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Abstract

This paper conducts an econometric evaluation of structural macroeconomic
asset pricing models. A one-sector dynamic stochastic general equilibrium
model (DSGE) with habit formation and capital adjustment costs is consid-
ered. Based on the log-linearized DSGE model, a Gaussian probability model
for the joint distribution of aggregate consumption, investment, and a vector
of asset returns Rt is specified. We facilitate the stochastic discount factor Mt

representation obtained from the DSGE model and impose the no-arbitrage
condition IEt−1[MtRt] = 1. In addition to the full general equilibrium model,
we also consider consumption and production based partial equilibrium spec-
ifications, and a more general reference model. To evaluate the various asset
pricing models we compute posterior model probabilities and loss function based
measures of model adequacy.
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1 Introduction

In most theoretical frameworks in financial economics since the original work of
Sharpe (1964), Lintner (1965), and Ross (1976), it has been argued that the ex-
pected return on any asset should be able to be expressed as a function of the
particular asset’s covariance with aggregate macroeconomic risks which underlie
fluctuations the return to the market portfolio. Such models include various ver-
sions of the capital asset pricing model (CAPM) and the arbitrage pricing model
(APT). A central approach to much of the recent research in macroeconomics, in
particular business cycle theory, has been to explore how various versions of the
dynamic stochastic general equilibrium (DSGE) paradigm can deliver multivariate
stochastic process representations for macroeconomic aggregates which explain ob-
served economic fluctuations in aggregate time series such as output, investment,
and consumption. But originating with the work of Brock (1979, 1982) and Donald-
son and Mehra (1984), it is well known that DSGE models are able to articulate the
mapping between this sources of business cycle fluctuations and asset price move-
ments. This work showed how many macroeconomic business cycle models can easily
be turned into the various types of asset pricing models typically used in financial
economics. In this sense, they expanded the set of joint restrictions on business
cycle and asset pricing measurements which could be taken to economic data. A re-
search agenda along these lines was suggested in Cochrane and Hansen (1992), and
many recent papers have attempted to integrate asset pricing models and business
cycle models within a unified theoretical framework. For example, Rouwenhorst
(1995) and Jermann (1998) examine the implications of a simple one-sector DSGE
model, while Boldrin et al. (1999) and Christiano and Fisher (1998) analyzed the
joint behavior of asset returns and business cycle variables in a more complicated
multi-sector model. In the latter three DSGE papers, great successes are reported
in matching the stylized facts concerning the joint distribution of asset returns and
business cycle measurements. In particular, the authors suggest that their models
can account for the observed equity premium and average risk free rate without
implying counterfactual high risk aversion of the economic agents.

An important additional advantage of DSGE models in the spirit of Brock (1982) is
that they can easily be specialized to deliver partial equilibrium asset pricing models,
commonly used in the financial economics literature. By imposing exogeneity on
one or more of the sectors of a fully specified model economy, various asset pricing
frameworks can be studied. In the so-called consumption based asset pricing models,
e.g. Lucas (1978), Breeden (1979), and Hansen and Singleton (1982, 1983), the
production sector is treated as exogenous. The households’ intertemporal utility
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optimization problem is used to derive restrictions on the comovements of asset
prices and consumption. Campbell (1996) and Campbell and Cochrane (1999a,
1999b) discuss recent work along this line, that finds the data to be consistent with
model predictions. Alternatively, Cochrane (1991, 1996), Restoy and Rockinger
(1994), Reffett (1998) and Kasa (1998) have formalized a complementary class of
asset pricing models in which the household side is treated as exogenous. These
partial equilibrium specifications are often referred to as production-based asset
pricing (PBAP) models. Great successes have also been reported in this literature.
Cochrane (1996) finds that a simple production based asset pricing model that
relates asset returns to returns on aggregate investment performs as well as the
CAPM and the Chen, Ross and Roll factor model and outperforms the simple
consumption based model.

Among the many issues raised by recent work in asset pricing, two appear to be
central in the literature on asset pricing implications of macroeconomic equilibrium
models: (i) the models’ ability to reproduce the observed premium on equity re-
turns without generating counterfactual implications for other variables, such as
consumption and the risk free rate. (ii) The ability of the stochastic discount fac-
tor Mt, that is obtained from the structural model, to price observed asset returns
Rt, while generating economic fluctuations in consumption, investment, and out-
put which are consistent with business cycle facts. In this paper we will focus
on the second issue. We propose a unified theoretical and econometric framework
for building and evaluating various forms of DSGE, CBAP, and PBAP models for
macroeconomic and financial data. Instead of exploiting or testing the no-arbitrage
restriction IEt−1[MtRt] = 1 in a generalized methods of moments (GMM) frame-
work, e.g. Hansen and Singleton (1982, 1983) and Cochrane (1996), we will consider
fully specified probability models for vectors of macroeconomic variables and asset
returns. We will facilitate the stochastic discount factor representations from DSGE,
CBAP, or PBAP models and impose the no-arbitrage condition on the joint distri-
bution. This approach will make the various specifications comparable, since all of
them treat consumption, investment, and asset returns as endogenous, and do not
rely on different sets of exogenous variables.

In general, it is assumed that asset returns and macroeconomic aggregates are jointly
log-normally distributed, as for instance in Campbell and Cochrane (1999a, 1999b).
The conditional log-normality assumption is more restrictive than the distributional
assumption underlying the GMM approach but it will enable a very interesting like-
lihood based econometric analysis. To complete the specification of the probability
models some auxiliary assumptions with respect to the time variation of conditional



3

moments are necessary. Depending on the nature of these assumptions, the struc-
tural asset pricing models can be used to obtain conditional mean specifications for
asset return data, conditional variance specifications, or a restriction on the time
variation of conditional means and variances. In the first case, the analysis is re-
lated to the literature on predictability of stock returns, e.g. Kandal and Stambaugh
(1996), Keim and Stambaugh (1986), and Kirby (1998). In the second case, the work
is related to the extensive literature on models of conditional heteroskedasticity. Un-
like in pure ARCH or GARCH models, in which time variation in second moments
is modeled as autoregressive process, e.g. Engle (1982), Bollerslev (1986) and the
subsequent literature, we are interested in examining whether the time variation
could be linked to fluctuations of macroeconomic variables.

Our goal is to determine which type of fully specified or partially specified equilib-
rium models have the most realistic asset pricing implications. Through embedding
the model restrictions into a joint probability distribution of macroeconomic and
financial variables we will go a step further than it has been possible in methods
of moments frameworks or in simple calibration excercises, e.g. Jermann (1998)
and Boldrin et al. (1999). A crucial issue that has to be taken into account in
the econometric evaluation is the potential misspecification of the structural asset
pricing models. To cope with the potential misspecification we introduce a re-
duced form reference model and adopt the model evaluation approach proposed in
Schorfheide (1999). By placing prior probabilities on the competing specifications
and the reference model we create a mixture distribution for macroeconomic and
financial variables. By conditioning on observed data, one obtains a posterior dis-
tribution for population characteristics and a posterior predictive distribution for
future observations. This overall posterior distribution serves as a benchmark for
the evaluation of the various structural models.

