction formats, if the conjugation is different. Fortunately, we can prove that for a still general
class of auction the conjugation is unique and the Revenue Equivalence Theorem holds. Although
of some importance on its own, this result is a natural generalization. What is less expected is the
result presented in Theorem 2. There we prove that condition (iv) (which is, in fact, equivalent to
the Revenue Equivalence Theorem) is an essential part to prove the existence of equilibria.
Theorem 2 is a kind of converse of Theorem 1. The assumptions are exactly the conclusions

of Theorem 1, but for condition (i): we need the slightly stronger condition (i)0. This is the only
reason for not stating an “if and only if” theorem. Fortunately, as we will show in the next section,
there are still interesting cases that permit us to state a simple necessary and sufficient condition
for the existence of equilibria.

Theorem 2 – Consider a direct auction (S,σ, v) and a conjugation P for an indirect auction³
S̃, σ̃, ṽ

´
. Assume that

(i)0 for all s ∈ S such that P (s) = x, and all y ∈ [0, 1],

ṽ (x, y) = E[v(t)|P (ti) = x,P(−i)(t−i) = y] = E[v(t)|ti = s, P(−1)(t−i) = y]; (20)

(ii) there is an increasing function b̃, solution of the differential equation:

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .
(iii) for all x and y ∈ [0, 1], Z x

y

[ṽ (x,α)− ṽ (α,α)] dα > 0.

(iv) The expected payment of a bidder of type ti is given by

p (ti) =

Z P (ti)

0

ṽ (α,α) dα.

Then, there exists an equilibrium of the direct auction, given by b = b̃◦P and b̃ is the equilibrium
of the indirect auction. Moreover, if ṽ is continuous, there exists ∂bΠ (s, b (s)) for all s.
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Proof. See Appendix C.¥

Remark 2 – For the four specific formats, namely, the first-price auction (F), second-price
auction (S), all-pay auction (A) and war of attrition (W), the function b̃ is given, respectively, by

(F) b̃ (x) =
1

x

Z x

0

ṽ (α,α) dα (21)

(S) b̃ (x) = ṽ (x, x) (22)

(A) b̃ (x) =

Z x

0

ṽ (α,α) dα (23)

(W) b̃ (x) =
Z x

0

ṽ (α,α)

1− α
dα (24)

Condition (ii) reduces to the requirement that the function b̃ above is increasing. Observe also that
is possible that the equilibrium exists for an all-pay auction, for instance, but not for a first-price
auction.

Remark 3 – Although natural, condition (i)’ can be still too restrictive. We need it in order
to apply Proposition 2 and reach the conclusion that for all ti such that P (ti) = x and for all
c ∈ R, we have: Π̃ (x, c) = Π (ti, c) (see (16) in Proposition 2). In turn, this implies that the
equilibrium of the indirect auction is equilibrium of the direct auction. So, instead of assuming
condition (i)’ above, it would be sufficient to require the (necessary) condition (i) of Theorem 1
and that it is valid (16).

Theorem 2 simplifies the problem of existence of equilibrium to find a conjugation that meets
requirements (i)0 and (ii)-(iv). In the next subsection we treat a still general case where such
conjugation can be easily defined. Nevertheless, before we deal with that case, we would like to
give two examples where the assumptions of the next subsection are not satisfied, but where we
still can prove the existence of equilibrium. This is worthwhile, since it provides a kind of heuristics
for the existence problem. The heuristics is based in condition (i)0 and is illustrated in Appendix
D for the examples 6 and 7, below.

Example 6 – Consider a symmetric first-price auction with two bidders, types uniformly
distributed on [0, 1] and utility function given by:

v(ti, t−i) = ti +
¡
3− 4ti + 2t2i

¢
t−i.

Observe that ∂iv (ti, t−i) = 1− 4t−i+4tit−i can be negative. Thus, the received theory cannot be
applied. Nevertheless, there exists a monotonic equilibrium. Indeed, in this case, the conjugation
will be given by P (ti) = ti and we obtain

ṽ(x, y) = x+
¡
3− 4x+ 2x2¢ y.

This clearly satisfies condition (i)’. Condition (iii) follows from the fact that x > y implies

Z x

y

[ṽ(x, z)− ṽ(z, z)] dz = (x− y)2
6

£
3 + 3x2 − 8y + 3y2 + x (−4 + 6y)¤ > 0.

Condition (ii) is also satisfied, because the function

b̃ (x) =
1

x

Z x

0

v (z, z) dz =
x
¡
24− 16x+ 3x2¢

12
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is increasing. Clearly, the above function implies condition (iv). Thus, there exists a monotonic
equilibrium by Theorem 2.
Nevertheless, this is not the unique equilibrium. If we assume that there exists a U-shaped

equilibrium, the conjugation can be expressed by P (ti) = |c (ti)− ti|, where c (ti) is the type that
bid the same as ti (see Figure 1). Observe that c ◦ c (ti) = ti. Condition (i) of Theorem 1 requires
that

s+
¡
3− 4s+ 2s2¢ s+ c (s)

2
= c (s) +

³
3− 4c (s) + 2c (s)2

´ s+ c (s)
2

,

that is,

s− c (s) = [s− c (s)] [4− 2c (s)− 2s] s+ c (s)
2

,

which simplifies to [s+ c (s)] [2− s− c (s)] = 1 ⇒ s + c (s) = 1. Then, c (s) = 1 − s and P (s) =
|1− 2s|. This gives the expression:

ṽ (x, y) =
1

2
+
1

4

"
3− 4

µ
1− x
2

¶
+ 2

µ
1− x
2

¶2
+ 3− 4

µ
1 + x

2

¶
+ 2

µ
1 + x

2

¶2#

which simplifies to ṽ (x, y) =
¡
5 + x2

¢
/4 and condition (i)’ and (iii) are easily seen to be satisfied.

Also, condition (ii) and (iv) are satisfied, since

b̃ (x) =
1

x

Z x

0

ṽ (z, z) dz =
5

4
+
x2

12

is increasing. Then, b (s) = 5
4 +

(1−2s)2
12 is a direct equilibrium, and it is plotted in Figure 1.
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Figure 1: Equilibrium bidding function in Example 6.

Observe that no tie rules are needed in this case, because ties occur with zero probability.
However, for each equilibrium bid, exactly two types pool and have the same probability of winning.

Example 6 has a monotonic equilibrium, as is usual in auction theory, but there is another non-
monotonic equilibrium. Example 7 below shows a case where there is no monotonic equilibrium,
but there is a bell-shaped equilibrium, showed in Figure 2.

Example 7 – Consider again a symmetric first-price auction with two bidders and signals uni-
formly distributed in [1.5, 3], such that the value of the object is given by v (ti, t−i) = ti

¡
t−i − ti

2

¢
.
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Figure 2: Equilibrium bidding function in Example 7.

In Appendix D, we show that this auction does not have monotonic regular equilibria, but there
is a bell-shaped equilibria as shown in Figure 2.

Example 6 shows that it is possible for a standard auction to have multiplie equilibria. Example
7 suggests that the correct conjugation can fail to exist – at least with a fixed shape (that we
begin by assuming). Thus, one would be interested in cases where it is possible to ensure the
uniqueness of the equilibrium and where it is possible to find explicitly the conjugation. We do
this under the context of assumption H3, to be presented in the next subsection.

4.4 Necessary and Sufficient Conditions for the Equilibrium Existence
of Regular Auctions

Theorem 2 teaches us that the question of equilibrium existence is solved if we are able to find the
proper conjugation. In examples 6 and 7 of the previous subsection we have shown situations where
the conjugations could be obtained. However, there we assumed some features of the conjugation
that are not necessary and were able to find the correct conjugation for those settings. Now we
want to specify a setting where a conjugation always exists. The setting is that of auctions that
satisfy assumptions (H1), (H2) and

(H3) v (ti, t−i) is such that if v (ti, t−i) < v (t0i, t−i) for some t−i then v
¡
ti, t

0
−i
¢
< v

¡
t0i, t

0
−i
¢
for

all t0−i. Moreover, if C ⊂ R has zero Lebesgue measure, then σ{s ∈ S : v1 (s) ∈ C} = 0.

The reader should remember that we defined

v1 (s) ≡ E [v (ti, t−i) |ti = s] .

Assumption (H3) is restrictive, but it is the natural context of many economic meaningful
cases. For instance, for separable utilities such as v (ti, t−i) = u1 (ti)+ u2 (t−i), it requires only
that u1 (ti) does not assume any value with positive probability. The same requirement is sufficient
for utilities like v (ti, t−i) = {

£
u1 (ti)

¤α
+
£
u2 (t−i)

¤β}γ , or v (ti, t−i) = γ
£
u1 (ti)

¤α £
u2 (t−i)

¤β
, with

α, β, γ > 0. Of course, private values are included in the separable utilities case. It seems that
the majority of utility functions considered in applications satisfy (H3). Of course, there are cases
that do not satisfy it, such as the (mathematical) examples 6 and 7 above. It is also clear that
(H3) can deal with even more complicated dependences, as example 8 below illustrates.
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Example 8 – Consider three bidders with bidimensional signals, each with support equal to
[0, 1]2. The utilities are specified by the nonlinear symmetric function

v (t1, t−1) = 4 + 4t11 − 6t21 + 3
¡
t12 + t

1
3

¢− 5 ¡t22 + t23¢
+
1

2

"¡
t12 + t

1
3

¢
+
1

2
−
¡
t22 + t

2
3

¢
4

#"¡
t11
¢2 − 3t11t21 −µ32 t21

¶2#

It is easy to check that the above function satisfies assumption H3 (see Appendix C). Observe that
the private information of any bidder cannot be simplified to a unidimensional signal because this
will make the expression ot the other’s utilities impossible. Another observation is that the signals
cannot be reparametrized so that the function becomes monotonic in all such reparametrized
signals.24¥

Under (H3), we can define explicitly the conjugation that will work:

P (ti) ≡ Pr
©
t−i ∈ T−i = SN−1 : v1 (tj) < v1 (ti) , j 6= i

ª
. (25)

Then, ṽ is defined as before (see (12)) for such P , that is,

ṽ(x, y) = E[v(t)|P (t1) = x,P(−1)(t−1) = y].
Thus, we can give a necessary and sufficient condition for the existence of equilibrium of the

direct auction: merely that the solution b̃ to the first-order condition of the indirect auction be
increasing. This is the content of the following:

Theorem 3 – Consider the auction (S,σ, v) that satisfies (H0)-(H3). There exists an equi-
librium b ∈ S and there exists a continuous derivative ∂bΠ (s, b (s)) if and only if there exists a
function b̃ that is increasing and satisfies, for all x ∈ [0, 1],

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i ,
and it is compatible with p̂ (0) = 0, where ṽ is given as above and it is continuous. If this is the
case, the equilibrium of the direct auction is given by b = b̃ ◦ P and the expected payment of a
bidder of type s is given by

p (s) =

Z P (s)

0

ṽ (α,α) dα. (26)

Moreover, if there is a unique b̃ that satisfies such properties, the equilibrium of the direct auction
in regular pure strategies is also unique.25

Proof. See Appendix C.¥

Remark 4 – As we explained in Remark 1, if a multidimensional auction has a regular
equilibrium, it can always be reduced (in a non-trivial way) to a one dimension auction (the
indirect auction). So, for obtaining equilibrium existence, we have to consider auctions that can

24Of course, if one increases the dimension of the signals to six, for instance, the task can be done. However, the
signals so obtained will be concentrated in Lebesgue measure zero sets.
25The proof also shows the existence of equilibrium even if ṽ is not continuous, but the payment is given by (26).
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be so “reduced”. This is what assumption H3 allows us to explicitly do. It still encompasses
cases where such reduction is not trivial, as we show in examples 9 and 10 below. The reduction
of the dimension of the types is not a novelty in auction theory. While studying the effiency of
auctions, Dasgupta and Maskin (2000) use a condition close to H3, while Jehiel, Moldovanu and
Stacchetti (1996) made such reduction for the purpose of revenue maximization. Nevertheless,
for the purpose of equilibrium existence in standard auctions, one cannot use only H3 or the
Dasgupta and Maskin’s condition, since the received theory would require the extra assumption of
monotonicity of the reparametrized signals. As we show in examples 10 and 11, this is not always
possible. So, an important feature of Theorem 3 is that it does not require monotonic assumptions.

