Preliminary.
Please do not quote.

Sickness Absence and Business Cycles

By
Jan Erik Askildsen
Espen Bratberg
Øivind Anti Nilsen

Department of Economics, University of Bergen, Fosswinckelsgt. 6, N-5007 Bergen, Norway.

December 28, 1999

Abstract

Absenteeism is affected by the sickness benefit system. Countries with generous compensation during sick leaves also experience high numbers of sick leave. Sick leaves may vary over the business cycle due to unemployment disciplining effects or changes in labour force composition. The latter hypothesis maintains that sickness may be pro-cyclical due to employment of "marginal" workers with poorer health when demand increases. Using individual records of labour force participants in Norway, we investigate the explanatory factors behind differing spells of work absence at different stages of the business cycle. We find no indication that new entrants explain increases in absence, on the other hand workers who stay in the labour force increase absences when the economy improves. Thus there is some evidence that unemployment has a disciplining effect..

JEL classification number: J22, J33, J38
Keywords: Absenteeism, sickness benefits, unemployment

1. Introduction.

Expenditures associated with sickness absence have led to serious concerns in many countries. In European welfare states, an increase in sick payments causes fiscal problems for often highly indebted governments. Simultaneously, industry suffers losses when workers are absent. This situation has triggered a debate about what are the causes of work absences, and what measures that should be initiated to combat an alleged negative trend. Some countries, like the Netherlands, Sweden, and Germany, have initiated changes in the sick payment schemes, which reduce the economic compensation to be received during sick leaves. Most economists will agree that this will reduce the incentives to stay away from work, at least to the degree that some sick leaves are to be termed illegitimate. On the other hand, it is interesting to observe that for most counties, irrespective of generosity of sick payment systems, absenteeism seems to vary according to the same pattern over business cycles and between sectors of the economy.

The overall work absence over the business cycle may be affected by the behaviour of each worker and their characteristics. For instance, according to the efficiency wage theory, Shapiro and Stiglitz (1984), shirking may be more frequent in booming periods since workers' fear of becoming unemployed due to both legitimate absences and illegitimate shirking is low in such periods. This is confirmed in several studies for different countries, see e.g. Allen (1981a), Kenyon and Dawkins (1989), Drago and Wooden (1992), Johansson and Palme (1996) and Dyrstad (1997, 1999). On the other hand, higher demand is in itself likely to affect the health status of the workers, and thereby increase legitimate sickness absenteeism in booming periods. Another reason for variations in absenteeism over the business cycles, can to be found from the changing composition of the labour force. As pointed out by Allen (1981b) and Barmby and Treble (1991), employers may find it profitable to screen workers and primarily offer contracts that are preferable for the healthiest workers. Then, when economic conditions improve (worsen), the most sick and unhealthy workers, marginal workers, are the last to get a job (the first to loose their jobs). Similarly, marginal workers may serve as a reserve, to be called on when workers become scarce. This latter effect, often termed composition effects or marginalisation of the labour force, will therefore lead to a higher incidence of work absence in booming periods.

Empirical analyses of these competing hypotheses are important, because they may give valuable information concerning the design of sick leave schemes. This design will again affect the overall expenditure associated with work absenteeism. In this paper, we will use
sickness absence data from Norway to distinguish between these two competing hypotheses, efficiency wage, and composition. Different from most other countries, Norway has a 100% replacement ratio during absence caused by sickness. There is an income ceiling, at approximately NOK 250 000, above which no additional benefit is paid. However, most larger firms and the public sector will compensate the workers earning above the income ceiling, so that the 100% replacement ratio is relevant for the bulk of the work force. Thus, the Norwegian system is such that most workers will receive full wage for a sickness spell lasting up to one year. This high replacement ratio may give incentives to stay away from work even though it may not be strictly necessary, and to stay away for longer periods.

Expenditures associated with absenteeism are significant in Norway, and have therefore led to serious concerns about the Norwegian sick leave scheme and its incentives. According to the Norwegian Employers' Association, Norway has more than 50% higher work absenteeism than the other Scandinavian countries. The absence due to sickness was calculated to cost NOK 28 billion in 1997 as measured by the amount received by workers during work absences. ${ }^{1}$ This amounts to 2.6% of GDP. The payment of sickness benefits in Norway is shared between the employer and the Social Insurance system. The employers pay sickness benefits for the first 14 days, and Social Insurance covers sickness benefits exceeding two weeks, and up to one year. ${ }^{2}$ Sickness benefits paid from the Social Insurance in 1997 amounted to NOK 15 billion. The remaining part, NOK 13 billion, was the employers' share.

In Norway, both short run and long term sick leaves, together with sickness leave payments, have increased considerably during the latter part of the nineties. This increase has followed an increase in economic growth and reduction in unemployment. It is notable that after surging in 1993, unemployment has decreased, while sickness absences did not start to increase before 1995. There are also large variations according to occupational groups and industries. Absenteeism is higher in the public sector, and in particular in occupations related to health and education. All these observations are consistent with a theory stipulating that costs of staying away from work are smaller when unemployment is low and job protection is high. However, this pattern is also consistent with the alternative hypothesis that sicker and more marginal workers are employed when economic conditions improve. A Norwegian study (RTV (1998)) gives some evidence that at least marginal male workers have a higher tendency for sick leaves than more established workers. A policy consequence of importance

[^0]is thus whether the business cycle development indicates a cyclical demand for work related health measures, or whether it is just shirking and a periodically more lenient behaviour that account for the variation in number of work days lost.

The main question that we try to answer in this paper is: Are changes in sick leaves explained by variation in behaviour, or is it the composition of the work force which is of most importance? Furthermore, what drives the alleged business cycle dependence of sickness absenteeism? Only sick leaves covered by the Social Insurance are considered, i.e. more long term sick leaves exceeding two weeks. We compare two years at different stages in the business cycle: 1992 when unemployment was high, and 1995, a year when unemployment was clearly on its way down. The composition effects are isolated by comparing sickness probabilities for workers with a low participation in the labour market (less than 500 hours) in year $t-2, t=(1992,1995)$, to the rest of the workers. Workers who were under education, or too young to participate in the labour force, are excluded from both these latter sub-samples. We utilise the very rich KIRUT database, which contains detailed individual information for a random 10% sample of the Norwegian population aged 16-67. From KIRUT we extracted some 80000 workers in 1992 and in 1995. The data set contains job-related information like income and absenteeism above two weeks. There is also a lot of background information about the participants, e.g. gender, age and former employment history, in addition to information about the sector for which the individuals are working.

The paper is organised as follows. In the next section, we give a brief theoretical background and overview over some literature of relevance for this study. In Section 3, we give an institutional overview, with emphasis on the sickness benefit system and development of unemployment and absenteeism during the nineties. Then in Section 4, we present the data and how they are prepared for this particular purpose. The empirical specifications are discussed in Section 5. In Section 6, we report the results, and some concluding remarks are offered in the final section.

2. Theoretical background.

It is common in economics to consider the decision of being absent as resulting from utility maximising. A worker maximises a utility function where consumption and leisure are arguments. Each day a worker makes a decision whether to work or stay away from their job, see e.g. Brown and Sessions (1996) and Johansson and Palme (1996). It is generally assumed that leisure is a normal good. Therefore increased income will increase demand for leisure, or
in our framework the demand for absences. The wage rate works differently. Given the replacement ratio, a higher wage rate makes absences more costly but simultaneously income increases. The total effect is ambiguous. It is however common to make assumptions on the utility function so that the wage rate effect is unambiguously negative on the demand for absences.

The marginal rate of substitution between leisure and consumption depends on the individual's health state, see Barmby, Sessions and Treble (1994). In particular it is assumed that leisure is relatively more valued when a person is sick. The individual or household budget constraint is influenced by the compensation the person receives when sick. A 100\% replacement ratio gives an incentive for workers to stay away when sick, and also to be absent for invalid reasons ('shirking'), see Dunn and Youngblood (1986). This moral hazard problem is well know within social insurance situations, Whinston (1983), since it is generally hard to observe whether a person claiming that an insurance situation has arisen, really fulfils the stated conditions. A strand of literature that explicitely addresses this issue is the 'efficiency wage theory', Shapiro and Stiglitz (1984). The main point here is that a workers' incentives to shirk on the job depends on the relative wage received within the firm, and the firm's monitoring of its workers. Provided the latter is imperfect, a worker may shirk when wage opportunities outside the firm improves, and when unemployment is reduced. Thus, with (full) wage compensation during sickness, and assumedly imperfect monitoring, claimed sickness benefits will follow the business cycle, and be negatively related to the wage.

