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Abstract

In spite of fiat money is useless in a standard Arrow-Debreu model, in this paper
we will show that this does not hold true anymore when goods are indivisible. In our
setting, although fiat money yields no utility, its price will always be positive and the
set of equilibrium allocations changes with the distribution of fiat money. Its role lies
in the fact that it could be used to facilitate exchange. Since a Walras equilibrium does
not always exist when goods are indivisible, a new equilibrium concept - called rationing
equilibrium - is introduced and its existence is proven under weak assumptions on the
economy. A Walras equilibrium exists generically on the distribution of fiat money.

Keywords: competitive equilibrium, indivisible goods, fiat money.

JEL Classification: C62, D50

1 Introduction

Most economic models assume that goods in the economy are perfectly divisible. The rational
behind this assumption is that the commodities one usually considers are almost perfectly
divisible in the sense that the minimal unit of the good is insignificant enough so that its
indivisibility can be neglected. So one should be able to approximate an economy, with a
small enough level of indivisibility of goods, by some idealized economy where goods are
perfectly divisible. A competitive equilibrium of this idealized economy should thus be an
approximation of some competitive outcome of the economy with indivisible goods.

The question arises what the Walras equilibrium with perfectly divisible goods is supposed
to approximate - simply a Walras equilibrium of an economy with indivisible goods? Surely
not, since is well known that a Walras equilibrium may fail to exist in the absence of perfectly
divisible goods, and even the core may be empty (see Henry (1970) and Shapley and Scarf
(1974) respectively). These facts are certainly due to some economic phenomena which
cannot be modelled with the standard approach. Consequently, a richer notion of competitive
equilibrium is needed, which exists even when goods are indivisible. This new notion will be
called rationing equilibrium.
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In order to define the rationing equilibrium, we will develop a model where (i) goods are
indivisible at the individual level but perfectly divisible at the aggregate level of the economy;
(ii) fiat money is used only to facilitate the exchange among consumers; and (iii) we introduce
a regularized notion of demand which will be an upper semi-continuous correspondence in
our framework.

With respect to (i), we proceed considering a model where there are a finite number of
types of consumers, and for each type there are a continuum of individuals. The justification
for this hypothesis comes from the fact that if some consumer would own a commodity which
may not be considered negligible at the level of the entire economy, it would be hard to justify
that this consumer acts as a price taker.

With respect to (ii), is clear that in presence of divisible goods, it could be difficult for
agents to execute net-exchanges worth exactly zero. Already, Adam Smith (1776) considered
the possibility for fiat money to facilitate exchange of indivisible goods as one of its crucial
roles. Similarly to Drèze and Müller (1980) we introduce a slack parameter in the economy.
In our case, this parameter can be identified as fiat money, whose unique role will be to
facilitate the exchange of goods among individuals. Indeed, fiat money has no intrinsic value
whatsoever, since in our model it does not enter in consumers’ preferences. The last fact is
a crucial difference with several contributions on indivisible goods, as we will see later on.

Finally, related with (iii), we point out that in presence of indivisible goods, the Walrasian
demand is, in general, not an upper semi-continuous correspondence. Therefore Walras
equilibria do not always exist. We introduce a regularized notion of demand, that will be a
building block to define the rationing equilibrium notion.

The main results of this paper is the demonstration of the existence of a rationing equi-
librium with a strictly positive price of fiat money. Fiat money having a positive price is a
nice by-product of our approach which may look surprising (cf. Hahn (1965)). In fact, in the
literature we can find several approaches that setup different models in order to guarantee the
positiveness of price of fiat money. For example, the infinite horizon model with overlapping
generations (Samuelson (1958), Balasko, Cass and Shell (1980), Balasko and Shell (1981)) or
with infinitely lived agents (e.g. Bewley (1980, 1983), Gale and Hellwig (1984)). In a static
or finite horizon model, one may consider money lump-sum taxation with a zero total money
supply (Lerner (1947), Balasko and Shell (1986)). Finally, Clower (1967) proposed a cash in
advance constraint to study similar problems (complementarily, see Dubey and Geanakoplos
(1992)).

Now on, the introduction of fiat money into the Arrow-Debreu model may be necessary in
a much simpler setting as the aforementioned. For example, if the non-satiation assumption
does not hold, for any given price, some consumer may wish to consume a commodity bundle
in the interior of his budget set. Therefore a Walras equilibrium may fail to exist. Without
the non-satiation assumption, one may establish existence of an equilibrium by allowing for
the possibility that some agents spend more than the value of their initial endowment. This
generalization of the Walras equilibrium is called dividend equilibrium or equilibrium with
slack (see Makarov (1981), Balasko (1982), Aumann and Drèze (1986) and Mas-Colell (1992)
among others). This concept was first introduced in a fixed price setting by Drèze and Müller
(1980). Indeed, Kajii (1996) shows that this dividend approach is equivalent to considering
Walras equilibria with an additional commodity called fiat money. In his setting, fiat money
can be consumed in positive quantities, but preferences are independent of the consumption
of it. Thus, if local non-satiation holds, fiat money has price zero and we are back in the
Arrow-Debreu setting. However, if satiation problems occur, an equilibrium with price zero
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of fiat money may fail to exist. Then, fiat money must have a positive price in equilibrium.
In fact, if a consumer does not want to spend his entire income on consumption goods, he
can satisfy his budget constraint as an equality by buying fiat money, if this fiat money has
a positive price.

In our approach, neither do we use a cash in advance constraint nor do we consider an
infinite horizon, nor do we consider money lump-sum taxation with a zero total money supply.
The positiveness of fiat money price is only due to the indivisibility of goods and the role
that this parameter plays in our model.

There also remains some questions related with the properties of the rationing equilibrium
when keeping the level of indivisibility fixed. In parallel papers, we demonstrate a First and
Second Welfare theorems and core equivalence for our equilibrium concept, and we prove
that, under suitable conditions on the economy, a rationing equilibrium converges to a Walras
equilibrium when the level of indivisibilities became small (Florig and Rivera (2004a, 2004b)).

