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Abstract

Approximation formulae are developed for the bias of ordinary and gen-
eralized Least Squares Dummy Variable (LSDV) estimators in dynamic
panel data models. Results from Kiviet (1995, 1999) are extended to higher-
order dynamic panel data models with general covariance structure. The
focus is on estimation of both short- and long-run coe¢cients. The results
show that proper modelling of the disturbance covariance structure is indis-
pensable. The bias approximations are used to construct bias corrected es-
timators which are then applied to quarterly data from 14 European Union
countries. Money demand functions for M1; M2 and M3 are estimated
for the EU area as a whole for the period 1991:I-1995:IV. The empirical
results show that in general plausible long-run e¤ects are obtained by the
bias corrected estimators. Moreover, bias correction can be substantial un-
derlining the importance of more re…ned estimation techniques. Also the
e¢ciency gains by exploiting the heteroscedasticity and cross-correlation
patterns between countries are considerable.

1. Introduction

In this study we analyse various least squares based estimation procedures for the
dynamic panel data model with …xed individual e¤ects and a nonscalar covari-
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ance matrix. Both the ordinary and generalized Least Squares Dummy Variables
(LSDV) estimators are considered. The choice of the model and estimators is
based mainly on the typical empirical study at hand, i.e. estimation of money
demand functions in the area of the European Union (EU). The data are a cross-
section of times series for 14 EU countries and the number of cross-section units
N in the dataset is relatively small compared with the time dimension T . In
an earlier simulation study (Bun and Kiviet, 1999), we found that in panel data
models with a scalar covariance matrix the bias of least squares based techniques
is relatively small compared to instrumental variables based methods when T is
larger than N . Based on a mean squared error criterion, least squares methods
are to be preferred in this case.

Notwithstanding the superior performance of least squares methods, they are
still biased in dynamic models and require T large for consistency. Kiviet (1995,
1999) derives an approximation formula for the bias of the ordinary LSDV estima-
tor in the …rst-order stable dynamic panel data model with normal disturbances
and a scalar covariance matrix. We use these and other results on bias correction
in higher-order dynamic regression models (Kiviet and Phillips, 1994) to develop
bias expressions for higher-order dynamic panel data models with general covari-
ance structure. Both extensions are necessary to apply bias corrected estimators to
the data used in the empirical study of money demand. It turns out that the …rst-
order dynamic model is not general enough to capture all the dynamic features
in the data. Apart from cross-sectional heteroscedasticity, also interdependencies
between countries are likely to be present, i.e. individual disturbance terms may
be correlated. To the extent that there is in fact cross-sectional heteroscedasticity
and also dependencies between the cross-section units in the dataset, one should
explicitly take them into account in any inference procedure exploiting the panel
nature of the data.

In the case of the money demand relationship the long-run e¤ects are impor-
tant for policymakers. Hence, a clear distinction is made between estimation of
short- and long-run parameter vectors. The direct bias correction on long-run
coe¢cients, proposed by Pesaran and Zhao (1999) in the context of the dynamic
random coe¢cients model, is applicable here also. In the type of model analysed
in this study, the estimation of the variances of the coe¢cient estimators by con-
ventional asymptotic expressions can be dramatically inaccurate (Freedman and
Peters, 1984). Hence, we make use of bootstrap procedures to estimate standard
errors.

The bias expressions developed here are used to construct bias corrected esti-
mators and they are applied in the empirical study on money demand. Various
authors have estimated a money demand function based on aggregated time se-
ries for the whole EU area and tested the stability of this function through time
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(Kremers and Lane, 1990; Monticelli and Papi, 1996; Fase and Winder, 1998).
All those studies use time series techniques, but considering the EU countries as
a cross-section one can possibly use panel data techniques.

As compared with the aggregate time series approach the use of panel data
techniques is di¤erent at least in two respects. First of all, it is not necessary
to convert money stock and income measures for the di¤erent countries into one
common currency as is the case for the aggregated time series approach. As long
as a suitable conversion measure and functional form are chosen, the individual
constants in the panel data model will absorb the e¤ects of this conversion. Sec-
ond, as in dynamic panel data models the individual e¤ects are typically …ltered
out before estimation, the cross-section dimension in the panel implies extra data
to estimate the same number of unknown parameters. Hence, it seems possible
to use fewer time observations as in the aggregate time series approach. To the
extent that one is primarily interested in a description of the very near past this
is convenient, because especially the short-run parameters of the money demand
relationship may not have been constant over the last few decades.

Section 2 gives an outline of the model. In evaluating the bias terms of the
estimators, a detailed knowledge of the stochastic structure of the model is needed
and this is described in this section. In section 3 bias expressions for ordinary
and generalized LSDV estimators are developed. Estimators of both short- and
long-run parameters are analysed. In section 4 the limiting distributions of the
various estimators are given and an outline is given of the bootstrap procedure for
estimating the standard errors. In section 5 the estimation techniques are applied
to estimate EU wide demand functions for M1, M2 and M3. The emphasis is on
the plausibility of coe¢cient estimates, the magnitude of bias correction terms and
e¢ciency gains through taking into account the more general covariance structure
in the estimation procedure. Section 6 concludes.