The paper is organized as follows. Section 2 provides the specification of our equilib-
rium model, that can be used to obtain DSGE, consumption based, and production
based asset pricing models. Section 3 explains how the no-arbitrage condition is
exploited to obtain various empirical models for a vector of macroeconomic and
financial time series. Section 4 presents the empirical results. Section 5 concludes
and discusses extensions of our work.

2 The Model Economy

Consider an economy which is formulated as a version of the model presented in
Brock (1979, 1982) and Donaldson and Mehra (1984), amended to include capital



4

adjustment costs as suggested in Cochrane (1991) and Jermann (1998). The model
economy consists of a representative household and a firm. The households is en-
dowed with ownership in the firm and a unit of time which it supplies inelasticly.
The household makes consumption and savings decisions to maximize its expected
lifetime discounted utility. The firm sells output goods, accumulates capital, and
rents labor from households. It is endowed with a constant returns to scale produc-
tion technology

ft(Kt, NtXt) = TtK
α
t (NtXt)α (1)

where Kt is the capital stock, which has been determined at time t − 1, nt is the
input of labor, and Xt is a labor augmenting technological process. In this paper
we assume that lnXt = γt is determinimistic. Total factor productivity Tt evolves
according to a stationary AR(1) process with innovation εp,t. According to the
transformation surface [

Cζt + θtI
ζ
t

]1/ζ
= ft(Kt, NtXt) (2)

the output can be transformed into consumption goods Ct or investment goods It.
The specification could be interpreted as a reduced form of a two sector model
(Huffman and Wynne, 1998). The process θt shifts the relative productivity of the
investment good sector. We will assume that θt is an exogenous AR(1) process with
steady state θ∗, driven by the innovation εθ,t. We assume that εt = [εp,t, εθ,t] ∼
iidN (0,Σεε). Unlike in Boldrin et al. (1999) the specification discussed in this
section implies that capital can be moved frictionless from one sector to another.

The firm purchases current period investment goods to accumulate capital according
to

Kt+1 = (1− δ)Kt + It (1− φ(It/Kt)) (3)

where
φ(It/Kt) =

η

2
[
(It/Kt)2 − ϕ

]
is a capital adjustment cost, as in Cochrane (1991, 1996) and Jermann (1998).

2.1 Decision Problems

The representative household maximizes the sum of discounted expected future util-
ity subject to a budget constraint. In period t, after realization of time t shocks, the
household chooses consumption Ct, and allocates some wealth into an asset. At de-
notes the holdings of the asset and Vt its price. The household receives wage income
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wt per unit nt of labor. Dividend payments are denoted by Dt. The household’s
problem can be formally stated as

max
{Ct,At+1}

IE0

[ ∞∑
t=1

βt
(Ct − Zt)1−τ

1− τ

]
(4)

s.t. Ct +A′t+1Vt ≤WtNt +At(Vt +Dt) (Λt)

Zt = ψ1Zt−1 + ψ2(eγ − ψ1)Ct−1 (Ξt)

where Zt denotes a habit stock. The higher consumption has been in the past, the
lower is the utility obtained from a given level of consumption. Our simple model
abstracts from the labor-leisure choice.

Let Λ and Ξ be the multipliers associated with the budget constraint and the habit
evolution equations, respectively. The first order conditions for the strictly interior
solution to this maximization problem are

Λt = (Ct − Zt)−τ + ψ2(eγ − ψ1)βIEt[Ξt+1] (5)

Ξt = −(Ct − Zt)−τ + ψ1βIEt[Ξt+1] (6)

1 = IEt[Mt+1Rt+1] (7)

where Mt is the stochastic discount factor βΛt/Λt−1 and Rt is the asset return
(Vt +Dt)/Vt−1.

The representative firm maximizes the expected value of the sum of its discounted
net cash flow. Since the net cash flow is paid out as dividends to the shareholders,
i.e., the representative household, the firm discounts date t revenues at the marginal
utility of consumption βtΛt/Λ0. Formally, the firm solves the following problem

max
{Cft ,I

f
t ,Kt+1,Nd

t }
IE0

[ ∞∑
t=0

βt
Λt
Λ0
Dt

]
(8)

s.t. Dt ≤ Cft −WtN
d
t

Ct + It = f(Kt, NtXt)

Kt+1 ≤ (1− δ)Kt + Ift − φ(Ift /Kt)Kt

The expression for dividends recognizes that investment goods are both sold and
purchased by the firm. Tobin’s q for this model is given by

Qt = θt

(
It
Kt

)ζ−1(
1− 3η

2
(
I2
t

K2
t

) +
η

2
ϕ

)−1

(9)

The return on a one period investment is given by

RIt+1 =
Qt+1

Qt
((1− δ)+η

(
It+1

Kt+1

)3

+
1
Qt

(
1 + θt+1

(
It+1

Kt+1

)ζ)1− 1
ζ

αTt+1K
α−1
t+1 Xt+1

(10)
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Thus, we obtained a representation for the stochastic discount factor Mt from the
household side, and derived a representation for the investment return RIt from the
production side of the model economy. This stylized model economy with only one
asset can be related to a more complex reality with many assets as follows. A
necessary condition for the absence of arbitrage opportunities across a set of assets
j = 1, . . . , J , e.g. Hansen and Richard (1986), is the existence of a strictly positive
random variable Mt with the property

IEt[Mt+1Rj,t+1] = 1 (11)

where Rj,t is the return to the j’th asset. The model economy provides a stochastic
representation for the stochastic discount factor. This paper focuses on the careful
examination of the no arbitrage condition. We will use equilibrium relationships de-
rived from the model economy together with Equation (11) to obtain a probabilistic
representation of aggregate consumption, investment, and asset returns.

2.2 A Full General Equilibrium (DSGE) Model

If household and production side of the model economy are combined and the ap-
propriate market clearing conditions are imposed, then a fully specified dynamic
stochastic general equilibrium model is obtained. The model variables can be de-
trended by the deterministic trend eγt. Standard methods, e.g. Sims (1996), can
be used to compute a log-linear approximation to the equilibrium of the model
economy. The DSGE model provides a complete multivariate stochastic process
representation for aggregate variables. Since it is driven by two stochastic shocks,
the marginal distribution of consumption and investment will be non-singular.