Example 9 – Spectrum Auction26

Consider a first-price auction of a spectrum license.27 The license covers two periods of time:
(1) In the first period, the regulator lets the winner explore its monopoly power. Let t1i be the

estimate of bidder i of the monopolist surplus in this first period. Of course, the true surplus will
be better approximated by

¡
t11 + ...+ t

1
N

¢
/ N . If the bidder i (a firm) wins the auction, it has to

invest t2i , a privately known amount, to build the network that will support the service. So, in the
first period, the license gives to the firm

t11 + ...+ t
1
N

N
− t2i .

(2) In the second period, the regulator makes an estimate of the operational costs of the firm.
The regulator cannot observe the true operational cost, t3i , which is a private information of the
firm. Nevertheless, the regulator has a proxy that is a sufficient statistic for the mean operational
cost of all participants in the auction

¡
t31 + ...+ t

3
N

¢
/ N . The regulator will fix a price that will

give zero profit for a firm with the mean operational costs.28 So, in the second period, the license
gives to the winner

t31 + ...+ t
3
N

N
− t3i .

So, the value of the object is given by

v (ti, t−i) =
t11 + ...+ t

1
N

N
− t2i +

t31 + ...+ t
3
N

N
− t3i .

Let the signals ti =
¡
t1i , t

2
i , t

3
i

¢
, i = 1, ..., N be independent. Observe that the problem cannot

be reduced to a single dimension.29 Also, the model cannot be reparametrized to an increasing
one.30 So, the received theory does not ensure the existence of pure strategy equilibrium for this
case. Nevertheless, the assumption (H3) is trivially satisfied. In Appendix D, we assume the
ti =

¡
t1i , t

2
i , t

3
i

¢
are independent and uniformly distributed in

£
s1, s1

¤ × £s2, s2¤ × £s3, s3¤, with s1,
s2, s3 > 0 and we show that a sufficient condition for the existence of equilibrium in pure strategy
is

s1

N
− s2 − s3N − 1

N
− 1 > 0.

26This example is formally similar to example 5 of Dasgupta and Makin (2000), tough it is a bit more complex.
27The example works also for any auctions of public concessions.
28We assume that the regulator is institutionally constrained to follow such a procedure, so the optimality of this

regulation is not an issue.
29 Indeed, if we summarize the private information by, say, si = t1i /N − t2i + t3i (1/N − 1), we lose the information

about t1i and t
3
i that are needed for the value function of bidders j 6= i.

30 If we try to put −t3i in the place of t3i , then the dependence of v (ti, t−i) on the signals t3j will be decreasing.
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The derivation in Appendix D indeed provides necessary and sufficient conditions for the existence
of equilibrium. Above, we have only simplified it for a sufficient condition.¥

Example 10 – Job Market
We can model the job market (for, say, a manager) as an auction between competing firms,

where the object is the job contract with that manager. It is natural to assume that the manager
has a multidimensional vector of characteristics, m = (m1, ..., mk). For the sake of simplicity,
we assume that the firms learn such characteristics through interviews and curriculum analysis.
Each firm also has a position to be filled by the manager, with specific requirements for each
dimension of the characteristics. For instance, if dimension 1 is ability to communicate and the
position is to be the manager of a production section, there is level of desirability of this ability.
An overly comunicative person may not be good. The same goes for the other characteristics. A
bank may desire a sufficiently (but not exaggeratedly) high level of risk loving or audacity on the
part of the manager, while a family business may desire a much lower level. Even efficiency or
qualification can have a level of desirability. Sometimes, the rejection of a candidate is explained
by over-qualification. Therefore, let ti = (t1i , ..., t

K
i ) be the value of the characteristics desired by

the firm.
Since the firms are competitors, then if one hires the employee, the other will remain with a

vacant position, at least for a time.31 In this way, the winning firm also benefits from the fact that
its competitors have a vacant position – and, then, are not operating perfectly well. The higher
the abilities required for the job, the more the competitor suffers.32 So, the utility in this auction
is as

v (ti, t−i) =
KX
k=1

akmk −
KX
k=1

bk
¡
tki −mk

¢2
+
X
j 6=i

KX
k=1

cktkj ,

where ak is the level of importance of characteristic k of the manager,.bk > 0 represents how
important is the remove from the desired level tki of the characteristic k, and c

k is the weight of the
benefit that firm i receives from the fact that the competitors are lacking

P
j 6=i t

k
j of the ability k.

As in the previous example, we cannot simplify this model for a unidimensional monotonic model.
In Appendix D we analyze the case where there is just one dimension (K = 1), 2 players (N = 2)
and the types are uniformly distributed in [0, 1], b = b1 > 0. We show that if m1 = m > 1/2, there
exists a pure strategy equilibrium in regular strategies if and only if

c ≡ c1 > max
½
2b (m− 2)

3
,
2b (1− 2m) (1 +m)

3

¾
and if m < 1/2, there exists a pure strategy equilibrium in regular strategies if and only if

c 6 min
½
2b (m+ 1)

3
,
2b (1− 2m) (1 +m)

3

¾
.

Observe that for both cases the value c = 0 ensures the existence of equilibrium. This is expected,
since it corresponds to a private value auction.¥

Another interesting application of Theorem 3 is the example 1 of JSSZ. This consists in a first-
price auction without equilibrium (with the standard tie-breaking rule). Theorem 3 explains why

31Of course, this model works only for non-competitive job markets. In other words, the buyers (the contracting
firms) have no access to a market with many homogenous employees to hire. This is implicit when we model it as
an auction. So, this is the reason why a firm that does not contract the manager suffers – it is not possible to find
a suitable substitute instantaneously. It is possible that this also occurs in other kinds of auctions.
32 If the firms act in a oligopolistic market, it is possible to justify such externality through the fact that the vacant

position influences the quality of the product delivered by the firms and, hence, the equilibrium in this market.
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such an auction does not have an equilibrium in regular strategies:33

Example 11 (JSSZ, example 1) – Let us consider a first price auction with two bidders,
independent types uniformly distributed in [0, 1]. Let v1 (ti) = ti and v2 (t−i) = 5 − 4t−i. It is
clear that P (ti) = ti in this case and ṽ (x, y) = 5 + x− 4y. So, ṽ (α,α) = 5− 3α and

b̃ (x) =
1

x

Z x

0

ṽ (α,α) dα =
1

x

µ
5x− 3x

2

2

¶
= 5− 3

2
x,

which is decreasing. There is therefore no direct equilibrium b ∈ S.¥
The example above is used by JSSZ to show that equilibrium may fail to exist under the

standard tie-breaking rule. They then provide a general existence result based on endogenous tie-
breaking rules. Unfortunately, their result has some undesirable properties. First, it is in mixed
strategies. Second, the tie-breaking rule is endogenous, so it is not possible to know what rule
has to be applied in order to guarantee the existence. Third, the rule requires that the players
announce their types, which is theoretically convenient but it is unfeasible in the real world.
We offer, in contrast, a method to overcome these difficulties. First, the equilibrium is in pure

strategies. Second, the rule is the same for all auctions, so that the players know it before the
game starts. Third, it is a natural method: a modified second-price auction. Although we could
implement the tie-breaking rule by requiring that types be announced, we do not need to require
this formally. As a matter of fact, we require that the bidders submit bids that will be ranked in
the standard manner. The payment in the case of winning is given by a function of the second
highest bid. The fact that it is a function of the second highest bid (and not the bid itself) is the
reason why we call it a “modified” second-price auction. The rule is as follows:

Modified Second-Price Auction Tie-Breaking Rule (MTBR)- In the case of a tie,
conduct a modified second-price auction among the players involved in the tie, as follows. Each
bidder submits a bid b2i ; the bidder with the highest bid wins, receives the object and makes the
payment. The payment is calculated based on the second highest bid, b2(−i), and it is given by

v (z, z), where z ≡ ¡v1¢−1 ³b2(−i)´.
Observe that the implementation of the above rule does not require any extra information.34

We show now that the above rule ensures the existence of equilibrium for the auctions that we are
considering. Therefore, the generality and simplicity of the rule can be counted as a last advantage
of it.

Theorem 4 - Consider the auction (S,σ, v) that satisfies (H0) -(H3). Assume that MTBR is
adopted. Let P be given by (25). If there is a b̃ that satisfies (33) and is compatible with p̂ (0) = 0
then there is an equilibrium in pure strategies. Moreover, the expected payment of a bidder of
type ti is given by

p (ti) =

Z P (ti)

0

ṽ (α,α) dα,

Proof. See Appendix C.¥

Remark 5 – The main ingredient in the proof of Theorem 4 is the payment expression. So,
the special characteristic of MTBR is the fact that it allows the implementation of the revenue
equivalence in a situation where the usual tie breaking rule does not.35

33Of course, it would be possible for an equilibrium to exist that it is not in S or it is in mixed strategy. JSSZ
show that this is not the case with standard tie-breaking rule. They then proceed to show that a tie-breaking rule
that depends on types is sufficient to ensure the equilibrium existence.
34Remember that the function v1 is common knowledge.
35 In example 11 (example 1 of JSSZ), the MTBR gives a greater revenue than the rule proposed by JSSZ.
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The reader should note that Theorem 4 does not claim the uniqueness of the equilibrium.
Indeed, if b̃ is not increasing, there are many equilibria. There are two sources for this multiplicity.
The first source is that under MTBR, any level of the bid in the range where b̃ is non-monotonic

can be chosen to be the level of the tie. This is shown in the Figure 3. For instance, any a0 can
be chosen between x0 and x1. Once one of the three elements ak, bk or ck is determined, so are
the other two.
However, these possibilities lead to the same expected payment and payoff for each bidder in

the auction, so that Theorem 4 remains as stated.

ak ck 

bk 

x0 x1 y0 y1 

z1 

z0 

Figure 3: Possible specifications for the level of the tie.