So far, we did not yet allude to the relationship to the rather large literature on indivisible
goods. One could roughly divide it into two approaches. Firstly, following Shapley and Scarf
(1974) markets without a perfectly divisible good, but considering only one commodity per
agent, e.g. houses. Secondly, following Henry (1970), numerous authors (including Broome
(1972), Mas-Colell (1977), Kahn and Yamazaki (1981), Quinzii (1984), see Bobzin (1998)
for a survey) consider economies with indivisible commodities and one perfectly divisible
commodity called money. This should however not be confused with fiat money since it is
a crucial consumption good. All these contributions suppose that the divisible commodity
satisfies overriding desirability, i.e. it is so desirable by the agents that it can replace the
consumption of indivisible goods. Moreover, every agent initially owns an important quantity
of this good in the sense that no bundle of indivisible goods can yield as much utility as
consuming his initial endowment of the divisible good and nothing of the indivisible one.
Then, non-emptiness of the core and existence of a Walras equilibrium can be established.

The paper which our approach is closest to is Dierker (1971). He proposed a quasi-
equilibrium for exchange economies existing without a perfectly divisible consumption good.
However, at such an equilibrium agents do not necessarily receive an individually rational
commodity bundle.

2 Motivation and examples

Previous to enter in specific details on the model, in this section we will emphasize three
aspects related with fiat money and Walras equilibria that have importance in both the
model and definitions we are going do in next sections.

(i.) Fiat money may change the set of Walrasian equilibria

Suppose I = {1, 2, 3} and let ui(x, y) = x · y be the utility function for individual i ∈ I.
Let e1 = (7, 0), e2 = (0, 3), e3 = (0, 4) ∈ IR2 be the initial endowment for them. In
this case, there exists a unique Walras equilibrium price p = (1, 1) with the equilibrium
allocations x1 = (4, 3), x2 = (1, 2), x3 = (2, 2) and x′1 = (3, 4), x′2 = (2, 1), x′3 = (2, 2).
Suppose now we endow each consumer with an initial amount of fiat money, let say,
0 < m1 < 1/8, m2 = 1 and 0 < m3 < 1/2. Given that, it is possible to check that
p∗ = (1, 9

8) ∈ IR2
++, q∗ = 1, x∗1 = (3, 3), x∗2 = (2, 2) and x∗3 = (2, 2) is a Walras

equilibrium (with money) for this economy. In this example, the introduction of fiat
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money in the economy changes the set of equilibria, even this parameter does not enter
in consumers’ preferences.

(ii.) Without fiat money markets may be non viable

Consider an exchange economy with three types of consumers (I = {1, 2, 3}) and for
each type we have a continuum of them, indexed by compacts and disjoint intervals
Ti ⊆ IR, i ∈ I, all of them with identical Lebesgue measure. Suppose that each consumer
choose their consumption bundle on a discrete consumption set Xi = {0, 1, 2} and that
the utility functions for each type are u1(x) = −x, u2(x) = u3(x) = x. Finally, let e1 = 2
and e2 = e3 = 0 be the initial endowment for each type of individual. Given previous
definitions, we may check that there is no a Walrasian equilibrium in the economy: if
p < 0 then Walrasian demand will be above the total initial endowment of the economy;
if p > 0, the total initial endowment is above demand. However, if we endow consumers’
type 2 and 3 with an initial amount of fiat money, let say, m2 = m3 > 0, then it can
be proved that prices p = m2, q = 1, and demands for each type of individual given by
x1 = 0, x2 = x3 = 1, conforms a weak equilibrium for this economy, and it is the only
one with p 6= 01. By other hand, if for instance, m2 = 3, m3 > 0, then p = m2/2, q = 1,
x1 = 0, x2 = 2, x3 = 0 is the unique weak equilibrium with p 6= 0. This example stressed
that in absence of fiat money non necessarily exists a Walras equilibrium in the economy
and the introduction of this parameter could implies the existence of a new equilibrium
concept. Unfortunately, the weak equilibrium notion presents serious inconveniences
that oblige us to consider a refinement of it2. This refinement will be called rationing
equilibrium, concept that we will introduce in Section 3.

(iii). A Walras equilibrium may not exists but a rationing equilibrium

Consider an exchange economy with three consumer indexed by I = {1, 2, 3} and two
goods. Let u1(x, y) = x+2y and u2(x, y) = u3(x, y) = 2x+y be the utility functions for
each individual and let e1 = (0, 1), e2 = (1, 0), e3 = (1, 0) ∈ IR2 be the initial endowment
for them. In this case, there exists no Walras equilibrium in the economy and it is easy
to check that p = (1, 1) ∈ IR2, K = {µ(1,−1)| µ ≥ 0} and demands given by the
initial endowment is a rationing equilibrium (without fiat money) for the economy.
Thus, this example show us that in some cases may not exist a Walras equilibrium
but a rationing equilibrium. Indeed, the main result of this work will say that under
very weak assumptions on the economy, provided that for each consumer the initial
endowment of fiat money is strictly positive, then a rationing equilibrium will exists,
with price of fiat money strictly positive.

3 The model

In this section we introduce definitions that will play a relevant role in the rest of the paper.
We begin with basic concepts and continue introducing some auxiliary notions that help us

1This auxiliary notion will be introduced in Section 3.
2Consider an exchange economy with three types of consumers (I = {1, 2, 3}) and for each type there are a

continuum of them, indexed by compact and disjoint intervals Ti ⊆ IR, i ∈ I, with identical Lebesgue measure.
Suppose there are two commodities and for all i ∈ I, Xi = {0, 1, 2}2, u1(x) = −x1 − x2, u2(x) = 2x1 + x2,
u3(x) = x1 + 2x2, e1 = (1, 1), e2 = e3 = (0, 0) (cf. Konovalov 1998). If m1 = m2 = m3 = 1, then (x, p, q)
with x1 = (0, 0), x2 = (0, 1), x3 = (1, 0) the demand for each type i ∈ I consumer, and p = (1, 1), q = 1, is
a weak equilibrium. However, once the allocation is realized, consumers of type two and three wish to swap
their allocations leading to ξ1 = (0, 0), ξ2 = (1, 0), ξ3 = (0, 1) as their final demand.
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to establish our main result.