Simultaneously, when economic conditions improve, it is reasonable that more marginal workers are attracted to the labour force. The resulting changes in the composition of the labour force over the business cycle can be explained by demand side behaviour in the labour market, Barmby and Treble (1991). Firms may recruit people based on former sickness records which are observable to the firms, experience rating. Thus, the firms will try primarily to hire workers with few and short spells of absence. However, when activity in the economy increases, together with firms' demand for more workers, it may be hard to find the workers with the best records. The firms will then have to recruit workers with a poorer experience in absenteeism. These may be workers that are more prone to shirking but it is as likely that it is workers with poorer health and thereby a higher probability of becoming sick and being eligible for sickness benefits. Thus, if the firms are using an active policy of recruiting workers depending on experience rating, there will be composition effects in observed absenteeism, which also gives rise to a pro-cyclical development of absences. The procyclicality can also be explained by supply side factors. The last recruited workers are likely
to be those with the highest relative marginal valuation of leisure, indicating that a smaller wage differential or lower rate of unemployment would give them incentives to absent from a job, irrespective whether this is considered valid or invalid.

3. Institutional Background.

Sickness benefits in Norway is organised under the National Insurance Administration (NIA), which also encompasses unemployment insurance, disability insurance, and old age pensions. All employees who have been with the same employer for at least two weeks, are covered by sickness insurance. Once this requirement is filled, coverage is 100 per cent from the first day. There is an upper limit, but for typical employees there is little variation in replacement ratios. The upper limit is $6 G$, where G is the basic unit used in the pension system, NOK 35500 in 1992 and NOK 39230 in 1995. The after tax replacement ratio is 100% for average wages in manufacturing, and some 90% for wages 25% above that average (NOSOSCO (1992)). A medical certificate is necessary for absences of more than three days. For sickness spells that last for more than eight weeks the physician is obliged to provide a more detailed certificate to the Social Insurance authorities, stating diagnosis and a prognosis assessment.

Sickness benefits are paid by the employer for the first two weeks, and then by the NIA for a maximum of 50 weeks. If unable to return to work after one year, the options are to apply for (permanent) disability benefits or for (temporary) rehabilitation benefits. These benefits are comparable to old age pensions and considerably lower than sickness benefits. Being related to earnings history, not only current wages, the replacement ratios will also vary more across individuals. Payment of premia for sickness insurance is also part of the Social Insurance system, based on a pay-as-you-go system. Workers pay a given share of income as a 'sickness insurance' tax, and employers contribute through a payroll tax on total wage bill. There is no experience rating, and firms are not allowed to use sickness as reasons for laying off some employees.

NIA expenses are sizeable. In 1995, the last year covered in this analysis, NIA social insurance payments totalled NOK 126.2 billion, about 13% of GDP. Sickness benefits contributed 9% of NIA outlays. There has been an interesting development in sickness absenteeism, i.e. paid sickness leave, during the nineties. In Figure 1, we see the average number of sickness days per employee (the bold line and the right axis). The numbers are calculated by counting the overall number of sickness days exceeding the first 14 days that the
employers have to pay, and divide this number by the number of employees. Note that this figure does not give any information about the development of shorter sickness spells, only those exceeding 14 days. Furthermore, state employees are excluded.
(Figure 1 in about here)

The yearly average number of sickness days, also reported in Figure 1, has its minimum in 1994. However, if we hold this figure together with the unemployment rates, given in Figure 2, we see that there is a lag between the average number of sickness days per employee and the cyclical movements in the unemployment rates.
(Figure 2 in about here)

The unemployment rates start to decrease one year before the number of sickness days start to rise. The lag seems to be even longer if we hold the unemployment rates and the duration of the longer sickness spells together. The length of the spells decreased until its turning point in 1995. The significant lags between the unemployment rates and the sickness absence is consistent with the hypothesis that increased absence is due to composition effects. In addition, it is possible that the pattern comes from more stress and increased speed at the work place. If on the other hand the shirking hypothesis dominates the composition effects, we would expect unemployment and absenteeism to mirror each other more immediately. On the other hand, it may be that workers are more careful during the early stage of an upturn.

4. Data

4.1 Data Sources

The analysis draws on data from the KIRUT database. ${ }^{3}$ The base contains detailed individual information on socio-economic background, labour market participation, and social insurance payments for a random 10% sample of the Norwegian population aged 16-67 (the total sample exceeds 300000 individuals).

Our sample includes a 50% selection of the individuals that occupy a job from January 1, 1992 until December 31, 1992, and a 50\% selection of the individuals that occupy

[^1]a job from January 1, 1995 until December 31, 1995. ${ }^{4}$ The drawings are done by selecting the 50% lowest identification-code of the individuals the relevant years. Note, however, that the id-code is unrelated to any characteristics of the individuals. All state employees are excluded from our sample since there is no information about sickness periods or payments for this category of workers. After excluding individuals with missing variables and self-employed, we end up with final samples of 82349 individuals in 1992, and 88354 individuals in 1995. We construct several sub-samples. The first one covers those individuals that are included in both the 1992 and 1995 yearly samples. We call this the common sample. This sample consists of 69.131 individuals. Next we distinguish between what we term marginal workers and non-marginal workers. Marginal workers are individuals who two years ahead of the year of investigation, 1992 and 1995 respectively, had a loose relation to the labour force. The requirement is that they did not work more than 500 hours. However, we are not interested in those individuals who due to education or age could not be expected to work. Therefore we exclude individuals with less than two years potential experience (age - years of education 7). We also exclude workers with a seniority within a firm of more than two years, and those who are younger than 18 years old in year t. The sub-sample of marginal workers covers 4028 individuals in 1992, and 4783 in 1995. This sample is compared to a sample of "nonmarginal", the full sample except those with less than two years potential experience.

4.2 Variables

The number of days with sickness benefits paid by Social Insurance two years back, ABSDYS_2, is used as a proxy for the health of the individuals. All the other explanatory variables are measured the relevant year with the exception of income which is measured at year $\mathrm{t}-1$. The relevant family variables are: marital status, (UNMARR), divorced or widowed (PRE_MARR), gender (WOMAN), and number of children less than 11 years old (CHILDREN). Further background variables are origin of birth NONSCAND $=1$ if nonScandinavian), years of education (EDUCATIO), age (AGE) and age squared (AGE_SQR), where the latter included to take potential non-linearities into consideration. EDUCATIO reflects the worker's education, and may also be interpreted as a skill variable. Since we do not have access to hourly wage rates, EDUCATIO my serve as proxy for wage rates. In a utility maximising framework EDUCATIO should therefore contribute negatively to absences, assuming substitution effects dominate the income effects. There are other variables that also

[^2]may capture worker ability and wage rates. These are experience, seniority and whether an individual works part time or full time. Experience (EXPERIEN) is measured as the number of years with registered pension points (income above 1 G). Seniority (SENIORITY) is given by the number of years a worker has been within a firm since the beginning of the running contract period. PARTTIME indicates whether an individual works less than 20 hours a week. Income previous year (INCOME) have several interpretations. The income variable gives information about the individual's income potential the current year, i.e. it is a proxy for expected income. To account for non-linearities, we include squared income (INC_SQR). If absence is costly, household wealth (WEALTH) and spouse's income (SPOU_INC) should increase the propensity of absence. Spouse's income may also be given an alternative explanation in our model. So called 'assortative mating' would indicate that those with a preference for working (low marginal valuation of leisure) with find a spouse with similar property. If this is the case, spouse's income would affect absenteeism negatively. All income variables (spouse's income, own income, and wealth) are measured in NOK 10000.

Finally, we control for the current labour market situation, location, and industry sectors. We use unemployment (UNEMPERC) in the municipality where the individual lives. It measures register unemployment as a percentage of the registered labour force (employed + unemployed). The coefficient for UNEMPERC should be negative if efficiency wage considerations play a role within a single year. Seven regional dummies represent places of residence. The Oslo-area serves as the base case. We include six industry sector dummies, with manufacturing industry serving as the base case. GOVER_HL is a dummy for the public (municipal) sector excluding health services, while HEALTSEC is a dummy indicating that the individual works in the health sector. For ease of exposition, we do not report the results for these control variables in the regressions.
(Table 1 about here)
Summary statistics are presented in Table 1. We observe that for the total sample the sickness probability is lower in 1995 than in 1992. This may seem surprising, since unemployment is lower in 1995. It is first and foremost for the non-marginal workers and within the private sector of the economy that absenteeism is reduced. For the common sample it has increased. The other surprising result is that marginal workers for both years have a lower absence probability than the non-marginal workers. We note that the sample of marginal workers is younger than the non-marginal sample, and that they earn considerably less. We also note that the marginal workers are slightly older in 1995 than in 1992. Furthermore, there are more nonScandinavians in this group but this share decreases from 1992 to 1995.
(Table 2 about here)
Table 2 shows the distributions of absence days (calendar days) for those who have any. We remind the reader that our records only include absences lasting more than two weeks. When that threshold is passed, roughly a quarter have less than 14 additional days of absence, and about 50% have less than 42 days.