Another point is that the tie-breaking rule is not unique, in general (although the rule just
defined seems the most natural one). It can be shown, for instance, that for cases where b̃ is
decreasing (as in example 1 of JSSZ) and for some specifications of v, there is a continuum of
tie-breaking rules (like that defined by JSSZ for their example 1), which ensures the existence
of equilibrium. All these tie-breaking rules nevertheless imply different revenues. In light of this
observation, the existence of equilibrium with an endogenous tie-breaking rule seems even more
problematic as a solution concept, since it can sustain very different behaviors at equilibrium.
The reader must observe that the expression of the payment in Theorem 3 depends only on the

conjugation, which is fixed for all kind of auctions. Also, the payment is exactly the same under
the MTBR. So, we have the following:

Theorem 5 (Revenue Equivalence Theorem) - Consider the auction (S,σ, v) that satisfies
(H0) -(H3). Assume that MTBR is adopted. Then, any format of the auction gives the same
revenue, provided the bidders follow a symmetric equilibrium.

4.5 Risk Aversion

Now we would like to show that the theory just developed can be extended to a setting with risk
aversion. For the sake of simplicity, we will restrict ourselves to the private-value case — as Maskin
and Riley (1984) do — and to the first-price auction, although it is possible to extend the analysis
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for the setting of the last subsection. So, we assume the following:

ui (t, b) = U
¡
v1 (ti)− bi

¢
;

ui (t, b) = 0;

uTi (t, b) =
U (v (ti)− bi)

m
,

where m is the number of tying bidders and U : R → R is a utility function. Also, we maintain
(H1), (H3) and make the following assumption for U :

(H4) U is a strictly increasing, bounded and differentiable function, with U (0) = 0. Moreover,
U/U 0 is strictly increasing.

(H4) seems a restrictive assumption, but it is implied by the assumptions of Maskin and Riley
(1984). Let P be defined as in the previous section (see (25)) and

ṽ1 (x) = E
£
v1 (ti) |P b (ti) = x

¤
.

Let b0 be the reserve price. We have the following:

Theorem 6 - Consider the auction described above, assume that (H1)-(H4) hold and that ṽ1

is continuous. Then, there exists a unique equilibrium b ∈ S given by b = b̃◦P , where P is defined
by (25) and b̃ is the solution of

b̃0 (x) =
U(ṽ1(x)−b(x))
xU 0(ṽ1(x)−b(x))

b (x0) = b0, where ṽ1 (x0) = b0.

(27)

Proof. See Appendix C.¥

5 Multidimensional Bids and Procurement Auctions
In the previous section, we extended the equilibrium existence results from unidimensional to
multidimensional types. Nevertheless, we have considered only unidimensional bids. It is worth
wondering what can be said about multidimensional bids.
Maybe the most obvious example of auctions with multidimensional bids are multiunit auctions.

Indeed, in these auctions each bidder submits prices for each unit to be received. Our model needs
important modifications to approach this case. This comes from the fact that our assumption of
unitary demand allows us to consider only two situations for each bidder: to receive the object
or not (ignoring the ties). Then, it is sufficient to consider just two utility functions, ui and ui,
one for each of these situations. When there are K objects in the auction, and the bidders have
multiunit demand, we need to consider K + 1 outcomes for each bidder: to end with k = 0, 1, ...,
K objects and, for the outcome of receiving k objects, to consider the utility function uki . This will
require the lemma of characterization and the basic principle of bidding to be rephrased in order
to take into account all these new possibilities. It seems reasonable to hope that the approach will
be fruitful in this case, but, of course, careful work is needed to obtain valuable results.
Nevertheless, multiunit auctions are not the only interesting case of auctions with multidimen-

sional bids. Indeed, many single-object auctions have multidimensional bids. For instance, in the
timber auctions conducted by the U.S. Forest Service, the bidders generally are required to submit
individual prices for each kind of trees to be harvested in the tract. Also, in a procurement auction
for an engineering service, a buyer may request prices of the materials and of the working hours
to be spent on the service. Yet another example is a procurement auction of non-homogenous
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products. In this case the bidders have to submit not only the price of the object but also its
characteristics (quality, durability, warranty, reliability, capacity, time to delivery, etc.), that affect
the utility of that product to the buyer. So, it is reasonable for the buyer to take into account such
characteristics (part of the multidimensional bid) when deciding which proposal to accept.
Since the result of the auction for each bidder is only winning or losing, the seller has to specify

a complete order to the multidimensional bids. We can assume that this order is given by a scoring
function. For a real example, if b1i and b

2
i are the prices (bids) submitted by bidder i for the

two species of trees in a tract, the U.S. Forest Service declares the winner to be the bidder with
the highest expected payment b1i t

1
0 + b

2
i t
2
0, where t

1
0 and t

2
0 are the estimates for the quantity of

each species made previously by the U.S. Forest Service. Doing so, the Forest Service is trying to
maximize the expected payment that it will receive from the bidders.
In the example of procurement of non-homogenous products, the bid is (pi, qi), where qi stands

for the quality of the product offered and pi, for its price. The scoring rule can be given by
U (qi) − pi, where U tries to capture the value that the auctioneer attributes to quality. That is,
the bid (pi, qi) that leads to the higher surplus U (qi)− pi is the winning bid.
In this section, we present two models that analyze the above situations. We could try to give

a general model that incorporates all the above cases, but it would be very complex and it is more
instructive to treat the specific examples in turn. In subsection 5.1, we analyze a procurement
auction of unit-price contracts. In section 5.2, we treat the case of non-homogenous products.

5.1 Unit-Price Contracts

In this subsection, we present a model of procurement auction with multidimensional bids that
generalizes the model of Ewerhart and Fieseler (2003). Although our model is phrased for pro-
curement auctions, easy adaptations can be made in order to deal with the situation analyzed by
Athey and Levin (2001): the timber auctions conducted by the U.S. Forest Service.
A firm (or a government) procures a service to be executed. Its engineers estimate the amount

of each input to be used to execute it: materials, working hours, etc. If there are m input factors to
the service, the engineers estimate the amounts t10, ..., t

m
0 that will be used. We denote the vector

of estimates by t0 = (t10, ..., t
m
0 ).

The potential suppliers of the service (who will be called sellers) have private information about
their technologies. That is, seller i knows the quantity of inputs t1i , ..., t

m
i that he will need to

complete the service. Let ti = (t1i , ..., t
m
i ).

The buyer then conducts a procurement auction, and request the potential suppliers to submit
multidimensional bids bi =

¡
b1i , ..., b

m
i

¢ ∈ Rm+ . The non-negative number bki is the price that seller
i asks for each unit of the k − th input. Based on the vector of bids, the buyer decides to buy the
service from the bidder with the least cost, that is, bidder i such that bi · t0 = minj bj · t0, where
bj · t0 denotes the inner product

Pm
k=1 b

k
j t
k
0 . In other words, there is a scoring function that is used

by the buyer to evaluate the bids. It is just a function B : Rm → R, given by B (bi) = bi · t0. The
bid with the lowest score (expected payment) is the winner.
Once the winner is chosen, say bidder i, the buyer signs a contract with him, specifying the

unit price that will be charged, p =
¡
p1, ..., pm

¢
. The signed contract can be a lowest-score contract

(corresponding to a first-price auction), where p · t0 = minj B (bj), or a second-score contract, in
which case p · t0 = B(−i) ≡ minj 6=iB (bj).36 In the first case, p = bi is, then, the contract signed.
In the second case the bidder is free to choose p in order to met the requirement p · t0 = B(−i).
After the contract is signed, the service is executed, the true amount of inputs used, t1i , ..., t

m
i ,

is revealed and the transfer (payment) p · ti is made by the buyer to the seller. We assume that the
buyer can observe the efforts made by the contractor so that there is no moral hazard. It would
be possible to include in the model the possibility of moral hazard, but this will turn the problem
much more complex. However, the reader should note that our assumption is not so restrictive.

36All pay auctions and war of attrition seem inadequate in this setting: the buyer pays something even to those
who do not win. We will not consider these formats.
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We can understand t1i , ..., t
m
i as the optimal level of the observable variables that are chosen by

the contractor i, given the technology of observation of the buyer and the technology available
to the contractor. So, the unique true restriction of the model is that, at the moment of bidding
at the auction, the seller has solved all uncertainties regarding its technology, so that his choices
deterministically imply the outcome of the observable.
This kind of contract is called unit-price contract and it is widely used in the real world. A

natural question is “why?” Indeed, one could guess that it would be better (or at least equivalent)
for the buyer to ask for an unidimensional bid: the price of the whole project. Then the buyer could
contract the seller with the cheapest proposal. The intuition for the use of unit-price contracts is
that this enables the contractor and the buyer to share risks. With the unidimensional bid, the
risk becomes entirely on the part of the contractor.
We assume that seller i faces a cost c (ti) of providing the service. The profit of seller i is, then,

p · ti − c (ti) .

So, the problem of the seller is

max
bi∈Rm+

E
n
[p · ti − c (ti)] 1[t0·bi<B(−i)]

o
= max
bi∈Rm+

[p · ti − c (ti)] Pr
£
t0 · bi < B(−i)

¤
Observe that this problem can be broken into two parts. The level β = t0 · bi determines the

probability of winning the auction. Under an optimum level β, the seller is free to choose bi (and
hence, p), which maximizes p · ti − c (ti).
So, in a first-scoring auction, where p = bi, this problem is

max
bi:bi·t0=β

bi · ti,

since −c (ti) is a constant. In a second-scoring auction, the problem is

max
p∈Rm+ ,p·t0=B(−i)

p · ti.

Both problems are linear with linear restrictions and they are formally equivalent. So, the maximum
is obtained by a corner solution, which is very easy to obtain. For a fixed level β or for a B(−i) = β,
the problem is

max
p∈Rm+ ,p·t0=β

[p · (ti − t0) + p · t0]

Let k (ti) be defined as argmaxk
¡
tki − tk0

¢
. Then, the solution is, clearly,

b (ti,β) =

Ã
0, ..., 0,

β

t
k(ti)
0

, 0, ..., 0

!
,

where all entries are zero, but that in position k (ti). With this bid, the profit is

β

t
k(ti)
0

t
k(ti)
i − c (ti) = t

k(ti)
i

t
k(ti)
0

"
β − c (ti) t

k(ti)
0

e
k(ti)
i

#
.

26



The problem of the bidder now becomes to choose the score level β in

argmax
β>0

t
k(ti)
i

t
k(ti)
0

"
β − c (ti) t

k(ti)
0

e
k(ti)
i

#
Pr
£
β < B(−i)

¤
(28)

= argmax
β>0

"
β − c (ti) t

k(ti)
0

e
k(ti)
i

#
Pr
£
β < B(−i)

¤
So, all types ti that have the same c (ti) t

k(ti)
0 /t

k(ti)
i must choose the same optimum bid. Then,

we define the conjugation:37

P (ti) = Pr

(
t−i ∈ T−i : c (tj) t

k(tj)
0

t
k(tj)
j

> c (ti)
t
k(ti)
0

t
k(ti)
i

, ∀j 6= i
)
.