2. Model

We consider the higher-order dynamic panel data model

yit =
PX

p=1

°pyi;t¡p + ¯
0xit + ´i + "it; i = 1; :::; N ; t = 1; :::; T: (2.1)

In this model the dependent variable yit is regressed on a K£1 vector of explana-
tory variables xit; P lagged values of the dependent variable and an individual
speci…c constant ´i. The explanatory variables in xit are assumed to be strictly
exogenous, i.e.

E [xit"js] = 0; 8i; j; t; s;
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and the individual e¤ects ´i are assumed …xed, but unknown. Note that both
the univariate processes for yit and the elements of xit may contain unit roots.
However, the relationship (2.1) between yit and xit is assumed to be stable. For p =
1 this implies j°1j < 1, but in higher order models more complicated restrictions
on the autoregressive coe¢cients are required for stability. The disturbances "it
are uncorrelated through time, but we allow for heteroscedasticity across cross-
section units and non-zero contemporaneous cross-correlations, i.e.

E ["it] = 0; 8i; t;
E ["it"jt] = ¾ij ; 8i; j; t;
E ["it"js] = 0; 8i; j; t 6= s:

Stacking the observations over time we got

yi =
PX

p=1

°pyi;¡p +Xi¯ + ´i¶T + "i i = 1; :::; N (2.2)

= Wi± + ´i¶T + "i

where yi;¡p = (yi;1¡p; :::; yi;T¡p)0; Xi = (xi1; :::; xiT )0, ¶T = (1; :::; 1)0 a T £ 1 vector

of ones, ± = (°0; ¯ 0)
0
; ° = (°1; :::; °P )

0 and Wi = [yi;¡1
...:::

...yi;¡P
...Xi]:

Like Kiviet (1999) we decompose y into a relevant random component, denoted
by a tilde, and irrelevant random plus deterministic components, denoted by a
bar. The relevant random component is in some way related to the disturbance
term "it; while the irrelevant component is not, i.e.

~yi =
PX

p=1

°p~yi;¡p + "i; i = 1; :::; N; (2.3)

¹yi =
PX

p=1

°p¹yi;¡p +Xi¯ + ´i¶T ;

where we use the assumption that we have …xed individual e¤ects and only strict
exogenous explanatory variables, i.e. ~Xi = O and ~́i = 0. For the initial values
we assume

~yi;1¡p = 0; p = 1; :::; P; (2.4)

¹yi;1¡p = yi;1¡p;

so we condition on p …xed starting values. Introducing a T £ T matrix LT with
ones on the …rst subdiagonal and zeros elsewhere and de…ning

¡T =

0
@IT ¡

PX

p=1

°pL
p
T

1
A
¡1

; (2.5)
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we write for the relevant random components from (2.3)

~yi = ¡T"i; i = 1; :::; N: (2.6)

To analyse the estimators in the next section we need a decomposition of the
matrix ATWi with AT = (IT ¡ 1

T
¶T ¶

0
T ): We write

AT ~Wi = AT [~yi;¡1
...:::

...~yi;¡P
... ~Xi] (2.7)

=
PX

p=1

ATL
p
T¡T"ie

0
p;

because ~Xi = O and AT ~yi;¡p = ATL
p
T ~yi and where ep is (P +K)£ 1 unit vector

with its pth element equal to one.
Stacking the observations also across individuals one gets

y =W± +D´ + "; (2.8)

where ´ = (´1; :::; ´N )
0 is a N £ 1 vector, W = [W 0

1

...:::
...W 0

N ]
0 and D = (IN  ¶T ) are

NT £ (K+P ) and NT £N matrices of stacked observations respectively whereas
y and " are N £ T vectors. The assumptions about " can be written as

E ["] = 0; (2.9)

E [""0] =  = § IT ;

with § a N £ N matrix with typical element ¾ij: For the relevant stochastic
components in AW we …nd from (2.7)

A ~W =
PX

p=1

ALp¡"e0p (2.10)

=
PX

p=1

¦p"e
0
p;

where A = IN  AT , L = IN  LT ; ¡ = IN  ¡T and ¦p = ALp¡.
Model (2.8) with (2.9) is a generalized dynamic regression model and in the

next section e¢cient estimation of both short- and long-run coe¢cients will be
considered. The elements of the parameter vector ± are called short-run coe¤cients
and µ = ¯=(1¡ PP

p=1 °p) is called the long-run coe¢cient vector.
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3. Coe¢cient estimators

3.1. short-run coe¢cients

The ordinary least squares estimator for ± in (2.8) is the familiar Least Squares
Dummy Variables (LSDV) or …xed e¤ect estimator. Using partitioned regression
results it can be expressed as

±̂LSDV = (W 0MDW )
¡1W 0MDy (3.1)

= (W 0AW )¡1W 0Ay;

where MD = INT ¡D(D0D)¡1D0 = A. Note that A = IN AT is the well-known
within transformation which wipes out the individual e¤ects ´.