5. Empirical specification

The number of absence days is an integer variable, suitable for count data modelling. For each individual we have information on whether s/he had any sickness spells exceeding two weeks (paid for by the NIA) in a given year, and the length of these spells, if any. This introduces a censoring problem in our dependent variable, as a zero count may mean anything between 0 and 14 days. We address the problem by using a two-part, or "hurdle" count model (Mullahy 1986). The first part consists of a binary response model, and the second of a model for the number of absence days once the hurdle has been passed. The hurdle model is a generalisation of ordinary censoring models, where it is assumed that the same process governs the probability of passing the threshold and the outcome conditional on having passed it.

Consider first the Poisson regression model. Let Y denote a positive integer random variable which follows the Poisson distribution, i.e.

$$
\begin{equation*}
\operatorname{Pr}(Y=y)=f(y)=\frac{\exp (-\lambda) \lambda^{y}}{y!} . \tag{1}
\end{equation*}
$$

Introducing covariates, \mathbf{z}_{i}, and coefficients, γ, and specifying $\ln \lambda_{i}=\gamma^{\prime} \mathbf{z}_{i}$, the Poisson regression model is obtained. A restrictive property of the Poisson model is equidispersion, i.e. the mean equals the variance: $E(Y)=\operatorname{var}(Y)=\lambda$. The negative binomial (negbin) model is a generalisation of the Poisson which allows the variance to exceed the mean. The probability density function is
(2) $f(y)=\frac{\Gamma\left(y+\frac{1}{\alpha}\right)}{\Gamma(y+1) \Gamma\left(\frac{1}{\alpha}\right)}\left(\frac{\frac{1}{\alpha}}{\frac{1}{\alpha}+\mu}\right)^{\frac{1}{\alpha}}\left(\frac{\mu}{\frac{1}{\alpha}+\mu}\right)^{y}, \alpha>0$.

For the limiting case $\alpha=0$, this reduces to the Poisson density. (2) may be derived from the Poisson by letting $\lambda=\mu v$, where v is a random variable. Assuming that v is gamma distributed with mean 1 and variance α, it may be integrated out of the distribution of y and v, and (2) results. This model has $E(Y)=\mu$ and $\operatorname{var}(Y)=\mu(1+\alpha \mu)$. In the regression context, $\ln \lambda_{i}=\ln \mu_{i}+\ln v_{i}=\gamma^{\prime} \mathbf{z}_{i}+\varepsilon_{i}$, where $\exp \left(\varepsilon_{i}\right)=v_{i} .{ }^{5}$

Hurdle models allow for excess numbers of zeros (or values at some other truncation point). It is assumed that the probability of having counts greater than zero results from one process, and positive counts from another process. Consider a hurdle model where both parts are negative binomial, but with different parameters. Let $f_{1}(y)$ be the negbin density with parameters $\left(\mu_{1}, \alpha_{1}\right)$ that governs the probability of having a zero count, $\operatorname{Pr}(y=0)$. Using (2), we have that

$$
\begin{equation*}
\operatorname{Pr}(Y=0)=f_{1}(0)=\left(\frac{\frac{1}{\alpha_{1}}}{\frac{1}{\alpha_{1}}+\mu_{1}}\right)^{\frac{1}{\alpha_{1}}}=\left(1+\alpha_{1} \mu_{1}\right)^{-\frac{1}{\alpha_{1}}} \tag{3}
\end{equation*}
$$

$$
\operatorname{Pr}(Y \geq 1)=1-f_{1}(0)=1-\left(1+\alpha_{1} \mu_{1}\right)^{-\frac{1}{\alpha_{1}}} .
$$

Furthermore, let $f_{2}(y)$ be the density function of the second process, which is also a negative binomial model with parameters $\left(\mu_{2}, \alpha_{2}\right)$. We obtain $\operatorname{Pr}(Y=y \mid Y \geq 1)$ by conditioning on $1-f_{2}(0)=1-\left(1+\alpha_{2} \mu_{2}\right)^{-\frac{1}{\alpha_{2}}}$, yielding the truncated negbin model:

$$
\begin{equation*}
f(y \mid y \geq 1)=\frac{\Gamma\left(y+\frac{1}{\alpha}\right)}{\Gamma(y+1) \Gamma\left(\frac{1}{\alpha}\right)}\left(\frac{\mu}{\frac{1}{\alpha}+\mu}\right)^{y}\left((1+\alpha \mu)^{\frac{1}{\alpha}}-1\right) . \tag{4}
\end{equation*}
$$

The hurdle model may be estimated by maximum likelihood. Because (μ_{1}, α_{1}) and (μ_{2}, α_{2}) are independent by assumption, the ML estimates may be obtained by estimating each part of the model separately. If we impose the restriction $\alpha_{1}=1$, equation (3) reduces to the logit model. That is the approach taken here: First we estimate $\operatorname{Pr}\left(Y_{i}-14>0\right)$ with a logit model, and then we use the zero-truncated negative binomial model to estimate $\operatorname{Pr}\left(Y_{i}-14=y_{i}\right.$ $\left.-14 \mid y_{i}-14>0\right)$.

[^3]Note that both parts of the hurdle model may be given a behavioural interpretation: in the first part a latent variable measures the utility of having at least one long term absence. What is observed is the binary outcome. In the second part an other latent variable measures the utility of an additional absence day. Each time a threshold is passed, a new day is added to the number of absence days.

As a shorthand, let us formulate the expected outcome of each part of the process as
(5) $E(y)=F(X, \beta)$,
where $\mathrm{E}(y)$ is either the probability of absence (logit) or the expected number of absence days (negative binomial), and X and β denote vectors of variables and coefficients. The $\beta-s$ measure how individuals behave or respond when their characteristics vary, while the X vector represents the individual characteristics. Consider two individuals indexed 0 and 1 , who differ in characteristics as well as response. The difference in outcome is

$$
\begin{equation*}
\Delta=E\left(y^{0}\right)-E\left(y^{1}\right)=F\left(X^{0}, \beta^{0}\right)-F\left(X^{1}, \beta^{1}\right) . \tag{6}
\end{equation*}
$$

For a linear model, i.e. $E(y)=\beta X$, (6) may be decomposed as
(7) $\Delta=\beta^{0} X^{0}-\beta^{1} X^{1}=\beta^{1}\left(X^{0}-X^{1}\right)+X^{0}\left(\beta^{0}-\beta^{1}\right)$.

This decomposition, well known from the wage discrimination literature (Blinder 1973, Oaxaca 1973), has an interesting interpretation: the first part on the r.h.s. expression is the part of the difference which is caused by difference in characteristics, whereas the second part is due to difference in behaviour, or response to the characteristics. By estimating the model separately for "0-type" and "1-type" individuals, (7) may be evaluated at the sample means.

Equation (7) does not hold for the non-linear models used in this paper. However, we shall perform decompositions as follows,
(8) $\Delta=F\left(X^{0}, \beta^{0}\right)-F\left(X^{1}, \beta^{1}\right)=\left\{F\left(X^{0}, \beta^{1}\right)-F\left(X^{1}, \beta^{1}\right)\right\}+\left\{F\left(X^{0}, \beta^{0}\right)-F\left(X^{0}, \beta^{1}\right)\right\}$.

We interpret these expressions as outlined above. (8) is evaluated by computing the necessary components for each individual and then averaging.

At the outset we estimate the logit model for the full 1992 and 1995 samples, and compare the estimated parameter-vectors and the predictions for the two sub-samples. However, from the benchmark model it may be difficult to discriminate between the hypothesis that it is the characteristics of the sub-samples that vary, or whether it is the response to these characteristics that causes differences. Therefore we decompose the changes in absence probabilities as described, deriving how much of the change that is due to composition effects, and how much is due to efficiency wage effects. We estimate the model for the 1992 and the 1995 sample. The hypothesis that $\beta_{92}^{T}=\beta_{95}^{T}$ (T denoting "total sample") may be tested by a likelihood ratio test. Moreover, even if a likelihood ratio test rejects the null hypothesis of no behavioural change, this change alone may not be responsible for the full change in average outcome. The decomposition in (8) allows us to appreciate how much of Δ can be attributed to behaviour and characteristics, respectively.

We perform the same exercise for the sub-sample of those individuals that are present both in the 1992 -sample and in the 1995 -sample, denoted the common sample. The common sample is probably more interesting, since it will indicate a possible change of behaviour for the same workers when conditions change. If the hypothesis that the coefficients are equal (and the response effect in the decomposition is zero) is rejected, we may conclude that the behaviour of the individuals has changed over time. Such a result would support an efficiency wage explanation for absenteeism. We also report how much of the changes that are due to behaviour and characteristics respectively.