Also, define, for all x = P (ti),

c̃ (x) ≡ c (ti) t
k(ti)
0

t
k(ti)
i

,

which is well defined from the definition of the conjugation. Observe that types ti with higher
P (ti) are eager to win, because they have a lesser adjusted cost c (ti) t

k(ti)
0 /t

k(ti)
i . Interestingly, in

the unit-price auction, it is not the seller with the lower costs that wins. Indeed, the auction favors
those players who have types with high difference tk(ti)i − tk(ti)0 , because the term tk(ti)0 /t

k(ti)
i lowers

the true costs to the “virtual cost” c (ti) t
k(ti)
0 /t

k(ti)
i . Another important observation is that, as we

have said before, the players that conjugated do not need to have the same payoff. This comes

from the fact that factor tk(ti)i /t
k(ti)
0 adjusts the “virtual payoff”,

h
β − c (ti) tk(ti)0 /e

k(ti)
i

i
. See (28).

Turning back to the solution of the auction, in the first-score auction the problem of the seller
now simplifies to

max
β
[β − c̃ (x)] Pr £β < B(−i)¤ .

By the definition of conjugation, FB(−i) (β (x)) = 1 − x, so that Pr £β (x) < B(−i)¤ = x. The
first-order condition becomes

β0 (x) =
β (x)− c̃ (x)

x
,

which, together with the initial condition β (0) = c̃ (0), gives the symmetric equilibrium:

β1 (x) = x

·
c̃ (0)−

Z x

0

c̃ (α)

α2
dα

¸
.

For a second-score auction, the problem is

max
β

£
p
¡
B(−i)

¢ · t0 − c̃ (x)¤Pr £β > B(−i)¤ .
Observe that the first term does not depend on β (besides the dependence on B(−i)) and the other
is increasing in β. Since the strategy is increasing in the conjugation, then the solution is given
simply by that β such that p

¡
B(−i)

¢ · t0 − c̃ (x) > 0 if and only if β > B(−i). That is,
37Of course, we again work under the assumption of non-atoms in the distribution of c (ti) t

k(ti)
0 /t

k(ti)
i .
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β2 (x) = c̃ (x) ,

and, after the result of the auction, the contract p
¡
B(−i)

¢
is signed.

Ewerhart and Fieseler (2003) solve just the first-score auction for the particular case where
there are two players, the types are unidimensional and the costs linear. The interpretation is that
all sellers are assumed to have the same type (equal to one) for one of the inputs (materials). The
cost is given by c (ti) = cM + cLt

L
i , where cM is the cost of materials and cL is the cost of labor.

Under these simplifications, they obtain unimodal behavior (with increasing and decreasing regions
fixed). They can thus show the existence of equilibrium with the standard monotonic methods.

5.2 Non-Homogeneous Products

In this section we consider a procurement auction where the product to be delivered may have
different characteristics. In other words, the products are non-homogenous. So, the buyer requires
each seller to submit, together with a price b0i , a vector of characteristics, b

c
i =

¡
b1i , ..., b

m
i

¢
, of the

product the seller plans to deliver. So, the whole bid is the vector bi = (b0i , b
1
i , ..., b

m
i ).

The bids are ranked through a scoring function that we will assume to be of the form: B (bi) =
V
¡
b1i , ..., b

m
i

¢− b0i , where V can be (or not) the utility that the buyer attributes to the good with
characteristics

¡
b1i , ..., b

m
i

¢
. We assume this form of the scoring rule for the sake of simplicity.

Each seller has multidimensional private information ti. The private information is related
to the cost of producing the good, that is, the cost of delivering a good with characteristics
bci =

¡
b1i , ..., b

m
i

¢
by a seller with type ti is c (ti, bci ).

The payment to the seller is pi in a first-score auction. In a second-score auction, the second
highest score, B(−i) ≡ maxj 6=iB (bj), has to be matched, but the firm is free to choose the price and
the characteristics to do so. That is, the firm chooses bi such that B

¡
bi
¢
= B(−i).38 If the contract

p =
¡
p0, pc

¢
= (p0, p1, ..., pm) = bi is signed, the seller ends up with a profit of p0 − c (ti, pc) and

the buyer a utility U (pc)− p0, where U can (or not) be equal to V . The problem of the bidder is
to choose bi in order to

max
bi∈Rm+

E
n£
p0 − c (ti, pc)

¤
1[B(bi)>B(−i)]

o
= max
bi∈Rm+

£
p0 − c (ti, pc)

¤
Pr
£
B (bi) > B(−i)

¤
Again, the problem can be broken into two parts. For each score level β, the bidder finds the
contract p = p (ti,β) to solve

h (ti,β) ≡ max
p:B(p)=β

p0 − c (ti, pc) .

The second problem is to choose the β in order to maximize

max
β>0

h (ti,β) Pr
£
β > B(−i)

¤
.

Let us analyze the first problem. The condition is that B (p) = V (pc)− p0 = β. So, the problem
can be simplified to obtain pc that solves

max
pc∈Rm

V (pc)− c (ti, pc) ,
38Other variations are possible. For instance, the seller may be required to meet the exact bid bj of an opponent

j such that B (bj) = B(−i). Another possibility is to require that the price b0j of this bidder is matched and to

choose a vector of characteristics b
c
i that is at least as good as that of j, that is, V

³
b
c
i

´
> V (bj). For the sake of

simplicity, we will restrict our attention to the two rules described.
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since the choice p0 = V (pc)−β ensures the restriction of the original problem. Suppose that there
is a unique pc = pc (ti) that solves the above problem.
We obtain h (ti,β) = V (pc (ti))− c (ti, pc (ti))− β. The second problem is now

max
β>0

[V (pc (ti))− c (ti, pc (ti))− β] Pr
£
β > B(−i)

¤
.

It becomes clear that the types with the same level V (pc (ti)) − c (ti, pc (ti)) will bid the same β.
Let v1 (ti) be defined as V (pc (ti))− c (ti, pc (ti)). Then, it is natural to define the conjugation:

P (ti) = Pr
©
t−i ∈ T−i : v1 (tj) < v1 (ti) ,∀j 6= i

ª
.

Define ṽ1 (x) as E
£
v1 (ti) |P (ti) = x

¤
. Observe that ṽ1 (x) = v1 (ti) if P (ti) = x and that v1 (ti) =

ṽ1◦ P (ti).
Then, the solution of the first-score auction is given by

β1 (x) =
1

x

Z x

0

ṽ1 (α) dα.

For the second-score auction, the strategy is simply β2 (x) = ṽ (x).

6 Conclusion
Now we would like to highlight what in our opinion are the most important contributions of this
paper and to discuss possible extensions.

6.1 The Contributions

Our contributions can be summarized as follows:

• Equilibrium Existence in the Multidimensional Setting - McAdams (2003a) generalizes Athey
(2001) for multidimensional types and actions. Nevertheless, he works with discrete bids and
types. Our approach offers the existence with continuum types and bids. His result is
just an existence result, while ours provides the expressions of the bidding functions. His
assumptions requires monotonicity, which is an undesirable restriction when one tries to work
in multidimensional settings. While we do not need such an assumption, our results also
do not cover multi-unit as his. JSSZ also gives the existence for multidimensional games,
including cases with dependence, while we require independence. However, they need an
endogenous tie breaking rule and give the existence in mixed strategies, while our results are
in pure strategies.

• Equilibrium Existence in Non-Monotonic Settings - We are not aware of general non-monotonic
equilibrium existence results in pure strategies. Zheng (2001), Athey and Levin (2001) and
Ewerhart and Fieseler (2003) present cases where non-monotonicity arises. The cases in the
last two papers seem important in practice. So, our results develop a theory to deal with the
situations where the usual monotonicity is not fulfilled.

• Uniqueness of Equilibrium - We are able to ensure the uniqueness of equilibrium in the
general setting analyzed (under assumption H3), extending the well known uniqueness of
unidimensional and monotonic auctions.

• Necessary and Sufficient Conditions for the Existence of Equilibrium without Ties - The
results of JSSZ do not allow one to distinguish when the special tie-breaking is needed or
not. Our approach clarifies, under assumption H3, whether there is a need for a special
tie-breaking rule.
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• Exogenous Tie-Breaking Rule - Knowing exactly when there is a need for a tying with positive
probability, we are able to offer an exogenous tie breaking rule, which has the advantage of
being implemented through a (modified) second-price auction. Moreover, the equilibrium
that the rule implements is in pure strategies.

• Revenue Equivalence Theorem - We have also generalized the Revenue Equivalence Theorem
(Theorem 5). Futhermore, Theorem 2 and Appendix B show that there is a deep connec-
tion between the revenue equivalence and the existence of equilibrium. Riley and Samuelson
(1981) and Myerson (1981) establish that revenue equivalence is a consequence of the equi-
librium behavior. Proposition 3 in Appendix B shows that the revenue equivalence is also
sufficient for the existence of equilibrium, (if another condition is satisfied). We are not aware
of this connection being established previously.

So, our results have clarified some aspects of the problem of equilibrium existence in auctions.
The theory shows that, under assumption H3, there is no additional difficult in working with the
more general setting of multidimensional types and non-monotonic utilities besides those difficulties
already possible in the unidimensional setting.39 Moreover, this approach allows the equilibrium
bidding functions to be expressed in a simple way. This is so because the equilibrium bidding
function of a general auction can be expressed by the equilibrium bidding function of an auction
with two bidders and uniform types in [0, 1].
There are counter-examples for the existence of equilibrium with multidimensional types. See,

for instance, Jackson (1999) and Fang and Morris (2003). These papers consider bidimensional
types, and utilities with both private-value and common-value parts. Reading them, one might
guess that the main problem with the existence is that of the multidimensionality. Our results
suggest two sources for the non-existence: one is the dependence of the signals and the other is the
non-monotonicity of the indirect bidding function. In the later case, it is likely that the tie-breaking
proposed would solve the problem. So, the dependence can be a deeper source for non-existence.40

A last word about the need of tie-breaking rules is worth. Based on Theorem 4, one may conjec-
ture that is always possible to ensure the existence of equilibrium with an exogenous tie-breaking
rule. Also, it is possible to conjecture that for sufficiently regular utility functions and indepen-
dent types, even discontinuous games have an equilibrium in pure strategies with an exogenous tie
breaking rule. It is to be seen whether these conjectures are correct.

