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Abstract

We analyze the infinitely repeated prisoners’ dilemma with imper-
fect private monitoring. The efficient outome can be approximated in
any prisoners’ dilemma game, while every individually rational feasi-
ble payoff can be approximated in a class of prisoner dilemma games.
Our results require that monitoring be sufficiently accurate but do not
require very low discounting.

1 Introduction

We analyze the infinitely repeated prisoners’ dilemma with imperfect private
monitoring and discounting. The main contribution of this paper is to con-
struct “belief-based” strategies, where a player’s continuation strategy is a
function only of his beliefs. This simplifies the analysis considerably, and
allows us to explicitly construct sequential equilibria for such games, thus

∗I am grateful to Michihiro Kandori for many discussions on this topic, and to the
University of Tokyo for its hospitality while this paper was written.
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enabling us to invoke the one-step deviation principle of dynamic program-
ming. By doing so, we prove that one can approximate the efficient payoff
in any prisoners’ dilemma game provided that the monitoring is sufficiently
accurate. Furthermore, for a class of prisoners’ dilemma games, one can ap-
proximate every individually rational feasible payoff. These results require
that monitoring be sufficiently accurate, but only require a uniform lower
bound on the discount rate.

These results are closely related to an important paper by Sekiguchi [10],
who shows that one can approximate the efficient payoff in such games pro-
vided that the monitoring is sufficiently accurate. Sekiguchi’s result applies
for a class of prisoners’ dilemma payoffs, and relied on the construction of
a Nash equilibrium which achieves approximate efficiency. Standard argu-
ments can then be invoked to show that there exists a sequential equilibrium
with the same outcome. However, in order to show that a strategy profile
is a Nash equilibrium, Sekiguchi has to invoke a path dominance argument,
which requires the payoff restrictions imposed. The explicit construction of
sequential equilibrium shows that one does not require such a payoff restric-
tion.

2 Approximating the Efficient Payoff

C D
C 1 −l
D 1 + g 0

We consider the prisoners’ dilemma with the stage game payoffs given
above, where the row indicates the player’s own action and the column indi-
cates his opponent’s action. Players only observe their own actions, and also
observe a private signal which is informative about their opponent’s action.
This signal belongs to the set Ω = {c, d}, where c (resp. d) is more likely
when the opponent plays C (resp. D). The signalling structure is assumed
symmetric, in the sense that the probability of errors does not depend on the
action profile played. Given any action profile a = (a1, a2), ai ∈ A = {C,D},
the probability that exactly one player receives a wrong signal is ε > 0, and
the probability that both receive wrong signals is ξ > 0. Players maximize
the expected sum of stage game payoffs discounted at rate δ. We also assume
that at the end of each period, players observe the realization of a public
randomization device uniformly distributed on the unit interval.
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Our approach is closely related to Sekiguchi’s [10]: we show that one
can construct a mixed trigger strategy sequential equilibrium which achieves
partial cooperation. With public randomization, one can modify this appro-
priately in order to approximate full cooperation. Our approach involves the
construction of a “belief-based” strategy, i.e. a strategy which is a function of
the player’s beliefs about his opponent’s continuation strategy. This results
in a major simplification as compared to the more conventional notion of a
strategy which is a function of the private information of the player.

We begin by defining partial continuation strategies. In any period t,
define the partial continuation strategy σD as follows: play D at period t,
and at period t+ 1 play σD if the realized outcomes in period t are (Dc) or
(Dd). Define the partial continuation strategy σC as follows: in any period
t play C; at period t + 1 play σC if the realized outcomes in period t is
(Cc), and play σD if the realized outcome at t is (Cd). We call σC and σD
a partial continuation strategy since each of these fully specifies the player’s
actions in every subsequent period at every information set that arises given
that he confirms to the strategy. In consequence, the (random) path and
payoffs induced by any pair of partial continuation strategies is well defined.
However, a partial continuation strategy does not specify the player’s actions
in the event that he deviates from the strategy at some information set.
This is deliberate, since our purpose is to construct the full strategies that
constitute a sequential equilibrium. Note also that for any player i, only
the partial continuation strategy of player j is relevant when computing i’s
payoffs in any equilibrium.

Let Vab(δ, ε, ξ), a, b ∈ {C,D} denote the repeated game payoff of σa
against σb — these payoffs are well defined since the path induced by each
pair is well defined. We have that VDD > VCD, for all parameter values.
Furthermore, if δ > g

1+g
, and (ε + ξ) is sufficiently small, then VCC > VDC .

Suppose that player i believes that his opponent is playing either σC or σD,
and is playing σC with probability µ. Then the difference between his payoff
from playing σC and his payoff from playing σD is given by

∆V (µ; δ, ε, ξ) = µ(VCC − VDC)− (1− µ)(VDD − VCD) (1)

Hence ∆V (µ) is increasing and linear in µ and there is a unique value,
p(δ, ε, ξ), at which it is zero. Suppose now that at t = 1 both players are
restricted to choosing between σC and σD . There is a mixed equilibrium of
the restricted game, where each player plays the strategy σ which plays σD
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with probability 1−p and σC with probability p. Note that p(δ, ε, ξ) increases
to 1 as we decrease δ towards its lower bound g

1+g
. Let δ be such that p > 1

2
.

