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Abstract

This paper explores the link between an environmental policy and economic
growth employing an extension of the Neoclassical Growth Model. We include a
state equation to renewable natural resources, and consider natural resources as a
component of the aggregate productivity. It is assumed that the change of the en-
vironmental regulations induces costs and that economic agents also derive some
utility from stock capital accumulationvis-à-vis environment. Using the Hopf
bifurcation theorem, it can be shown that cyclical environmental policy strategies
are optimal, providing a theoretical support to the Environmental Kuznets Curve.
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1 Introduction

A great controversy has been generated regarding economic growth and environmental
protection by empirical evidence suggested by Grossman and Krueger (1995, 1996),
in which a relation betweenper capitaGNP and the emission of pollutants assumes
the form of an inverted U, receiving the name of the environmental Kuznets curve. The
issue that is raised by such a stylized fact is: does economic growth in itself ensure the
automatic protection of the environment?

The above question has received a positive answer by those who suggest that
a growth policy is always the best course of action. In this sense, Jorgenson and
Wilcoxen (1990) have provided estimates for environmental regulation fee costs with
regard to the accumulation of capital and growth, and verified that during the 1974-
1985 period, said costs reduced average annual growth in the US by 0.2 percentage
points. These results corroborate those obtained by Hazilla and Kopp (1990). At the
same time, Schmalensee (1994) and Jaffe et. al. (1995) have also suggested that said
costs are underestimated, since environmental regulation costs would have a negative
effect on product, investment and productivity.

The above statement has been refuted in several studies (e.g. El Serafy and Good-
land (1996), and Clark (1996)) in which economic growth is considered to behave in-
discriminately with regard to environmental protection, and have prescribed the need
for direct governmental intervention by taxing the use of natural resources in order
to protect the environment. In support of said hypothesis, Margulis (1992) has em-
pirically pointed out, using data for Mexico, that pollution causes serious damage to
the productivity of labor, while Pearce and Warford (1993) have produced a detailed
accounting of the productivity losses regarding pollution in many countries. Comple-
mentarily, Stokey (1998) has formalized the environmental Kuznets curve in a growth
model, in which environmental damage is regarded as a factor limiting long term
growth, being also determinant for the inverted U format.

It is possible to observe in this discussion that the environmental Kuznets curve
is frequently used to suggest that there is no need to tax the use of natural resources,
since the growth process itself would automatically generate environmental protec-
tion. Therefore, the aim of this study is to suggest an alternative interpretation for
the Kuznets curve by formalizing a growth model with micro-fundaments, in which
the source of the relation between growth and environment in the inverted U format
is given by the environmental regulation system itself. In this framework, the en-
vironmental Kuznets curve is obtained from the cyclical relation that exists between
environmental regulation and the long-run accumulation of capital, resulting from the
existence of regulatory policy adjustment costs, and the insertion of a utility gain hy-
pothesis in stock capital accumulationvis-à-visthe environment.

In this context, the relaxing of the hypothesis, in which variables such as the accu-
mulation of capital and institutional environmental protection norms adjust themselves
instantaneously over time, seeks to make the model more realistic, by abandoning a
certain theoretical simplification that makes the traditional model analytically con-
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venient, as well as offering a reasonable explanation for the environmental Kuznets
curve.

The analysis developed here is divided into two parts. The first one comprises an
extension of the traditional neoclassical model with the insertion of the environment
and the regulating agent, in which the productivity of the economy is directly affected
by the environment. In this regard, the relation between stock capital and the environ-
ment remains linear over time. The second part of the analysis is developed with the
insertion of regulatory policy adjustment costs, configuring a cyclical relation between
growth and the environment, configuring behavior that is similar to the empirical sug-
gestion observed by the environmental Kuznets curve.

2 Inserting Environment in Neoclassical Growth Model

The first model inserts the state equation for the environment in the neoclassical growth
model, assuming an overall formulation of environmental dynamics given by,

Ė = βR + φE − ϕK (1)

whereĖ is the variation rate of natural resource stock,R is regulation rate imposed
on the productive sector for the degradation of natural resources in timet, so that the
alternative interpretation for this rate would be the environmental ”reconstruction” rate
imposed on the productive sector,β is the parameter that indicates the marginal recom-
position of the environment with regard to the environmental regulation rate,E is the
environmental stock in timet, φ is the natural recomposition rate of the environment,
K is the capital stock in timet, andϕ is marginal destruction rate of the environment
related to the use of the capital stock. And, considering that the environment is an
intrinsic factor to the productivity of factors, the capital stock variation rate is given
by,

K̇ = A (K/E) K − C −R (2)

whereK̇ is the physical capital stock variation,A(K/E) is the productivity of the
economy’s factors, where this function is the stock capital - environment ratio, andC
is consumption in timet.