6.2 The Limits of the Method

Our theory makes two important assumptions: independence of the types and symmetry.
The generalization of the approach for dependent types involves some difficulties, because the

conjugation would depends in a complicated manner on the types. Nevertheless, we believe that
something can be done if we assume conditional independence, but little can be expected from
this case.41 It is worth remembering that the problem with dependence is not specific to our
approach. Jackson (1999) gives a counter-example for the equilibrium existence of an auction with
bidimensional affiliated types. Fang and Morris (2003) also obtain negative results, not only for
the existence of equilibrium but also for the revenue equivalence.
On the other hand, asymmetry does not seem to impose severe restriction on the existence of

equilibrium. We believe that the approach of the indirect auction can be adapted to this case,
although not in a straightforward way. If this can be done, it is unlikely that we will obtain the
simple expressions of this paper.

39Theorem 3 shows that the non-existence of the equilibrium comes from the non-monotonicity of the indirect bid-
ding function. This can occurs also in unidimensional setting, although it can be more common in multidimensional
models.
40For an alternative method to deal with dependence of signals, see de Castro (2004).
41 de Castro (2004) proposes the use of conditional independence as an alternative for affiliation.
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Another limitation of our theory is that it is applied to single-unit auctions. As we have
discussed in section 5, it seems possible to extend the approach for multi-unit auctions.
Finally, about assumption H3, we would like to comment that, although it is not entirely

general, it does seem to encompass many of the most important economical examples.
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Appendix A - Proof of the Basic Results

Proof of Lemma 1. Let us first remember the expression of Πi:

Πi(ti, bi) = E [ui|ti] +E
h¡
uTi − ui

¢
1[b(−i)=bi]|ti

i
+E

h
ui1[bi>b(−i)]|ti

i
,

where ui = ui − ui.
We consider each term above separately. The first one has a derivative with respect to bi almost

everywhere and is equal to E [∂biui|ti]. The derivative of the last term with respect to bi is just
E [∂biui|ti]. Also,

E [ui|ti] =
Z
E [∂biui|ti] dβ.

The second term is different from zero just where there is an atom in the distribution of b(−i).
Thus, it is equal to zero for almost all bi, and its derivative is zero almost everywhere.
Now consider the last term in its original form,

R
ui1[bi>b(−i)]. Let a

n → b+i (i.e., a
n > bi; the

other case is analogous). We haveZ n
ui (ti, a

n, ·) 1[an>b(−i)]
o
−
Z n

ui (ti, bi, ·) 1[bi>b(−i)]
o

=

Z n
[ui (ti, a

n, ·)− ui (ti, bi, ·)] 1[an>b(−i)]
o
+

Z
ui (ti, bi, ·) 1[an>b(−i)>bi].

Since ui has bounded derivative with respect to almost all bi,
ui(ti,a

n,·)−ui(ti,bi,·)
an−bi → ∂biui, for

almost all bi. Also, 1[an>b(−i)] → 1[bi>b(−i)]. These imply that

ui (ti, a
n, ·)− ui (ti, bi, ·)
an − bi 1[an>b(−i)]→ ∂biui1[bi>b(−i)]

for almost all bi and these functions are (almost everywhere) bounded. By the Lebesgue Theorem,
the integral converges, that is, there exists

lim
an→bi

Z
ui (ti, a

n, ·)− ui (ti, bi, ·)
an − bi 1[an>b(−i)]

and it is equal to E
h
∂biui (ti, bi, ·) 1[bi>b(−i)]|ti

i
.

Now we want to determine the derivative of the other term. For this purpose, define for each
ti ∈ Ti fixed, the measure ρ over R+ by

ρ (V ) ≡
Z
ui (ti, bi, ·) 1[b(−i)∈V ].

We have

lim
an→bi

1

an − bi

Z
ui (ti, bi, ·) 1[an>b(−i)>bi]

= lim
an→bi

1

an − bi ρ ([bi, a
n))

= lim
an→bi

½
ρ ([bi, a

n))

m ([bi, an))

¾
= Dρ (bi)
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where the existence of lim
r→0

ρ(B(bi,r))
m(B(bi,r))

= Dρ (bi) is ensured by Theorem 8.6 of Rudin (1966) for

almost all bi, that is, m
³n
v : @ lim

r→0
ρ(B(bi,r))
m(B(bi,r))

o´
= 0. Theorem 8.6 of Rudin (1966) also says that

Dρ coincides almost everywhere with the Radon-Nikodym derivative dρ
dm (.) and that

ρ (V ) = ρ⊥ (V ) +
Z
V

dρ

dm
(β) dβ.

where ρ⊥ denotes the orthogonal part of ρ, and it has the property

lim
an→bi

1

an − bi ρ
⊥ ([bi, an)) = 0,

by the same theorem.
It is easy to see that ρ is absolutely continuous with respect to Fb(−i) . The Radon-Nikodym

Theorem guarantees the existence of the Radon-Nikodym derivative of ρ with respect to Fb(−i) ,
denoted by E[ui (ti, bi, ·) ||ti,b(−i) (t−i) = β] such that

ρ (V ) ≡
Z
V

E[ui (ti, bi, ·) |ti,b(−i) = β]dFb(−i) (β|ti) .

Then, it is easy to see that the Radon-Nikodym derivative dρ
dm (bi) is simplyE[ui (ti, bi, ·) |ti,b(−i) (t−i) =

bi]fb(−i) (bi|ti), where fb(−i) (·|ti) is the Radon-Nikodym derivative of Fb(−i) (·|ti). Thus,

∂biΠi(ti,β) = E
h
∂biui (ti,β, ·) 1[β>b(−i)] + ∂biui (ti,β, ·) 1[β<b(−i)]|ti

i
+E[ui (ti,β, ·) |ti,b(−i) = β]fb(−i) (β|ti) ,

and, by the Lebesgue Theorem,

Πi(ti, bi) = E
h¡
uTi − ui

¢
(ti, bi, ·) 1[b(−i)=bi]|ti

i
+

Z
[0,bi)

E[ui (ti, bi, ·) |ti,b(−i) = β]dF⊥b(−i) (β|ti) +
Z
[0,bi)

∂biΠi(ti,β)dβ.

This concludes the proof.¥

Proof of Proposition 2. Let us introduce the following notation:

Π+i (ti, c) =

Z £
v (ti, ·)− pW

¡
c, b(−i) (·)

¢¤
1[c>b(−i)(·)]Πj 6=iσ (dtj)

Π−i (ti, c) =
Z
pL
¡
c, b(−i) (·)

¢
1[c<b(−i)(·)]Πj 6=iσ (dtj) ,

Π̃+,−i (φi, c) ≡ E
£
Π+,−i (ti, c) |P (ti) = φi

¤
Let us begin with the proof for Π̃+i and Π

+
i . Let us denote the conditional expectation

42

42We refer the reader to Lehmann (1959) p. 41-5 for a discussion of the concept of conditional expectation and
its properties.
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gti,c (α) ≡ E
h¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P b(−i) (t−i) = α
i
. (29)

The event
£
c > b(−i) (t−i)

¤
occurs if and only if

h
P̃ b (c) > P b(−i) (t−i)

i
occurs. Then, we have

Π+i (ti, c) =

Z
gti,c

³
P b(−i) (t−i)

´
1h
P̃ b(c)>P b

(−i)(t−i)
iΠj 6=iσ (dtj) .

Now we appeal to the Lemma 2.2, p. 43, of Lehmann (1959). This lemma says the following: if R
is a transformation and if µ∗ (B) = µ

¡
R−1 (B)

¢
, then

Z
R−1(B)

g [R (t)]µ (dt) =

Z
B

g (α)µ∗ (dα) .

In our case, R = P b(−i) and µ
∗ ([0, c]) = µ∗ ([0, c)) = τ−i

³
P−1(−i) ([0, c))

´
= Pr{t−i ∈ SN−1 :

P b (tj) < c} = c, by (9). So, µ∗ is exactly the Lebesgue measure, so that we have

Π+i (ti, c) =

Z P̃ (c)

0

gti,c (α) dα. (30)

From this and the definition of Π̃+i , we have

Π̃+i (φi, c) = E

"Z P̃ (c)

0

gti,c (α) dα|P (ti) = φi

#

=

Z P̃ (c)

0

E
£
gti,c (α) |P (ti) = φi

¤
dα

=

Z P̃ (c)

0

h
ṽ (φi,α)− pW

³
c, b̃ (α)

´i
dα,

where the second line comes from a interchange of integrals (Fubbini’s Theorem) and the last line
comes from independency and the definition of ṽ (φi,α) and g

ti,c (α) (see (12) and (29)). Also from
(10), we can substitute P̃ , to obtain

Π̃+i (φi, c) =

Z b̃−1(c)

0

h
ṽ (φi,α)− pW

³
c, b̃ (α)

´i
dα. (31)

Now, we can repeat the above procedures with Π−i (φi, c) and obtain:

Π̃−i (φi, c) =
Z 1

b̃−1(c)
pL
³
c, b̃ (α)

´
dα. (32)

Adding up, that is, putting Π̃i (φi, c) = Π̃
+
i (φi, c)− Π̃−i (φi, c), we obtain the interim payoff of

the indirect auction. This concludes the proof of the first part.
For the second part, observe that the equality (15) implies that for all ti such that P (ti) =

P (s) = x,
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E
£
gti,c (α) |P (ti) = x

¤
= E

h¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P (ti) = x, P b(−i) (t−i) = α
i

= E
h¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |ti = s, P b(−i) (t−i) = α
i

= E
h¡
v (s, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P b(−i) (t−i) = α
i

= gs,c (α) .

Then,

Π̃+i (x, c) = E

"Z P̃ (c)

0

gti,c (α) dα|P (ti) = x
#

=

Z P̃ (c)

0

E
£
gti,c (α) |P (ti) = x

¤
dα

=

Z P̃ (c)

0

gs,c (α) dα

by (30) = Π+i (s, c) ,

Obviously, the same can be shown for Π−i and Π̃
−
i . So, the proof is complete.¥

Appendix B - Indirect Auction Equilibria

In this appendix, we will analyze auctions between two players, with independent types uni-
formly distributed in [0, 1]. Since this is the setting of the indirect auction, we will use notation
consistent with that, although the results of this appendix are independent from the results of
section 4. For (i,−i) = (1, 2) or (2, 1) let

ui (t, b) = v (ti, t−i)− pW (bi, b−i) ;
ui (t, b) = −pL (bi, b−i) ;
uTi (t, b) =

v (ti, t−i)− bi
2

.