2.3 A Consumption Based (CBAP) Model

To obtain a consumption based asset pricing model, the production side of the
economy is regarded as exogenous. For instance, in Lucas (1978) model, consumers
are receiving an endowment in every period. In Lucas’ version there is no investment.
However, to make all specifications comparable to each other we will introduce
investment as exogenous process. The evolution of the capital stock is determined by
the capital accumulation equation. The output C̃t that is available for consumption
in any period t is determined via production function and transformation surface. As
in Lucas’ model, ex post the representative agent simply consumes the endowment
in each period. The stochastic discount factor Mt = βΛt/Λt−1 can be obtained from
the first order conditions of the household’s problem
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max
{Ct,At+1}

IE0

[ ∞∑
t=1

βt
(Ct − Zt)1−τ

1− τ

]
(12)

s.t. Ct +At+1Vt ≤ C̃t +At(Vt +Dt)

Zt = ψ1Zt−1 + ψ2(eγ − ψ1)Ct−1

In our empirical illustration below we will follow a slightly different approach. Both
investment and the consumption endowment C̃t are treated as jointly exogenous and
are modeled as reduced form vector autoregression (VAR). The first-order conditions
from the household’s maximization problem, see Section 2.1, are used to map the
consumption and investment process into the discount factor Mt.

2.4 A Production Based Model

To obtain a production based asset pricing model, the household side of the economy
is regarded as exogenous. The firm solves the profit maximization problem (8) which
leads to the investment return formula (10). Ex post, investment is determined by the
difference between aggregate consumption and output. This is the production analog
to Lucas’ consumption based model. The investment return is a function of present
and past values of consumption, investment, and the capital stock. Hence, the
calculation of investment returns is similar to Cochrane’s (1996) approach. For the
empirical illustration we will treat consumption and investment as jointly exogenous
and model them as VAR.

2.5 Reference Model

Consumption and investment are represented as a VAR that approximates an infinite
dimensional moving average process. We simply assume that the stochastic discount
factor can be expressed as a function of present and past values of the consumption
and investment process. Unlike in the previous three specifications we do not assume
particular functional forms that are potentially misspecified.

3 Econometric Specifications

Based upon the theoretical models introduced in the previous section, we will now
specify joint probability models for aggregate consumption, investment, and a vector
of asset returns. Let Rt denote an J × 1 vector of one period asset returns with
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elements Rj,t. Moreover, define rt = lnRt, mt = lnMt, wt = [lnCt, ln It]′, and
the n × 1 vector yt = [w′t, r

′
t]

1. We will assume that asset returns and business
cycle variables are jointly log-normally distributed. While this assumption is more
restrictive than the moment assumptions that underlie a GMM analysis, it enables
a likelihood based analysis. Moreover, for quarterly observations of portfolio returns
the log-normality assumption is not unreasonable and quite common in the empirical
finance literature. The empirical models will have the following state space form

yt = Zαt + δt + Fut (13)

αt = Tαt−1 + ηt +Gεt (14)

where ut = [ε′t, ν
′
t], IE[εtε′t] = Σεε, IE[εtν ′t] = Σεν , and IE[νtν ′t] = Σνν . Moreover,

define IE[utu′t] = Σuu, which is composed of Σεε, Σεν , and Σνν . We will use In×n to
denote the n × n identity matrix, 0n×m to denote the n ×m matrix of zeros, and
1n×m to denote the n×m matrix of ones. The likelihood function of the state space
model can be evaluated with the Kalman Filter.

Under the assumption that asset returns and macroeconomic aggregates are condi-
tionally log-normally distributed, the no-arbitrage condition (11) can be rewritten
as follows

ln IEt−1[MtRt] = IEt−1[ln(MtRt)] +
1
2
vart−1[ln(MtRt)] = 0 (15)

We will embody this restriction into the state space specifications below. It is
assumed that the conditional expectation is taken with respect to the information
set generated by all model variables, that is, both yt and αt.

3.1 DSGE Model

Define a m × 1 vector st = [ct, it,mt, kt+1, tt, rt, λt, qt, θt, zt, ξt]′ of model variables.
We will denote percentage deviations from the the deterministic steady state path
s∗t by dst = st − s∗t . The DSGE model leads to the representation

dst = Ddst−1 + Eεt (16)

where εt is a vector of structural disturbances. The elements of the matrices D
and E are functions of the structural model parameters. Define the 1 ×m vector
Γ = [0, 0, 1, 01×(m−3] that selects the stochastic discount factor mt from the vector st,

1Unless otherwise noted we will use lower case letters to denote logs of upper case variables.
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that is, mt = Γst. The (m+1)×1 state vector αt is of the form αt = [IEt−1[dmt], ds′t]
′.

The system matrices of the transition equation are given by

T =

[
0 ΓD

0m×1 D

]
, G =

[
01×2

E

]

In the DSGE model ηt = 0(m+1)×1.

Under the log-normality assumption the no-arbitrage condition can be rewritten as
follows:

IEt−1[rj,t] = −m∗ − IEt−1[dmt]−
1
2
vart−1[drj,t]

−1
2
vart−1[dmt]− covt−1[dmt, drj,t] (17)

We will incorporate this restriction into the specification of the measurement equa-
tion. The system matrices are

Z =

 0 1 0 01×(m−2)

0 0 1 01×(m−2)

−1J×1 0J×1 0J×1 0J×(m−2)

 , F =

[
02×2 02×J

0J×2 IJ×J

]
(18)

The vector δt is defined as

δt =

 c∗ + γt

i∗ + γt

−m∗1J×1 − 1
2diag(Σνν)− 1

2ΓEΣεε(ΓE)′1J×1 − Σνε(ΓE)′

 (19)

where diag(Σεε) is the J×1 vector that contains the diagonal elements of Σνν . This
completes the specification of the DSGE model.

3.2 Consumption Based Model

Consumption and investment follow a stationary VAR process with common deter-
ministic trend w∗t = Φ0 + γ12×1t:

wt − w∗t = Φ1dwt−1 + . . .+ Φpdwt−p + εt (20)

Note that the εt’s do not have the interpretation of productivity and transformation
curve shocks. However, they can be interpreted as linear combinations of the struc-
tural shocks in the DSGE model. The structural component of the CBAP model
has the generic form

Adwt +Bdst = Cdwt−1 +Ddst−1 (21)
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where st is an m × 1 vector of unobserved variables st = [mt, λt, zt, ξt]′. Combin-
ing (21) with the VAR process (20) for consumption and investment yields

dst = B−1Ddst−1 +B−1(C −AΦ1)dwt−1 (22)

−B−1A(Φ2dwt−2 + . . .+ Φpdwt−p)−B−1Aεt

Define the 1×m vector Γ = [1, 01×(m−1)] that selects the stochastic discount factor
mt from the vector st. The state vector αt is of the form αt = [IEt−1dmt, ds

′
t]
′. The

system matrices of the transition equation are given by

T =

[
0 ΓB−1D

0m×1 B−1D

]
, G =

[
01×2

−B−1A

]
(23)

Moreover, the vector ηt is

ηt =

[
Γ

Im×m

]
[B−1(C −AΦ1)dwt−1 −B−1A(Φ2dwt−2 + . . .+ Φpdwt−p)] (24)

The system matrices of the measurement equation are

Z =

[
02×1 02×m

−1J×1 0J×m

]
, F = In×n (25)

The vector δt = [δ′w,t, δ
′
r,t]
′ is defined as

δw,t = Φ0 + γ12×1t (26)

δr,t = −m∗1J×1 −
1
2
diag(Σνν) (27)

−1
2

ΓB−1AΣεε(ΓB−1A)′1J×1 + Σνε(ΓB−1A)′

This completes the specification of the CBAP model.