For future reference we emphasize that equation (1) applies to any period
— if a player believes that his opponent’s continuation strategy is σC with
probability µ and σD with probability 1 − µ, then he prefers σC to σD if
µ > p and prefers σD to σC if µ < p. Note also that if a player’s opponent
begins at t = 1 with a strategy in {σC , σD}, his continuation strategy also
belongs to this set, since σD induces only σD, while σC may induce either σC
or σD, depending upon the private history that the opponent has observed.

We define the following four belief revision operators. Starting with any
initial belief µ, we can define the player’s new beliefs when he takes action a
and receives signal ω. His new belief (i.e. the probability that j’s continuation
strategy is σC) will be given by χaω(µ). We have four belief operators, χCc,
χCd, χDc, χDd, where each χaω : [0, 1]→ [0, 1] is defined, using Bayes rule, as
follows

χCc(µ) =
µ(1− 2ε− ξ)]

µ(1− ε− ξ) + (ε+ ξ)(1− µ)
(2)

χCd(µ) =
µε

µ(ε+ ξ) + (1− ε− ξ)(1− µ)
(3)

χDc(µ) =
µε

µ(1− ε− ξ) + (ε+ ξ)(1− µ)
(4)

χDd(µ) =
µξ

µ(ε+ ξ) + (1− ε− ξ)(1− µ)
(5)

Starting with any initial belief µ̂ at the beginning of the game, a player’s
belief at any private history, i.e. after an arbitrary sequence (aω)tr=1, can
be computed by iterated application of the appropriate belief operators. Let
Ξ(µ̂) be the set of possible beliefs, i.e. µ ∈ Ξ(µ̂) ⇔ ∃ < µr >

t
r=1: µ1 = µ̂,

µt = µ and µr+1 = χ(aω)r(µr), (aω)r ∈ A×Ω, 1 ≤ r ≤ t− 1. Let τ be a (full)
strategy, which is defined at every information set, i.e. after arbitrary private
histories. Clearly, τ is a best response to σ after every private history if and
only if it is optimal to play τ at every belief µ ∈ Ξ(p), i.e. at all possible
beliefs given the initial belief p.

We now examine the properties of these belief operators. First, each
is a strictly increasing function.1 Fig. 1 graphs the first two belief opera-

1The derivative is strictly positive since the derivative of the numerator is strictly
positive while the derivative of the denominator is zero for every χaω.
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tors, χCc and χCd, which play a particularly important role in the analysis.

The operator χCc has an interior fixed point at θ, and χCc(µ) ≶ µ as
µ ≷ θ (cf. Fig. 1). The value of θ depends upon (ε, ξ) in the following way

θ(ε, ξ) =
1− 3ε− 2ξ

1− 2ε− 2ξ
(6)

We shall assume that max{ε, ξ} < 1 − ε − ξ, which in turn entails that
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θ > 1
2
.

We claim that the graph of each of the other three operators (χCd, χDc, χDd)
lies below the 450 line on Fig 1, provided that max{ε, ξ} < 1 − ε − ξ. To
verify this, take any typical expression from 3-5, and divide by µ. This yields
ε (or ξ) in the numerator, while the denominator is strictly larger since it is
a convex combination of (ε+ ξ) and (1− ε− ξ). Hence χaω(µ) < µ for each
of these three operators.

Since µ < θ ⇒ χaω(µ) < µ for any belief operator, this immediately
implies that if p < θ, Ξ(p) ⊆ [0, θ). This follows from the fact that the initial
belief p is strictly less than θ, and since we have demonstrated that no point
µ′ > θ is the image of any µ ≤ θ under any belief operator.

Hence, provided that initial beliefs are given by p < θ, it suffices to
define our belief based strategy for beliefs in the set [0, θ]. Let ρ : [0, θ] →
{σC , σD, σ} be defined as follows: ρ(µ) = σC if µ ∈ (p, θ] and ρ(µ) = σD if
µ ∈ [0, p). If µ = p, ρ(µ) = σ, i.e. ρ plays σC with probability p and σD with
probability 1− p. Hence the pair (ρ, p), i.e. ρ in conjunction with an initial
belief p, specifies a strategy at every possible belief.

The advantage of this specification is that a player’s continuation strategy
is specified even at information sets which arise due to a player’s deviating
from ρ in the past. However, the definition of ρ is potentially problematic,
in the sense that it may be inconsistent, i.e. for example, at some µ, ρ(µ)
could prescribe σC , but ρ(χCc(µ)) could prescribe σD. We now show that this
problem does not arise.