3.1 Basic concepts

We set L ≡ {1, . . . , L} to denote the finite set of commodities. Let I ≡ {1, . . . , I} and
J ≡ {1, . . . , J} be finite sets of types of identical consumers and producers respectively.

We assume that each type k ∈ I, J of agents consists of a continuum of identical indi-
viduals represented by a set Tk ⊂ IR of finite Lebesgue measure3. We set I = ∪i∈ITi and
J = ∪j∈JTj . Of course, Tt ∩ Tt′ = ∅ if type t and t′ are different. Given t ∈ I (J ), let
i(t) ∈ I (j(t) ∈ J) be the index such that t ∈ Ti(t) (t ∈ Tj(t)).

Each firm of type j ∈ J is characterized by a finite production set Yj ⊂ IRL and the
aggregate production set of the firms of type j is the convex hull of λ(Tj)Yj , which is denoted
by co λ(Tj)Yj

4.
Every consumer of type i ∈ I is characterized by a finite consumption set Xi ⊂ RL,

an initial endowment ei ∈ IRL and a preference correspondence Pi : Xi → Xi
5. Let e =∑

i∈I λ(Ti)ei be the aggregate initial endowment of the economy. For (i, j) ∈ I × J , θij ≥ 0
is the share of type i consumers in type j firms. For all j ∈ J ,

∑
i∈I λ(Ti)θij = 1.

The initial endowment of fiat money for an individual t ∈ I is defined by m(t), where m(·)
is a Lebesgue-measurable and bounded mapping from I to IR+. Without loss of generality
we may assume that m(·) is a continuous mapping.

In the rest of this work, we note by L1(A,B) the Lebesgue integrable functions from
A ⊂ IR to B ⊂ IRL.

Given all foregoing, an economy E is a collection

E =
(
(Xi, Pi, ei,m)i∈I , (Yj)j∈J , (θij)(i,j)∈I×J

)
,

an allocation (or consumption plan) is an element of

X =
{
x ∈ L1(I,∪i∈IXi) |xt ∈ Xi(t) for a.e. t ∈ I

}

and a production plan is an element of

Y =
{
y ∈ L1(J ,∪j∈JYj) | yt ∈ Yj(t) for a.e. t ∈ J

}
.

Finally, the feasible consumption-production plans are elements of

A(E) =
{

(x, y) ∈ X × Y |
∫

I
xt =

∫

J
yt + e

}
.

3.2 Equilibria concepts

Given p ∈ IRL, the weak supply of a firm of type j ∈ J and their aggregate profit are,
respectively,

Sj(p) = argmaxy∈Yj
p · y πj(p) = λ(Tj)supy∈Yj

p · y.

3Without loss of generality we may assume that Tk is a compact interval of IR. In the following, we note
by λ(Tk) the Lebesgue measure of set Tk ⊆ IR.

4That is, coλ(Tj)Yj =

{
n∑

r=0

λryr | yr ∈ (Tj)Yj , λr ≥ 0,
n∑

r=0

λr = 1, n ∈ IN

}
.

5That is, x′ ∈ Pi(x) if x′ is strictly preferred to x by a type i ∈ I consumer.
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Given (p, q) ∈ IRL × IR+, we denote the budget set of a consumer t ∈ I by

Bt(p, q) =
{
x ∈ Xi(t) | p · x ≤ wt(p, q)

}

where wt(p, q) = p · ei(t) + qm(t) +
∑

j∈J θi(t)jπj(p) is the wealth of individual t ∈ I. The set
of maximal elements in the budgetary set for consumer t ∈ I is denoted by

dt(p, q) =
{
x ∈ Bt(p, q) |Bt(p, q) ∩ Pi(t)(x) = ∅

}

and a collection (x, y, p, q) ∈ A(E) × IRL × IR+ is a Walras equilibrium (with fiat money) of
E if

(i) for a.e. t ∈ I, xt ∈ dt(p, q);

(ii) for a.e. t ∈ J , yt ∈ Sj(t)(p).

It is well known that in our framework a Walras equilibrium (with fiat money) may fail
to exist, mainly because, in general, the correspondence dt(·) is non upper semi-continuous in
presence of indivisible goods6. This leads us to define a regularized notion of demand, called
weak demand, which for a consumer t ∈ I is defined by7

Dt(p, q) = lim sup
(p′,q′)→(p,q)

dt(p′, q′).

Note that, by definition, the weak demand is an upper semi-continuous correspondence.
In next section we will give an economical interpretation of it.

In the following, we note by C the set of closed convex cones K ⊂ IRL such that −K∩K =
{0IRL}8. Thus, given (p, q, K) ∈ IRL× IR+×C, we define the demand of a consumer t ∈ I by

δt(p, q,K) =
{
x ∈ Dt(p, q) |Pi(t)(x)− x ⊂ K

}

and the supply of a firm t ∈ J by

σt(p, K) =
{
y ∈ Sj(t)(p) |Yj(t) − y ⊂ −K

}
.