If we suppose that this auction has a symmetric increasing equilibrium, the first-order condition
(3) simplifies to

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i . (33)

We consider an auction with a reserve price of zero. We will assume the following natural conditions
for v, pW and pL:

Assumptions: (I) ṽ is measurable, non-negative and bounded above. (II) Over the domain
R+ × R, pW and pL are non-negative, differentiable, and at least one of them is non-constant. If
bi < 0, then pW (bi, b−i) = pL (bi, b−i) = 0. (III) There exists an absolutely continuous b̃ that
satisfies (33) almost everywhere in [0, 1].
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Observe that assumption (I) is rather weak. For instance, if ṽ is a conditional expectation of
a measurable non-negative bounded function, it holds. Under so general ṽ, it is not necessary for
the function b̃ considered in assumption (III) to be increasing. So, we have to consider an modified
auction, where the bidders are required to announce a type instead of submitting a bid. We then
show that truth-telling is optimal for the bidders in the modified auction.
First, observe that, since b̃ is absolutely continuous over [0, 1], its image is an closed interval,

which we assume to be [b∗, b∗]. In order not to impose restrictions on the possible bids for a bidder,
we extend the domain of b̃ from [0, 1] to R in order to permit bids out of [b∗, b∗]. To submit a
bid b < b∗, the bidder can announce a type y = b − b∗ < 0, whereas to submit a bid b > b∗, it is
sufficient to announce a type y = b− b∗ + 1. In other words, if y < 0, b̃ (y) ≡ b∗ +y and if y > 1,
b̃ (y) ≡ b∗ + y − 1. The modified auction is described below.

Modified Auction - The bidder submits a type y ∈ R. In any event, the payment is de-
termined as if the bidder has submitted the bid b̃ (y). The bidder wins against opponents who
announce types below y and loses to opponents who announce types above y. If there is a tie, the
object is given with probability 1/2 for each bidder.

Observe that if b̃ is increasing, the modified auction is simply the original auction. If b̃ is
not increasing, the difference is that the events of winning are not determined by b̃ but by the
announced type y. The rule of the modified auction implies the following interim payoff

Π̂ (x, y) =

Z min{y,1}

0

h
ṽ (x,α)− pW

³
b̃ (y) , b̃ (α)

´i
dα (34)

−
Z 1

max{y,0}
pL
³
b̃ (y) , b̃ (α)

´
dα.

We can simplify the above expression to

Π̂ (x, y) =

Z min{y,1}

0

ṽ (x,α) dα− p̂ (y) ,

where

p̂ (y) ≡
Z min{y,1}

0

pW
³
b̃ (y) , b̃ (α)

´
dα+

Z 1

max{y,0}
pL
³
b̃ (y) , b̃ (α)

´
dα.

Now, we can see that the announcement of a type y < 0 or y > 1 is never profitable because the
payment is non-negative, by assumption (II), and we can restrict attention to y ∈ [0, 1]. Observe
that

pW
³
b̃ (y) , b̃ (y)

´
+

Z y

0

∂1p
W
³
b̃ (y) , b̃ (α)

´
b̃0 (y) dα+ pL

³
b̃ (y) , b̃ (y)

´
+

Z 1

y

∂1p
L
³
b̃ (y) , b̃ (α)

´
b̃0 (y) dα

is continuous, so that p̂ is differentiable. So, for every y, we have

p̂0 (y) = ∂y

½Z y

0

ṽ (x,α) dα− Π̂ (x, y)
¾
= ṽ (x, y)− ∂yΠ̂ (x, y) .

Truth-telling is always optimal ifZ x

y

∂yΠ̂ (x,α) dα = Π̂ (x, x)− Π̂ (x, y) > 0 (35)
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for any x and y. Also, in this case, if there exists ∂yΠ̂ (x, y) |y=x, it must be zero, so that

∂yΠ̂ (x, y) |y=x= 0⇒ p̂0 (x) = ṽ (x, x) . (36)

Indeed, these are simply the second- and the first-order conditions, respectively. We have the
following:

Proposition 3 - If truth-telling is equilibrium of the modified auction and Π̂ (x, y) is differen-
tiable w.r.t. y at y = x for all x ∈ [0, 1], then

p̂ (y) =

Z y

0

ṽ (α,α) dα, (37)

and for all x and y ∈ [0, 1], Z x

y

[ṽ (x,α)− ṽ (α,α)] dα > 0. (38)

Conversely, assume that (37) and (38) hold. Then, truth-telling is equilibrium of the modified
auction.
Proof. Observe that p̂ is non-negative by assumption (II) and its definition. Then, truth-

telling implies p̂ (0) = 0, otherwise Π̂ (0, 0) < 0 and bidder 0 could do better by not participating
in the auction. Since there exists ∂yΠ̂ (x, y) |y=x for all x ∈ [0, 1], p̂ is given by (37). So,

Π̂ (x, y) =

Z y

0

[ṽ (x,α)− ṽ (α,α)] dα (39)

and (38) follows from (35), that is, the fact that truth-telling is equilibrium.
On the other hand, given (37), then (39) holds. Then, (38) implies (35), that is, truth telling

is equilibrium.¥

As we have said before, if b̃ is increasing, the modified auction is just the original (unmodified)
auction. Then, we have

Corollary 4 - Let b̃ be such that (37) holds. If b̃ is increasing and (38) also holds, then b̃ is
equilibrium of the original (unmodified) auction. In the affirmative case, we have, for all x and
y ∈ [0, 1],

Π̃
³
x, b̃ (y)

´
=

Z y

0

[ṽ (x,α)− ṽ (α,α)] dα. (40)

We also have the following:

Corollary 5 - Assume that ṽ is continuous and let b̃ be a solution to (33), compatible with
p̂ (0) = 0. Then, if b̃ is increasing and (38) is valid, it is the equilibrium of the original (unmodified)
auction.
Proof. Since ṽ is continuous and b̃ is differentiable, there exists ∂yΠ̂ (x, y) and ∂bΠ̃

³
x, b̃ (y)

´
for

all x, y ∈ [0, 1]. Since b̃ satisfies (33), then ∂bΠ̃
³
x, b̃ (x)

´
= 0. Since ∂yΠ̂ (x, y) |y=x= ∂bΠ̃

³
x, b̃ (x)

´
· b̃0 (x), (36), together with the initial condition imply (37). So, the hypotheses of Corollary 4 are
satisfied.¥

Conversely, we have:
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Corollary 6 - If b̃ is an increasing equilibrium of the original (unmodified) auction that satisfies
(38) and there exists ∂bΠ̃

³
x, b̃ (x)

´
for all x ∈ [0, 1], then (37) and (38) hold.

Proof. Since b̃ is increasing, truth-telling is equilibrium of the modified auction. Since

∂yΠ̂ (x, y) |y=x= ∂bΠ̃
³
x, b̃ (x)

´
· b̃0 (x), there exists ∂yΠ̂ (x, y) |y=x for all x. Proposition 3 gives

the result.¥

Observe that the four kinds of auctions that we have analyzed satisfy the previous assumptions.
Indeed, their payment functions clearly satisfy assumption (II). The equilibrium in the first-price
auction (F), second-price auction (S), all-pay auction (A) and war of attrition (W), with reserve
price of zero, are given by (21)-(24). Those functions satisfy the first-order condition (33) and are
absolutely continuous, so that assumption (III) is also satisfied. Moreover, in each auction format,
it is immediate to see that these strategies lead to (37).

Appendix C - Proofs of the Theorems

Proof of Theorem 1.
(i) If b ∈ S, it defines a conjugation P b by (7). Since the bid b (ti) = β is optimal for bidder ti

against the strategy b (·) of the opponents, ∂bΠ (s, b (s)) = 0 and this implies that

E
£
v (ti, ·) |ti = s, b(−i) (t−i) = β

¤
= pW (β,β)− pL (β,β)−

Et−i

h
∂bip

W 1[bi>b(−i)] + ∂bip
L1[bi<b(−i)]

i
fb(−i) (β)

,

where the right-hand side does not depend on s (it depends only because β = b (s) is the optimum
bid for such bidder). Thus, the left-hand side has to be the same for all s that are bidding the
same bid in equilibrium, which implies that (17) holds.
(ii) If b (ti) is the c that maximizes Π (ti, c) for all ti with the same P (ti), obviously b (ti) is

also the c that maximizes Π̃ (P (ti) , c). Indeed, this comes from the definition of Π̃ (P (ti) , c) given
by (13). In other words, b̃ (x) = P̃−1 (x) = b

¡
P−1 (x)

¢
is the equilibrium of the indirect auction.43

(iii) and (iv) Since b̃ is an increasing equilibrium of the indirect auction, the assumptions of
Corollary 6 in the Appendix B are satisfied, which implies directly (iii) and that the payment of
the indirect auction is given by

p̃
³
b̃ (x)

´
=

Z x

0

ṽ (α,α) dα.

Since b is regular, there is no tie with positive probability. So, only the bid determines the payment.
If we remember that all types that are conjugated bid the same, we see that (iv) holds.¥

Proof of Theorem 2. In Corollary 4 in Appendix B, we prove that conditions (ii), (iii) and
(iv) are sufficient for the equilibrium existence in the indirect auction. Now, Proposition 2 proves
that condition (i)0 implies that for all s such that P (s) = x, Π̃ (x, c) = Π (s, c) (see (16)). Now, if
we put b (s) = b̃ (P (s)), then

Π (s, b (s)) = Π̃
³
P (s) , b̃ (P (s))

´
and

Π (s, c) = Π̃ (P (s) , c) .

43Observe that all t ∈ P−1 (x) bids the same b (t), by the definition of P .
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But this is sufficient to show the equilibrium existence in the direct auction, since b̃ is the equilib-
rium in the indirect auction, which implies that

Π̃
³
P (s) , b̃ (P (s))

´
> Π̃ (P (s) , c) ,

for all c ∈ R. If ṽ is continuous, Π̃ (x, c) is differentiable at all c ∈ R. This concludes the proof.¥

Through the proof of Theorem 3, we will make successive use of the following fact:

Lemma 2 - Assume (H1), (H2) and (H3). For any σ−field Σ on SN−1, we have

∃t−i : v (s0, t−i) > v (s, t−i)
⇔ ∀t−i : v (s0, t−i) > v (s, t−i)
⇔ E [v (ti, t−i) |ti = s0,Σ] > E [v (ti, t−i) |ti = s,Σ] , a.s.

Proof. (H3) gives the first equivalence. By (H2), v is continuous over a compact. So, if ∀t−i :
v (s0, t−i) > v (s, t−i), there is δ > 0 so that d (t−i) ≡ v (s0, t−i) − v (s, t−i) − δ > 0 for all t−i.
Then, for any Σ, E [d (t−i) |Σ] > 0 almost surely.44 This implies that E[v (ti, t−i) | ti = s0,Σ] >
E[v (ti, t−i) | ti = s,Σ], a.s. On the other hand, E[v (ti, t−i) | ti = s0,Σ] > E[v (ti, t−i) | ti = s,Σ]
a.s. implies that ∃t−i : v (s0, t−i) > v (s, t−i).¥

Proof of Theorem 3. Let us begin with the proof of the necessity . According to Theorem 1,
given a b ∈ S, the associated conjugation P b (given by (7)) is such that for all s ∈ ¡P b¢−1 (x),

E[v(ti, t−i)|P b(ti) = x, P b(−i)(t−i) = x] = E[v(ti, t−i)|ti = s, P b(−i)(t−i) = x].