Definition 1 (ρ, µ̂) is consistent if and only if ∀µ ∈ Ξ(µ̂), ρ(µ) ∈ {σC , σ} ⇒
[ρ(χCc(µ)) = σC and ρ(χCd(µ)) = σD] and ρ(µ) ∈ {σD, σ} ⇒ [ρ(χDc(µ)) =
σD and ρ(χDd(µ)) = σD].

Lemma 2 If 1
2
< p < θ(ε, ξ), (ρ, p) is consistent.

Proof. To establish that (ρ, p) is consistent we need to verify the following:
1. µ ∈ [p, θ]⇒ χCc(µ) > p.
2.µ ∈ [p, θ]⇒ χCd(µ) < p.
3. µ ≤ p⇒ χDc(µ) < p.
4. µ ≤ p⇒ χDd(µ) < p
To verify 1, recall that χCc(µ) > µ if µ < θ, so that χkCc(p) > p for any k.

3 and 4 follow from the fact already established that χDc and χDd lie below
the 450 line, and the fact that these are increasing functions. To verify 2, it
suffices to verify that χCd(θ) ≤ p, since χCd is strictly increasing.
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χCd(θ) =
ε(1− 3ε− 2ξ)

(ε+ ξ)(1− 3ε− 2ξ) + (1− ε− ξ)ε
<

ε

2ε
=

1

2
< θ (7)

Note that if ε and ξ are sufficiently small, we can select δ > g
1+g

so that

p(δ, ε, ξ) ∈ (1
2
, θ) — this follows from the fact that p(δ, ε, ξ)→ 1 as δ → g

1+g

and (ε + ξ) → 0, while p(δ, ε, ξ) → 0 if δ → 1 and (ε + ξ) → 0. Henceforth
we shall assume that δ is such that p ∈ (1

2
, θ) so that (ρ, p) is consistent.

We have therefore established that the pair (ρ, p) defines a full strategy
which is behaviorally equivalent to σ.

Proposition 3 If 1
2
< p < θ(ε, ξ),the strategy profile where each player plays

(ρ, p) is a sequential equilibrium.

Proof. Note first that if µ = p, a player is indifferent between playing σC and
σD, and hence a one-step deviation from playing ρ is not profitable. Since
the payoffs from playing σ, σC and σD are equal at belief p, one may also,
for the purposes of computing payoffs, use σC or σD as is computationally
convenient in the event of belief p.

Consider first the case when µ > p. A one-step deviation from ρ is to play
D, and to continue with ρ in the next period. The following sub-cases arise:

a) Suppose that χDc(µ) ≤ p and χDd(µ) ≤ p. In this case, a one-step
deviation from ρ is to play σD, whereas ρ(µ) = σC . However, (1) establishes
that in this case σC is preferable to σD, and hence a one-step deviation from
ρ is unprofitable.

b) Suppose that χDc(µ) ≤ p and χDd(µ) > p, so that the one-step devia-
tion is play D today and continue with σD if Dc is reached, and to continue
with σC if Dd is reached. Let ∆Ṽ (µ) be payoff difference between the equilib-
rium strategy and the one-step deviation.. Note that the one step deviation
differs from σD only at the information set Dd; at this information it contin-
ues by playing σC whereas σD continues with σD. Hence we can write ∆Ṽ (µ)
as the payoff difference between σC and σD minus the payoff difference be-
tween σC and σD conditional on Dd being reached, as follows:

∆Ṽ (µ) = ∆V (µ)− δ[µ(ε+ ξ) + (1− µ)(1− ε− ξ)][∆V (χDd(µ))] (8)

Note that χDd(µ) < µ. Equation (1) shows that this implies that ∆V (µ) >
∆V (χDd(µ)). Since the coefficient multiplying ∆V (χDd(µ)) is strictly less
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than one, this implies that ∆Ṽ (µ) > 0. Hence if µ > p, a one-step deviation
is unprofitable.

c) Finally, we establish that χDc(µ) < p ∀ µ ≤ θ, so that no other sub-case
need be considered. Evaluating χDc at the upper bound θ, we have

χDc(θ) =
ε(1− 3ε− 2ξ)

(ε+ ξ)(1− 3ε− 2ξ) + (1− ε− ξ)ε
<

1

2
(9)

Consider now the case when µ < p. In this case, a one-step deviation
from ρ is to play C today, and to continue with σC if χCc(µ) ≥ p, but to
continue with σD if χCc(µ) < p. (Note that µ < p ⇒ χCd(µ) < p, so the
continuation strategies do not differ in this event.) In the first sub-case, the
one-step deviation from ρ corresponds to playing σC , and (1) establishes that
in this case σD is preferable to σC , and hence a one-step deviation from ρ
is unprofitable. In the second sub-case, the one-step deviation differs from
σC only at the information set Cc — it plays σD at this information set
rather than σC . Let ∆V̂ (µ) denote the payoff difference between the one-
step deviation and the equilibrium strategy σD. We have

∆V̂ (µ) = ∆V (µ)− δ[µ(1− ε− ξ) + (1− µ)(ε+ ξ)][∆V (χCc(µ))] (10)

Since p > χCc(µ) > µ,∆V (µ) < ∆V (χCc(µ)) < 0. Also, the coefficient
multiplying ∆V (χCc(µ)) is less than 1 which establishes that ∆V̂ (µ) > 0.