The estimation error is

±̂LSDV ¡ ± = (W 0AW )¡1W 0A"; (3.2)

which depends in a non-linear way on the stochastic term " because of (2.10).
De…ning Q = E [W 0AW ] using the same approach as in Kiviet (1995, 1999), but
now for …xed N; we expand

(W 0AW )¡1 = Q¡1 ¡Q¡1(W 0AW ¡Q)Q¡1 (3.3)

+Q¡1(W 0AW ¡Q)Q¡1(W 0AW ¡Q)Q¡1
+op(T

¡2);

and we …nd for the estimation error

(W 0AW )¡1W 0A" = 2Q¡1W 0A"¡Q¡1W 0AWQ¡1W 0A"+ op(T
¡1): (3.4)

Hence, for the bias of the LSDV estimator we …nd

E
h
±̂LSDV ¡ ±

i
= 2Q¡1E [W 0A"]¡Q¡1E

h
W 0AWQ¡1W 0A"

i
+ o(T¡1): (3.5)

In Appendix A it is shown that the approximation for the bias in the LSDV
estimator equals

E
h
±̂LSDV ¡ ±

i
= BLSDV (T

¡1) + o(T¡1) (3.6)

=
X

p

tr(¦p)Q
¡1ep

¡
X

p

Q¡1 ¹W 0¦pA ¹WQ
¡1ep ¡

X

p

tr
h
Q¡1 ¹W 0¦pA ¹W

i
Q¡1ep

¡2
X

p

X

r

X

s

qrstr(¦
0
p¦r¦s)Q

¡1ep + o(T
¡1);
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with

¹W = E(W );

Q = ¹W 0A ¹W +
X

p

X

r

tr(¦0p¦r)epe
0
r;

qrs = e0rQ
¡1es:

Using this result, we can construct a bias corrected estimator, denoted by LSDVc,
as

±̂LSDV c = ±̂LSDV ¡ B̂LSDV (T¡1); (3.7)

using any consistent preliminary estimators for ± and  in B̂(T¡1), i.e. based on
the ordinary LSDV estimator. The corrected LSDV estimator will be unbiased
upto order O(T¡1), i.e.

E
h
±̂LSDV c

i
= ± + o(T¡1): (3.8)

The ordinary LSDV estimator does not take the covariance structure of " into
account. Hence, we analyse also the generalized LSDV estimator of ±; denoted by
±̂GLSDV , i.e.

±̂GLSDV = (W 0A¡1AW )¡1W 0A¡1Ay (3.9)

= (W 0A¡1W )¡1W 0A¡1y;

with

AkA = (IN  AT )(§k  IT )(IN AT ) (3.10)

= §k  AT
= Ak

= kA;

for every real k:
The estimation error is

±̂GLSDV ¡ ± = (W 0A¡1AW )¡1W 0A¡1A": (3.11)

De…ning A¤ = A¡1A and Q¤ = E [W 0A¤W ] we expand

(W 0A¤W )¡1 = Q¤¡1 ¡Q¤¡1(W 0A¤W ¡Q¤)Q¤¡1 (3.12)

+Q¤¡1(W 0A¤W ¡Q¤)Q¤¡1(W 0A¤W ¡Q¤)Q¤¡1
+op(T

¡2);

and we …nd for the estimation error

(W 0A¤W )¡1W 0A¤" = 2Q¤¡1W 0A¤"¡Q¤¡1W 0A¤WQ¤¡1W 0A¤"+ op(T
¡1): (3.13)
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Hence, for the bias of the GLSDV estimator we …nd

E
h
±̂GLSDV ¡ ±

i
= 2Q¤¡1E [W 0A¤"]¡Q¤¡1E

h
W 0A¤WQ¤¡1W 0A¤"

i
+ o(T¡1);

(3.14)
In Appendix A we derive the following approximation for the bias in the GLSDV
estimator

E
h
±̂GLSDV ¡ ±

i
= BGLSDV (T

¡1) + o(T¡1) (3.15)

=
X

p

tr(¦p)Q
¤¡1ep

¡
X

p

Q¤¡1 ¹W 0¡1¦pA ¹WQ
¤¡1ep

¡
X

p

tr
³
Q¤¡1 ¹W 0¡1¦pA ¹W

´
Q¤¡1ep

¡2
X

p

X

r

X

s

q¤rstr(¦
0
p¦r¦s)Q

¤¡1ep + o(T
¡1);

with

Q¤ = ¹W 0A¡1A ¹W +
X

p

X

r

tr(¦0p¦r)epe
0
r;

q¤rs = e0rQ
¤¡1es:

In practice the GLSDV estimator cannot be calculated because  is unknown.
We therefore analyse also the two-step feasible GLSDV estimator

±̂FGLSDV = (W
0Â¡1AW )¡1W 0Â¡1Ay; (3.16)

where any consistent preliminary estimator, i.e. the LSDV estimator, for the
covariance matrix is used

̂ = §̂ IT ; (3.17)

¾̂ij =
(yi ¡Wi±̂LSDV )

0AT (yj ¡Wj ±̂LSDV )

T
:

It can be shown that the bias to order O(T¡1) in the FGLSDV estimator is the
same as for the GLSDV. To prove this we follow the lines of Kiviet et al. (1995).
The estimation error of the FGLSDV estimator is

±̂FGLSDV ¡ ± = (W 0A(§̂¡1  IT )AW )¡1W 0A(§̂¡1  IT )A"; (3.18)

and in Appendix B it is shown that

E
h
±̂FGLSDV ¡ ±

i
= E

h
±̂GLSDV ¡ ±

i
+ o(T¡1); (3.19)
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i.e. the bias approximation to order O(T¡1); denoted by BFGLSDV (T¡1); is the
same as for the GLSDV estimator. Hence, we can construct a bias corrected
estimator, denoted by FGLSDVc, as

±̂FGLSDV c = ±̂FGLSDV ¡ B̂FGLSDV (T¡1); (3.20)

using any consistent preliminary estimators for ± and  in B̂FGLSDV (T¡1). The
corrected FGLSDV estimator will be unbiased upto order O(T¡1), i.e.