3.3 Production Based Model

PBAP and CBAP model share a similar structure. Consumption and investment
follow a stationary VAR process with common deterministic trend w∗t = Φ0+γ12×1t:

wt − w∗t = Φ1dwt−1 + . . .+ Φpdwt−p + εt (28)

The structural component of the CBAP model has the generic form

Adwt +Bdst = Cdwt−1 +Ddst−1 (29)

where st is the m× 1 vector of variables st = [rIt , qt, kt+1]′. Define the 1×m vector
Γ = [1, 01×(m−1)] that selects the investment return rIt from the vector st. The state
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vector αt is of the form αt = [IEt−1[drIt ], ds
′
t]
′. The system matrices T , G, Z, F , and

the vector ηt are given by Equations (23), (24), and (25) above.

The main difference between CBAP and PBAP lies in the implication of the no
arbitrage restriction. The production based model does lead to a unique represen-
tation for the stochastic discount factor. Instead, one obtains a representation for
the investment return rIt . However, it is possible to exploit the fact that under the
absence of arbitrage there exists a random variable mt that prices the investment
return rIt , derived from the structural model, as well as the observed asset returns
rt. The no-arbitrage condition leads to

IEt−1[mt] = −IEt−1[rIt ]−
1
2
vart−1[mt]−IEt−1[rIt ]−

1
2
vart−1[rIt ]−covt−1[mt, r

I
t ] (30)

Clearly, Equation (30) does not uniquely identify both the conditional mean and the
conditional variance of the stochastic discount factor.2 For our analysis it is actually
not necessary to identify IEt−1[mt] and vart−1[mt]. We can plug Equation (30) into
Equation (17) and obtain the restriction

IEt−1[rt] = r∗I − IEt−1[drIt ]−
1
2
vart−1[drt]

+
1
2
vart−1[rIt ] + covt−1[mt, r

I
t ]− covt−1[mt, rt]

Under the additional assumption that the stochastic discount factor can be expressed
as a function of the state in the previous period, dst−1, as well as past values of dwt,
and current εt we obtain

dmt = f(dst−1, dwt−1, . . . , dwt−p) +Hεt (32)

Thus, covt−1[dmt, dr
I
t ] = −GΣεε(ΓB−1A)′ and covt−1[dmt, drt] = ΣνεG

′, which leads
to δt = [δ′w,t, δ

′
r,t]
′ and

δw,t = Φ0 + γ12×1t (33)

δr,t = r∗IIJ×1 −
1
2
diag(Σνν) +

1
2

ΓB−1AΣεε(ΓB−1A)′1J×1 (34)

−HΣεε(B−1AΓ)1J×1 − ΣνεH
′

2However, Equation (30) can be exploited to derive Hansen and Jaganathan (1991) type bounds.
It is straightforward to show that the variance of the stochastic discount factor can be bounded by
a function of its mean and the moments of the investment return:

min

(
0,

 q
2(IEτ [rIt ] + IEτ [mt])− var1/2

τ [rIt ]

!2)
(31)

≤ varτ [mt] ≤
 q

2(IEτ [rIt ] + IEτ [mt]) + var1/2
τ [rIt ]

!2
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A common assumption in the PBAP literature, e.g., Cochrane (1996) and Kasa
(1998), to identify a stochastic discount factor is mt = − ln rIt . This assumption
implies that G = B−1A.

Alternatively, we are considering a specification where we do not make any as-
sumptions with respect to covt−1[mt, rt] and covt−1[mt, r

I
t ] other than that they

are constant over time. This leads to δr,t = δr where δr is a J × 1 vector of free
parameters.

4 Empirical Analysis

Quarterly U.S. data from 1970:I to 1998:IV are used for the empirical analysis. The
vector of observables yt consists of log aggregate consumption of goods and services,
log aggregate fixed investment, and log real returns of NYSE size portfolios 1, 5,
10.3 The analysis is Bayesian. Our econometric models consist of a joint probability
distribution for data and parameters. Prior probabilities are placed on the various
model specifications. A pre-sample from 1962:II to 1969:IV is used to parameterize
various prior distributions.

The DSGE model, which we will denote asM1 consists of the following parameters

θ̃DSGE = [α, β∗, δ, lnT ∗, τ, ρp, θ∗, ζ, ρθ, η, ψ1, ψ2]′ (35)

The coefficient matrices Z,F, T,G and the vectors δt and ηt of the state space rep-
resentation are functions of θ̃DSGE . We will refer to these parameters as structural.
The variance and covariance parameters are collected in the matrix

Σuu =

[
Σεε Σεν

Σνε Σνν

]
(36)

The non-redundant elements of Σuu are collected in the vector θ̃Σ. Let θ(1) =
[θ̃DSGE , θ̃Σ].

The marginal prior distributions for the structural parameters are summarized in
columns 3 to 5 of Table 1. The shapes of the densities are chosen to match the
domain of the structural parameters. The prior means correspond to values that
are commonly used in the DSGE literature to calibrate structural models. As in
previous studies, e.g. Canova (1994), Dejong et al. (1996, 1997), and Schorfheide

3The macroeconomic time series are extracted from the DRI database: consumption is the sum
of GCNQ and GCSQ, investment is GIFQ. GPOP is used to convert the series into per capita
terms. The financial series are obtained from the CRSP database. We follow Cochrane’s (1996)
approach to convert monthly nominal returns into quarterly returns.
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(1999), it is assumed that all the structural parameters are a priori independent of
each other. We use an Inverted-Wishart (IW) prior for Σuu

Σuu ∼ IW (ν, S) (37)

with ν = 6 and

S = ν

[
0.012I2×2 02×3

03×2 Σ̃νν

]
where Σ̃νν is the sample covariance matrix of the log-returns rt computed from the
pre-sample.