We have therefore established that if a player’s opponent j plays the
strategy σ (which randomizes between σC and σD), it is optimal for player i
to play ρ, with initial belief p. However, (ρ, p) is consistent and behaviorally
equivalent to the strategy σ. Hence the profile where both players play (ρ, p)
is a sequential equilibrium.

It may be of interest to ask, under what conditions is there a pure strategy
sequential equilibrium where both players begin in period one by playing σC
with probability one. The above analysis also permits an answer to this
question, with the difference that the initial belief µ̂ = 1 rather than p. Only
consistency conditions 1 and 2 are affected, and must be modified as follows:

1’.χkCc(1) > p∀k.
2’.µ = 1 or µ = χkCc(1) for any k ⇒ χCd(µ) < p.
Clearly, 1’ is always satisfied as long as p ≤ θ. However, for 2’ to be

satisfied, it is necessary and sufficient that

χCd(1) =
ε

ε+ ξ
≤ p < θ (11)
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In Fig. 1, this requires that the χCd function always lies below θ, which
requires the inequality

ε2 < ξ(1− 3ε− 2ξ) (12)

This inequality will be satisfied if ε is sufficiently small relative to ξ,
i.e. if signals are sufficiently positively correlated. It is easily verified that
this inequality cannot be satisfied if signals are independent or negatively
correlated so that the equilibrium must be in mixed strategies.

Note that p plays a dual role in the construction of the mixed strategy
equilibrium. On the one hand it is the randomization probability in the
first period, and on the other hand, it is simply a number which defines
the threshold at which behavior changes. These roles are obviously distinct,
as is apparent from our discussion of the pure strategy equilibrium. This
distinction is particularly relevant when we discuss the folk theorem in the
following section.

With the construction of the mixed equilibrium, it is easy to show that
one can use public randomization to approximate full cooperation.

Lemma 4 If (v1, v2) is a sequential equilibrium payoff for some δ ∈ (0, 1), it
is also an equilibrium payoff for any δ′ > δ if a public randomization device
is availablee.

Proof. Let τ be the strategy profile giving the required payoff given δ. Given
δ′, let m = δ

δ′
. Players play a sequence of games: they begin with the strategy

profile τ . If the sunspot in any period φ > m, they play a new game and
re-start with τ .

Proposition 5 If δ > g
1+g

, any payoff x < 1 is a symmetric equilibrium
payoff if ε and ξ are sufficiently small.

Proof. For any (ε, ξ) select δ(ε, ξ) so that 1
2
< p < θ(ε, ξ). We have verified

that under these conditions ρ is a sequential equilibrium. Let (ε, ξ)→ (0, 0)
and δ(ε, ξ) → g

(1+g)
, so that p → 1. The equilibrium payoff tends to one.

Lemma 4 ensures that this result holds for all δ > g
1+g

.

Note that in order to approximate the payoff (1, 1), we require that the
noise vanishes but do not require that discounting vanishes. In this sense
the result proved here is stronger than that proved in Piccione [9], who re-
quires that both discounting and the noise vanish in order to approximate
the efficient payoff.
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The equilibrium we have constructed is a very robust one. Equilibria in
repeated games with imperfect monitoring are usually robust to refinements
involving strategy perturbations. Since the monitoring structure has full
support, a deviation by player i from his equilibrium strategy cannot be ob-
served by the other player.2 However, equilibria which have been constructed
for repeated games with imperfect private monitoring are often not robust if
there is a small amount of incomplete information about each player’s pay-
offs, as in Harsanyi [6]. This issue is discussed in greater detail in Bhaskar [1],
who proposes a refinement for repeated game equilibria based on robustness
to payoff perturbations.3 This refinement requires the following condition:
consider two information sets for a player at date t, h and h′, and where the
player’s continuation strategy is γ at h and γ′ at h′. If it is also optimal
for the player to play γ at h′ and γ′ at h, then the equilibrium is robust
only if γ = γ′. To verify that the equilibrium (ρ, p) is robust, note that a
player is indifferent between his continuation strategies only at the belief
µ = p, and at any information set where this belief arises, he always plays
the same strategy σ. This robustness also applies to the private monitoring
equilibria constructed by several others including Bhaskar and van Damme
[3] Mailath and Morris [8], and Sekiguchi [10]. The equilibria constructed in
these papers have the common feature that a player’s beliefs (regarding his
opponent’s future behavior) vary with his private information, and his con-
tinuation strategy also varies with his beliefs. This contrasts with a different
approach to constructing equilibria, where a player plays different continua-
tion strategies γ at h and γ′ at h′ and is indifferent between the two strategies
at both these information sets. This is the approach taken in Piccione [9],
and also by Compte [4] and Kandori and Matsushima [7] in their analysis
of private monitoring with independent signals.4 Piccione uses a strategy
whereby a player is made indifferent between playing C and D at each pe-
riod in which he is supposed to play C, and plays C when he observes a
good signal and D when he observes a bad signal. These equilibria are not
robust to payoff perturbations since players will ignore their payoff irrelevant
information and only condition upon their payoff information.