At the same time, defining the following relations,

k = (K/E) (3)

c = (C/E) (4)

and

r = (R/E) (5)
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equations (1) and (2) may be synthesized by the following equation,

k̇ = k [A (k)− βr − φ + ϕk]− c− r (6)

Lastly, considering that the utility of the agents depends on the relations between
consumption and the environment, and the rate of regulation and the environment, we
have reached the following intertemporal agents’ optimization problem,

max
∞∫
0

e−ρtu (c, r)dt

s.t. k̇ = k [A (k)− βr − φ + ϕk]− c− r
(7)

whereρ > 0 is the temporal discount rate. Thus, we have reached a simple dy-
namics optimization model with two control variables,r andc, and a state variable,
k.

The current Hamiltonian value is given by,

H = u (c, r) + λ [k (A (k)− βr − φ + ϕk)− c− r] (8)

whereλ is the co-state variable. The first order conditions are:

ur = λ (βk + 1) (9)

uc = λ (10)

and

λ̇ = ρλ− λ [kAk + A (k)− βr − φ + 2ϕk] (11)

Differentiating (9) with regard to time, we have,

λ̇

λ
= η

ṙ

r
− k̇

k

βk

(βk + 1)
(12)

whereη = r urr

ur
is the elasticity of the marginal utility with respect to the regulation

rate - environment ratio, that we assume here to be constant. Thus, equaling (12) and
(11) we arrive at,

ṙ

r
=

ρ− kAk − βk
βk+1

[
c+r
k

]
+
[

1
βk+1

]
[A (k) + βr + φ− ϕk]− ϕk

η
(13)

at the same time, rewriting (6) we have that,

k̇

k
= [A (k)− βr − φ + ϕk]− c

k
− r

k
(14)

Thus, equations (13) and (14) describe the optimal trajectory ofr andk. These
trajectories are illustrated in Figure 1. The(ṙ/r) = 0 function is negatively inclined in
spacek − r, since,
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dr

dk

∣∣∣∣∣
ṙ
r
=0

= ρ− 2k (Ak + ϕ)− k2Akk −
(kAkk + 2ϕ)

β
< 0 (15)

At same time, the(k̇/k) = 0 function is negatively inclined in spacek − r, since,

dr

dk

∣∣∣∣∣
k̇
k
=0

=
Ak + ϕ + c/k2 + r/k2

β
< 0 (16)

Therefore, we find the long term linear equilibrium between economic growth and
the environment inserted in the traditional neoclassical growth model without alter-
ing the relation predicted by the model for the relation between consumption and the
accumulation of capital, as demonstrated in Appendix A.

Based on the conditions made explicit by the theoretical model developed in this
study, it is possible to synthesize the model’s conclusions with the following two
propositions:

Proposition 1 If the environmental regulation rate in relation to the stock capital re-
mains below the critical level(R/K)c = [A (k)− βr − φ + ϕk] − (c/k) the natural
resources will depreciate monotonically until depletion.

Proposition 2 An environmental or stock capital accumulation shock will affect the
optimal values of variablesr andk in the short run, but not in the long run. In other
words, environmental shocks are neutral in the long run.

In this sense, the proof of proposition 1 comes directly from a simple rearrange-
ment of the terms in equation (6), while the proof of proposition 2 comes from the
stability of the system represented in Figure 1.

This way, proposition 1 succinctly points out the importance of environmental reg-
ulation for long-term macroeconomic activity, illustrating the ”the impossibility of en-
vironmental destruction” proposition for growth, and therefore contradicting the state-
ment that ”an indiscriminate growth policy is always the best”.

On the other hand, proposition 2 leads us directly to the fact that, in the long run,
an optimal steady-state(k∗, r∗) does not depend on the initial conditions(k(0), r(0)).
Thus, exogenous accumulation of capital or environmental shocks do not affect long
term equilibrium, so that the steady-state values assume approximately the same val-
ues, regardless of the these shocks.

3 A Non-Linear Model to Environmental Kuznets Curve

Although the analysis outlined in section 2 provides us with important propositions for
our analysis, some stylized facts still need to be addressed such as, from a central per-
spective, the environmental Kuznets curve. In the meantime, the non-linearity of the
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relation between the environment and long-term economic growth becomes evident.
Also, as made clear by the evidence presented by Grossman and Krueger (1995), it is
probable that those countries that have reached the ”end” of the environmental Kuznets
curve have once again manifested environmental misuse trends as per capita income
increases. In other words, the relation between the environment and growth seems to
assume cyclical behavior in the ultimate long run.