If P b (s) = P b (s0) and there is some t−i such that v(s, t−i) < v (s0, t−i), Lemma 2 implies that

E[v(ti, t−i)|ti = s, P b(−i)(t−i) = x] < E[v(ti, t−i)|ti = s0, P b(−i)(t−i) = x],

which contradicts the previous equality between the conditional expectations. We conclude that

P b (s) = P b (s0)⇒ v (s, t−i) = v (s0, t−i) for all t−i. (41)

Let us define ṽ1 (x) as E
£
v (ti, t−i) |P b (ti) = x

¤
and prove that it is non-decreasing. Suppose that

there exist x and y, x > y, such that ṽ1 (x) < ṽ1 (y). We will reach a contradiction after a series
of facts.
First, we claim that for all ti and t0i such that P

b (ti) = x and P b (t0i) = y, we have v (ti, t−i) <
v (t0i, t−i) for all t−i. Otherwise, v (ti, t−i) > v (t0i, t−i) for some t−i and, by (H3), v

¡
ti, t

0
−i
¢
>

v
¡
t0i, t

0
−i
¢
for all t0−i. Then, Lemma 2 and (41) would imply that ṽ

1 (x) = E
£
v (ti, t−i) |P b (ti) = x

¤
>

E
£
v (ti, t−i) |P b (ti) = y

¤
= ṽ1 (y), a contradiction of our initial assumption. Thus, the claim is

proved.
This claim and Lemma 2 imply that

ṽ (x, z) ≡ E
h
v (ti, t−i) |P b (ti) = x, P b(−i) (t−i) = z

i
< E

h
v (ti, t−i) |P b (ti) = y, P b(−i) (t−i) = z

i
= ṽ (y, z) ,

44 See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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for all z ∈ [0, 1], a.s. Thus, Z x

y

[ṽ (x,α)− ṽ (y,α)] dα < 0.

By condition (iii) of Theorem 1, we also have thatZ x

y

[ṽ (y,α)− ṽ (α,α)] dα 6 0.

Summing up these two integrals, we obtainZ x

y

[ṽ (x,α)− ṽ (α,α)] dα < 0,

which contradicts condition (iii) of Theorem 1. This contradiction establishes that x > y ⇒
ṽ1 (x) > ṽ1 (y).
Suppose now that there exists x > y such that ṽ1 (x) = ṽ1 (y). Then, the monotonicity of ṽ1

(just proved) gives

∀φ ∈ [y, x] , ṽ1 (φ) = ṽ1 (x) = ṽ1 (y) . (42)

Let S0 =
n
s ∈ S : b̃ (y) 6 b (s) < b̃ (x)

o
. From (7), for all s ∈ S0, P b (s) ∈ [y, x]. Then, (41) and

(42) imply that s ∈ S0 ⇒ v1 (s) = ṽ1 (x). Assumption (H3) requires that σ (S0) = 0. Observe that
S0 = A\B, where A ≡

n
s ∈ S : b (s) < b̃ (x)

o
and B =

n
s ∈ S : b (s) < b̃ (y)

o
. But then, σ (A) =

σ (B). However, from the definition of b̃ as the inverse of P̃ b, we have the following:

0 < x− y = P̃ b
³
b̃ (x)

´
− P̃ b

³
b̃ (y)

´
= (σ (A))

N−1 − (σ (B))N−1 ,

which is a contradiction. So, we have proved that x = P b (s0) > P b (s) = y implies v1 (s0) =
ṽ1 (x) > ṽ1 (y) = v1 (s) and P b (s0) = P b (s) implies v1 (s0) = v1 (s). In other words, P b (s0) S
P b (s) if and only if v1 (s0) S v1 (s) which allows us to conclude that

P b (ti) = Pr
©
t−i ∈ T−i = SN−1 : v1 (tj) < v1 (ti) , j 6= i

ª
,

as we have defined in (25).
Now, ṽ and b̃ in Theorem 1 are exactly those defined in the statement of Theorem 3. So,

Theorem 1 implies the claims about b̃. Moreover, if b̃ is unique, the fact that the conjugation is
unique proves that the equilibrium of the direct auction is unique.
Sufficiency. If we define P by (25), it is a conjugation. Let us prove that it satisfies condition

(i)0. If for some x, y and s, such that P (s) = x, we have

ṽ (x, y) = E[v(t)|P (ti) = x,P(−i)(t−i) = y] < E[v(t)|ti = s, P(−1)(t−i) = y],
then, for at least one t−i and s0, P (s0) = x, v (s, t−i) > v (s0, t−i). But then, by (H3), v (s, t−i) >
v (s0, t−i) for all t−i which implies v1 (s) > v1 (s0) and P (s) > P (s0), a contradiction with the
assumption that P (s) = P (s0) = x. So, condition (i)0 is satisfied.
Let us prove condition (iii) of Theorem 2. If x > y, for all ti and t0i such that P (t

0
i) = x and

P (ti) = y, we have v (t0i, t−i) > v (ti, t−i) for all t−i, by (H3). Then, for all z ∈ [0, 1] ,
ṽ (x, z) ≡ E £v (ti, t−i) |P (ti) = x, P(−i) (t−i) = z¤

> E
£
v (ti, t−i) |P (ti) = y, P(−i) (t−i) = z

¤
= ṽ (y, z) .
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Then, if y < α < x, ṽ (x,α)− ṽ (α,α) > 0 and we have:Z x

y

[ṽ (x,α)− ṽ (α,α)] dα > 0.

Now if x < α < y, we have ṽ (x,α) − ṽ (α,α) < 0 so that condition (iii) is satisfied. Condition
(iv) of Theorem 2 follows from Corollary 5 in Appendix B.45 Now, since b̃ satisfies the first-order
condition and is increasing by assumption, Theorem 2 implies the existence of equilibrium, with
the equilibrium bidding function given by b = b̃ ◦ P .
Finally, if we use the assumption that ṽ is continuous, there exists ∂bΠ

³
x, b̃ (y)

´
for all x, y

∈ [0, 1]. Since Π (s, b (x)) = Π̃
³
P (s) , b̃ (P (x))

´
, there exists ∂bΠ (s, b) and it is continuous on

b. Observe that this assumption is used only for the proof of this last fact and for the proof of
condition (iv). Then, if we assume condition (iv) instead of ṽ being continuous, the equilibrium
existence would also follow.¥

Proof of Theorem 4. If b̃ is strictly increasing, it is a symmetric equilibrium by Theorem
3. If it is not, let b (x) = supα∈[0,x] b̃ (α). As we discussed after the statement of Theorem 4, this

is just one of the possible specification for the equilibrium bidding function. Remember that b̃ is
absolutely continuous. Then, there is an enumerable set of intervals [ak, ck] where b (x) is constant.
Let bk ≡ b (x) for x ∈ [ak, ck]. (See Figure 4.)

x

bid
b(x)

a1 c1 a2 a3 c3 c2 

b1 

b2 

b3 

Figure 4: Indirect Equilibrium Bidding Function

Therefore, there is a tie among the indirect types in [ak, ck]. The tie is solved by the MTBR.
We show that it is a dominant strategy for the modified second-price auction to bid b2i = v

1 (ti).
Suppose that the opponent is following this strategy, that is, b2(−i) (z) = ṽ

1 (z). Player i will receive
the payoff Z ck

ak

[ṽ (x, z)− ṽ (z, z)] 1[b2i>ṽ1(z)]dz

for bidding b2i . But b
2
i > b

2
(−i) (z) = ṽ

1 (z) if and only if
¡
v1
¢−1 ¡

b2i
¢
>
¡
v1
¢−1 ³

b2(−i) (z)
´
= z. Then,

if player i bids b2i = v
1 (ti) = ṽ

1 (x) when P (ti) = x, then he will win (and receive ṽ (x, z)− ṽ (z, z))
45We could have established condition (iii) also from that Corollary. We preferred to establish it directly to

observe that the existence of equilibrium would follow if, instead of assuming ṽ continuous, we assumed condition
(iv) directly.
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if and only if x > z, which is equivalent to ṽ (x, z) > ṽ (z, z), by the proof of Theorem 3. So this
is the optimum bid for him. This proves that this strategy is an equilibrium for the modified
second-price auction and we assume that this is the equilibrium played in case of a tie. Then,
following this strategy, each participant is, indeed, getting the payoffZ x

ak

[ṽ (x, z)− ṽ (z, z)] dz.

Thus, in the whole auction, the bidder who follows the strategy b (x) and, in case of a tie, the
above strategy, will receive the payoff

Π̃i
¡
x, b (x)

¢
=

Z x

0

[ṽ (x, z)− ṽ (z, z)] dz.

By deviating from b, that is, bidding b (y) 6= b (x), he will get

Π̃i
¡
x, b (y)

¢
=

Z y

0

[ṽ (x, z)− ṽ (z, z)] dz,

if b (y) is not a bid with positive probability. So, the MTBR implements the modified auction
defined in Appendix B. By Proposition 3 there, the assumptions of Theorem 4 ensure the existence
of equilibrium of the modified auction, and hence of the indirect auction. Under the properties of
the conjugation, all the assumptions of Proposition 2 are satisfied, so that the equilibrium of the
indirect auction is also an equilibrium of the direct one.¥

Proof of Theorem 6. Suppose first that there is an equilibrium b ∈ S. We begin by
reproducing the first argument of Theorem 1. If b ∈ S is the equilibrium, then the first-order
condition (3) implies that at β = b (ti),

E
£
U
¡
v1 (ti)− β

¢ |ti, b(−i) (t−i) = β
¤
fb(−i) (β) + ∂biU

¡
v1 (ti)− β

¢
Fb(−i) (β) = 0

⇒ U
¡
v1 (ti)− β

¢
U 0 (v1 (ti)− β)

=
Fb(−i) (β)
fb(−i) (β)

The right-hand side does not depend on ti (it depends only because β = b (ti) is the optimum bid
for such bidder). Thus, the left-hand side has to be the same for all s = ti that are bidding β in
equilibrium. By (H4), this implies that all conjugated types have the same v1 (ti)− β, and hence,
the same v1 (ti). So, the conjugation is the one defined in (25) and it is unique. The indirect
equilibrium has to be given by (27), which can be seen from Maskin and Riley (1984).
On the other hand, the function b̃, solution of the first-order condition of the indirect auction

is increasing, because we are in a private-value setting. Now, we have just to check that the signal
of the derivative of Π at the equilibrium:

U
³
ṽ1 (x)− b̃ (y)

´ 1

b̃0 (y)
− U 0

³
v1 (x)− b̃ (y)

´
x R 0

⇔
U
³
ṽ1 (x)− b̃ (y)

´
xU 0

³
v1 (x)− b̃ (y)

´ R b̃0 (y)
Thus, since b̃ is increasing, ∂bΠ̃

³
x, b̃ (y)

´
R 0 if and only if x R y. This concludes proof.¥
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7 Appendix D - Proofs for the Examples

Proof of example 7.
First, let us show that there is no monotonic equilibria for this auction. By contradiction,

assume that there is a increasing bidding function. Then, P (ti) = ti−1.5
1.5 and condition (i)’ is

trivial. We have

ṽ (x, y) = (1.5x+ 1.5)

·
1.5y + 1.5− 1.5x+ 1.5

2

¸
=
9 (x+ 1) (2y − x+ 1)

8

Thus, the necessary condition (iii) is not satisfied, because x > y impliesZ x

y

[ṽ(x, z)− ṽ(z, z)] dz = −3 (x− y)
3

8
< 0.