2See Fudenberg, Levine and Maskin [5], p1025, for a discussion.
3See also [2] for a specific application of this refinement.
4The equilibria constructed by Compte and Kandori-Matsushima are robust in the

case where signals are correlated; however, their two-player folk theorem results require
independent signals.
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3 Approximating Any Individually Rational

Feasible Payoff

We now build on the construction of the previous section and show how
to approximate any individually rational feasible payoff. The key to doing
this is to approximate the payoff (1+g+l

1+l
, 0), which is player 1’s maximal

payoff within the set of individually rational and feasible payoffs in the usual
prisoners’ dilemma, where (C,C) is the symmetric efficient payoff. Since
the payoff (1, 1) has already been approximated in the previous section, one
can then use public randomization to approximate any individually rational
feasible payoff.

It might be useful to outline the basic construction and to explain the
complications that arise. The basic idea of our construction is that play be-
gins in the asymmetric phase where player 1 playsD and player 2 randomizes,
playing C with a high probability, q2. This asymmetric phase continues or
ends, depending upon the realization of a public randomization device. Thus
player 1’s per-period payoff in the asymmetric phase is approximately 1 + g
while player 2’s per-period payoff is approximately −l. Since the latter is less
than the individually rational payoff for player 2, he must be rewarded for
playing C. To ensure this, when the asymmetric phase ends, both player’s
continuation strategies depend upon their private information. Player 1 con-
tinues with σC if he has observed the signal c in the last period (i.e. if his
information is Dc)and continues with σD if he has observed d (i.e. if his
information is Dd). This ensures that player 2 is rewarded for playing C in
the asymmetric phase. Similarly, player 2 continues with σC if his private
information is Cd, the information set which is most likely when he plays
C,and continues with σD if his private information is Dd. Hence, if the noise
is small, player 2’s continuation payoff when the asymmetric phase ends is
approximately 1 if he has played C in the previous period and approximately
zero if he has played D. Hence if δ is large relative to l (δ > l

1+l
), we can,

by choosing the value of the sunspot appropriately, make player 2 indifferent
between C and D in the asymmetric phase. The payoffs in this equilibrium
converge to (1+g+l

1+l
, 0) as the noise vanishes.

However, one must also verify that the players find it optimal to play
σC and σD, as appropriate, at each information set after the end of the
asymmetric phase. A complication arises here, as compared to the previous
section, since player 1 does not randomize in the asymmetric phase, i.e. he
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plays D for sure. (Indeed, he cannot play C with positive probability, since
in that case his payoff in the asymmetric phase is bounded above by 1 and
hence cannot approximate 1 + g).5 Hence when player 2 receives the signal
c, he knows that there has been at least one error in signals, and his beliefs
about player 1’s continuation strategy depend upon the relative probability
of one (ε) versus two errors (ξ). In other words, his continuation strategy at
the information sets Cc and Dc depends upon the correlation structure of
signals. Since player 2’s continuation strategy depends upon this correlation
structure, this implies that player 1’s beliefs also depend upon the correlation
structure.

We adopt two alternative approaches to handle this problem. First, we
show that if signals are positively correlated, so that the probability of two
errors is at least as large as the probability of one error, then one can approx-
imate the asymmetric payoff, without any restriction upon payoffs. Second,
we show that one does not need such positive correlation of signals provided
that one can choose δ so that p(δ, ε, ξ) sufficiently close to one. This result
applies to any prisoners’ dilemma game where g ≥ l — in any such game
one can approximate the asymmetric payoff arbitrarily closely. However, this
second approach does not work if l > g, since in this case one cannot have
p(δ, ε, ξ) → 1. The reason for this is the for p to be close to 1, we must have
δ → g

1+g
. However, in the asymmetric phase, player 2 incurs a loss of l by

playing C, whereas his continuation payoff gain is no more than 1. Hence
player 2 will be willing to play C in the asymmetric phase only if δ > l

1+l
.

Hence if l > g, one cannot have p close to 1 since δ is bounded away from
g

1+g
.
We make the following assumption for this section:
Assumption A Either A1: ξ ≥ ε or A2: g ≥ l and ξ(1−ξ)(1−2ε−ξ) >

ε3.
Note that A1 is a relatively strong assumption that signals are positively

correlated, but does not require any assumption on payoffs. On the other
hand, A2 requires an assumption on payoffs but is a mild assumption about
the relative probability of errors. It is always satisfied if signals are positively
correlated, or independent. In the independent signal case, the left hand side
is a term of order (ε+ξ)2 whereas the right hand side is a term of order (ε+ξ)3.