In an attempt to provide a theoretical answer to these facts, we suggest that there
are adjustment costs in stock capital and in environmental regulation policies. In this
context, the relaxing of the hypothesis stating that variables such as the accumulation
of capital and institutional environmental protection rules are instantaneously adjusted
over time seeks to make the model more realistic, by abandoning a certain theoretical
simplification in order to make the traditional model more analytically convenient.
Thus, the insertion of a stable cyclical relation between the accumulation of capital
and the environment is obtained by applying the Hopf Bifurcation Theorem, following
the methodology proposed by Feichtinger et. al. (1994).

By inserting adjustment costs for environmental regulation policies in section 2,
problem (7) then becomes,

max
∞∫
0

e−ρt [u (c, r) + v (k)− z (Φ)]dt

s.a. k̇ = k [A (k)− βr − φ + ϕk]− c− r
ṙ = Φ

lim
t→∞

e−ρtλkk = 0 lim
t→∞

e−ρtλrr = 0

(17)
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This way, the current Hamiltonian value of problem (17) is given by,

H = u (c, r) + v (k)− z (Φ) + λk [k (A (k)− βr − φ + ϕk)− c− r] + λrΦ (18)

Thus, the first order conditions are,

uc = λk (19)

zΦ = λr (20)

λ̇k = ρλk − vk − λk [kAk + A (k)− βr − φ + 2ϕk] (21)

λ̇r = ρλr − ur + λk (βk + 1) (22)

To simplify, we shall consider the utility function as being additively separable,
being given by,u (c, r) = ζc + ξr, that functionv (k) = v0k, and that adjustment is
costly and quadratic, in accordance to what was suggested by Wirl (2000), being given
by z (Φ) = 1/2γΦ2, and thatA (k) = a0k . Thus, by substituting (19) and (20) in (21)
and (22), and by applying the specifications of the functions suggested here, we have
that the canonic equations are given by,

k̇ = k [a0k − βr − φ + ϕk]− c− r (23)

ṙ =
λr

γ
(24)

λ̇k = ρλk − v0 − λk [2ka0 − βr − φ + 2ϕk] (25)

λ̇r = ρλr − ξ + λk (βk + 1) (26)

So that the steady-state solutions obtained from the transversality conditions and
from (23) to (26) are given by,

r∗ =

(
ξ−ζ
ζβ

)2
(a0 − ϕ)−

(
ξ−ζ
ζβ

)
φ− c(

ξ−ζ
ζ

+ 1
) (27)

k∗ =

(
ξ − ζ

ζβ

)
(28)

λ∗r = 0 (29)
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λ∗k = ζ (30)

Thus, in order to apply the Hopf Bifurcation Theorem, we need to obtain the Ja-
cobian of (23) to (26), whose evolution around the steady-state (27) to (30) is given
by,

J =


X − (βk∗ + 1) 0 0
0 0 0 1

γ

− (λ∗kα (a0 + ϕ)) λ∗kβ ρ−X 0
λ∗kβ 0 (βk∗ + 1) ρ

 (31)

whereX = [2k∗a0 − βr∗ − φ + 2ϕk∗].
Also, according to Dockner and Feichtinger (1991), the eigenvalues of a Jacobian

of type (25) are given by,

3
1θ

4
2 = ρ/2±

√
(ρ/2)2 − Y /2± (1/2)

√
Y 2 − 4 det (J) (32)

whereY is the sum of the determinants,∣∣∣∣∣ X 0
− (λ∗kα (a0 + ϕ)) ρ−X

∣∣∣∣∣+
∣∣∣∣∣ 0 1/γ

0 ρ

∣∣∣∣∣+ 2

∣∣∣∣∣ − (βk∗ + 1) 0
λ∗kβ 0

∣∣∣∣∣ (33)

However, this Jacobian has a pair of eigenvalues that are purely imaginary if, and
only if, the conditions,

Y 2 + 2ρ2Y = 4 det (J) (34)

and

Y > 0 (35)

are met.
For our model, the constantY and the determinantdet(J) are given by,

Y = X (ρ−X) (36)

det (J) =
1

γ

[
(2X − ρ) λ∗kβ (βk∗ + 1)− (βk∗ + 1)2 (2λ∗k (a0 + ϕ))

]
(37)

By applying the bifurcation condition of (34) to (36) and (37), and by choosingγ
as a bifurcation parameter, it is then possible to find the critical valueγcrit given by,

γcrit =

[
(2X − ρ) λ∗kβ (βk∗ + 1)− (βk∗ + 1)2 (2λ∗k (a0 + ϕ))

]
X(ρ−X)

2

(
X(ρ−X)

2
+ ρ2

) (38)
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Note that the steady-state values for(k, r, λk, λr) do not depend on parameterγ.
Given these results, it is then possible to formulate proposition 3, as follows.

Proposition 3 Considering the optimal control problem (17) and the equilibrium prob-
lem (27)-(30), then Hopf’s bifurcation, usingγ as a bifurcation parameter, whose crit-
ical value is determined by (38), assuming the validity of (34) and (35), leads to stable
limit cycles.

