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Abstract

We analyze a dynamic model of strategic interaction between the league organizing a

professional sport, the teams playing the tournament organized by this league, and broad-

casters competing for the rights to televise their matches. Teams and broadcasters maximize

expected pro¯ts, while the league's objective may be either to maximize the demand for the

sport or to maximize the teams' joint pro¯ts. Demand depends positively on competitive

balance among teams and how intensively they compete to win the tournament. Revenue

sharing increases competitive balance but decreases incentives to win. Under demand max-

imization, a performance-based reward scheme (as used by European top soccer leagues for

national TV deals) may be optimal. Under joint pro¯t maximization, full revenue sharing

(as used by US team sport leagues for national TV deals) is always optimal.
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Revenue sharing is a controversial topic in the organization of any professional sport

league. In recent years, the importance of this topic has been made even more evident

by the growth in revenues American and European professional leagues fetch from the

television broadcasters.1 Not surprisingly, it has attracted the attention of professional

economists (see Fort and Quirk (1995) for a comprehensive review). Surprisingly, there is

few theoretical analysis of the di®erent sides of the controversy. In an attempt to shed some

light on this issue, we study a dynamic model of tournament-like competition among teams

and we let the body organizing the competition decide how to award prizes to winners and

losers. In other words, we address the following question: how should a professional sport

league allocate revenues among participating teams?

The standard argument in favor of revenue sharing in sports observes that there are

large di®erences among revenues and wealth of teams. For example, Scully (1995) and Fort

and Quirk (1995) provide evidence on large disparities of revenues from local TV deals and

ticket sales among teams located in di®erent cities. As a consequence, richer teams tend to

be more successful.2 A mechanism which redistributes income from richer to poorer teams

makes the competition more balanced, hence more enjoyable to the fans. A consequence

of this argument is that revenue sharing increases demand for the sport, hence increasing

the revenues of the league. Furthermore, if teams are pro¯t maximizers, revenue sharing

also decreases the price teams pay for top players since their marginal value decreases.

Hence, revenue sharing has a positive impact on the pro¯t of teams. On the other hand,

revenue sharing provides little incentives to win. In the end, this may have a negative e®ect

on demand since the lack of incentives for team owners will induce lack of incentives for

players.3 Moreover, as noticed by Daly (1992) and Fort and Quirk (1995), if teams have

nothing to compete for, fans may strongly doubt the integrity of the competition on the

playing ¯eld with an obvious negative e®ect on demand. Hence, revenue sharing has a

negative impact of the team pro¯ts.

In this paper, we present a rigorous analysis of the opposing views in this controversy.

Our starting point is a description of aggregate demand for a sporting competition. This

determines how much money the league may obtain for selling the rights to broadcast

the event. Then the league chooses a monetary reward scheme, knowing that its choice

in°uences how team will compete in the event, hence in°uencing the aggregate demand.

Aggregate demand for a sport is ultimately determined by how much the fans enjoy the

show provided by the tournament in which the teams compete. Following the literature sur-

1The latest reported television deals for NFL and NBA, for example, are $17.6 billion over eight years and

$2.4 billion over four years respectively (see Araton 1998).
2See Scully (1995) for detailed evidence in American professional leagues.
3An example of this e®ect is given by the higher TV ratings for playo® matches when compared to regular

season ones.
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veyed in Fort and Quirk (1995), we assume it depends on three factors. Quality of playing

talent in the sport, how hard teams are trying to prevail in the tournament, and competi-

tive balance in the tournament. The league's quality is measured by the combined wealth

of the participating teams; it re°ects the league's ability to attract talented athletes. The

environment in which the league operates strongly in°uences league-wide quality. While

US sport leagues are monopsonists in the market for players (i.e., only intra-league trades

are observed so that league-wide talent is constant), European sport leagues operate in a

competitive environment and compete for top players (inter-league trades of top players are

as frequent as intra-league trades). A wealthier league (i.e., a larger total wealth of teams)

attracts better players, hence having a positive e®ect on demand. Willingness to win is

measured by the salaries a team pays to its Athletes. If the e®ort players produce is ob-

servable, a higher salary is the consequence of a higher e®ort. If the e®ort is not observable,

higher prize when winning the competition generates a higher e®ort. Competitive balance is

measured by uncertainty of the outcome; fans enjoy sporting events whose winners are not

easy to predict. In other words, the more symmetric the winning chances of the teams, the

more exciting the tournament is to watch. Since a team's probability of winning ultimately

depends on the athletes playing for it, competitive balance also depends on a team's wealth

and how much it pays its athletes.