5This argument is more general and implies that one cannot have a folk theorem in com-
pletely mixed strategies in any repeated game. Let v̂1 be the supremum payoff of player 1 in
any equilibrium where player 1 randomizes in every period at every information set. Since
v̂1 ≤ (1− δ) mina1{maxa2 u1(a1, a2)}+ δv̂1, this implies v̂1 ≤ mina1{maxa2 u1(a1, a2)}.
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Hence A2 is satisfied even if signals are negatively correlated provided that
they are not too highly so.

We now define the players’ strategies more precisely. In any period t− 1
in the asymmetric phase, player 1 plays D for sure, while player 2 randomizes
between C and D, choosing C with a constant probability q2 which is close
to 1. At the end of period, players observe the realization, φt−1, of a sunspot
which is uniformly distributed on [0, 1]. If φt−1 > 1−λ, both players continue
in the asymmetric phase for the next period. If φt−1 ≤ λ, the asymmetric
phase ends for both players, and is never reached again. In this case, each
player’s continuation strategy (i.e. his state) depends upon the realization
of his private information, at date t − 1. (i.e. players ignore their private
information from previous dates). Let νt−1 denote the player’s private infor-
mation realization at date t− 1. Player 1 continues with σC if νt−1 = Dc; if
νt−1 = Dd, he continues in period t with σD.

6 Player 2’s continues with σC if
νt−1 = Cd, and continues with σD if νt−1 = Dd. If νt−1 ∈ {Cc, Dc}, player 2
continues with σC if µ2(νt−1) > p(δ, ε, ξ) and with σD if µ2(νt−1) ≤ p(δ, ε, ξ).

Our analysis proceeds as follows. First, we show that player 2 is willing to
randomize in the asymmetric phase provided that λ is appropriately chosen,
and that the payoffs associated with this class of equilibria tend to (1+g+l

1+l
, 0)

as the noise vanishes. Subsequently, we shall demonstrate that all players
are choosing optimally at every information set.

Write W2(D) for the payoff of player 2 in the asymmetric phase given
that he plays D, and W2(C) for the payoff in the asymmetric phase from
playing C. Since W2(D) = W2(C) = W2, we have

W2(D) = δ(1− λ)W2 + δλV2(D) (13)

where V2(D) is the expected payoff to player 2 conditional on the fact
that the asymmetric phase has ended and that he has played D. Similarly,
letting V2(C) be the expected payoff to 2 conditional on the fact that the
asymmetric phase has ended and that he has played C, we have

W2(C) = (1− δ)(−l) + δ(1− λ)W2 + δλV2(C) (14)

6We show that any strategy which plays C in the asymmetric phase is dominated,
and hence we need not define precisely the optimal continuation strategy after playing C.
The existence of an optimal continuation strategy follows from the same argument as in
Sekiguchi [10]. Since player 1 never plays C in the asymmetric phase, his continuation
after his own deviation does not affect player 2’s incentives.
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Clearly, V2(D) → 0 as (ε, ξ) → (0, 0). We now show that V2(C) → 1 as
(ε, ξ) → (0, 0).Let V2(Cd) (resp. V2(Cc)) denote the continuation payoff at
the end of the asymmetric phase, conditional on Cd (resp. Cc). Since player
1 plays D for sure in the asymmetric phase, we have

V2(C) = (1− ε− ξ)V2(Cd) + (ε+ ξ)V2(Cc) (15)

Hence it suffices to establish that V2(Cd) → 1 as (ε, ξ) → (0, 0).Write
µ2(Cd) for the probability that player 1’s continuation strategy is σC , given
that νt−1 = Cd. Since µ2(Cd) ≥ 1−2ε−ξ

1−ε−ξ , µ2(Cd) → 1 as ε → 0. Hence from

equation (1) V2(Cd)→ VCC , where VCC → 1 as (ε, ξ)→ (0, 0).
Hence if ε + ξ is sufficiently small and δ > l

1+l
, there exists a value of λ

which equates W2(C) and W2(D). Further, as (ε + ξ) → 0, λ → (1−δ)l
δ

, and
player 2’s payoff converges to zero.