E
h
±̂FGLSDV c

i
= ± + o(T¡1):

3.2. long-run coe¢cients

The estimators in the prevous subsection can be used to construct estimators for
the long-run coe¢cients µ by

µ̂ = ^̄=(1¡ ¶0P °̂); (3.21)

where ^̄ and °̂ are any of the estimators considered before and ¶P is a P £
1 vector of ones. If bias corrected estimators like (3.7) or (3.20) are used the
resulting long-run estimator is called ”naive” by Pesaran and Zhao (1999), which
analyse several estimators of the long-run coe¢cients in the context of the dynamic
random coe¢cient model. The ”naive” or indirect way of bias correction in (3.21)
does not lead to an estimator unbiased to order O(T¡1). Note that ±̂ = ± +

Op(T
¡1
2 ) irrespective of the estimator used. Hence, we can write

µ̂ =
^̄

(1¡ ¶0P°)¡ ¶0P (°̂ ¡ °)

=
^̄

(1¡ ¶0P°)

"
1¡ ¶0P (°̂ ¡ °)

(1¡ ¶0P°)

#¡1

=
^̄

(1¡ ¶0P°)
+

^̄

(1¡ ¶0P°)
¶0P (°̂ ¡ °)
(1¡ ¶0P°)

¡
^̄

(1¡ ¶0P°)
(¶0P °̂ ¡ ¶0P°)2
(1¡ ¶0P°)2

+ op(T
¡1)

=
¯

(1¡ ¶0P°)
+

1

(1¡ ¶0P°)
(^̄ ¡ ¯) + ¯

(1¡ ¶0P°)2
(¶0P °̂ ¡ ¶0P°)

+
1

(1¡ ¶0P°)2
(^̄ ¡ ¯)(¶0P °̂ ¡ ¶0P°)¡

¯

(1¡ ¶0P°)3
(¶0P °̂ ¡ ¶0P°)2 + op(T¡1):

Therefore, we …nd for the expectation of µ̂ the following

E
h
µ̂
i
=

¯

(1¡ ¶0P°)
+

1

(1¡ ¶0P°)
E(^̄ ¡ ¯) + ¯

(1¡ ¶0P°)2
E(¶0P °̂ ¡ ¶0P°) (3.22)

+
1

(1¡ ¶0P°)2
E(^̄ ¡ ¯)(¶0P °̂ ¡ ¶0P°)¡

¯

(1¡ ¶0P°)3
E(¶0P °̂ ¡ ¶0P°)2 + o(T¡1)

= µ +O(T¡1);
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because all remaining terms are in general non-zero and of order O(T¡1).
Pesaran and Zhao (1999) propose a direct way of bias correction. Using original

uncorrected estimators as in (3.1) or (3.9), rearranging (3.22) we …nd for the bias
in the long-run coe¢cientvector µ

E
h
µ̂ ¡ µ

i
= Bµ + o(T

¡1) (3.23)

=
1

(1¡ ¶0P°)2
h
(1¡ ¶0P°) (B¯ + µ¶0PB°) + Cov(^̄; ¶0P °̂)¡ µV ar(¶0P °̂)

i

+o(T¡1);

where B¯ = E(^̄¡¯) and B° = E(°̂¡°): This can be used to construct corrected
estimators of the long-run coe¢cients, which are unbiased upto order O(T¡1).

4. Asymptotic distributions and estimation of standard er-
rors

In this section we concentrate on the asymptotic distributions of the various co-
e¢cient estimators. We will focus …rst on the limiting distributions of estimators
for the short- and long-run coe¢cient vectors. Note that bias corrected estima-
tors have the same limiting behaviour as their uncorrected counterparts. Next, we
consider the estimation of standard errors of the coe¢cient estimators by either
using asymptotic variance expressions following from the limiting distributions or
applying bootstrap procedures.

4.1. Limiting distributions

Let us de…ne

RWAW = plim
T!1

1

T
W 0AW (4.1)

RWAW = plim
T!1

1

T
W 0AW

R¤WAW = plim
T!1

1

T
W 0A¡1W:

From the usual asymptotic reasoning it follows that
p
T

³
±̂LSDV ¡ ±

´
»

T!1
N

h
0; R¡1WAWRWAWR

¡1
WAW

i
; (4.2)

and p
T

³
±̂GLSDV ¡ ±

´
»

T!1
N

h
0; R¤¡1WAW

i
: (4.3)
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The limiting distribution of the FGLSDV estimator can be derived from the lim-
iting behaviour of the GLSDV estimator. Assuming

plim
T!1

1

T
W 0A(̂¡ ¡1)W = 0

plim
T!1

1

T
W 0A(̂¡1 ¡ ¡1)" = 0;

the FGLSDV estimator has the same limiting distribution as the GLSDV estima-
tor, i.e. p

T
³
±̂FGLSDV ¡ ±

´
»

T!1
N

h
0; R¤¡1WAW

i
: (4.4)

The limiting distributions for the estimators of µ readily follow. We can write
µ̂ = g(±̂) with ±̂ any of the estimators analysed above. Denoting the …rst derivative
with respect to ±̂

0
by the K £ (K + P ) matrix G we have

p
T

³
µ̂ ¡ µ

´
»