In a dynamic setting, revenue sharing has two e®ects on demand. The ¯rst e®ect we

call competitive balance: increased revenue sharing at time t increases demand at time t+1

by making the teams' future winning chances more equal. This e®ect has consequences

for the competitive balance at time t + 1 even if teams are equally wealthy at time t: a

large prize today introduces an asymmetry in the probabilities of winning tomorrow. The

second e®ect we call incentives to win: revenue sharing decreases demand by lowering the

gain teams may obtain from winning and consequently diminishing their e®ort to win. This

lowers demand since fans enjoy more e®ort from players.

In this paper, we are able to derive the optimal level of revenue sharing in a repeated

tournament by analyzing the trade-o® between competitive balance and incentives to win.

We consider two natural possibilities for the objective function of a professional sport league.

First, we assume that the league as an independent body and assume it maximizes the

revenues given by the amount of money it can obtain from television broadcaster. In our

framework, this assumption is equivalent to maximizing demand for the sport. Second,

we consider the league as a cartel of pro¯t maximizing ¯rms and assume it maximizes the

teams' joint pro¯t (as assumed by Atkinson, Stanley and Tschirhart (1988)). Under demand

maximization, a performance-based reward scheme, as used by European top soccer leagues

for national TV deals (see Table 1), may be optimal4. Under joint pro¯ts maximization,

4See Hamil, Michie and Oughton (1999) for more details about England.
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full revenue sharing, as used by US team sport leagues for national TV deals, is always

optimal .

Our paper extends the existing literature5 in several ways. First, we consider a multi-

period model. Therefore, we are able to capture the trade-o® between pro¯ts today and

pro¯ts tomorrow generated by revenue sharing. Second, we consider the possibility that a

league faces competition from other leagues and that they compete for top players as is the

case in Europe. Existing studies of revenue sharing consider the case of US sport leagues

that do not face competition6 Therefore, we can study the in°uence of revenue sharing at

time t on league-wide talent at time t + 1.

The analysis carried out in this paper goes beyond the sports literature. Our model

presents an example of a repeated moral-hazard problem between a principal and multiple

agents in which the di®erence in output produced by the agents is detrimental to the prin-

cipal and agents' income at time t in°uences their productivity at time t+17 In this setting,

the principal faces a trade-o® between \output balance" among agents and incentives to

produce large quantities. In a dynamic model, a principal can \invest" in output balance,

i.e., lower the output at time t in order to get less di®erence in output at time t + 1. Such

an investment is not possible in a static model.

The organization of the paper is as follows. Section 2 introduces the basic model and

Section 3 derives its equilibrium. Section 4 to 6 consider three possible extensions. These

are the problem of multi-period TV deals; the case in which teams have revenues that do

not depend on the leagues' sharing policy; the situation in which teams cannot observe

players e®ort (how hard they try to win). Finally, Section 6 concludes and an Appendix

contains all proofs.

1 The model

In this section, we present a very simple model of the interaction between teams, leagues,

and broadcasters. Many simplifying assumptions are made only to obtain a closed form

solution of the model and do not appear necessary for our qualitative results. We study a

two period game with four players. These are a professional sport league, the two teams

5El Hodiri and Quirk (1971), Atkinson, Stanley and Tschirhart (1988), Fort and Quirk (1995), and Hoen and

Szymanski (1999), Vrooman (1999).
6Hoen and Szymanski (1999) also compare a league operating in a competitive environment and an isolated

one. However, they do not study the optimal level of revenue sharing.
7For example, consider a situation such that there are two agents 1 and 2, the income of the principal at time

t is Min(qt;1; qt;2), qt;i being the output of agent i at time t. Moreover, qt;i depends on agent i's (unobservable)

e®ort, his productivity and some noise, and the productivity at time t depends on past income. (One can think

of productivity as being the consequence of investment in more or less sophisticated machines.)
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competing in a tournament this league organizes, and a broadcaster who pays to show this

tournament to its viewers. In each period, the following sequence of moves occurs. First,

the broadcaster decides how much to pay for the exclusive right to televise the sporting

event. Then, the league decides how to divide this money between loser and winner of

the tournament. Finally, the teams simultaneously decide how much to spend on players'

incentives. At the end of period, the tournament is played, winner and loser are determined,

and money is awarded.

Let Kt be the amount paid by the broadcaster in period t. Denote Wt;i and et;i the

wealth of team at the beginning of period t and the e®ort exerted by team i at time t,

respectively. The initial wealth of teams 1 and 2 are W1;1 and W1;2, respectively. Wealth at

the beginning of period two is represented by the sum of the initial wealth and the pro¯ts

realized in period 1.