If q2 → 1, player 1’s per-period payoff tends to (1 + g) in the asymmetric
phase, and 1 in the cooperative phase. By substituting for the limiting value
of λ which is (1−δ)l

δ
, we see that player 1’s payoff converges to 1+g+l

1+l
. (We shall

establish later that q2 → 1).
We now verify that each player plays optimally at each information set

in this equilibrium. In the asymmetric phase, this is so for player 2 by
construction, since he is indifferent between C and D. It is easy to see that
player 1 also plays optimally in the asymmetric phase, since he is choosing
his one shot best response.7

Consider now the transition to the cooperative phase, i.e. the player’s ac-
tions in the first period after the sunspot signals the end of the asymmetric
phase. Since each player only conditions on his private information in the
previous period, we may focus on this alone. Player 1 has two possible infor-
mation sets, (Dc) and (Dd), whereas player 2 has four possible information
sets. Let µi(ν) denote the probability assigned by player i to his opponent’s
continuation strategy being σC , given that i is at information set ν.

We shall assume that parameters are such that ε+ ξ < 1
3

and p(δ, ε, ξ) ∈
(1

2
, 1−2ε−ξ

1−ε−ξ ). It is easily verified that this assumption on p does not imply any
7It is possible that playing C in the asymmetric phase increases player 1’s continuation

payoff in the cooperative phase. However, it is easy to see that such an increase can
never offset the loss from playing C. A simple proof is as follows. If playing C in the
asymmetric phase is optimal for 1, then playing C in every period in the asymmetric
phase is also optimal. The overall payoff of this strategy is approximately 1 if the noise
is small, whereas the payoff of player 1 in the equilibrium tends to 1+g+l

1+l , which is strictly
greater.
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restrictions upon g or l. However, if we invoke assumption A2, then we may
also choose p to be arbitrarily close to its upper bound. We shall also assume
that q2 ∈ (p, γ(ε, ξ)), where γ(ε, ξ) = min{1−2ε−2ξ

1−2ε
, (ε+ξ)(1−2ε−ξ)

ε(1−ε−ξ) }. Note that

γ > θ, and hence q2 < θ. Also γ → 1 as (ε, ξ)→ (0, 0) and hence we can also
have q2 → 1.

Consider first the beliefs of player 2. Let µ2(.) denote the probability
assigned by 2 to the event that 1’s continuation strategy is σC . Since 1 plays
σC at Dc and σD at Dd, and since 1 does not play C in the asymmetric
phase, we have

µ2(Cd) =
1− 2ε− ξ
1− ε− ξ

(16)

Since we have assumed that p < 1−2ε−ξ
1−ε−ξ , it is optimal to continue with σC

today. Further, we have

χCd(µ2(Cd)) =
(1− 2ε− ξ)ε

(1− 2ε− ξ)(ε+ ξ) + (1− ε− ξ)ε
<

1

2
(17)

Hence it is optimal for 2 to switch to the defection phase if he receives
the signal Cd at any date in the future.

At Dd, we have

µ2(Dd) =
ε

1− ε− ξ
(18)

This is clearly less than p if (ε+ ξ) < 1
3
, so that it is optimal to continue

with σD.
Consider now the beliefs of player 2 at (Cc) and (Dc), i.e. at the in-

formation sets where 2 knows that there has been at least one error in the
signals.

µ2(Dc) =
ξ

ξ + ε
(19)

µ2(Cc) =
ε

ξ + ε
(20)

Recall that 2 plays σD at least at one of these information sets, since the
above probabilities cannot be both greater than p, since this is greater than
one-half. Hence there are three possibilities: either both µ2(Dc) and µ2(Cc)
are less than p, or exactly one of these is greater than p. Now if µ2(.) < p at
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any information set, it is optimal to continue with σD today, and at every
future date. Hence it remains to verify the case when µ2(.) ≥ p.

Suppose that ξ
ξ+ε

> p, so that 2 plays σC at Dc. If ξ
ξ+ε
≤ θ, lemma 1

verifies that it is optimal to continue with σC in this case. Hence consider
the case where ξ

ξ+ε
> θ. We have that µ > θ ⇒ χCc(µ) < µ. Further, since

χCd is an increasing function, it suffices to verify that χCd(
ξ
ξ+ε

) < p, since

this implies that χCd(µ) < p for µ = χkCc(
ξ
ξ+ε

) for any k.

χCd(
ξ

ε+ ξ
) =

εξ

ξ(ε+ ξ) + ε(1− ε− ξ)
(21)

This is less than 1
2

if ε +ξ is less than 1
3
. Hence player 2’s continuation

strategy is optimal is optimal at Dc.
Finally, we consider the case where that 2 plays σC at Cc, i.e. when

ε
ε+ξ

> p. Note that in this case A1 is violated. Hence we assume A2, which

ensures that we can make p arbitrarily close to its upper bound 1−2ε−ξ
1−ε−ξ ,

by selecting δ sufficiently close to g
1+g

. We can find a value of p such that

χCd(
ε
ε+ξ

) < p provided that χCd(
ε
ε+ξ

) is less than the upper bound for p, i.e.

χCd(
ε

ε+ ξ
) =

ε2

ε2 + ξ − ξ2 <
1− 2ε− ξ
1− ε− ξ

(22)

It is easily verified that the inequality above is ensured by condition A2.
Consider now the beliefs of player 1. His beliefs will depend upon player

2’s strategy, which in turn depends upon the parameters of the signal distri-
bution, and as we have seen, there are three possible cases.