Definition 3.1 A collection (x, y, p, q,K) ∈ A(E)×IRL×IR+×C is a rationing equilibrium
of E if

(i) for a.e. t ∈ I, xt ∈ δt(p, q, K);

(ii) for a.e. t ∈ J , yt ∈ σt(p,K).
6For example, given an individual whose preference correspondence (two goods) is defined by the utility

function u(x, y) = 2x + y, his initial endowment is e = (0, 1), the consumption set is X = {0, 1}2, then, given
pn = (1 + 1/n, 1) → p = (1, 1), qn = 0 = q), we obtain that d(pn, qn) = (0, 1) and d(p, q) = (1, 0). Thus, d(·)
is not upper semi-continuous at p = (1, 1).

7See Rockafellar and Wets (1998), Section, 5 for the limsup definition of a correspondence.
8Those cones are called pointed cones. See Rockafellar and Wets (1998) for more details.
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Note that for q > 0 the demand for money of consumer t ∈ I is

µt =
1
q


p · ei(t) + qm(t) +

∑

j∈J

θi(t)jπj(p)− p · xt


 .

Walras law implies that the money market is in equilibrium at an equilibrium. A Walras
equilibrium with fiat money is of course a rationing equilibrium and a rationing equilibrium is
a weak equilibrium. We refer to Kajii (1996) for the links among Walras equilibrium, Walras
equilibrium with fiat money and the dividend equilibrium notion.

4 Demand interpretation and a characterization

As we already know, the presence of indivisible goods may implies that in our model a
consumer t ∈ I might be unable to obtain a maximal element within his budget set. Should
he be unable to buy ξ ∈ Bi(t)(p, q) with p · ξ < wi(t)(p, q), then he could try to pay this
bundle at a higher price than the market price in order to be “served first”. Thus, there is
some pressure on the price of the bundle ξ and its price would rise, if a non-negligible set
of consumers is rationing in this sense. So at equilibrium, no consumer obtains a bundle of
goods x ∈ Bi(t)(p, q) such that a strictly preferred bundle ξ with p · ξ < wi(t)(p, q) exists.

Previous fact could be explained, for instance, if the agents have more information than
their own characteristics and the market price. To eliminate this “instability” it is however not
necessary that the agents have a precise information on their trading partners. It is enough
that they know which kind of net-trades are difficult to realize on the market (which is the
“short” side of the market) when formulating their demand. This short side of the market
could be modelled using a cone K ⊆ IRL which do not contain straight lines, i.e. if a direction
of net-trade is difficult to realize, the opposite direction is easy to realize. One could think of
the new demand as follows. Agents perceive the market price and the cone K (information)
and then they compute their budget set. Given that, they try to find out for which type of
allocations they could find a counterpart. So an allocation is not acceptable, if there exists
a preferred one in the budget set which costs less than their total wealth. Moreover, they do
not accept an allocation x, if a preferred allocation x′ exists which is contained in the budget
set and such that x′ − x 6∈ K. In fact, it should not be difficult to find a counterpart for
the net-exchange x′− x. Alternatively think that they first accept the allocation x, but then
they make another net-exchange x′−x leading to x′ and so on, until they are at an allocation
ξ such that Pi(ξ) − ξ ⊂ K. At this stage, obtaining a preferred allocation would require a
net-exchange of a direction for which it is difficult to find a counterpart.

Finally, the following proposition give us an economic interpretation of weak demand.
The most relevant case is when the value of fiat money is strictly positive. In such case, we
will prove that for given prices (p, q) ∈ IRL × IR+, the weak demand corresponds to those
allocations that can be affordable by the consumer, such that the budgetary set and the
convex hull of the strictly preferred points to these allocations can be strictly separated by
an hyperplane and any other consumption bundle that is strictly preferred to them is costly.
We recall that in absence of indivisible goods, this characterization coincide with the standard
demand definition. The proof of the Proposition 4.1 is given in the Appendix.

Proposition 4.1 Given t ∈ I, we have that:

(a) if qm(t) > 0 then
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Dt(p, q) =
{
x ∈ Bt(p, q)| p · Pi(t)(x) ≥ wt(p, q), x 6∈ coPi(t)(x)

}
,

(b) if m(t) > 0 then

Dt(p, q) =
{

x ∈ Bt(p, q)
∣∣∣∣

p · Pi(t)(x) ≥ wt(p, q),
coPi(t)(x) ∩ co{x, ei(t) +

∑
j∈J θi(t)jλ(Tj)Yj} = ∅

}
,

(c) if m(t) = 0 then

Dt(p, q) =
{
x ∈ Bt(p, q)|p · Pi(t)(x) ≥ wt(p, q), coPi(t)(x) ∩ C(p, x) = ∅

}

where

C(p, x) = co



θx + (1− θ)


ei(t) +

∑

j∈J

θi(t)jλ(Tj)argmaxπj(p)


 | θ ≥ 0



 .

To end this section, we point out that the condition x 6∈ coPi(t)(x) in Proposition 4.1 (i)
is redundant if one considers the demand as defined for the rationing equilibrium.

5 Existence of equilibrium

The strongest condition we use to ensure existence of equilibrium is the finiteness of the
consumption and production sets. The rest of our assumptions are quite weak. In particular,
we do not need a strong survival assumption, that is, our consumers may not own initially a
strictly positive quantity of every good and the interior of the convex hull of the consumption
sets may be empty (cf. Arrow and Debreu (1954)).

Assumption C. For all i ∈ I, Pi is irreflexive and transitive.

Assumption S. (Weak survival assumption). For all i ∈ I,

0 ∈ coXi − {ei} −
∑

j∈J

θijλ(Tj)coYj .

Following lemma will be very relevant to demonstrate our main theorem. To present this
result, we must introduce an auxiliary concept, called weak equilibrium. Thus, we say that
a collection (x, y, p, q) ∈ A(E)× IRL × IR+ is a weak equilibrium of E if

(i) for a.e. t ∈ I, xt ∈ Dt(p, q);

(ii) for a.e. t ∈ J , yt ∈ Sj(t)(p).

Lemma 5.1 For every economy E satisfying Assumptions C, S, there exists a weak equili-
brium with price of fiat money strictly positive.