The CBAP model, also denoted asM2, only uses a subset of the structural param-
eters of the DSGE model

θ̃CBAP = [β∗, γ, τ, ψ1, ψ2]′ (38)

However, in addition to θ̃CBAP it depends on the VAR parameters C = [Φ0,Φ1, . . . ,Φp]
and the covariance matrix Σuu. We use the same marginal prior densities for the
structural parameters of the CBAP model as for the DSGE model. A prior for C
and Σuu is constructed as follows. Let C̃ and Σ̃εε be the OLS estimates of C and
Σεε in Equation 20. based on the pre-sample. Then

Σuu ∼ IW (ν, S) (39)

C|Σuu ∼ N
(
C̃,Σεε ⊗ (νX̃ ′X̃/T̃ )−1

)
(40)

where ν = 6,

S = ν

[
Σ̃εε 02×3

03×2 Σ̃νν

]
and X̃ is the matrix of regressors that corresponds to the coefficient matrix C. T̃ is
the number of pre-sample observations. We are scaling the degrees of freedom for the
Inverted Wishart distribution and the covariance matrix of the normal distribution
to make the prior more diffuse. The parameter vector of the CBAP model is θ(2) =
[θ̃CBAP , θ̃C , tildeθΣ]. Parameter vector and prior for the PBAP model are defined
in a similar fashion, with the exception that

θ̃PBAP = [α, β∗, γ, δ, θ∗, ζ, η]′ (41)

The reference model is fully linear. It is equipped with a conjugate Normal-IW
prior. The parameters of the prior are estimated from the pre-sample. As above,
the degrees of freedom for the IW prior are adjusted to be equal to 6 and the variance
of the Gaussian prior is scaled by T̃ /6.
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Parameters Prior Posterior
Name Range Density Mean (stdd) Mode (stdd)

DSGE Model

α [0,1] Beta 0.300 (0.050) 0.267 (0.001)
β∗ Fixed 0.990 N/A 0.990 N/A
γ IR Gaussian 0.005 (0.001) 0.004 (.0001)
δ Fixed 0.025 N/A 0.025 N/A

lnT ∗ IR Gaussian 6.000 (2.000) 6.221 (0.010)
τ IR+ Gamma 2.000 (1.000) 3.002 (0.404)
ρp [0,1] Beta 0.950 (0.025) 0.954 (0.013)
θ∗ IR+ Gamma 1.000 (0.050) 1.003 (0.042)
ζ IR+ Gamma 1.500 (0.100) 1.428 (0.054)
ρθ [0,1] Beta 0.950 (0.025) 0.988 (0.004)
η IR+ Gamma 300.0 (50.00) 282.9 (23.06)
ψ1 [0,1] Uniform 0.500 (0.083) 0.936 (0.086)
ψ2 IR+ Gamma 0.200 (0.100) 0.229 (0.064)
σp IR+ Inv Gamma 0.010 (∞) 0.006 (.0003)
σθ IR+ Inv Gamma 0.010 (∞) 0.035 (0.002)

CBAP Model

β∗ Fixed 0.990 N/A 0.990 N/A
τ IR+ Gamma 2.000 (1.000) 1.464 (0.980)
ψ1 [0,1] Uniform 0.500 (0.083) 0.521 (0.080)
ψ2 IR+ Gamma 0.200 (0.100) 0.150 (0.798)

PBAP Model

α [0,1] Beta 0.300 (0.050) 0.292 (0.567)
β∗ Fixed 0.990 N/A 0.990 (N/A)
δ Fixed 0.025 N/A 0.025 (N/A)
θ∗ IR+ Gamma 1.000 (0.050) 0.978 (0.412)
ζ IR+ Gamma 1.500 (0.100) 1.346 (0.193)
η IR+ Gamma 300.0 (50.00) 150.1 (47.14)

Table 1: Prior and posterior distribution for the structural parameters of the DSGE,
CBAP, and PBAP specifications. Posterior standard errors are calculated from
Hessian matrix evaluated at the posterior mode. The parameters β and δ were fixed
during the estimation.
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We will subsequently adopt the following notation. Let YT denote the observations
y1, . . . , yT . Prior and posterior model probabilities for models Mi, i = 1, 2, 3, ∗ are
denoted by πi,0 and πi,T , respectively. θ(i) is the generic parameter vector for model
Mi, p(θ(i)|Mi) is its prior density, and p(YT |θ(i),Mi) is the likelihood function.

4.1 Posterior Distributions and Model Probabilities

Since the posterior density p(θ(i)|YT ,Mi) is proportional to the product of likelihood
function and prior, we can obtain posterior mode estimates by

θ̂
(i)
mode = argmax p(YT |θ(i),Mi)p(θ(i)|Mi) (42)

The estimation results for the structural portion of the parameter vector are reported
in columns 6 and 7 of Table 1. Standard errors are calculated from the inverse
Hessian matrix, evaluated at the posterior mode.4

In several dimensions of the parameter space the likelihood function is not very
informative and the prior is hardly updated. The Bayes estimation of the structural
parameters can be interpreted as follows: find values of the structural parameters
such that the model fits the data in a likelihood sense, without deviating too far
from parameter values that are economically plausible.

Table 2 reports the marginal data densities p(YT |Mi) for the four models Mi,
i = 1, . . . , 4. The marginal data densities can be combined with prior probabilities
πi,0 to obtain posterior model probabilities πi,T .

πi,T =
πi,0p(YT |Mi)∑4
i=1 πi,0p(YT |Mi)

, p(YT |Mi) =
∫
p(YT |θi,Mi)p(θi|Mi)dθi (43)

Here θi denotes the vector of parameters for model i, p(YT |θi,Mi) is the likelihood
function, and p(θi|Mi) the prior density. The marginal data density for the reference
model can be computed analytically, since we are using a conjugate prior for its
coefficients. For the other three models we are using a Laplace approximation

p̃(YT |Mi) = (2π)d/2|Σ̃i|1/2p(YT |θ̃i,Mi)p(θ̃i|Mi) (44)

based on a log-quadratic expansion around the posterior mode θ̃i. The covariance
Σ̃i is calculated numerically from the Hessian matrix. The posterior probabilities
can be used to rank the different models.

The marginal data densities indicate that the DSGE model performs slightly better
than the reduced form model and the two partial equilibrium models. The ranking

4These preliminary calculations will be replaced by MCMC draws from the posterior.
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Model Laplace Exact

DSGE 1293.40
CBAP 1288.55
PBAP 1276.68
Reference 1290.25

Table 2: Marginal data densities for the DSGE, CBAP, PBAP specifications. The
values for DSGE, CBAP, and PBAP are obtained by Laplace approximation, the
value for the reference model is calculated exactly.

of the reference model is likely to change with a prior for the coefficients of the asset
return equations that is more closely concentrated around zero. Most interestingly,
the CBAP specification attains higher posterior probability than the PBAP model.
This is contrary to the results in Cochrane (1996), who finds that the PBAP model
outperforms the consumption based models. Part of the reason could be that it is
more difficult to forecast investment returns based on past investment than changes
in marginal utilities based on past consumption. Our approach of explicitly modeling
joint distributions promises to yield new insights that go beyond a methods of
moments or calibration analysis.