Consider first the case where 2 plays σC only at information set Cd.

µ1(Dc) =
q2(1− 2ε− ξ)

q2(1− ε− ξ) + (1− q2)(ε+ ξ)
(23)

Note that the expression is such that µ1(Dc) = χCc(q2), where χCc is
the belief revision operator defined in the previous section. Hence it follows
that if q2 ∈ [ p(δ, ε, ξ), θ), it follows that χkCc(q2) ∈ (p, θ), ∀k, and hence it is
optimal for player 1 to continue with σC at every information set.

Consider 1’s beliefs at (Dd). Once again, it is easy to verify that µ1(Dd) =
χCd(q2), and since q2 < θ, it is optimal to continue with σD at this information
set.
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Consider next the case where σ2(Cd) = σ2(Cc) = σC and σ2(Dd) =
σ2(Dc) = σD. In this case, assumption A2 applies, so that we may choose p
close to its upper bound. We have

µ1(Dc) =
q2(1− ε− ξ)

q2(1− ε− ξ) + (1− q2)(ε+ ξ)
(24)

If q2 > p, then µ1(Dc) > p so that it is optimal to start by playing σC
in this case. To see that player 1 will find it optimal to switch to σD on
receiving a bad signal, note that requires

χCd(µ1(Dc)) =
q2ε

ε+ ξ
< p (25)

which yields the condition

q2 <
p(ε+ ξ)

ε
(26)

Now if µ1(Dc) ≤ θ, lemma 1 has verified that σC is consistent in this case,
i.e. the player will switch to σD on receiving signal Cd in any subsequent
period. If µ1(Dc) > θ, it suffices to verify that χCd(µ1(Dc)) < 1−2ε−ξ

1−ε−ξ , which
is the upper bound for p. This yields the condition

q2 <
(ε+ ξ)(1− 2ε− ξ)

ε(1− ε− ξ)
(27)

The right hand side in (27) is precisely one of the arguments used in the
definition of γ(ε, ξ), and hence this condition poses no problem.

Finally, we consider the case where σ2(Cd) = σ2(Dc) = σC and σ2(Dd) =
σ2(Cc) = σD.

µ1(Dc) =
q2(1− 2ε− ξ) + (1− q)ξ

q2(1− ε− ξ) + (1− q2)(ε+ ξ)
<

1− 2ε− ξ
1− ε− ξ

(28)

Hence it suffices to evaluate χCd at the upper bound, which yields

χCd(
1− 2ε− ξ
1− ε− ξ

) =
(1− 2ε− ξ)ε

(1− 2ε− ξ)(ε+ ξ) + (1− ε− ξ)ε
<

1

2
(29)

Hence χCd(µ1(Dc)) < 1
2

for every value of q2.

We have therefore proved that the payoff (1+g+l
1+l

, 0) (and obviously the

payoff (0, 1+g+l
1+l

) can be approximated under assumption A provided that
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δ > max{ g
1+g

, l
1+l
} and provided that ε and ξ are sufficiently small. The

payoff (1, 1) has been approximated under a weaker set of assumptions (δ >
g

1+g
) and ε and ξ sufficiently small), and the payoff (0, 0) is a static Nash

payoff. Since any payoff individually rational feasible payoff is a convex
combination of these payoffs, and can be achieved via public randomization,
we have proved the following theorem.

Theorem 6 Assume that A is satisfied, then for any individually rational
feasible payoff vector u = (u1, u2) and any number ζ > 0, there exist ε(ζ) >
0, ξ(ζ) > 0 such that there exists a sequential equilibrium with payoffs within
ζ distance of u provided that ε < ε(ζ) and ξ < ξ(ζ) and δ > max{ g

1+g
, l

1+l
}.

Note that this result does not require vanishing discounting.

4 Concluding Comments

The main point of this paper has been to develop “belief-based” strategies
as a way of constructing sequential equilibria in repeated games with private
monitoring. This affords a major simplification as compared to the tradi-
tional method of analysis. While our construction has been restricted to
the prisoners’ dilemma, and to a strategy profile which consists only of two
continuation strategies, the idea underlying this simplification is obviously
generalizable.

Our substantive results are most closely related to those in a recent pa-
per by Piccione [9], who also analyzes the prisoners’ dilemma with imperfect
private monitoring. Our results differ, both in terms of substance and in the
techniques/strategies used. Piccione’s substantive results are that full coop-
eration can always be approximated, and further, any individually rational
feasible payoff can be approximated in a class of prisoners’ dilemma games,
i.e. for games where l ≥ g. These approximations require that both the noise
in monitoring and discounting vanish. Our results do not require vanishing
discounting, and our “folk theorem” condition A, is in a sense, the opposite
of Piccione’s condition. As we have already mentioned, the two papers use
very different techniques.
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