So now we are in conditions to enunciate our main result.

Theorem 5.1 For every economy E satisfying Assumptions C, S and m(t) > 0 for all t ∈ I,
there exists a rationing equilibrium with price of fiat money strictly positive.
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As a consequence of Theorem 5.1 we can deduce following corollary, which establish that
under the same hypotheses made on to prove Theorem 5.1, it is possible to conclude the
existence of a Walras equilibrium on E , generically on the distribution of fiat money.

Corollary 5.1 For every economy E satisfying Assumptions C, S, m(t) > 0 for all t ∈ I
and for all M > 0, λ({t ∈ I | m(t) = M}) = 0 there exists a Walras equilibrium with price
of fiat money strictly positive.

6 Appendix

6.1 Proof of Proposition 4.1.

Part (a). Given t ∈ I, let

a(p, q) =
{
x ∈ Bt(p, q) | p · Pi(t)(x) ≥ wt(p, q), x 6∈ coPi(t)(x)

}
.

First of all, note that by definition Dt(p, q) ⊂ a(p, q). Let x ∈ a(p, q). If p · x < wt(p, q), then
for all small enough ε > 0, x ∈ dt(p, q−ε) and hence x ∈ Dt(p, q). Otherwise, note that there
exists p′ such that p′ · Pi(t)(x) > p′ · x. For all ε > 0, let pε = p + εp′ and let

qε =

[
pε · (x− ei(t))−

∑
j∈J θi(t)jπj(pε)

m(t)

]
.

Note that limε→0(pε, qε) = (p, q). Moreover for all ε > 0,

pε · Pi(t)(x) > pε · x = wt(pε, qε).

Since for ε > 0 small enough, qε > 0, we have x ∈ Dt(p, q). Thus a(p, q) ⊂ Dt(p, q).

Part (b). Let

A(p, q) =
{

x ∈ Bt(p, q)
∣∣∣∣

p · Pi(t)(x) ≥ wt(p, q),
coPi(t)(x) ∩ co{x, ei(t) +

∑
j∈J θi(t)jλ(Tj)Yj} = ∅

}
.

Step b.1. A(p, q) ⊂ Dt(p, q).
Let x ∈ A(p, q). Thus, there exists p′ such that

p′ · Pi(t)(x) > p′ ·


x, ei(t) +

∑

j∈J

θi(t)jλ(Tj)Yj



 .

For all ε > 0, let pε = p + εp′. Thus, for all ε > 0,

pε · Pi(t)(x) > pε ·


x, ei(t) +

∑

j∈J

θi(t)jλ(Tj)Yj



 ,

pε · Pi(t)(x) > wt(pε, q).

Let9

qε = q +
[
pε · x− wt(pε, q)

m(t)

]

+

.

9For x ∈ IR, we note [x]+ = max {x, 0}.
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Note that limε→0(pε, qε) = (p, q) and moreover for all ε > 0,

pε · Pi(t)(x) > wt(pε, qε) ≥ pε · x

and therefore x ∈ Dt(p, q).

Step b.2. Dt(p, q) ⊂ A(p, q).
For all x ∈ Dt(p, q), there exists sequences (pn, qn) converging to (p, q), such that for all

n ∈ IN

pn · Pi(t)(x) > wt(pn, qn) ≥ pn · x.

Thus p · Pi(t)(x) ≥ wt(p, q) and

coPi(t)(x) ∩ co



x, ei(t) +

∑

j∈J

θi(t)jλ(Tj)Yj



 = ∅

which ends the proof of part (b).

Part (c).

Let
c(p) =

{
x ∈ Bt(p, q)

∣∣∣∣
p · Pi(t)(x) ≥ wt(p, q),

coPi(t)(x) ∩ C(p, x) = ∅
}

.

Step c.1. c(p) ⊂ Dt(p, q).
Given x ∈ c(p) there exists p′ such that

p′ · coPi(t)(x) > p′ ·

ei(t) +

∑

j∈J

θi(t)jλ(Tj)argmaxπj(p)


 ≥ p′ · x.

Thus, for all ε > 0, given pε = p + εp′ it follows that

min pε · Pi(t)(x) > max pε ·

ei(t) +

∑

j∈J

θi(t)jλ(Tj)argmaxπj(p)


 ,

min pε ·

ei(t) +

∑

j∈J

θi(t)jλ(Tj)argmaxπj(p)


 ≥ pε · x.

Moreover, since Yj is finite for all j ∈ J , we may check that for all ε > 0 small enough
and all j ∈ J ,

argmaxπj(pε) ⊂ argmaxπj(p)

and therefore for all small ε > 0,

min pε · Pi(t)(x) > wt(pε, q) ≥ pε · x,

which implies that x ∈ Dt(p, q).

Step c.2. Dt(p, q) ⊂ c(p).
Let x ∈ Dt(p, q). Then there exists a sequence pn converging to p such that for all n ∈ IN ,

pn · Pi(t)(x) > wt(pn, q) ≥ pn · x.

10



Thus p · Pi(t)(x) ≥ wt(p, q) and pn separates strictly coPi(t)(x) and

co



θx + (1− θ)[ei(t) +

∑

j∈J

θi(t)jλ(Tj)Yj ] | θ ≥ 0



 .

Since

C(p, x) ⊂ co



θx + (1− θ)[ei(t) +

∑

j∈J

θi(t)jλ(Tj)Yj ] | θ ≥ 0





we can conclude that x ∈ c(p). 2

6.2 Proof of Lemma 5.1

In order to demonstrate Lemma 5.1 we use the following proposition, which is an extension
of the well know Debreu-Gale-Nikaido lemma.