T!1
N [0; GV G0]

where V is the asymptotic covariance matrix of ±̂:

4.2. Variance estimators

In principle the limiting results of the previous subsection can be used to estimate
the …nite sample covariance matrices of ±̂ and µ̂. The asymptotic covariance matrix
for ±̂ can be estimated consistently with the following expressions

V̂ (±̂LSDV ) = (W 0AW )¡1W 0ÂW (W 0AW )¡1 (4.5)

V̂ (±̂LSDV c) = (W 0AW )¡1W 0ÂcW (W
0AW )¡1

V̂ (±̂FGLSDV ) = (W 0Â¡1W )¡1

V̂ (±̂FGLSDV c) = (W 0Â¡1c W )
¡1:

The elements of ̂ = §̂IT and ̂c = §̂c IT can be consistently estimated using
the LSDV or LSDVc residuals, i.e.

¾̂ij =
(yi ¡Wi±̂LSDV )

0AT (yj ¡Wj ±̂LSDV )

T
(4.6)

¾̂cij =
(yi ¡Wi±̂LSDV c)

0AT (yj ¡Wj ±̂LSDV c)

T
:

The asymptotic covariance matrix for µ̂ can be estimated according to

EstAsyV ar(µ̂) = G
h
V̂ (±̂)

i
G0
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where V̂ (±̂) is any of the expressions in (4.5).
Freedman and Peters (1984) note that for the FGLSDV estimator the expres-

sion in (4.5) is very inaccurate in …nite samples, i.e. the true standard deviations
are underestimated using conventional …rst-order asymptotic approximations. An
alternative approach is using bootstrap procedures to estimate standard errors.
Following their lines of reasoning we propose the following parametric resampling
scheme, i.e.

² Obtain the estimators ±̂, §̂ and µ̂ (LSDV, LSDVc, FGLSDV or FGLSDVc)

² Take a random sample E¤ =("¤1; :::; "
¤
T ) from N(0; §̂) with "¤t = ("

¤
1t; :::; "

¤
Nt)

0;
t = 1; :::; T; and construct "¤ = vec(E¤0)

² Calculate Ay¤ = AW ¤±̂ +A"¤

² Estimate the model and calculate bootstrap estimators ±̂
¤

and µ̂
¤

with the
resampled data (y¤;W ¤)

Remark that due to the presence of lagged values of y in the regressor matrix
W there is an asterisk in the resampled data matrixW ¤, i.e. a recursive sampling
scheme is used. Because the normality assumption is used in the derivation of the
bias expressions we employ this assumption here and use a parametric bootstrap
procedure contrary to Freedman and Peters (1984).

It can be shown that the same limiting distribution theory holds for the boot-
strapped estimators ±̂

¤
and µ̂

¤
, so asymptotically there is no di¤erence with the

original estimators. However, the …nite sample distribution of ±̂
¤

and µ̂
¤

can be
simulated on the computer, i.e. by repeating the steps above B times, B realisa-
tions of ±̂

¤
and µ̂

¤
are created and

1

B ¡ 1
BX

b=1

"
±̂
¤
b ¡ 1

B

BX

b=1

±̂
¤
b

# "
±̂
¤
b ¡ 1

B

BX

b=1

±̂
¤
b

#0

1

B ¡ 1
BX

b=1

"
µ̂
¤
b ¡ 1

B

BX

b=1

µ̂
¤
b

# "
µ̂
¤
b ¡ 1

B

BX

b=1

µ̂
¤
b

#0

are the bootstrap estimators of the unknown covariance matrices of ±̂ and µ̂. The
results in Freedman and Peters (1984) show that for the FGLSDV estimator this
bootstrap variance estimator of ±̂ underestimates the true covariance matrix of ±̂
much less than the conventional formula in (4.5). In the next section we will use
this bootstrap procedure also for the other estimators.
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5. The demand for money in the European Union

In this section the performance of the various estimators is examined in an em-
pirical application. Money demand in the European Union is analysed by panel
data techniques. The dataset used is from Fase and Winder (1998) and contains
time series on several variables for Belgium (BE), Denmark (DK), Germany (GE),
United Kingdom (UK), Finland (FIN), France (FR), Greece (GR), Ireland (IE),
Italy (IT), The Netherlands (NL), Austria (AT), Portugal (PT), Spain (SP) and
Sweden (SWE). Together with Luxembourg, which is not included in the dataset,
these countries currently form the European Union. The time series of the vari-
ables have quarterly frequency, are not seasonally adjusted and are collected over
the period 1970-1995. The variables in the dataset are M1, M2, M3, real GNP,
GNP de‡ator, short- and long-term interest rates.