We next compare the 'marginal workers' to the 'non-marginal workers' both in 1992 and 1995. Again, we can test if $\beta_{t}^{m}=\beta_{t}^{n-m}$, with m denoting "marginal" and $n-m$ 'nonmarginal'. If the null hypothesis is not rejected, we may conclude that differences in the work absence for the two samples are due to differences in characteristics, and not due to different behaviour of the two samples. If we do reject the null hypothesis, we can use (8) to decompose Δ and appreciate the importance of composition effects for explaining differences in the work absence pattern over the business cycle. Note that we evaluate the difference due to characteristics at the coefficient vector of the non-marginal workers, and the difference due to behaviour at the characteristics of the marginal workers.

The discussion has focused on the logit part of the model. Obviously, the same exercises may be performed for the truncated negative binomial part. Δ then refers to the difference in expected absence days, conditional on the truncation point.

6. Results

The results from the hurdle regressions on the different samples are reported in Tables 3-5. We have also run the regressions by gender and report those results in Table 3a and so forth. However, we focus on the regressions in Table 3-5 in the discussion. In Table 6 we show decompositions as explained in the previous section.

Table 3 contains estimates of absenteeism for the full samples in 1992 and 1995. As was seen from summary statistics and in accordance with aggregate numbers of absences, the predicted absence probability decreases from 1992 to 1995. Since unemployment is lower in 1995 than in 1992 the result is contrary to what is expected from theory. It may be due to a delay in reaction to changes in economic conditions, or the reason may be that long term sickness absences are not explained by the efficiency wage hypothesis. Looking at the coefficients for the logit part, we see that there are small differences between the two years. The coefficient for local unemployment, UNEMPERC, changes sign but it is not significant. Thus, the cross section results are in general not strongly supportive of an efficiency wage explanation, contrary to what is found e.g. for Sweden by Johansson and Palme (1996). Former sickness, ABSDYS_2, explains absences as expected, with coefficients of 0.0046 in 1992 and 0.0044 in 1995. The income coefficient, INCOME, is positive and significant. Interestingly, the effect on the number of absence days once absent (Part 2 of the model) is negative. An explanation for this may be that the percentage of full time workers increase by income, thus increasing exposure. Once sick, the effect is opposite because high income workers are more prone to earning efficiency wages. Spouse's income and wealth have opposite signs to own income but the coefficients are smaller. The proxies for ability and wages, EDUCATIO, EXPERIEN, SENIORITY and PARTTIME have negative signs, except from experience, which is positive and significant in 1992, Part 1 of the model. This confirms a conjecture that increased wage rates will reduce demand for absences, i.e. the substitution effect dominates. The coefficient for number of children, CHILDREN, is positive as was expected. More children induce more long term absences. However, when considering males and females separately, we found that the coefficient was actually negative and significant for
men in 1992 (Part 1), and insignificant in 1995. With the exception of income, the results for Part 2 are similar for the significant coefficients.

In Table 6 we find that when we decompose the changes from 1992 to 1995 in Part 1 into a composition (characteristics) effect and a behaviour effect, approximately 60% of the change is due to changes in characteristics.

To investigate the decomposition further, we turn to the common sample, Table 4. The results are very similar to what we found using the total samples for each year, so that the coefficient estimates should need no further comments. However, the likelihood ratio tests show that the coefficients for the 1995 sample are significantly different from the coefficients in 1992 (both parts). Of most interest are the overall sickness probabilities, which are 0.111 in 1992 and 0.122 in 1995. For this sub-sample of workers who participate both in 1992 and 1995, we find that their sickness probability has increased. These results are as expected when economic conditions improve. Are the changes due to different behaviour or differences in the individuals' background characteristics? Behaviour, i.e. disciplining effects, does matter. From Table 6 we see that more than 70% of the change in absence probability (0.0082 out of $0.0109)$ is due to changes in the workers' behaviour. This is even more pronounced for Part 2. We find that once sick, the mean number of sickness days increase by 12.1. 11.2 (91%) are due to changes in behaviour. Thus, a significant share of the increase in sickness absence from 1992 to 1995 for established workers can be explained by an efficiency wage effect, which is the interpretation of a change in behaviour. The well established workers tend to be more sick and absent from work when the economy is booming compared to a situation with high unemployment.

We now turn to the so-called marginal workers, and compare them to the nonmarginal workers. The marginal workers are those who had a loose connection to the labour market two years back. They were either working very few hours, were unemployed, or were outside of the work force but not under education. Contrary to the composition effects argument, we find that this group has a lower probability of being absent than the reference group. The coefficients are significantly different (Part 1). When decomposing, we find that different characteristics explain some 110% (1992) and 165% (1995) of the probability difference. In other words, given the characteristics of the non-marginal workers, the marginal workers would have more absence than them: the difference due to behaviour is positive. There is, though, a tendency for the males entering the labour market in 1995, when unemployment is on its way down, to increase absence probability (Tables 5a and 6). For the number of sickness days, the picture is less clear. In 1992, marginal workers have less
absence days than the non-marginal, but there is no difference in 1995. The likelihood ratio tests do not reject the null hypotheses of equal behaviour between marginal and non-marginal workers. Comparing marginal workers in 1992 and 1995 in Table 5 (Part 2), we find an increase in absence days from 1992 to 1995 for marginal workers, from 64.2 days to 68.5 days, contrary to what is found for non-marginal workers. The decompositions in Table 6 indicates that the relative change between the two groups over time can be ascribed to the marginal workers changing their behaviour in the direction of longer absences, given their characteristics. A disciplining effect seems to be working also for the marginal workers: they are more prone to long absences in boom periods.

7. Concluding remarks.

We have investigated factors which explain sickness absence in Norway. The study is limited to sickness spells lasting more than two weeks, i.e. spells that are paid for by the Social Insurance. The data, drawn from the KIRUT database, include extensive individual background information, so we can control for individual characteristics when analysing sickness absence.

A prime objective was to investigate whether sickness absence is explained primarily by the disciplinary effects of unemployment, or by composition effects within the labour force. The disciplinary effects of unemployment are analysed by comparing sickness absences in 1992 and 1995. Unemployment was high in the first of these years, lower and on its way down during the latter. Sickness absence was slightly lower in 1995 than in 1992, but increasing. The behaviour of the workers who participated in both 1992 and 1995 changed, and such that they for given characteristics have more absences in 1995. The same seems to hold true for male marginal workers. This gives some support to the hypothesis that unemployment plays a disciplinary role. The composition effects are analysed by comparing absenteeism between workers with a longer lasting attachment to the labour force, with marginal workers. We find that the marginal workers actually have the lowest absence probability. In aggregate, therefore, our analysis gives no support to the claim that cyclical variations in sickness absence may be explained by composition effects, or "marginalised" workers entering the labour force during an economic upturn. To the contrary, we find that the "stable" workers - those who were in the labour force in both periods under study, are the ones who change behaviour and increase absence. Thus our results provide some support for the hypothesis that unemployment has a disciplining effect on sickness absence behaviour.

References.

Allen, S.G., 1981a, "An Empirical Model of Work Attendance", Review of Economics and Statistics 63, 77-87

Allen, S.G., 1981b, "Compensation, Safety and Absenteeism: Evidence from the Paper industry", Industrial and Labor Relations Review 34, 207-18.

Barmby, T.A., and J.G. Treble, 1991, "Absenteeism in a Medium Sized Manufacturing Plant", Applied Economics 23, 161-6.

Barmby T, J.G. Sessions, and J.G. Treble, 1994, "Absenteeism, Efficiency Wages and Shirking", Scandinavian Journal of Economics 96, 561-566.

Blinder, A.S. 1973, "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources 18, 436-455.

Brown S, and J.G. Sessions (1996), "The Economics of Absence: Theory and Evidence", Journal of Economic Surveys 10, 23-53.

Cameron, C.A., and P.K. Trivedi, 1998, Regression Analysis of Count Data, Cambridge, Cambridge University Press.

Chaudhury, M., and I. Ng, 1992, "Absenteeism Predictors: Leas Squares, Rank Regression, and Model Selection Results", Canadian Journal of Economics 3, 615-34.

Drago, R. And M Wooden, 1992, "The Determinants of Labour Absence: Economic Factors and Workgroup Norms Across Countries", Industrial and Labor Relations Review 45, 764-78

Dunn, L.F., and S.A. Youngblood, 1986, "Absenteeism as a Mechanism for Approaching an Optimal Labor Market Equilibrium: An Empirical Study", Review of Economics and Statistics 68, 668-674.

Dyrstad, J.M., 1997, "Absence: Discipline versus Composition Effects", mimeo, Department of Economics, Norwegian University of Science and Technology, Trondheim, Norway.

Dyrstad, J.M., 1999, "Sick Pay Scheme Changes and Sickness Absenteeism: Empirical Evidence from Norway", mimeo, Department of Economics, Norwegian University of Science and Technology, Trondheim, Norway.