Proposition 6.1 Let ε ∈]0, 1] and ϕ be an upper semi continuous correspondence from
IB(0, ε) to IRL with nonempty, convex, compact values10. If for some k > 0,

∀p′ ∈ IB(0, ε), ‖p′‖ = ε =⇒ sup p′ · ϕ(p′) ≤ k(1− ε),

then there exists p ∈ IB(0, ε) such that, either:
• 0 ∈ ϕ(p)

or
• ‖p‖ = ε and ∃ ξ ∈ ϕ(p) such that ξ and p are colinear and ‖ξ‖ ≤ k 1−ε

ε .

Proof of Proposition 6.1.
¿From the properties of ϕ, one can select a convex compact subset K ⊂ IRL such that

for all p ∈ IB(0, ε), ϕ(p) ⊂ K. Consider the correspondence F : IB(0, ε)×K → IB(0, ε)×K
defined by

F (p, z) =
{
q ∈ IB(0, ε) | ∀q′ ∈ IB(0, ε), q · z ≥ q′ · z}× ϕ(p).

From Kakutani Theorem, F has a fixed point (p, ξ). If ‖p‖ < ε, then ξ = 0. If ‖p‖ = ε,
then from the definition of F , p and ξ are colinear. Therefore, ‖ξ‖ ≤ k 1−ε

ε , which ends the
demonstration. 2

Proof of Lemma 5.1
Previous to proceed, is necessary to introduce some notations. We note by ≤lex the

lexicographic order11. Given p0, ..., pk ∈ IRL, for a (k + 1) × L matrix P = [p0, . . . , pk]′

(transpose of matrix [p0, . . . , pk]), we note for every j ∈ J,

Sj(P) = {y ∈ Yj | ∀z ∈ Yj , Pz ≤lex Py} πj(P) = λ(Tj)suplex{Py | y ∈ Yj}
10IB(0, ε) = {x ∈ IRL | ‖x‖ ≤ ε}. The norm used here is Euclidean norm.
11For (x, y) ∈ IRn × IRn, x ≤lex y, if xr > yr, r ∈ {1, . . . , n} implies that ∃ρ ∈ {1, . . . , r − 1} such that

xρ < yρ. We write x <lex y if x ≤lex y, but not [y ≤lex x]. In an obvious manner we define x ≥lex y and
x >lex y.
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where suplex is the supremum with respect to the lexicographic order. Given Q = (qr) ∈
IRk+1, for every t ∈ I let

Bt(P,Q) =



x ∈ Xi(t) | P · (x− ei(t)) ≤lex m(t)Q+

∑

j∈J

θi(t)jπj(P)





and finally, for ε > 0, we note P(ε) =
∑k

r=0 εrpr and Q(ε) =
∑k

r=0 εrqr. So now we are in
conditions to demonstrate the result. To do so, we proceed in nine steps.

Step 1. Perturbed equilibria.
For simplicity, for all t ∈ I we note Dt(p) instead of Dt(p, 1−‖p‖). Given that, it is easy

to check that for all ε ∈ [0, 1], all t ∈ I, and all j ∈ J the set-valued mappings

Dt : IB(0, ε) → coXi(t) coSj : IB(0, ε) → coYj

are upper semi-continuous, nonempty and compact valued.
Now, define the excess demand mapping

ϕ : IB (0, 1− 1/n) →
∑

i∈I

λ(Ti)(coXi − ei)−
∑

j∈J

λ(Tj)coYj

by

ϕ(p) =
∫

t∈I
(Dt(p)− ei(t))−

∑

j∈J

λ(Tj)coSj(p).

Obviously ϕ(·) is nonempty, convex, compact valued and upper semi-continuous. For each
n ∈ IN and each p ∈ IB(0, 1− 1/n) we have that

p · ϕ(p) ≤ (1− ‖p‖)
∫

I
m(t).

So we may apply Proposition 6.1 to conclude that for all n > 1 there exists

(xn, yn, pn, qn) ∈
∏

i∈I

L1(Ti, Xi)×
∏

j∈J

L1(Tj , Sj(pn))× IB (0, 1− 1/n)× IR++

such that for all t ∈ I, xn
t ∈ Dt(pn, qn), qn = 1− ‖pn‖, ∫

t∈I xn
t +

∫
t∈J yn

t − e ∈ ϕ(pn) and
∥∥∥∥
∫

t∈I
xn

t +
∫

t∈J
yn

t − e

∥∥∥∥ ≤
1

n− 1

∫

I
m(t).

Step 2. Construction of P and Q.

For the construction of a hierarchic price we will proceed as in Florig (2002). For that, our
objective is to define a set of vectors {ψ0, ψ1, ..., ψL} ⊆ IRL+1 which help us to define both
P and Q as required. To do so, set ψn = (pn, qn) and taking a subsequence, we may assume
that ψn converges to (p0, q0) ∈ IRL+1. Let ψ0, ψn

0 and H0 defined as follows:

ψ0 = (p0, q0),
ψn

0 = ψn,

H0 = ψ⊥0 = {x ∈ RL+1 | ψ0 · x = 0}.

12



Using a recursive procedure, for every r ∈ {1, 2, . . . , L − 1} we define ψr, ψn
r and Hr as

follows:

ψn
r = projHr−1(ψn

r−1),

and given that, if for all large enough n ∈ IN , ψn
r 6= 0, then let ψr ≡ (pr, qr) be the limit of

ψn
r / ‖ ψn

r ‖ for some subsequence. In such case,

Hr = ψ⊥r
and

ψn
r+1 = projHr(ψn

r ).