For each of the de…nitions of money stock speci…cation (2.1) is estimated using

xit = (ln gnpit; ln gnpi;t¡1; rsit; rsi;t¡1; rlit; rli;t¡1; irit; iri;t¡1; s1;t; s2;t; s3;t)
0 (5.1)

and where the dependent variable yit is the logarithm of real money stock, i.e.
ln(M1=P )it; ln(M2=P )it or ln(M3=P )it: The explanatory variables are contem-
poraneous and one-period lagged values of real income (gnp), short- (rs) and
long-term (rl) interest rates and the in‡ation rate (ir): To account for seasonal
patterns a set of seasonal dummy variables (s1; s2 and s3) is included. Further-
more, lagged values of the dependent variable are incorporated to model autore-
gressive dynamic adjustments. Separate regressions for the individual countries,
which are not reported here, suggest to include one lagged value for the M1 spec-
i…cation and to use two lagged values for the M2 and M3 speci…cations. Hence,
the dimension of the parameter vector ± is K + 1 for the M1 speci…cation and
K + 2 for M2 and M3 with K = 11:

In order to make valid inference with panel data techniques both parameter
constancy through time and over countries must hold to some extent. To avoid
parameter variability through time, we have chosen to analyse a relatively short
time span, i.e. only the years after the German reuni…cation in 1990 are considered
and the sample period is 1991:I-1995:IV. As far as parameter constancy over
countries is concerned, it is reasonable to assume that by taking a recent period
the problem of parameter heterogeneity across countries is mitigated. We are
therefore reasonably con…dent to impose common slope vectors, but allow for
individual speci…c e¤ects.

The number of countries analysed is N = 14. For M1 one period is lost in
constructing the lagged value of the dependent variable, so for this speci…cation
the …rst estimation period is 1991:II and T = 19: The estimation period for M2
and M3 is 1991:III-1995:IV, so one extra period is lost in constructing the two-
period lagged value of the dependent variable and T = 18:
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For M1 the estimation results of the short-run coe¢cients are in Table 1.
Table 2 gives the estimates for the long-run coe¢cients. In these and other ta-
bles only the bootstrapped standard errors are given, because, as argued before,
standard …rst-order asymptotic approximations are inaccurate here. The number
of bootstrap replications used is 100. Using the LSDV residuals the LMF1 and
LMF2 test statistics for …rst and second order residual autocorrelation are 0.040
and 2.424 (p-values are 0.841 and 0.096). Regarding the short-run coe¢cient
estimators the bias corrected estimators produce in general a higher autoregres-
sive coe¢cient than original estimators, while the bias correction in the other
coe¢cients seems to be small. Considering the variance estimators the decrease
in variance is apparant when using the FGLSDV estimator compared with the
LSDV estimator. The table with long-run coe¢cients reasserts these e¢ciency
gains. Note that the di¤erence between ”naive” and ”direct” bias correction of
long-run coe¢cients is neglible. The long-term coe¢cients have plausible values
commonly found in empirical studies on the demand for M1:

The results for M2 are in Tables 3 and 4. The LMF1 and LMF2 statistics
are 0.099 and 0.249 (p-values are 0.754 and 0.781). As noted before, a two-period
lagged value of the dependent variable is included also, so the bias corrections
according to (3.6) and (3.15) have been applied for P = 2: The sum of the au-
toregressive coe¢cients is considerably higher than the same parameter for M1
implying more persistence in the demand for M2 as compared with M1: Again
the di¤erence in accuracy of ordinary and generalized LSDV is apparent, i.e. es-
timated standard deviations are considerably lower in case of generalized LSDV.
The long-run coe¢cients in Table 4 are again plausible in most cases. However,
the bias corrected LSDV estimates take somewhat other values than the other
estimators.

Tables 5 and 6 contain the estimation results forM3. The LMF1 and LMF2
statistics are 0.000 and 2.369 (p-values are 0.993 and 0.106). The same remarks
on the speci…cation ofM2 can be made forM3 too. However, forM3 the long-run
e¤ect of in‡ation has the a priori expected negative sign although it is still poorly
determined. Also the coe¢cient of the two-period lagged dependent variable is
small and not signi…cant despite its signi…cance in some of the individual regres-
sions. Note the di¤erence in point estimates of the various corrected long-run
estimators: while for the short-run estimators the LSDV and GLSDV results are
more or less the same, di¤erent results are found for the long-run estimators.

We compare the general pattern of the long-term estimates with the (semi)
elasticities found in earlier research based on the aggregated time series approach.
Overviews of these results can be found in Fase and Winder (1993) and Monticelli
and Papi (1996). If not restricted to one, the income elasticity is always close to
unity for M1 and larger than one for both M2 and M3. In this study, the long-
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run estimates of the various corrected estimators re‡ect this pattern in general.
However, the long-run income estimates of the uncorrected estimators are always
below one and likely underestimating the true long-run income e¤ect for M2 and
M3. As far as the interest rate semi-elasticities are concerned, in general they
are close to the estimates found in earlier studies. The only exception is the
long-term interest rate e¤ect for M2; which is found to be particularly strong as
compared with other studies. Considering in‡ation in this study no signi…cant
long-run e¤ects for the in‡ation rate apart from small e¤ects for M3 have been
found, whereas other studies do …nd signi…cant e¤ects also for M1 or M2.

6. Concluding Remarks

With panel data techniques money demand functions for M1; M2 and M3 are
estimated for the EU area as a whole. As far as we know, until now only aggregate
time series studies have been undertaken in this area. Because of the typical
dimensions of the panel at hand, which is dominated by its time dimension, least
squared based methods are used instead of instrumental variables techniques. The
latter are commonly used in the typical small T , large N panel.

Despite its superior performance in this type of panel, least squares estimators
are substantially biased in dynamic models. Hence, approximation formulae for
the bias of the various estimators are developed upto order O(T¡1) using results
of Kiviet (1995, 1999) and related work. These approximations are then used to
construct bias corrected estimators. From the bias approximations it is seen that
falsely assuming a scalar covariance matrix will lead to corrected estimators, which
still contain a bias term of order O(T¡1). This result underlines the importance
of taking into account the true covariance structure of the disturbances.