Johansson, P. and M. Palme, 1996, "Do Economic Incentives Affect Work Absence? Empirical Evidence Using Swedish Micro Data", Journal of Public Economics 59, 195-218.

Kenyon, P. and P. Dawkins, 1989, "A Time Series Analysis of Labour Absence in Australia", Review of Economics and Statistics 71, 232-39.

Mullahy, J., 1986, "Specification and Testing of Some Modified Count Data Models," Journal of Econometrics 33, 341-365.

NOSOSCO, 1992, Statistical Reports of the Nordic Countries no. 58, Oslo, Norway.
Oaxaca, R., 1973, "Male Female Wage Differentials in Urban Labor Markets," International Economic Review 14, 693-709.

Riphahn, R.T., and A. Thalmaier, 1999, "Absenteeism and Employment Probation", mimeo, The Institute for the Study of Labor (IZA), Bonn.

RTV, 1998, "Basisrapport 1997: Sammendrag (Basis Report 1998: Summary)", RTV ('Rikstrygdeverket' - National Insurance Administration) Report 04/98.

Shapiro, C. and J.E. Stiglitz, 1984, "Equilibrium Unemployment as a Worker Discipline Device", American Economic Review 74, 433-444.

Whinston, M.D., 1983, "Moral hazard, Adverse Selection, and the Optimal Provision of Social Insurance", Journal of Public Economics 22, 49-71.

Figure 1. Sickness: Duration and Number of Days per Employee

Figure 2. Unemployment and GDP-growth

Table 1 Sample means

	Full		Males		Females		Common		Marginal		Non-marginal	
	1992	1995	1992	1995	1992	1995	1992	1995	1992	1995	1992	1995
absdys_2	6.61	5.59	5.43	4.50	7.86	6.74	5.98	6.27	2.23	1.77	7.15	6.07
married	0.56	0.53	0.56	0.52	0.56	0.54	0.56	0.58	0.41	0.37	0.61	0.57
pre_marr	0.11	0.12	0.09	0.10	0.13	0.14	0.11	0.13	0.09	0.09	0.12	0.13
woman	0.49	0.49					0.49	0.49	0.58	0.53	0.48	0.48
age	38.08	38.24	38.06	38.12	38.09	38.37	37.38	40.38	31.21	31.72	39.82	39.91
children	0.39	0.41	0.36	0.36	0.42	0.46	0.41	0.41	0.48	0.46	0.41	0.43
educatio	11.39	11.66	11.58	11.80	11.19	11.52	11.47	11.64	11.50	11.68	11.33	11.60
nonScand	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.04	0.03	0.02	0.01
income	16.88	17.11	20.78	20.72	12.77	13.28	17.32	18.90	10.83	11.77	18.13	18.32
spou_inc	8.86	8.94	5.95	6.02	11.93	12.04	9.16	9.85	7.39	6.97	9.56	9.66
wealth	14.60	16.21	14.00	15.36	15.24	17.12	12.92	17.85	8.23	7.86	15.88	17.70
experien	13.86	14.89	15.71	16.54	11.93	13.14	13.85	16.73	8.36	9.25	15.10	16.19
senority	5.66	6.01	6.12	6.38	5.16	5.62	5.66	7.23	1.10	1.02	6.32	6.73
parttime	0.16	0.16	0.07	0.07	0.25	0.25	0.15	0.13	0.31	0.29	0.13	0.13
unemperc	6.36	5.49	6.36	5.50	6.36	5.48	6.36	5.48	6.43	5.55	6.37	5.49
agrifish ${ }^{1}$	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01
salhottr ${ }^{1}$	0.26	0.25	0.26	0.25	0.26	0.24	0.25	0.24	0.27	0.24	0.25	0.24
dwelfina ${ }^{1}$	0.08	0.08	0.08	0.08	0.08	0.07	0.08	0.08	0.07	0.08	0.08	0.08
gover_hl ${ }^{1}$	0.21	0.21	0.19	0.19	0.23	0.23	0.21	0.22	0.22	0.20	0.21	0.22
healtsoc ${ }^{1}$	0.13	0.14	0.04	0.04	0.23	0.25	0.13	0.14	0.20	0.20	0.13	0.14
norway_a ${ }^{1}$	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
norway_e ${ }^{1}$	0.15	0.15	0.16	0.16	0.15	0.15	0.15	0.16	0.14	0.15	0.16	0.15
norway_s ${ }^{1}$	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.09	0.09	0.09
norway_w ${ }^{1}$	0.20	0.21	0.21	0.21	0.20	0.20	0.21	0.20	0.22	0.20	0.20	0.20
norway_m ${ }^{1}$	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.13	0.13	0.14	0.14
norway_n ${ }^{1}$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.11	0.11	0.10	0.10
≥ 1 absence absence	0.12	0.12	0.10	0.09	0.14	0.14	0.11	0.12	0.11	0.11	0.13	0.12
days absence days if ≥ 1	10.6	9.6	9.1	7.6	12.2	11.6	8.0	10.3	8.6	9.0	11.4	10.1
absence	85.4	82.2	87.2	80.3	84.0	83.6	71.2	83.3	78.3	82.2	86.0	82.7
N	82349	88354	42234	45456	40115	42898	69131	69131	4028	4783	72966	78169

${ }^{1}$ Dummy variables used in the regressions but not reported

Table 2 Distribution of absence days net of 14 days (max(absence days-14,0))

	1992						1995					
	All		Males		Females		All		Males		Females	
	Freq.	\%	Freq.	\%	Freq.	\%	Freq.	\%	Freq. \%		Freq. \%	
≤ 14	2628	25.8	1182	27.02	1446	24.88	2758	27.05	1275	29.85	1483	25.03
15-28	1663	16.33	707	16.16	956	16.45	1634	16.02	703	16.46	931	15.71
29-42	1134	11.13	428	9.79	706	12.15	1148	11.26	455	10.65	693	11.7
43-56	803	7.88	326	7.45	477	8.21	792	7.77	306	7.16	486	8.2
57-70	559	5.49	230	5.26	329	5.66	565	5.54	206	4.82	359	6.06
71-84	478	4.69	194	4.44	284	4.89	532	5.22	184	4.31	348	5.87
85-98	341	3.35	131	2.99	210	3.61	349	3.42	137	3.21	212	3.58
99-112	358	3.51	148	3.38	210	3.61	344	3.37	142	3.32	202	3.41
113-126	234	2.3	104	2.38	130	2.24	263	2.58	117	2.74	146	2.46
127-140	251	2.46	128	2.93	123	2.12	235	2.3	99	2.32	136	2.3
141-210	801	7.86	371	8.48	430	7.4	752	7.37	304	7.12	448	7.56
211-280	549	5.39	248	5.67	301	5.18	480	4.71	200	4.68	280	4.73
281-365	386	3.79	177	4.05	209	3.6	345	3.38	144	3.37	201	3.39
Total	10185	100	4374	100	5811	100	10197	100	4272	100	5925	100
Note:	See	Table		for	frac	ction	of		mple	with	abs	

Table $3 \quad$ Hurdle regressions for 1992 and 1995 (full samples)

	1992		1995	
	Part 1: Pr(Y>0) (Logit)			
	Coef.	Z-value	Coef.	z-value
absdys_2	0.0077	27.049	0.0074	25.342
married	0.2221	5.310	0.1152	2.817
pre_marr	0.3584	8.682	0.2901	7.338
woman	0.4600	16.161	0.4668	16.863
age	0.0129	7.736	0.0152	8.285
children	0.0481	2.816	0.0987	6.139
educatio	-0.1327	-25.179	-0.1170	-22.783
nonScand	0.2036	2.342	0.1588	1.770
income	0.0503	11.668	0.0827	18.125
inc_sqr	-0.0010	-10.546	-0.0018	-16.665
spou_inc	-0.0071	-5.117	-0.0066	-4.928
wealth	-0.0017	-4.112	-0.0041	-9.387
experien	0.0028	1.079	-0.0028	-1.120
senority	-0.0125	-5.643	-0.0047	-2.234
parttime	-0.2378	-6.574	-0.1700	-4.879
unemperc	0.0065	0.941	-0.0093	-1.192
Constant	-1.7636	-17.891	-2.1352	-21.670
	-28820.3		-29595.7	
N	82349		88354	
Mean predicelihood	0.1189		0.1154	