The probability of winning the tournament

The outcome of the sporting event depends on the e®ort choices of the two teams and on

their initial ability. The probability that team i wins in period t depends on its players'

talent and how hard they play. Talent can be thought of as a team's ability to sign players at

the beginning of the season and is measured by the team's wealth Wt;i. How hard players

try to win can be thought of as e®ort, and is measured by the incentives necessary for

players to perform during the season et;i. Formally, we assume the probability that team i

wins in period t is

pt;i = ® et;i
et;i+et;j

+ ¯ Wt;i

Wt;i+Wt;j
if et;i + et;j > 0

pt;i =
Wt;i

Wt;i+Wt;j
if et;i + et;j = 0

with ® + ¯ = 1 and i 6= j. Quite obviously, pt;j = (1 ¡ pt;i) since there are only two

teams. The probability of winning increases with the di®erence in e®ort and the di®erence

in wealth. When the two teams are equally wealthy and produce the same e®ort level,

their probability of winning is 1
2. One can think of ®

¯ as a rough measure of how winning

depends on incentives relative to initial quality. If ®
¯ > 1 the marginal return to e®ort

is higher than the marginal return to wealth. Loosely speaking, in this case `trying hard

is more important than being better'. The probability function we choose captures the

following idea in a simple fashion. A richer team can buy better players, hence having

an initial advantage. However, a poorer team can compensate this initial disadvantage by

producing a higher e®ort level. In order to make players to produce a higher e®ort level,

teams must reward them. Here, the e®ort level is measured in monetary terms.
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Demand

Fans preferences determine how much they enjoy the show provided by the tournament the

teams play. We assume these preferences depend on three sets of variables: overall quality of

the league, competitive balance in the tournament, how hard players are trying to prevail in

the competition. The league's quality is measured by the wealth of the participating teams;

this re°ects their ability to attract talented athletes. Competitive balance is measured

by uncertainty of the outcome; fans enjoy sporting events whose winners are not easy to

predict. The more competitive the league, the more symmetric the winning chances of the

two teams, the more exciting the tournament is to follow. Willingness to win is measured

by players' e®ort; it is important because fans enjoy athletes playing hard.8

In each period t, we assume a simple speci¯cation of demand in monetary terms Dt.

Demand for sport by fans in period t is:

Dt = °(et;1 + et;2) + ±[1 ¡ (pt;1¡ pt;2)
2] + º(Wt;1+ Wt;2) (1)

where et;i denotes team i's e®ort in period t, pt;i its probability of winning, Wt;i its wealth;

the parameters ° 2 (0;1) and º 2 (0; 1) are coe±cients while ± > 0 is expressed in monetary

term. It represents the monetary value of one unit of competitive balance. Equation (1)

can loosely be interpreted as measuring fans welfare from watching the tournament. The

¯rst term measures the importance of watching athletes \giving their best", the second

measures the importance of watching a competitive tournament, and the third measures

the importance of watching talented athletes. For this last term, the idea is that if there are

several competing leagues, league-wide talent depends on the total wealth of teams9. The

wealthier the teams of the considered league, the more talented the players they attract.

Since demand is expressed in monetary terms, the idea is that the broadcast of games

generates income from say advertising and this income increases with the audience that

watches them.

The market for TV rights is assumed to be perfectly competitive i.e., broadcasters expect

zero pro¯ts in equilibrium and, in period 1, they expect to get the rights to broadcast the

game in period 2 with probability zero. Hence, in each period, we have Kt = Dt.

8A possible fourth set of variables may measure fans' attachment to a team. Since we model demand for the

sport, we assume that these \individual team" e®ects wash out in the aggregate.
9This assumption corresponds to the case of European sport leagues who organize domestic competitions and

sign TV deals with national broadcasters. Top players often switch from one league to another, hence changing

league-wide talents. Conversely, US sport leagues are in an isolated environment where league-wide talent is given

and only intra-league trades occur.
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1.0.1 The league

After having received Kt from broadcasters, the league decide how to allocate it between

the two team at the end of the competition. We denote Kt;w and Kt;l (Kt;w + Kt;l = Kt)

the amounts allocated to the winner and the loser, respectively, in period t. We consider

two possible objective functions for the league.

Assumption (D) The league maximizes the demand for sport. Given that assumption of

perfect competition in the broadcasting industry, this is equivalent to assuming that the

league maximizes the revenues from the sale of TV rights. Hence, the league maximizes K2

in period 2 and K1 +K2 in period 1.