4.2 Stochastic Discount Factor

Conditional on observed data YT and parameter values θ(i) it is possible to simulate
the stochastic discount factor process. Let α̂t|t = IE[αt|Yt] and Pt = var[αt|Yt].
The Kalman Filter iterations generate the sequence {α̂t|t, Pt}Tt=1 which characterizes
the distribution p(αt|Yt, θ(i),Mi). We will now derive a formulae to compute the
moments of αt−1|αt, YT , θ(i),Mi which can be used to simulate the sequence of
state vectors α1, . . . , αT backwards, starting at t = T . This procedure is known as
“smoothing”, e.g., Hamilton (1994).

Consider the distribution of [αt−1, yt] conditional on αt and Yt−1. Using the formula
for conditional means and variances of a multivariate normal distribution, it can be
shown that

IE[αt−1|αt, Yt−1] = α̂t−1|t−1 + Pt−1T
′[TPt−1T

′ +GΣεεG
′]−1(αt − T α̂t−1|t−1 − ηt) (45)

IE[yt|αt, Yt−1] = Z(T α̂t−1|t−1 + ηt) + δt (46)

(ZTPt−1T
′ + ZGΣεεG

′)[TPt−1T
′ +GΣεεG

′]−1(αt − T α̂t−1|t−1 − ηt)
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and

var

[
αt−1

yt

∣∣∣∣αt, Yt−1

]
=

[
Pt−1 − Pt−1T

′[TPt−1T
′ +GΣεεG

′]−1TPt−1

−GΣεu[TPt−1T
′ +GΣεεG

′]TPt−1 Σuu

]
(47)

This leads to the following smoothing algorithm

IE[αt−1|αt, Yt] = IE[αt−1|αt, Yt−1] (48)

−(GΣεu[TPt−1T
′ +GΣεεG

′]TPt−1)′Σ−1
uu [yt − IE[yt|αt, Yt−1]

and

var[αt−1|αt, Yt] = Pt−1 − Pt−1T
′[TPt−1T

′ +GΣεεG
′]−1TPt−1

−(GΣεu[TPt−1T
′ +GΣεεG

′]TPt−1)′Σ−1
uu

(GΣεu[TPt−1T
′ +GΣεεG

′]TPt−1) (49)

It can be verified that p(αt−1|αtYt) = p(αt−1|αt, YT )5 We can simulate draws from
the posterior distribution of the stochastic discount factor process (DSGE and CBAP
model) or the investment return process (PBAP) model, by drawing from the pos-
terior distribution of the parameters and then simulating the state vectors αt con-
ditional on the parameters.

[This subsection is incomplete. We are currently conducting the empirical analysis.
We will also report various population moments for the discount factor, the asset
returns and the aggregate variables.]

4.3 Loss Function Based Evaluation

In many cases structural models are designed to capture only limited aspects of
reality and posterior probabilities are not the most interesting statistic to evaluate
structural models. This argument is spelled out in detail in Schorfheide (1999).
To judge asset pricing models we might not only be interested in one-step ahead
forecasting performance, essentially captured by the marginal data densities, but
rather in the economic loss of using one asset pricing model rather than another.

The evaluation approach can be formalized as follows: consider a decision δ and a
loss function L(ST+h, ϕ, δ), that depends on the state of the world in period T + h

and some unobservable population characteristics ϕ. Let δ∗i be the decision that is
5This is clearly true for the DSGE model, since δt and ηt are fixed. It is not quite true for PBAP

and CBAP model. However, by expanding the state vector αt the partial equilibrium models can
be easily casted into a form for which the statement is true.
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optimal under model Mi. The various structural models Mi can be judged based
on the posterior expected loss of the corresponding decisions δ∗i

R(δ∗i |YT ) =
∫
L(ST+h, ϕ, δ

∗
i )

 ∑
i=1,2,3,∗

πi,T p(ST+h, ϕ|YT ,Mi)

 d(ST+h, ϕ) (50)

This approach has been successfully applied to the evaluation of macroeconomic
equilibrium models in Schorfheide (1999) and Chang et al. (1999).

In this subsection we will consider the following decision problem. A risk averse
investor allocates his wealth to the assets j = 1, . . . , J to maximize the expected
utility of next periods’ wealth. Conditional on time T information we calculate
the optimal portfolio allocation δ∗i for the DSGE, CBAP, and PBAP model. To
asses the different asset pricing models, we compute the posterior expected utility
of next periods’ wealth under the mixture of the structural models and the reference
models. This evaluation procedure is closely related to the ideas in McCulloch and
Rossi (1990), Kandel and Stambaugh (1996), and Avramov (1999). We assume that
the investor has the same utility function as the representative agent in the model
economy. The parametrization of the utility function is based on the DSGE model
estimates. The level of wealth that is invested in period T is set equal to the steady
state value of the assets held in our model economy.

[This subsection is incomplete. We are currently conducting the empirical analysis.]

5 Outlook

The prototypical model discussed in Section 2 is a simple one-sector model. Other
authors, e.g. Boldrin et al. (1999), emphasize the importance of multi-sector spec-
ifications in which capital cannot move freely from one sector to the other. While
these authors reported success in the model’s ability to generate a realistic equity
premium, it remains to be verified whether these models generate stochastic dis-
count factors that are helpful for modeling the joint distribution of asset returns
and macroeconomic variables in the sense that has been discussed in this proposal.

To obtain the CBAP and the PBAP specifications we modeled consumption and
investment as exogenous vector autoregression. A theoretically more desirable but
empirically potentially less successful approach is to exploit the restriction imposed
on aggregate consumption and investment by the production function. Moreover, as
there is a large literature on consumption based models that examines various forms
of utility functions, e.g. with external or internal habit formation, it is worthwhile
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to expand the class of production based models and include alternative production
technologies. A crucial aspect in the model development stage is to make sure
that the business cycle implications of the model do not deteriorate as the asset
pricing implications are improved. For this reason we emphasize the joint modeling
of macroeconomic series and asset returns.

As a first step we assumed that the conditional second moments of the asset returns
are constant over time. However, there is a large literature that emphasizes models of
conditional heterskedasticity. The no-arbitrage condition implies that time variation
of conditional covariances has to translate into time variation of the conditional
mean. The next step is to incorporate conditional heterogeneity into our empirical
model. While it is unlikely that our models will outperform sophisticated reduced
form models of the multivariate GARCH or stochastic volatility class, it is interesting
to determine whether the structural models can deliver a useful representation of
conditional heteroskedasticity.
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A Approximating the Equilibrium

For the class of models we construct, under reasonable restrictions on the size of
the adjustment cost, it can be shown that competitive equilibrium exist, and are at
least once differentiable.6 Therefore the use of a log-linear approximation can be
justified on the grounds of the smoothness of the equilibrium. Sims (1996) method
is used to obtain the equilibrium solution to the log-linearized model.