	Part 2: $\mathbf{E}(\mathbf{Y} \mid \mathbf{Y} \geq \mathbf{1})($ Negative binomial)			
	Coef.	z-value	Coef.	z-value
absdys_2	0.0023	7.640	0.0026	8.218
married	0.0437	0.978	0.0116	0.266
pre_marr	0.0264	0.613	0.0270	0.648
woman	-0.0746	-2.366	0.0099	0.320
age	0.0196	11.023	0.0182	9.115
children	0.0246	1.311	0.0457	2.521
educatio	-0.0241	-4.263	-0.0150	-2.634
nonScand	0.1152	1.217	-0.0854	-0.863
income	-0.0118	-4.201	-0.0105	-2.780
inc_sqr	0.0001	2.031	0.0001	1.276
spou_inc	-0.0050	-3.323	-0.0031	-2.244
wealth	0.0000	-0.011	0.0004	0.821
experien	-0.0076	-2.587	-0.0066	-2.317
senority	-0.0001	-0.021	-0.0024	-1.038
partime	-0.0177	-0.466	0.0076	0.201
unemperc	-0.0048	-0.638	-0.0111	-1.253
Constant	3.9755	39.803	3.8314	37.641
	1.409		1.446	
alpha	-52972.16		-52612.9	
Loglikelihood	10185		10197	
Nean predicted	69.5		68.2	

Note: Location and sector dummies are used in the regressions but not reported LR tests $\beta^{92}=\beta^{95}$: Part 1: 71.56 ($D F=28$) Part 2: 35.22 ($D F=29$)

Table 4 Hurdle regressions for common sample

	1992		1995	
	Part 1: Pr(Y>0) (Logit)			
abs15yr1	Coef.	z-value	Coef.	z-value
absdys_2	0.0087	25.493	0.0075	23.767
married	0.2372	4.917	0.1581	3.518
pre_marr	0.3861	8.181	0.2872	6.623
woman	0.4958	15.156	0.4822	15.500
age	0.0074	3.584	0.0137	6.795
children	0.0378	1.962	0.0857	4.747
educatio	-0.1314	-21.723	-0.1146	-20.366
nonScand	0.1359	1.286	0.3018	2.818
income	0.0464	9.212	0.0739	13.360
inc_sqr	-0.0009	-8.403	-0.0016	-13.224
spou_inc	-0.0068	-4.245	-0.0076	-5.210
wealth	-0.0017	-3.364	-0.0041	-8.691
experien	0.0058	1.869	-0.0027	-0.954
senority	-0.0121	-4.583	-0.0034	-1.505
parttime	-0.2302	-5.497	-0.1236	-3.109
unemperc	0.0083	1.048	-0.0088	-1.015
Constant	-1.7083	-14.989	-2.0583	-17.821
Loglikelihood	-22657.8		-24129.8	
N	69131		69131	
Mean predicted	0.1113		0.1223	

	Part 2: $\mathrm{E}(\mathrm{Y} \mid \mathrm{Y} \geq 1)$ (Negative binomial)			
	Coef.	z-value	Coef.	z-value
	0.0025	6.979	0.0027	8.086
married	0.0531	1.026	0.0344	0.719
pre_marr	0.0658	1.319	0.0562	1.222
woman	-0.0135	-0.366	0.0150	0.435
age	0.0118	5.209	0.0179	8.249
children	0.0314	1.461	0.0402	1.992
educatio	-0.0190	-2.910	-0.0105	-1.691
nonScand	0.1511	1.293	-0.0974	-0.836
income	-0.0066	-2.120	-0.0146	-2.558
inc_sqr	0.0000	1.458	0.0001	1.029
spou_inc	-0.0045	-2.543	-0.0038	-2.605
wealth	-0.0003	-0.890	0.0004	0.847
experien	-0.0035	-1.037	-0.0071	-2.241
senority	-0.0009	-0.303	-0.0032	-1.300
parttime	-0.0913	-2.051	0.0037	0.086
unemperc	-0.0060	-0.679	-0.0132	-1.360
Constant	3.9048	33.892	3.8633	31.939
alpha	1.4258		1.4433	
Loglikelihood	-3845		-4374	
N	76		84	
Mean predicted	57		69	

Note: Location and sector dummies are used in the regressions but not reported LR tests $\beta^{92}=\beta^{95}$: Part 1: $64.27(D F=28) \quad$ Part 2: 103.93 ($D F=29$)

Table 5 Hurdle regressions for marginal and non-marginal samples

	1992				1995			
	Non-marginal		Marginal Part 1:		Non-marginal (Logit)		Marginal	
	Coef.	z-value	Coef.	z-value	Coef.	z-value	Coef.	z-value
absdys_2	0.0076	26.079	0.0170	4.793	0.0073	24.414	0.0209	5.660
married	0.2064	4.838	0.3892	1.970	0.0914	2.178	0.5241	2.923
pre_marr	0.3204	7.612	0.6544	3.348	0.2569	6.341	0.6448	3.720
woman	0.4410	14.914	0.4450	3.240	0.4717	16.306	0.3114	2.562
age	0.0105	6.117	0.0100	1.116	0.0143	7.553	-0.0081	-0.849
children	0.0115	0.643	0.1123	1.602	0.0816	4.836	0.0259	0.385
educatio	-0.1259	-23.156	-0.1285	-4.921	-0.1109	-20.857	-0.1133	-4.794
nonScand	0.1965	2.143	-0.0399	-0.132	0.1940	2.071	-0.4249	-1.215
income	0.0333	7.498	0.1357	5.413	0.0759	15.372	0.0219	2.224
inc_sqr	-0.0007	-7.461	-0.0035	-4.424	-0.0017	-14.917	-0.0001	-0.743
spou_inc	-0.0083	-5.799	-0.0022	-0.340	-0.0071	-5.148	-0.0080	-1.219
wealth	-0.0014	-3.602	-0.0099	-2.809	-0.0040	-8.976	-0.0081	-2.641
experien	0.0037	1.377	0.0026	0.200	-0.0025	-0.947	0.0146	1.209
senority	-0.0121	-5.400	0.0424	0.545	-0.0041	-1.922	0.2366	3.304
partime	-0.2062	-5.346	-0.2979	-2.231	-0.1517	-4.067	-0.3063	-2.447
unemperc	0.0054	0.748	-0.0197	-0.632	-0.0119	-1.459	-0.0021	-0.063
Constant	-1.5055	-14.451	-2.0704	-4.398	-2.0521	-19.525	-1.3641	-3.182
Loglikelihood	-26747.8		-1284.1		-27221.6		-1549.6	
N	72966		4028		78169		4783	
Mean predicted	0.1312		0.1095		0.1213		0.1089	

[^4]Table 3a Hurdle regressions for 1992 and 1995 Males (full sample)

	1992		Part 1: $\operatorname{Pr}(\mathbf{Y}>\mathbf{0})$ (Logit)	
	Coef.	z-value	Coef.	z-value
	0.0085	19.011	0.0077	16.806
absdys_2	0.2440	3.772	0.0885	1.356
married	0.3428	5.219	0.2674	4.231
pre_marr	0.0186	6.196	0.0165	4.742
age	-0.0871	-3.047	0.0161	0.583
children	-0.1385	-17.552	-0.1277	-16.080
educatio	0.2896	2.450	0.1223	0.954
nonScand	0.0181	3.226	0.0526	8.496
income	-0.0004	-3.958	-0.0012	-9.263
inc_sqr	-0.0107	-3.629	-0.0117	-3.895
spou_inc	-0.0020	-3.105	-0.0028	-4.286
wealth	0.0015	0.293	-0.0002	-0.032
experien	-0.0157	-5.161	-0.0078	-2.678
senority	-0.5429	-5.741	-0.3008	-3.538
parttime	0.0170	1.613	0.0100	0.830
unemperc	-1.5268	-10.729	-1.7338	-11.752
Constant	-13091.1		-13289.0	
Loglikelihood	42234		45456	
N	0.1036		0.0940	
Mean predicted				

	Part 2: $\mathrm{E}(\mathbf{Y} \mid \mathbf{Y} \geq \mathbf{1})($ Negative binomial)			
	Coef.	z-value	Coef.	z-value
absdys_2	0.0023	4.954	0.0025	4.760
married	0.1161	1.637	0.0921	1.254
pre_marr	0.1017	1.446	0.1408	2.007
age	0.0260	8.048	0.0277	7.016
children	-0.0390	-1.252	0.0107	0.337
educatio	-0.0194	-2.178	-0.0132	-1.402
nonScand	-0.0865	-0.651	-0.3199	-2.176
income	-0.0116	-3.199	-0.0145	-2.595
inc_sqr	0.0001	1.893	0.0001	1.625
spou_inc	-0.0087	-2.593	-0.0078	-2.295
wealth	0.0000	-0.070	0.0014	1.948
experien	-0.0133	-2.328	-0.0158	-2.749
senority	-0.0043	-1.318	-0.0077	-2.328
parttime	0.0071	0.068	0.0828	0.853
unemperc	-0.0057	-0.473	-0.0242	-1.728
Constant	3.7682	25.624	3.7585	23.723
alpha	1.4581		1.5379	
Loglikelihood	-22801.0		-21828.6	
N	4374		4272	
Mean predicted	73.3		66.4	