Assumption (JP) The league maximizes the joint pro¯t of the teams.

The Teams

The teams compete in a tournament whose outcome is uncertain. Since the probability of

winning and the revenue to be allocated between teams in period 2 depends on the outcome

of period 1. Hence, a fully rational team should consider the in°uence of its strategy in

period 1 on the game that will be played in period 2. We do not think that this is very

realistic since a league is usually made of a relatively large number of teams and the strategic

in°uence of a speci¯c team on the revenue of the league in the following period is small.

Therefore, we start by considering the behavior of myopic teams.10 Formally, a team's

pro¯ts are:

¼i;t = pt;iKt;w + (1 ¡ pt;i)Kt;l ¡ c(et;i)

Since e®ort is measured in monetary terms, we assume the cost function of e®ort in each

period is given by c(e) = e.

Finally, two remarks should be made. First, our model concentrates on the sale of

rights to national TV network and on the allocation of these revenue between teams. Of

course, teams have other sources of pro¯ts (e.g., ticket sales, sponsoring, merchandising,

local TV deals). In the model, this is captured by the di®erence in initial wealth and this

is assumed to be constant over the two periods. An alternative view is that the league

is able to centralize all the revenues generated by teams and to redistribute Second, we

have not modeled a market for talent. Implicitly, we assume that talent is linear in price

and that teams maximize their expected pro¯t from talent under the constraint that they

cannot borrow. In such a case, if for a cost of talent equal to the total wealth of a team,

the marginal pro¯t is larger than the marginal cost, teams invest their entire wealth.

10The case of fully rational teams is analyzed in the Appendix.
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2 The Equilibrium

In this section, we characterize the equilibrium of the game described previously. We begin

by analyzing the subgame starting at the beginning of period 2. The solution concept we use

is subgame perfect Nash equilibrium. Applying backward induction, we start with period 2

subgame and look at three optimization problems. First, the teams' optimal e®ort choices,

given their wealth, the prizes decided by the league, and the TV rights. Then, the league

optimal prize choice, given the TV rights, and the teams' equilibrium play that follows.

Finally, the broadcaster optimal TV rights choice, given teams' and league equilibrium

play. Then, we repeat a similar procedure for period 1, considering equilibrium play in the

following period.

2.1 Period 2 Subgame

Formally, in period 2, team i maximizes

¦i;2 = pi;2K2;w + (1 ¡ pi;2)K2;l ¡ ei;2 (2)

Let ¢K2 = K2;w ¡K2;l. We have the following result.

Proposition 1 There exists an equilibrium of the e®ort game such that

e2;1 = e2;2 =
®¢K2

4
(3)

Proof: See Appendix.

Proposition 1 says that the e®ort produced by teams increases with the di®erence between

the prize money going to the winner and the loser. Hence, the larger the amount of revenue

sharing (i.e., the smaller ¢K2), the smaller the e®ort level produced by teams. We can now

turn to the problem of the league.

The league maximizes demand for sport

Under the assumption that the league maximizes the demand for sport, the problem of the

league in period 2 is equivalent to choosing ¢K2 so as to maximize the e®ort produced by

teams under the constraint that teams do not make losses. This implies that K2;l ¸ e2;i.

We derive the following proposition.

Proposition 2 Assume that the league maximizes the demand for sport, then

¢K2 =
K2

1 +®=2
(4)
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Proof: see Appendix.

This result states that when the demand for sport depends on the e®ort produced by team,

full revenue sharing does not lead to the maximization of demand for sport in the last

period. The league always provides incentives for teams to produce e®ort. Hence ¢K2 > 0

in equilibrium.

From Propositions 1 and 2, we can write the demand in period 2 as a function of K2.

Furthermore, the assumption of perfect competition in the broadcasting industry implies

that D2 = K2. Therefore, we derive the revenue K2(d) of the league in period 2:

K2(d) =
±(2 + ®)

2 + ®(1 ¡ °)

�
1 ¡ ¯2

(W2;1¡ W2;2)
2

(W2;1+ W2;2)2

¸
+

º(2 + ®)

2 +®(1 ¡°)
(W2;1 +W2;2) (5)

The league maximizes teams' joint pro¯t

The joint pro¯t of teams in period 2 (¦2) is given by

¦2 = (° ¡ 1)(e2;1 + e2;2) + ±

�
1 ¡ ¯2

(W2;1¡ W2;2)
2

(W2;1+ W2;2)2

¸
+ º(W2;1 +W2;2) (6)

It is straightforward that ¦2 is decreasing in the e®ort level. Therefore, the objective of

the league is to minimize the e®ort level produced by teams. Hence, we have the following

result.