The empirical results show that in general the bias corrected estimators pro-
duce plausible long-run e¤ects commonly found in empirical studies on money
demand. As such, the panel data approach is a valuable alternative to the aggre-
gate time series approach. Moreover, due to the typical nature of panel data less
time observations are needed compared with the aggregated time series approach.
As is shown by the empirical results the bias terms can be substantial in this type
of data reasserting the importance of more re…ned estimation techniques. Also the
e¢ciency gains of exploiting the heteroscedasticity and cross-correlation patterns
between countries are considerable.
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A. Bias in the ordinary and generalized LSDV estimators

In this appendix the expressions (3.6) and (3.15) are derived. Using the decom-
position of W into a irrelevant and relevant stochastic part, i.e. W = ¹W + ~W; we
have

E [W 0A"] = E
h
¹W 0A"

i
+ E

h
~W 0A"

i

=
PX
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tr(¦p)ep; (A.1)
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Omitting terms with zero moments we have also
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where qrs = e0rQ
¡1es and we have used ¹W 0A ¹W = Q¡P

p

P
r tr(¦

0
p¦r)epe

0
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(A.1) and (A.3) the result in (3.6) now readily follows.
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For the bias in the GLSDV estimator we have to evaluate the expectations in
(3.14). Now

E [W 0A¤"] = E
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i
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i
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E
h
"0¡1¦p"

i
ep

=
PX

p=1

tr(¦p)ep (A.4)
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Also we write omitting terms with zero moments
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Hence, using (A.4) and (A.6) the bias expression in (3.15) follows.
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B. Bias in the feasible generalized LSDV estimator

We give in this appendix a proof of (3.19), i.e. the bias approximations of the
GLSDV and FGLSDV estimators are the same upto order O(T¡1): We will need
the following

§̂ = E0ATE=T +Op(T
¡1) (B.1)

E = ("1; :::; "N);

where "i is the T £ 1 disturbance vector belonging to individual i: A proof of a
similar result is given in Kiviet et al. (1993). As a consequence §̂ ¡ § can be
replaced by E0ATE=T ¡ § without changing the order of the approximation, i.e

E0ATE=T = §+Op(T
¡ 1
2 ); (B.2)

and
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The estimation error of the FGLSDV estimator (3.18) consists of two factors.
The …rst factor in (3.18) can be expressed as
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The second and third term in this expression are actually of order Op(1), so
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We now consider the second factor in (3.18)
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using the fact that A8 and A9 are Op(1) and Q¤¡1 is O(T¡1). Evaluating the
expectation of the estimation error in (B.10) we got many terms. Noting that
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we have the following
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We have to evaluate the expectations of the six remaining terms on the right

hand side in (B.12). It is easily seen that E [A8] = 0 and E [A4Q¤¡1A6] = 0: We
will sketch the proof that the other four expectations are all of order O(T¡1), so
premultiplied by Q¤¡1 their contribution is o(T¡1). In the following all summa-
tions run from 1 to N except the index p; which runs from 1 to P . Consider
…rst

E [A9] = ¡E
"
~W 0A

Ã
§¡1

"
E0ATE

T
¡ §

#
§¡1  IT

!
A"

#

= ¡E
"
~W 0A

Ã
§¡1

E0ATE

T
§¡1  IT

!
A"

#

+E
h
~W 0A(§¡1  IT )A"

i
: (B.13)

De…ning »j as the jth column of §¡1 and ¾ij as its ijth element we write for the
…rst term in (B.13)
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Evaluating a particular term in (B.14) we got
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Hence, substituting (B.15) into (B.14)
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and now it is easily seen from (B.13) and (B.16) that E [A9] is of order O(T¡1):
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For the …rst term in (B.17) we write
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The expectation of a particular term in (B.19) is
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Using this result and follow the same steps back it follows that E [A4Q¤¡1A7] is
of order O(T¡1): In the same fashion the expectations of the remaining two terms
A5Q

¤¡1A6 and A5Q¤¡1A7 can be shown to be of order O(T¡1) too.
Having derived the order of magnitude of the expectations of the several terms

on the right hand side of (B.12) and noting that Q¤¡1 is of order O(T¡1); it is
straightforward to see that

E
h
±̂FGLSDV ¡ ±

i
¡E

h
±̂GLSDV ¡ ±

i
= o(T¡1); (B.21)

so the magnitude of the bias upto order O(T¡1) is the same for the GLSDV and
FGLSDV estimators.
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Table 1:
Estimation results of the short-run coe¢cients for M1*

LSDV LSDV c FGLSDV FGLSDV c

ln(M1=P )i;t¡1 0.631 0.733 0.645 0.682
(0.059) (0.061) (0.045) (0.042)

ln gnpit 0.278 0.248 0.277 0.269
(0.045) (0.042) (0.033) (0.032)

ln gnpi;t¡1 0.020 -0.005 0.018 0.012
(0.041) (0.039) (0.030) (0.030)

rsit -0.006 -0.006 -0.005 -0.004
(0.002) (0.002) (0.002) (0.002)

rsi;t¡1 0.002 0.003 0.001 0.001
(0.002) (0.002) (0.002) (0.002)

rlit -0.006 -0.005 -0.004 -0.004
(0.003) (0.003) (0.003) (0.003)

rli;t¡1 0.004 0.003 0.003 0.001
(0.004) (0.003) (0.003) (0.003)

irit -0.003 -0.003 -0.003 -0.002
(0.002) (0.002) (0.002) (0.002)

iri;t¡1 0.003 0.003 0.003 0.002
(0.002) (0.002) (0.002) (0.002)