Note: Location and sector dummies are used in the regressions but not reported LR tests $\beta^{92}=\beta^{95}$: Part 1:34.73 ($D F=27$) Part 2: $29.23(D F=28)$

Table 3b Hurdle regressions for 1992 and 1995 Females (full sample)

	1992		1995	
	Part 1: $\operatorname{Pr}(\mathrm{Y}>0)$ (Logit)			
	Coef.	z-value	Coef.	z-value
absdys_2	0.0070	18.853	0.0071	18.691
married	0.3232	5.604	0.2500	4.501
pre_marr	0.4193	7.740	0.3421	6.658
age	0.0121	5.744	0.0166	7.326
children	0.1534	6.881	0.1667	8.078
educatio	-0.1218	-16.559	-0.1037	-14.858
nonScand	0.0718	0.540	0.1537	1.193
income	0.1165	13.708	0.1359	16.297
inc_sqr	-0.0029	-10.480	-0.0034	-12.673
spou_inc	-0.0089	-5.248	-0.0084	-5.142
wealth	-0.0015	-2.929	-0.0052	-8.761
experien	-0.0071	-2.118	-0.0106	-3.307
senority	-0.0060	-1.831	0.0012	0.383
partime	-0.1272	-3.182	-0.1153	-2.983
unemperc	-0.0030	-0.321	-0.0250	-2.404
Constant	-1.8379	-13.040	-2.2849	-16.492
Loglikelihood	-156		-1620	
N	401		428	
Mean predicted	0.14		0.13	

	Part 2: $\mathrm{E}(\mathrm{Y} \mid \mathrm{Y} \geq 1)$ (Negative binomial)			
	Coef.	z-value	Coef.	z-value
absdys_2	0.0023	5.983	0.0026	6.510
married	0.0342	0.567	-0.0196	-0.348
pre_marr	0.0150	0.269	-0.0254	-0.481
age	0.0160	7.174	0.0157	6.560
children	0.0520	2.168	0.0544	2.417
educatio	-0.0332	-4.411	-0.0188	-2.546
nonScand	0.2817	2.006	0.0265	0.195
income	-0.0149	-2.270	0.0066	0.946
inc_sqr	0.0002	1.387	-0.0004	-2.162
spou_inc	-0.0046	-2.588	-0.0021	-1.311
wealth	0.0001	0.151	-0.0003	-0.489
experien	-0.0088	-2.461	-0.0086	-2.480
senority	0.0060	1.662	0.0036	1.116
partime	-0.0208	-0.493	0.0178	0.430
unemperc	-0.0038	-0.398	-0.0025	-0.223
Constant	4.1158	29.431	3.7715	26.915
alpha	1.3596		1.3689	
Loglikelihood	-301		-3075	
N	58		59	
Mean predicted	70		69	

Note: Location and sector dummies are used in the regressions but not reported LR tests $\beta^{92}=\beta^{95}$: Part 1: 44.98 ($\mathrm{DF}=27$) Part 2: 26.35 ($\mathrm{DF}=28$)

Table 4a Hurdle regressions for common sample (males)

	1992		1995	
	Part 1: $\operatorname{Pr}(\mathbf{Y}>0)($ Logit $)$			
	Coef.	z-value	Coef.	z-value
absdys_2	0.0096	17.574	0.0080	15.750
married	0.2736	3.647	0.2106	2.918
pre_marr	0.3462	4.533	0.3223	4.568
age	0.0064	1.583	0.0161	4.129
children	-0.0712	-2.236	-0.0192	-0.628
educatio	-0.1422	-15.187	-0.1247	-14.216
nonScand	0.2110	1.450	0.2059	1.340
income	0.0023	0.386	0.0524	6.586
inc_sqr	-0.0001	-1.423	-0.0012	-7.764
spou_inc	-0.0110	-3.208	-0.0138	-4.286
wealth	-0.0013	-1.567	-0.0028	-3.886
experien	0.0134	2.107	-0.0040	-0.687
senority	-0.0122	-3.332	-0.0053	-1.690
parttime	-0.4924	-4.408	-0.1508	-1.428
unemperc	0.0246	2.020	0.0138	1.016
Constant	-1.2265	-7.369	-1.7735	-10.074
Loglikelihood	-10119.0		-10591.2	
N	35473		35473	
Mean predicted	0.0907		0.0967	

	Part 2: $\mathrm{E}(\mathbf{Y} \mid \mathbf{Y} \geq \mathbf{1})($ Negative binomial)			
	Coef.	Z -value	Coef.	z -value
absdys_2	0.0029	4.879	0.0028	4.757
married	0.1245	1.481	0.0983	1.191
pre_marr	0.1236	1.490	0.1872	2.368
age	0.0121	2.677	0.0290	6.584
children	-0.0361	-1.032	0.0285	0.806
educatio	-0.0039	-0.363	-0.0107	-1.029
nonScand	0.1810	1.059	-0.3603	-2.069
income	-0.0094	-2.185	-0.0243	-2.576
inc_sqr	0.0001	1.672	0.0002	1.577
spou_inc	-0.0092	-2.308	-0.0079	-2.188
wealth	-0.0001	-0.167	0.0018	2.138
experien	0.0005	0.070	-0.0181	-2.701
senority	-0.0079	-1.884	-0.0060	-1.656
partime	0.0032	0.026	0.1120	0.924
unemperc	-0.0057	-0.400	-0.0292	-1.831
Constant	3.7194	21.253	3.8333	19.597
alpha	1.5011		1.5418	
Loglikelihood	-16062.9		-17511.0	
N	3218		3429	
Mean predicted	57.7		67.0	

Note: Location and sector dummies are used in the regressions but not reported
LR tests $\beta^{92}=\beta^{95}$: Part 1: $54.13(\mathrm{DF}=27) \quad$ Part 2: $43.59(\mathrm{DF}=28)$

Table 4b Hurdle regressions for common sample (females)

	1992		1995	
	Part 1: $\operatorname{Pr}(\mathbf{Y}>\mathbf{0})($ Logit)			
	Coef.	z-value	Coef.	z-value
absdys_2	0.0078	17.954	0.0071	17.714
married	0.3111	4.694	0.2368	3.902
pre_marr	0.4389	7.167	0.3099	5.549
age	0.0105	4.083	0.0159	6.444
children	0.1328	5.256	0.1687	7.208
educatio	-0.1125	-13.577	-0.1050	-13.803
nonScand	0.0497	0.315	0.3365	2.197
income	0.1351	13.044	0.1143	11.699
inc_sqr	-0.0035	-10.387	-0.0028	-9.417
spou_inc	-0.0081	-4.071	-0.0082	-4.677
wealth	-0.0020	-3.144	-0.0051	-8.118
experien	-0.0070	-1.835	-0.0099	-2.838
senority	-0.0088	-2.316	0.0006	0.175
parttime	-0.1081	-2.347	-0.0948	-2.187
unemperc	-0.0046	-0.437	-0.0271	-2.376
Constant	-2.0470	-12.569	-2.0742	-12.960
Loglikelihood	-12444.4	-13468.5		
N	33658		33658	
Mean predicted	0.1331		0.1492	

	Part 2: $\mathrm{E}(\mathbf{Y} \mid \mathbf{Y} \geq 1)($ Negative binomial)			
	Coef.	Z -value	Coef.	z -value
absdys_2	0.0021	4.866	0.0026	6.380
married	0.0250	0.362	0.0113	0.185
pre_marr	0.0314	0.490	0.0032	0.055
age	0.0115	4.199	0.0149	5.786
children	0.0806	2.878	0.0362	1.432
educatio	-0.0319	-3.764	-0.0144	-1.797
nonScand	0.1391	0.832	0.0140	0.088
income	0.0059	0.563	-0.0014	-0.164
inc_sqr	-0.0002	-0.644	-0.0002	-0.948
spou_inc	-0.0037	-1.780	-0.0029	-1.746
wealth	-0.0006	-0.866	-0.0004	-0.658
experien	-0.0081	-1.967	-0.0085	-2.276
senority	0.0070	1.661	0.0002	0.073
parttime	-0.0884	-1.763	0.0159	0.342
unemperc	-0.0083	-0.744	-0.0033	-0.267
cons	3.9501	23.811	3.8667	24.164
alpha	1.3617		1.3633	
Loglikelihood	-22374.2		-26197.5	
N	4479		5023	
Mean predicted	57.0		71.3	

Note: Location and sector dummies are used in the regressions but not reported
LR tests $\beta^{92}=\beta^{95}$: Part 1: $52.26(\mathrm{DF}=27) \quad$ Part 2: 92.08 ($\mathrm{DF}=28$)

Table 5a Hurdle regressions for marginal and non-marginal samples (males)