A.1 Detrending

To formulate the model is a stationary form, we stochastically detrend the endoge-
nous variables by the productivity X. Detrended variables are denoted by a tilde.
The Lagrange multipliers Λ, Ξ and Υ are discounted as follows: Λ̃ = Λ/X−τ ,
Ξ̃ = Ξ/X−τ , Υ̃ = Υ/X−τ . The capital stock be normalized as K̃ = K/X.

Now consider at stationary representation for the above restrictions embodied in
the model. To do this, we first pick some parameter specifications for the primitives
of the model. Given that the production technology F (K,XNd) = Kα(XNd)1−α,
then defining the stationary level of output to be Ỹ = Y

X , the stationary produc-
tion function can now be written as Ỹ = K̃αN1−α. The stationary adjustment
cost specification is φ(Ĩ/K̃) = η

2

{
(Ĩ/K̃)2 − ϕ

}
, with φ′(̃i/K̃) = η(Ĩ/K̃). Noting

that (Xt/Xt=1)τ = exp[−τ(γ + εx,t+1)], we can rescale the capital accumulation
equation in (9) to obtain K̃t+1 = (1 − δ)K̃t + Ĩt − φ(Ĩt/K̃t) − exp {γ + εx,t+1 }
and the stochastic discount factor Mt+1 = M̃t+1 exp[−τ(γ + εx,t+1)]. Dividends
then are D̃t = K̃α

t N
1−α
t − W̃tNt − Ĩt, with W̃tNt = (1 − α)K̃α

t N
1−α
t . Therefore

D̃t = αK̃α
t N

1−α
t − Ĩt. Tobin’s Qt and the investment return RIt have no trend,

and are therefore given as Qt =
(
Ĩt/K̃t

)ζ−1 (
1− 3η

2 (Ĩt/K̃t)2 + ηϕ
2

)−1
and RIt+1 =

Qt+1
Qt

(
1− δ + η

[
˜it+1/ ˜Kt+1

]3
)

+ 1
Qt

(
1 + θt+1

[
˜It+1/ ˜Kt+1

]ζ)1− 1
ζ

αPt+1K
α−1
t+1 . Then

rewriting the conditional asset pricing model in (16) in stationary form, we obtain

IEt

[
M̃t+1 exp{(1− τ)(γ + εx,t+1)}RIt+1

]
= 1 (51)

The detrended model can be log-linearized around its steady state.
6For versions of the model which are Pareto optimal (i.e., all versions except the one with external

habit formation), existence and uniqueness of a continuous equilibrium manifold with respect to the
vector of parameters can be shown to follow from now standard applications of the second welfare
theorem to this equilibrium. As for the smoothness of equilibrium, we require that the adjustment
cost not be too large (so as to make the value function no longer a strictly concave function of its
first argument.) In such a case, the arguments of Araujo and Scheinkman (1977), Araujo (1991),
and in particular Santos (1991) can be shown to apply.
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A.2 The Full DSGE Model

A.2.1 Calculating the Steady State

We set the adjustment cost parameter ϕ so adjustment costs are zero in the steady
state, i.e., ϕ =

(
I∗

K∗

)2
where any variable Z written in steady state is denoted as

Z∗. From the capital accumulation equation, I∗

K∗ = γ + δ − 1 (where recall γ is the
growth factor associate with the technological shock x). The steady state version of
the firm’s Euler equation is given as

βγ∗τ

{
1− δ + η(γ + δ − 1)3 +

1
Q

(
1 + θ∗(

I∗

C∗
)ζ
)1− 1

ζ

αρ∗(K∗)α−1

}
= 1 (52)

Using the expression for the steady state capital stock which is K∗ = γ + 1 − δ, it
can be shown that

1
Q

(
1 + θ∗(

I∗

C∗
)ζ
)1− 1

ζ

=
(
1− η(γ + 1− δ)2)((C∗

I∗

)ζ
+ θ∗

) ζ−1
ζ

(53)

Using the aggregator in the social feasibility condition, we obtain(
C∗ζ + θ∗I∗ζ

) 1
ζ = ρ∗K∗α

or ((
C∗

I∗

)ζ
+ θ∗

) ζ−1
ζ

=
(

T ∗

γ + δ − 1

) ζ−1
ζ

K∗(α−1)(ζ−1) (54)

Conbining these expressions, we obtain

1
Q

(
1 + θ∗(

I∗

C∗
)ζ
)1− 1

ζ

=
(
1− η(γ + δ − 1)2)( T ∗

γ + δ − 1

) ζ−1
ζ

K∗(α−1)(ζ−1) (55)

The firm’s Euler equation then becomes

1 = βγ∗τ{1− δ + η(γ + δ − 1)3 +

αT ∗
(
1− η(γ + δ − 1)2)( T ∗

γ + δ − 1

)ζ−1

K∗(α−1)ζ} (56)

Therefore the steady state capital stock is

K∗ =

{ 1
βγ
∗τ − (1− δ)− η(γ + δ − 1)3

αT ∗(1− η(γ + δ − 1)2)( T ∗

γ+δ−1)ζ−1

} 1
ζ(1−α)

(57)

with the steady state Tobin’s Q given as

Q∗ =
(
I∗

C∗

)ζ−1(
1− η(

I∗

K∗
)2
)−1

(58)
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The steady state discount factor is M∗ = β. The steady-state capital stock is
obtained from the capital accumulation equation

I∗ = K∗(γ∗ + δ − 1) (59)

The steady state consumption can be determined from the aggregate resource con-
straint

C∗ =
(

(T ∗K∗α)ζ − (θ∗I∗)ζ
)1/ζ

(60)

Under the three different specifications of habit we obtain

1. No habit:
Λ∗ = C∗−τ (61)

2. No persistence in habit

Λ∗ = C∗−τ (1− ψ2)−τ [1− ψ2βγ
∗(1−τ)] (62)

3. AR(1) habit

Z∗ = ψ2C
∗ (63)

Ξ∗ =
C∗−τ (1− ψ2)−τ

βψ1γ∗−τ − 1
(64)

Λ∗ = C∗−τ (1− ψ2)−τ + βψ2Ξ∗γ∗−τ (γ∗ − ψ1) (65)

A.2.2 Log-linearizations

We can know discuss the loglinearization procedure we used. The linearized version
of the capital accumulation equation in (XX) is given as