We continue with previous algorithm until for all large enough n ∈ IN , ψn
r = 0 for some

subsequence. In such case, we set ψr = . . . = ψL = 0 and define

k = min{r ∈ {0, . . . , L} | ψr+1 = . . . = ψL = 0}.
Given all foregoing, we had obtained a set {ψr = (pr, qr), r = 1, . . . , k} of orthonormal

vectors. Note that for all r ∈ {0, . . . , k}12,
∥∥ψn

r+1

∥∥ = ‖ψn
r ‖ o(‖ψn

r ‖)

which allow us to decompose the sequence ψn in the following way

ψn =
k∑

r=0

(‖ ψn
r ‖ − ‖ ψn

r+1 ‖)ψr =
k∑

r=0

εn
r ψr,

with εn
r =‖ ψn

r ‖ − ‖ ψn
r+1 ‖ for r ∈ {0, . . . , k}. Thus, εn

r+1 = εn
r o(εn

r ) for r ∈ {0, . . . , k − 1},
and εn

0 converges to 1.
Let P = [p0, . . . , pk]′ (transpose of matrix [p0, . . . , pk]), and Q = (q0, q1, ..., qk) ∈ IRk+1.

Step 3. Equilibrium allocation candidate.
There exists by Fatou’s lemma (Arstein (1979)) (x∗, y∗) ∈ A(E) such that for a.e. t ∈ I

and a.e. t′ ∈ J 13

x∗t ∈ cl{xn
t }, y∗t′ ∈ cl{yn

t′}.
Step 4. For all ε > 0 small enough and all n large enough, for a.e. t ∈ J ,

y∗t ∈ Sj(t)(P(ε)) = Sj(t)(p
n) = Sj(t)(P).

Since for all j ∈ J , Yj is finite, for all ε > 0 small enough and for all j ∈ J we have that
Sj(P(ε)) = Sj(P) and similarly, for n ∈ IN large enough, for all j ∈ J , Sj(pn) = Sj(P). Since
for a.e. t ∈ J , yn

t ∈ Sj(t)(pn) for all n ∈ IN , and since y∗t ∈ cl{yn
t }, yn

t is constant and equal
to y∗t for a subsequence. Thus, y∗t ∈ Sj(t)(P).

Let ρ be the smallest r ∈ {0, . . . , k} such that qr 6= 0. Since for all n ∈ IN , qn > 0,
qρ > 0. Let P̃ = [p0, . . . , pρ]′ and Q̃ = (q0, . . . , qρ). For all j ∈ J , let ȳj = y∗t , provided that
y∗t ∈ Sj(P). Since that Sj(P) ⊂ Sj(P̃), ȳj ∈ Sj(P̃).

12Throughout the paper we denote by o : R → R a function which is continuous in 0 with o(0) = 0.
13In the following, he closure of set A is denoted by clA.
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Step 5. For a.e. t ∈ I, x∗t ∈ Bt(P̃, Q̃).
By the previous step, one may check that Bt(pn, qn) converges in the sense of Kuratowski

- Painlevé to Bt(P,Q)14. Thus x∗t ∈ Bt(P,Q) ⊂ Bt(P̃, Q̃).

Step 6. For all ε > 0 small enough, for a.e. t ∈ I, x∗t ∈ Bt(P̃(ε), Q̃(ε)).
For a.e. t ∈ I, we have, by the previous step, that x∗t ∈ Bt(P̃(ε), Q̃(ε)) for all small

enough ε > 0. Since m : I → IR+ is bounded and since there are only finitely many values
for x∗t , there exists ε > 0 satisfying this property for a.e. t ∈ I.

Step 7. For a.e. t ∈ I, xt ∈ Pi(t)(x∗t ) implies that

P̃ · (xt − ei(t))−m(t)Q̃ −
∑

j∈J

θi(t)jπj(P̃) ≥lex 0.

Otherwise
P̃ · (xt − ei(t))−m(t)Q̃ −

∑

j∈J

θi(t)jλ(Tj)P̃ ȳj <lex 0

and then for all large enough n ∈ IN ,

pn · (xt − ei(t))− qnm(t)−
∑

j∈J

θi(t)jλ(Tj)pn · ȳj < 0.

By Proposition 4.1, this contradicts x∗t ∈ Dt(pn, qn) for a subsequence of (pn, qn).

Step 8. For all ε > 0 small enough, for a.e t ∈ I, xt ∈ Pi(t)(x∗t ) implies that

P̃(ε) · (xt − ei(t))− Q̃(ε)m(t)−
∑

j∈J

θi(t)jπj(P̃(ε)) ≥ 0.

Since Xi is finite, there exists a finite partition {T̃1, . . . , T̃f} of I such that the sets Bt(P̃, Q̃)
are constant on each of the elements of the partition. We may choose the partition such
that for every s ∈ {1, . . . , f}, there exists i ∈ I such that T̃s ⊂ Ti and x∗t is constant on T̃s.
Let ms = essup{m(t) | t ∈ T̃s} (essential supremum) and suppose for all ε̄ > 0, there exists
ε ∈]0, ε̄] such that

P̃(ε) · (xt − ei(t))−msQ̃(ε)−
∑

j∈J

θi(t)jλ(Tj)P̃(ε) · ȳj < 0.

Thus there exists η ∈]0, ms] such that for all large n ∈ IN ,

pn · (xt − ei(t))− qn(ms − η)−
∑

j∈J

θi(t)jλ(Tj)pn · ȳj < 0.

Hence, for all large n ∈ IN there exists T̄s ⊂ T̃s with λ(T̄s) > 0 such that for a.e. t ∈ T̄s

pn · (xt − ei(t))− qnm(t)−
∑

j∈J

θi(t)jλ(Tj)pn · ȳj < 0.

By Proposition 4.1, this contradicts x∗t ∈ Dt(pn, qn) for a subsequence of (pn, qn).

Step 9. For all ε > 0 small enough, for a.e. t ∈ I, x∗t ∈ Dt((P(ε), (Q(ε)).
Let ε̄ > 0 small enough satisfying the previous steps. Let (p∗, q∗) =

∑ρ
r=0 ε̄r(pr, qr).

By Proposition 4.1, x∗t 6∈ coPi(t)(x∗t ). Then, since q∗ > 0 and for a.e. t ∈ I, m(t) > 0, we
can deduce by Proposition 4.1 that x∗t ∈ Dt((P(ε), (Q(ε)).