		199				199		
	Non-ma	nal	Marg	$\text { t 1: } \operatorname{Pr}($	Non-ma (Logit)		Marg	
	Coef.	z-value	Coef.	z-value	Coef.	z-value	Coef.	z-value
absdys_2	0.0083	18.226	0.0179	2.794	0.0076	16.329	0.0237	4.209
married	0.2540	3.882	0.5350	1.388	0.0914	1.366	0.2099	0.691
pre_marr	0.3409	5.121	0.4512	1.275	0.2611	4.017	0.3854	1.420
age	0.0184	6.054	-0.0025	-0.116	0.0158	4.424	0.0121	0.635
children	-0.1041	-3.564	-0.0719	-0.452	0.0086	0.302	0.0082	0.057
educatio	-0.1350	-16.758	-0.1309	-2.841	-0.1212	-14.827	-0.1671	-4.288
nonScand	0.2343	1.897	0.2514	0.517	0.1461	1.098	-0.5794	-1.034
income	0.0057	1.029	0.1064	2.669	0.0491	7.217	0.0255	2.018
inc_sqr	-0.0002	-2.217	-0.0030	-2.712	-0.0012	-8.517	-0.0001	-0.726
spou_inc	-0.0111	-3.735	-0.0031	-0.166	-0.0117	-3.853	-0.0121	-0.709
wealth	-0.0017	-2.703	-0.0309	-2.862	-0.0026	-4.008	-0.0057	-1.230
experien	-0.0024	-0.459	0.0437	1.451	-0.0004	-0.071	-0.0045	-0.188
senority	-0.0148	-4.843	0.0220	0.165	-0.0065	-2.194	0.1881	1.684
parttime	-0.3810	-3.663	-0.3908	-1.243	-0.2421	-2.518	-0.3362	-1.384
unemperc	0.0165	1.519	-0.0238	-0.447	0.0064	0.513	0.0133	0.257
Constant	-1.3078	-8.849	-1.9597	-2.367	-1.6947	-10.781	-1.0049	-1.479
Loglikelihood	-12314.7		-456.2		-12238.5		-673.2	
N	38154		1708		40685		2254	
Mean predicted	0.1090		0.0872		0.0974		0.0998	

Note: Location and sector dummies are used in the regressions but not reported
LR tests $\beta^{\text {non-marg }}=\beta^{\text {marg }}: \quad$ Part 1, 1992: 43.85 ($\mathrm{DF}=27$) \quad Part 2, 1992: 31.90 ($\mathrm{DF}=28$)
Part 1, 1995: 52.79 (DF=27) Part 2, 1995: 24.65 (DF=28)

Table 5b Hurdle regressions for marginal and non-marginal samples (females)

		199				199		
	Non-ma	inal	Marg	$\text { 1: } \operatorname{Pr}$	Non-ma (Logit)		Marg	
	z-value	Coef.	z-value	Coef.	z-value	Coef.	z-value z	
absdys_2	0.0069	18.349	0.0176	3.991	0.0069	17.987	0.0183	3.687
married	0.2914	4.901	0.2914	1.183	0.1887	3.303	0.9557	3.857
pre_marr	0.3756	6.757	0.6299	2.605	0.2926	5.556	0.9080	3.942
age	0.0097	4.457	0.0153	1.493	0.0162	6.905	-0.0055	-0.472
children	0.1130	4.727	0.1741	2.147	0.1464	6.654	0.0306	0.384
educatio	-0.1163	-15.210	-0.1217	-3.706	-0.1001	-13.832	-0.0575	-1.821
nonScand	0.0659	0.464	-0.1193	-0.292	0.1983	1.463	-0.4303	-0.936
income	0.0932	10.389	0.1696	4.252	0.1226	13.803	0.1469	3.701
inc_sqr	-0.0023	-8.142	-0.0047	-2.927	-0.0030	-10.986	-0.0050	-3.157
spou_inc	-0.0095	-5.440	-0.0008	-0.110	-0.0080	-4.808	-0.0164	-1.966
wealth	-0.0013	-2.561	-0.0060	-1.773	-0.0050	-8.430	-0.0088	-2.173
experien	-0.0054	-1.602	-0.0256	-1.584	-0.0106	-3.213	0.0064	0.395
senority	-0.0063	-1.907	0.0690	0.706	0.0008	0.259	0.2111	2.209
parttime	-0.1116	-2.628	-0.2543	-1.687	-0.1069	-2.608	-0.2194	-1.461
unemperc	-0.0041	-0.424	-0.0216	-0.557	-0.0269	-2.498	-0.0098	-0.210
Constant	-1.5761	-10.444	-1.8177	-2.973	-2.1361	-14.452	-2.6486	-4.148
Loglikelihood	-14347.6		-815.1		-14903.8		-855.0	
N	34812		2320		37484		2529	
Mean predicted	0.1555		0.1259		0.1473		0.1170	

[^5]Table 6 Decompositions of mean differences in outcomes

| | | | All | | | Males | | Females | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Total | Charac-
 teristics | Behavi-
 our | Total | Charac-
 teristics | Behavi-
 our | Total | Charac-
 teristics | Behavi-
 our |
| Full
 sample 95
 vs. 92,
 Part 1 | -0.0083 | -0.0053 | -0.0030 | -0.0096 | $-0-0096$ | $(-)$ | -0.0067 | -0.0041 | -0.0027 |
| Full
 sample 95
 vs. 92,
 Part 2 | -3.2 | -3.2 | $(-)$ | -6.9 | -6.9 | $(-)$ | -0.5 | -0.5 | $(-)$ |
| Common
 sample 95
 vs. 92,
 Part 1 | 0.0109 | 0.0028 | 0.0082 | 0.0059 | 0.0002 | 0.0058 | 0.0162 | 0.0058 | 0.0104 |
| Common
 sample 95
 vs. 92,
 Part 2 | 12.1 | 0.9 | 11.2 | 9.0 | 1.0 | 8.0 | 14.3 | 1.3 | 12.0 |
| Marg. vs.
 non-marg,
 92, Part 1 | -0.0217 | -0.0240 | 0.0023 | -0.0217 | -0.0192 | -0.0025 | -0.0296 | -0.0296 | $(-)$ |
| Marg. vs.
 non-marg,
 92, Part 2 | -7.9 | -7.9 | $(-)$ | -7.3 | -7.3 | $(-)$ | -7.4 | -7.4 | $(-)$ |
| Marg. vs.
 non-marg,
 95, Part 1 | -0.0124 | -0.0205 | 0.0081 | 0.0024 | -0.0109 | 0.0133 | -0.0302 | -0.0328 | 0.0025 |
| Marg. vs.
 non-marg,
 95, Part 2 | -0.2 | -0.2 | $(-)$ | 1.6 | 1.6 | $(-)$ | -1.0 | -1.0 | $(-)$ |

Notes: Part 1: $\operatorname{Pr}(\mathrm{Y}>0)$ Part 2: $\mathrm{E}(\mathrm{Y} \mid \mathrm{Y}>0)$
Non-rejection of $\beta^{0}=\beta^{1}$ is interpreted as Total difference $=$ Difference due to characteristics

Table A1 LR test for equal coefficients males and females

	Part 1 (logit)	Part 2 (negbin)
Full sample 1992	206.0	50.6
1995	205.4	64.4
Common sample 1992	188.8	26.4
Non-marginal 1992	140.2	63.6
1995	171.0	55.2
Marginal 1992	25.6	24.4
1995	158.6	61.8
	42.8	29.0

DF= 27 for part 1, 28 for part 2 with critical values 40.1 and 41.3 (5\%)

[^0]: ${ }^{1}$ NOK 12 ~ $£ 1$
 ${ }^{2}$ As of 1998, the employer's period is increased to 16 days.

[^1]: ${ }^{3}$ KIRUT is a Norwegian acronym that roughly translates into "Clients into, through and out of the Social Insurance System".

[^2]: ${ }^{4}$ This information is based on the registrations in the employers' register. Employers are obliged to report to this register all new employees who are expected to stay in the job for at least three days.

[^3]: ${ }^{5}$ See Cameron and Trivedi (1998) for a comprehensive review of count data models.

[^4]: Note: Location and sector dummies are used in the regressions but not reported
 LR tests $\beta^{\text {non-marg }}=\beta^{\text {marg }}: \quad$ Part 1, 1992: $67.00(\mathrm{DF}=28) \quad$ Part 2, 1992: 30.22 (DF=29)
 Part 1, 1995: 78.53 (DF=28) Part 2, 1995: 27.65 ($D F=29$)

[^5]: Note: Location and sector dummies are used in the regressions but not reported
 LR tests $\beta^{\text {non-marg }}=\beta^{\text {marg }}: \quad$ Part 1, 1992: 39.34 (DF=27) \quad Part 2, 1992: 26.72 (DF=28)
 Part 1, 1995: 43.25 (DF=27) Part 2, 1995: 29.64 (DF=28)