γ∗dkt+1 =

[
(1− δ) + η

(
I∗

K∗

)3
]
dkt +

[
I∗

K∗
(1− η

(
I∗

K∗

)2

)

]
dit (66)

The linearized version of Tobin’s q is given by

Q∗dqt = [Q∗(1− ζ)] (dct − dit) + κ1(dit − dkt) (67)

where

κ1 =
(
I∗

C∗

)ζ−1 [3η
(
I∗

K∗

)2
][

1− η
(
I∗

K∗

)2]2
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We write the linearized investment return as

R∗drt+1 =

[
(1− δ) + η

(
I∗

K∗

)3
]
dqt+1 −

[
(1− δ) + η

(
I∗

K∗

)3

+ κ2

]
dqt

+(3η + ζκ3)dit − κ3ζdct+1 + κ3dθt+1 + κ2dpt+1

+ [(α− 1)κ2 − 3η] dkt+1 (68)

where

κ2 =
αT ∗K∗(α−1)

Q∗

[
1− θ∗( I

∗

C∗
)ζ
]1− 1

ζ

κ3 =
αT ∗K∗(α−1)

Q∗
θ∗(

I∗

C∗
)ζ(1− 1

ζ
)
[
1− θ∗( I

∗

C∗
)ζ
]− 1

ζ

The log-linearization of the social transformation surface is

1
ζ

(C∗ζ + θ∗I∗ζ)
1
ζ
−1
[
C∗ζdct + ζθI∗ζdit + θI∗dθt

]
= T ∗K∗α[dTt + αdkt} (69)

Finally the loglinear version of the shock process for the innovation in the transfor-
mation surface is

dθt = ρθdθt−1 + εθt (70)

The stochastic discount factor evolves according to

dmt = dλt − dλt−1 (71)

and dλt is determined as follows:

1. No habit:
dλt = −τdct (72)

2. No persistence in habit

C∗τλ∗dλt = −τ(1− ψ2)−τ−1[dct − ψ2dct−1 + ψ2εX,t]

−ψ2τβγ
∗(1−τ)(IEt[dct+1]− ψ2dct) (73)

3. AR(1) habit: Define the constants

κ4 =
ψ1 + ψ2(γ∗ − ψ1)

1− ψ2
(74)

κ5 =
1

βψ1γ−τ − 1
(75)

κ6 =
βγ∗−τ [ψ2(γ∗ − ψ1) + ψ1]− 1

βψ1γ∗−τ − 1
(76)
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The log-linearized equations are of the form

dzt =
ψ1

γ∗
dzt−1 +

γ∗ − ψ1

γ∗
dct−1 − εX,t (77)

0 = τκ4[dct − dzt] + ψ1κ6dλt − ψ2(γ∗ − ψ1)κ5dξt (78)

κ5dλt = ψ2β(γ∗ − ψ1)γ−τκ4IEt[dξt+1]− τ

1− ψ2
[dct − ψ2dzt] (79)

A.3 Consumption Based Model

A.3.1 Calculating the Steady-State

The steady states of consumption and investment C∗, I∗ are exogenous. Thus, K∗

can be obtained from the capital accumulation equation

K∗ = I∗/(γ∗ + δ − 1) (80)

Moreover, M∗ = β. The determination of Λ∗,Ξ∗, Z∗ is the same as in the general
equilibrium case.

A.3.2 Log-linearizations

The CBAP model consists of the exogenous consumption and investment process

[dct, dit]′ = Φ1[dct−1, dit−1]′ + . . .+ Φp[dct−p, dit−p] + εt (81)

The stochastic discount factor evolves according to

dmt = dλt − dλt−1 (82)

and dλt is determined as follows:

1. No habit:
dλt = −τdct (83)

2. No persistence in habit

c∗τλ∗dλt = −τ(1− ψ2)−τ−1[dct − ψ2dct−1 + ψ2εX,t]

−ψ2τβγ
∗(1−τ)(IEt[dct+1]− ψ2dct) (84)
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3. AR(1) habit: Define the constants

κ4 =
ψ1 + ψ2(γ∗ − ψ1)

1− ψ2
(85)

κ5 =
1

βψ1γ−τ − 1
(86)

κ6 =
βγ∗−τ [ψ2(γ∗ − ψ1) + ψ1]− 1

βψ1γ∗−τ − 1
(87)

The log-linearized equations are of the form

dzt =
ψ1

γ∗
dzt−1 +

γ∗ − ψ1

γ∗
dct−1 − εX,t (88)

0 = τκ4[dct − dzt] + ψ1κ6dλt − ψ2(γ∗ − ψ1)κ5dξt (89)

κ5dλt = ψ2β(γ∗ − ψ1)γ−τκ4IEt[dξt+1]− τ

1− ψ2
[dct − ψ2dzt] (90)

The cases 2 and 3 require the solution of a rational expectations system.

A.4 Production Based Model

A.4.1 Calculating the Steady-State

The steady states of consumption and investment C∗, I∗ are exogenous. Thus, K∗

can be obtained from the capital accumulation equation

K∗ = I∗/(γ∗ + δ − 1) (91)

The investment return is R∗ = 1/(βγ∗τ ) and Tobin’s q is

Q∗ =
(
I∗

C∗

)ζ−1(
1− η(

I∗

K∗
)2
)−1

(92)

A.4.2 Log-linearizations

The CBAP model consists of the exogenous consumption and investment process

[dct, dit]′ = Φ1[dct−1, dit−1]′ + . . .+ Φp[dct−p, dit−p] + εt (93)

and a capital accumulation equation of the form

γ∗dkt+1 =

[
(1− δ) + η

(
I∗

K∗

)3
]
dkt +

[
I∗

K∗
(1− η

(
I∗

K∗

)2

)

]
dit (94)

The linearized version of Tobin’s q is given by

Q∗dqt = [Q∗(1− ζ)] (dct − dit) + κ1(dit − dkt) (95)
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where

κ1 =
(
I∗

C∗

)ζ−1 [3η
(
I∗

K∗

)2
][

1− η
(
I∗

K∗

)2]2

The investment return evolves according to

R∗drt+1 =

[
(1− δ) + η

(
I∗

K∗

)3
]
dqt+1 −

[
(1− δ) + η

(
I∗

K∗

)3

+ κ2

]
dqt

+(3η + ζκ3)dit − κ3ζdct+1 + κ2dpt+1

+ [(α− 1)κ2 − 3η] dkt+1 (96)

where

κ2 =
αT ∗K∗(α−1)

Q∗

[
1− θ∗( I

∗

C∗
)ζ
]1− 1

ζ

κ3 =
αT ∗K∗(α−1)

Q∗
θ∗(

I∗

C∗
)ζ(1− 1

ζ
)
[
1− θ∗( I

∗

C∗
)ζ
]− 1

ζ