Thus, (x∗, y∗, p∗, q∗) is a weak equilibrium and q∗ > 0. 2

14This concept is widely used to define set - convergence. See Rockafellar and Wets (1998), Section 4, for
more details.
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6.3 Proof of Theorem 5.1

Let m1 : I → IR++ be a mapping strictly increasing and bounded and let (x0, y0, p0, q0) be a
weak equilibrium of E . Let E1 be an economy defined as follows. Since the number of types
is finite and the consumption sets are finite, we can define a finite set of consumer types
A ≡ {1, . . . , A} satisfying the following:

(i) (Ta)a∈A is a finer partition of I than (Ti)i∈I ,

(ii) for every a ∈ A, there exists xa such that for every t ∈ Ta, x0
t = xa.

Set X1
a = (Pa(xa) ∪ xa) ∩ (xa + (p0)⊥) and e1

a = xa, with P 1
a the restriction of Pa to X1

a .
Since there is also a finite number of types of producers and production sets are finite,

we can define a finite set of producer types B ≡ {1, . . . , B} satisfying the following:

(i) (Tb)b∈B is a finer partition of J than (Tj)j∈J ,

(ii) for every b ∈ B, there exists yb such that for every t ∈ Tb, y0
t = yb.

Given Y 1
b = ((Yb − yb) ∩ (p0)⊥), define the economy by E1 as

E1 =
(
(X1

a , P 1
a , e1

a,m
1)a∈A, (Y 1

b )b∈B, (θab)(a,b)∈A×B

)
,

where m1 defines the initial endowments of fiat money. The economy E1 satisfies Assumptions
C, S. So by the Lemma 5.1 there exists a weak equilibrium with q1 > 0 and therefore a Walras
equilibrium (with fiat money) for the economy E1, which is denoted by (x1, y1, p1, q1), with
q1 > 0. Set P = [p0, p1]′.

Claim 6.1 For a.e. t ∈ I, Px1
t ≤lex wt with wt = (w0

t , w
1
t ) ∈ IR2 such that

w0
t = p0 · ei(t) + q0m(t) +

∑

j∈J

θi(t)jλ(Tj)p0 · y0
j

w1
t = p1 · e1

i(t) + q1m1(t) +
∑

b∈B

θi(t)bλ(Tb)p1 · y1
b .

Note that by the construction of X1
t , we have for a.e. t ∈ I, p0 · x0

t = p0 · x1
t . Since for

every r ∈ {0, 1}, pr · xr
t ≤ wr

t we have for a.e. t ∈ I, Px1
t ≤lex wt. By other hand, note that

for all t ∈ J , yt = y0
t + y1

t ∈ Sj(t)(P).

Claim 6.2 For a.e. t ∈ I, ξt ∈ Pi(t)(x1
t ) implies Px1

t <lex Pξt.

By transitivity of the preferences, ξt ∈ Pi(t)(x1
t ) implies that ξt ∈ Pi(t)(x0

t ). Thus, p0 ·x1
t =

p0 · x0
t ≤ p1 · ξt. Since (x1, y1, p1, q1) is a Walras equilibrium of E1, p1 · x1

t < p0 · ξt for a.e.
t ∈ I.

Set (x̄, ȳ, p̄, q̄) = (x1, y, p1, q1), with yt as in Claim 6.1. Let K ′ = {x ∈ IRL | (0, 0) <lex

Px} ∪ {0}. Clearly this is a convex and pointed cone (that is, −K ′ ∩ K ′ = {0}). Since
for all t ∈ J , yt ∈ Sj(t)(P), we have for all t ∈ J , Yj(t) − yt ⊂ −K ′. For all t ∈ J , let
Kt be the positive hull of K ′ ∩ (yt − Yj(t)). Note that for all t ∈ I, if xt ∈ Pi(t)(x̄t), then
(0, 0) <lex P(xt − x̄t). For all t ∈ I, let Kt be the positive hull of K ′ ∩ (Pi(t)(x̄t) − x̄t). Let
K = cl {co ∪t∈I∪J Kt}. Of course K is a convex cone and by the finiteness of the consumption
and production sets K ⊂ K ′. Thus, −K ∩K = {0}. For all t ∈ I, Pi(t)(x̄t)− x̄t ⊂ K, for all
t ∈ J , Yj(t) − ȳt ⊂ −K, which ends the proof. 2
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6.4 Proof of Corollary 5.1
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[12] Drèze, J.H. and H. Müller (1980): “Optimality Properties of Rationing Schemes,” Jour-
nal of Economic Theory, 23, 150-159.

[13] Dubey, P. and J.D. Geanakoplos (1992): “The Value of Money in a

Finite Horizon Economy: a Role for Banks,” in Economic Analysis of Market Games,
Essays in Honor of Frank Hahn, edited by P.S. Dasguapta, D. Gale, O.D. Hart and E.
Maskin, MIT Press, 407-444.

[14] Florig, M. (2001): “Hierarchic Competitive Equilibria,” Journal of Mathematical Eco-
nomics, 35(4), 515-546.

[15] Florig, M. and J. Rivera (2004a): ”Welfare properties and core equivalence of a discret
competitive equilibrium”. Mimeo.

16



[16] Florig, M. and J. Rivera (2004b): ”The Walras equilibrium as a limit of a competitive
equilibrium in economies with indivisible goods.”. Mimeo.

[17] Gale, D. and M. Hellwig (1984): “A General Equilibrium Model of the Transactions
Demand for Money,” ICERD Discussion Paper No. 84/100, London School of Economics.

[18] Hahn, F.H. (1965): “On Some Problems in Proving the Existence of an Equilibrium in
a Monetary Economy,” in The Theory of Interest Rates, edited by F.H. Hahn and F.P.
Brechling, Macmillan.

[19] Henry, C. (1970): “Indivisibilités dans une économie d’échange,” Econometrica, 38, 542-
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