Proof: Given the choice of the other parameters of the model, and considering the
validity of condition (34) and (35), the critical value may be calculated from (38).
In such a case, the Jacobian arising around equilibrium assumes a purely imaginary
pair of eigenvalues, with a non-null crossing velocity, so that it may be concluded that
there are periodical solutions for bothγ > γcrit andγ < γcrit. Lastly, the proof of the
stability conditions involves an extensive and tedious mathematical exercise. A similar
proof has been obtained by Feichtinger et. al. (1994).

Therefore, proposition 3 establishes that the insertion of regulatory policy adjust-
ment costs in the neoclassical growth model with environment, that was developed in
section 2, generates stable cyclical behavior between the environment and the accumu-
lation of stock capital. This theoretical formulation provides a plausible explanation
for the stylized facts presented by Grossman and Krueger (1995), namely, the envi-
ronmental Kuznets curve and the probable change in inclination of said curve after its
”end”, so that the environment is again increasingly depreciated, starting from a high
level of per capital income.

Lastly, the theoretical suggestion offered by this model becomes relevant because
it provides a formal answer to the statement that growth itself generates environmental
protection mechanisms, thus justifying the need to protect the environment. It must be
pointed out that this model suggests that the attention given to the environmental regu-
lation problem ends up leveling off the environmental cycle, and that the environment
is thus affected to a lesser degree. Said result is fundamental since there is evidence
that most natural resources are not renewable, making the role of environmental pro-
tection all the more crucial.

4 Final Considerations

After empirical evidence produced by Grossman e Krueger (1995,1996) showed that
the relation between the level of per capita income and the concentrations of certain
pollutants assumes an inverted U format, the economic literature has offered a vast ar-
ray of theoretical alternatives for the fact, and has triggered an intense debate regarding
environmental policies to be adopted to address the issue.
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Within this debate, this study seeks to investigate said relation by suggesting a
micro-fundaments model for the environmental Kuznets curve, whose theoretical frame-
work is based on an expansion of the traditional neoclassical growth model. In this
framework, the environmental Kuznets curve is obtained from a cyclical relation that
exists between environmental regulation and long-term accumulation of capital, due
to the existence of regulatory policy adjustment costs, as well as to the insertion of
the hypothesis that there is a utility gain in the capital stock formationvis-à-vis the
environment.

In this context, we have sought to make the model more realistic by relaxing the
hypothesis in which variables such as the accumulation of capital and institutional en-
vironmental protection regulations adjust instantaneously over time, thus abandoning
a certain theoretical simplification aimed at making the traditional model more ana-
lytically convenient, besides providing a reasonable explanation for the environmental
Kuznets curve.

Our analysis is divided into two parts. The first comprises an extension of the tradi-
tional neoclassical model with the insertion of the environment and a regulating agent,
in which the environment has a direct effect on the productivity of the economy. In
this regard, the relation between the capital stock and the environment remains linear
over time. One of the fundamental results obtained was the importance of environ-
mental regulation for long-term macroeconomic activity, illustrating the proposition
of a ”environmental destruction impossibility” for growth, and thus contradicting the
statement that ”a indiscriminate growth policy is always the best”.

The second part of the analysis considers the insertion of regulatory policy ad-
justment costs, configuring a cyclical relation between the environment and growth,
behaving similarly to the empirical suggestion observed by the environmental Kuznets
curve. Thus, one of the conclusion of this study is the crucial emphasis of the fact that
the environmental Kuznets curve, by itself, does not mean that economic growth leads
automatically to environmental development, but that the environmental Kuznets curve
is the result of a very long-term cyclical process between growth and the environment.
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5 Appendix A

Differentiating (10) with respect to time, we have,

λ̇

λ
= ω

ċ

c
(39)

whereω = ucc

uc
c is the marginal utility elasticity with respect to the consumption

rate-environment ratio, that we assume to be constant. Thus equaling (39) and (11) we
arrive at,
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Figure 2:
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c
=

ρ− kAk − A (k) + βr + φ− 2ϕk

ω
(40)

at the same time, by rewriting (6) we have that,

k̇

k
= [A (k)− βr − φ + ϕk]− c

k
− r

k
(41)

Thus, the equations (40) and (41) describe the optimal trajectory ofc andk. These
trajectories are illustrated in figure 2 (considering thatAk < 0).The function(ċ/c) = 0
is given in spacek − c by,

dc

dk

∣∣∣∣∣
ċ
c
=0

= 0 (42)

where the function
(
k̇
/

k
)

= 0 is given in spacek − c by,

dc

dk

∣∣∣∣∣
k̇
k
=0

= [A (k)− βr − φ + ϕk] + k (Ak + ϕ) (43)
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