* N=14, T=19, P+K=12
* Figures in parentheses are standard errors
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Table 2:
Long-run estimates for M1*

LSDV LSDV c FGLSDV FGLSDV c
gnp 0.809 0.910 0.935 0.829 0.881 0.880

(0.157) (0.194) (0.192) (0.119) (0.120) (0.120)
rs -0.012 -0.012 -0.012 -0.011 -0.011 -0.012

(0.004) (0.005) (0.005) (0.003) (0.003) (0.003)
rl -0.005 -0.007 -0.007 -0.007 -0.007 -0.008

(0.007) (0.008) (0.008) (0.006) (0.006) (0.006)
ir -0.000 0.000 -0.000 0.000 0.000 0.000

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

* Figures in parentheses are standard errors

Table 3:
Estimation results of the short-run coe¢cients for M2*

LSDV LSDV c FGLSDV FGLSDV c

ln(M2=P )i;t¡1 0.906 0.979 0.912 0.972
(0.046) (0.047) (0.036) (0.036)

ln(M2=P )i;t¡2 -0.085 -0.071 -0.110 -0.139
(0.043) (0.044) (0.034) (0.034)

ln gnpit 0.210 0.203 0.199 0.200
(0.037) (0.037) (0.028) (0.028)

ln gnpi;t¡1 -0.041 -0.061 -0.043 -0.055
(0.041) (0.041) (0.032) (0.032)

rsit -0.001 -0.000 -0.000 -0.000
(0.002) (0.002) (0.001) (0.001)

rsi;t¡1 0.004 0.004 0.003 0.003
(0.001) (0.001) (0.001) (0.001)

rlit -0.005 -0.006 -0.004 -0.004
(0.002) (0.002) (0.002) (0.002)

rli;t¡1 -0.000 0.001 -0.001 -0.001
(0.002) (0.002) (0.002) (0.002)

irit 0.003 0.003 0.003 0.003
(0.002) (0.002) (0.002) (0.002)

iri;t¡1 -0.002 -0.002 -0.003 -0.003
(0.002) (0.002) (0.002) (0.002)

* N=14, T=18, P+K=13
* Figures in parentheses are standard errors
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Table 4:
Long-run estimates for M2*

LSDV LSDV c FGLSDV FGLSDV c
gnp 0.945 1.540 1.383 0.781 0.871 1.008

(0.250) (0.257) (0.257) (0.203) (0.204) (0.208)
rs 0.017 0.035 0.029 0.016 0.019 0.024

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)
rl -0.032 -0.053 -0.048 -0.030 -0.032 -0.039

(0.008) (0.008) (0.008) (0.007) (0.007) (0.007)
ir 0.007 0.013 0.010 0.001 0.002 0.002

(0.009) (0.009) (0.009) (0.007) (0.007) (0.007)

* Figures in parentheses are standard errors

Table 5:
Estimation results of the short-run coe¢cients for M3*

LSDV LSDV c FGLSDV FGLSDV c

ln(M3=P )i;t¡1 0.840 0.918 0.822 0.847
(0.090) (0.094) (0.074) (0.075)

ln(M3=P )i;t¡2 0.018 0.027 0.030 0.014
(0.087) (0.089) (0.070) (0.071)

ln gnpit 0.200 0.190 0.199 0.198
(0.039) (0.039) (0.030) (0.030)

ln gnpi;t¡1 -0.068 -0.092 -0.056 -0.059
(0.037) (0.038) (0.028) (0.028)

rsit -0.000 -0.000 -0.001 -0.001
(0.001) (0.002) (0.001) (0.001)

rsi;t¡1 0.002 0.002 0.003 0.003
(0.001) (0.001) (0.001) (0.001)

rlit -0.004 -0.004 -0.003 -0.003
(0.002) (0.002) (0.002) (0.002)

rli;t¡1 0.002 0.002 0.000 0.000
(0.002) (0.002) (0.002) (0.002)

irit -0.002 -0.002 -0.002 -0.002
(0.002) (0.002) (0.001) (0.001)

iri;t¡1 0.002 0.002 0.001 0.001
(0.002) (0.002) (0.001) (0.001)

* N=14, T=18, P+K=13
* Figures in parentheses are standard errors
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Table 6:
Long-run estimates for M3*

LSDV LSDV c FGLSDV FGLSDV c
gnp 0.928 1.772 1.506 0.972 0.999 1.335

(0.264) (0.289) (0.295) (0.219) (0.219) (0.237)
rs 0.011 0.035 0.025 0.014 0.015 0.025

(0.007) (0.008) (0.008) (0.006) (0.006) (0.007)
rl -0.018 -0.037 -0.031 -0.019 -0.019 -0.027

(0.011) (0.012) (0.012) (0.009) (0.009) (0.010)
ir -0.001 -0.000 -0.002 -0.003 -0.003 -0.004

(0.010) (0.010) (0.011) (0.007) (0.007) (0.008)

* Figures in parentheses are standard errors
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