Now, we will show that there are multiple equilibria for this auction. Assume that there exists
a bell-shaped equilibrium and that, for each x, there are two types, f (x) and g (x) such that
P (ti) = x =

3−g(x)+f(x)−1.5
1.5 , which implies that g (x) = f (x)+ 1.5 (1− x). (See Figure 5).

1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g(x) f(x) 

x 

Figure 5: Functions f(x) and g(x) that define the conjugation in example 7.

Condition (i)’ requires

f (x)

µ
f (y) + g (y)

2
− f (x)

2

¶
=
f (x) + g (x)

2

µ
f (y) + g (y)

2

¶
− f

2 (x) + g2 (x)

4

⇔ f (y) + g (y)

2

·
f (x)− f (x) + g (x)

2

¸
=
f (x)2

2
− f

2 (x) + g2 (x)

4

=
f (x)2 − g (x)2

4

⇔ f (y) + g (y)

2
=
f (x) + g (x)

2
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Then, f (y) + g (y) is a constant, and we have f (x) = k + 3/4x. Since f (0) = 1.5, k = 1.5. We
obtain:

ṽ (x, y) =
f (x) + g (x)

2

µ
f (y) + g (y)

2

¶
− f

2 (x) + g2 (x)

4

=

µ
9

4

¶2
− (3/2 + 3/4x)

2
+ (3− 3/4x)2
4

=

µ
9

4

¶·
1 +

x

4
− x

2

8

¸
,

which satisfies condition (iii) because it is increasing in x on [0, 1]. Condition (ii) and (iv) are also
satisfied, since

b̃ (x) =
1

x

Z x

0

ṽ (z, z) dz =
3
¡
24 + 3x− x2¢

32

is increasing on [0, 1].¥

Proof for Example 8 - We have

v
¡
t̃1, t−1

¢− v (t1, t−1)
=

(
4 +

"
2
¡
t12 + t

1
3

¢− ¡t22 + t23¢
2

+ 1

#·µ
t̃11 −

3

2
t̃21

¶
+

µ
t11 −

3

2
t21

¶¸)

·
·µ
t̃11 −

3

2
t̃21

¶
−
µ
t11 −

3

2
t21

¶¸
.

The term on the right in the first line is always positive, so that the signal of the difference
v
¡
t̃1, t−1

¢ − v (t1, t−1) depends only on t̃1 and t1.¥
Proof for Example 9 - Spectrum Auction
Let us assume the ti =

¡
t1i , t

2
i , t

3
i

¢
are independent and uniformly distributed on

£
s1, s1

¤ ×£
s2, s2

¤ × £s3, s3¤, with s1, s2, s3 > 0. We have
v1
¡
t1i , t

2
i , t

3
i

¢
=
t1i
N
− t2i −

N − 1
N

t3i

+
N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i

Let us denote by v1 the expression in the first line above, that is,

v1
¡
t1i , t

2
i , t

3
i

¢
=
t1i
N
− t2i −

N − 1
N

t3i .

The conjugation P and the c.d.f. P̃ are given by:

P
¡
t1i , t

2
i , t

3
i

¢
=
£
Pr
©¡
s1, s2, s3

¢
: v1

¡
s1, s2, s3

¢
< v1

¡
t1i , t

2
i , t

3
i

¢ª¤N−1
.

and

P̃ (k) =

·
Pr

½¡
s1, s2, s3

¢
: v1

¡
s1, s2, s3

¢
+
N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i < k¾¸N−1 .
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We can reparametrize the problem so that

P̃ (k) =
h
Pr
n
(x, y, z) ∈ [0, 1]3 : ax+ by + cz < l (k)

oiN−1
,

where a =
¡
s1 − s1¢ /N > 0, b = − ¡s2 − s2¢ < 0, c = − (N − 1) ¡s3 − s3¢ /N < 0 and

l (k) = k − s
1

N
+ s2 +

N − 1
N

s3 − N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i .

It is elementary to obtain that, for a uniform distribution in [0, 1]3 and a > 0, b < 0, c < 0 and
k > b+ c,

Pr
n
(x, y, z) ∈ [0, 1]3 : ax+ by + cz < l

o
=
(l − b− c)3
6abc

.

So,

P̃ (k) =
[l (k)− b− c]
(6abc)N−1

3(N−1)

and

ṽ (x, y) =

½
P̃−1 (x)− N − 1

2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i¾ y

+E

"P
j 6=i
¡
t1j + t

3
j

¢
N

|max
j 6=i

P (tj) = y

#
.

The candidate for the equilibrium of the first-price indirect auction is

b̃ (x) =
1

x

Z x

0

ṽ (α,α) dα,

which is differentiable, with b̃0 (x) = [ṽ (x, x)− x] /x. Then, Theorem 3 teaches us that there exists
an equilibrium in regular pure strategies for this auction if and only if

ṽ (x, x)− x =
½
P̃−1 (x)− N − 1

2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i− 1¾x

+E

"P
j 6=i
¡
t1j + t

3
j

¢
N

|max
j 6=i

v1 (tj) = P̃
−1 (x)

#

is positive. Depending on the values of sn, sn, for n = 1, 2, 3, the above expression can be positive
or negative. If it is always positive, b̃ is increasing and it is the equilibrium of the indirect auction.
In the other case, there is no equilibrium without ties. For instance, a sufficient condition for the
existence of equilibrium in pure strategy is

s1

N
− s2 − s3N − 1

N
− 1 > 0,

since the expectation above is always positive.¥

Proof for Example 10 - Job Market
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We assume that there are two players with unidimensional signals uniformly distributed on
[0, 1] and that m ∈ [0, 1], b > 0. Following the method given by Theorem 3, we first obtain

v1 (ti) = am+
c

2
− b (ti −m)2 .

We will consider two cases.
First case: m 6 1/2. In this case, we have

P (ti) =

 1− 2m+ 2ti, if 0 6 ti < m
1− 2ti + 2m, if m 6 ti < 2m
1− ti, if 2m 6 ti 6 1

So, we have

ṽ (x, y) =


am+ c (1− y)− b (1− x−m)2 , if 0 6 x, y < 1− 2m
am+ c (1− y)− b

4 (1− x)2 , if 0 6 y < 1− 2m 6 x 6 1
(a+ c)m− b (1− x−m)2 , if 0 6 x < 1− 2m 6 y 6 1
(a+ c)m− b

4 (1− x)2 , if 1− 2m 6 x, y 6 1

Now, it is easy to obtain, for x < 1− 2m,

b̃ (x) =
1

x

Z x

0

ṽ (y, y) dy

=
1

x

Z x

0

h
am+ c (1− y)− b (1− y −m)2

i
dy,

= am+ c− b (1−m)2 − x
h c
2
+ b (m− 1)

i
− b
3
x2,

which is increasing if

xV =
c
2 + b (m− 1)

−2b
3

> 1− 2m,

that is, if c 6 2b(m+1)
3 . For x > 1− 2m,

b̃ (x) =
1

x
{1
6
(1− 2m) £6am+ 3c (1 + 2m)− 2b ¡1−m+m2

¢¤
+

Z x

1−2m

·
(a+ c)m− b

4
(1− y)2

¸
dy}

=
6 (c− 2cm+ 2amx+ 2cmx)− b ¡3− 12m+ 12m2 + 3x− 3x2 + x3¢

12x

=
(1− 2m) [2c− b (1− 2m)]

4x
+m (a+ c)− b

4
+
b
¡
3x− x2¢
12

whose derivative can be simplified to

b̃0 (x) = −(1− 2m) [2c− b (1− 2m)]
4x2

+
b (3− 2x)

12
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The term x2 (3− 2x) is increasing, so that, the bidding function will be increasing if and only if
b̃0 (1− 2m) > 0, that is,

(1− 2m)2 b [3− 2 (1− 2m)]
3

> (1− 2m) [2c− b (1− 2m)]

⇔ c 6 2b (1− 2m) (1 +m)
3

We conclude that in the case of m < 1/2, there exists a pure strategy equilibrium in regular
strategies if and only if

c 6 min
½
2b (m+ 1)

3
,
2b (1− 2m) (1 +m)

3

¾
.

Second Case: m > 1/2. We have

P (ti) =

 ti, if 0 6 ti < 2m− 1,
1− 2m+ 2ti, if 2m− 1 6 ti < m
1− 2ti + 2m, if m 6 ti 6 1

and

ṽ (x, y) =


am+ cy − b (x−m)2 , if 0 6 x, y < 2m− 1
am+ cy − b

4 (1− x)2 , if 0 6 y < 2m− 1 6 x 6 1
(a+ c)m− b (x−m)2 , if 0 6 x < 2m− 1 6 y 6 1
(a+ c)m− b

4 (1− x)2 , if 2m− 1 6 x, y 6 1
For x < 2m− 1,

b̃ (x) =
1

x

Z x

0

ṽ (y, y) dy

=
1

x

Z x

0

h
am+ cy − b (y −m)2

i
dy,

= am− bm2 + x
³ c
2
+ bm

´
− b
3
x2,

which is increasing in the considered interval if and only if
c
2 + bm

−2 ¡− b
3

¢ > 2m− 1,
that is, c > 2

3b (m− 2). For x > 2m− 1,

b̃ (x) =
−2c (2m− 1)− b (2m− 1)2

4x
+
12 (a+ c)m− b ¡3− 3x+ x2¢

12

which gives

b̃0 (x) =
2c (2m− 1) + b (2m− 1)2

4x2
+
b (3− 2x)

12
,

Following the same procedure of the first case, b̃0 (x) > 0,∀x ∈ [2m− 1, 1] if and only if
(2m− 1)2 b [3− 2 (2m− 1)]

3
> − (2m− 1) [2c+ b (2m− 1)]

⇔ c > −2b (2m− 1) (1 +m)
3
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We conclude that, if m > 1/2, there exists a pure strategy equilibrium in regular strategies if and
only if

c > max
½
2

3
b (m− 2) , 2b (1− 2m) (1 +m)

3

¾
.

¥
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