Proposition 3 Assume that the league maximizes teams' joint pro¯t. Then, the league

chooses full revenue sharing, i.e., ¢K2 = 0.

It follows that the revenue of the league in period 2 is

K2(jp) = ±

�
1 ¡ ¯2

(W2;1¡ W2;2)
2

(W2;1+ W2;2)2

¸
+ º(W2;1+ W2;2) (7)

2.2 Period 1 Behavior and the Equilibrium of the Game

Given that teams are myopic, the problem they face in period 1 is identical to that faced

in period 2. Hence, substituting ¢K2 and K2;l by ¢K1 and K1;l, respectively, Proposition

1 still holds. Therefore, we can study directly the problem of the league. Given that the

league is fully rational, it takes into account the in°uence of its decision in period on the

game played in period 2. Furthermore, there is uncertainty about the payo®s in period 2

since W2;1 and W2;2 are dependent of the outcome of the competitions between the teams

in period 1.
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The league maximizes demand for sport

From Proposition 1, we deduce that the revenue of the league in period 2 if team 1 wins in

period 1 is

K¤
2(d; 1) = ±(2+®)

2+®(1¡°)
h
1 ¡ ¯2 (W1;1¡W1;2+¢K1)2

(W1;1+W1;2+K1¡(e1;1+e1;2))2
i

+ º(2+®)
2+®(1¡°)(W1;1 +W1;2 +K1 ¡ (e1;1+ e1;2))

while the revenue of the league in period 2 if team 2 wins in period 1 is

K¤
2(d; 2) = ±(2+®)

2+®(1¡°)
h
1 ¡ ¯2

(W1;1¡W1;2¡¢K1)
2

(W1;1+W1;2+K1¡(e1;1+e1;2))2
i

+ º(2+®)
2+®(1¡°)(W1;1 +W1;2 +K1 ¡ (e1;1+ e1;2))

Therefore, in period 1, the league maximizes

D = D1+ p1;1K
¤
2(d; 1) + (1 ¡ p1;1)K

¤
2 (d;2) (8)

Given that the two teams produce the same e®ort in period 1, we deduce that

p1;1 =
®

2
+ ¯

W1;1

W1;1 +W1;2
(9)

and

D1 = °(e1;1+ e1;2) + ±

�
1 ¡¯2

(W1;1 ¡W1;2)2

(W1;1 +W1;2)2

¸
+ º(W1;1 +W1;2) (10)

From equations (9) and (10), we derive the following proposition.

Proposition 4 Assume the league maximizes the demand for sport. Then:

(i) If °(3 ¡ °) > 3º, there exists ® < 1 such that for all ® > ®, ¢K1 > 0.

(ii) if °(3 ¡ °) < 3º, full revenue sharing is optimal, i.e., ¢K1 = 0.

Proof: See Appendix.

The level of revenue sharing chosen by the league in period 1 in°uences its revenue in

three ways. As the level of revenue sharing increases (¢K1 decreases), ¯rst, the revenue

in period 1 decreases through a lower e®ort produced by teams. Second, the revenue of

period 2 increases through a larger total wealth, and third, the revenue of period 2 increases

through an increase in the balancedness of the league (jp2;1 ¡ p2;2j increases). Part (i) of

the proposition states that when the sensitivity of demand to e®ort is large relative to the

sensitivity of demand to total wealth (so that °(3 ¡ °) > 3º), then if the sensitivity of

the probability of winning to e®ort (®) is large enough the league sets the level of revenue

sharing so as to maximize the e®ort level produced by teams. Hence, the league chooses

partial revenue sharing (¢K1 > 0). Part (ii) states that when the sensitivity of demand to

wealth is large (so that °(3 ¡ °) < 3º) then the league shares its revenue evenly between

teams in order to maximize the total wealth in period 2, hence the demand in period 2.
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The league maximizes teams' joint pro¯ts

We know that when the league maximizes teams' joint pro¯t, it sets ¢K2 = 0, so that

e2;1 = e2;2 = 0. It follows that if team 1 wins in period 1, the revenue of the league in

period 2 is

K¤
2(jp;1) = ±

�
1 ¡ ¯2

(W1;1 ¡W1;2+ ¢K1)2

(W1;1+ W1;2 +K1¡ (e1;1 + e1;2))2

¸
+º(W1;1+W1;2+K1¡(e1;1+e1;2))

while if team 2 wins in period 1, the revenue of the league in period 2 is

K¤
2(jp;2) = ±

�
1 ¡ ¯2

(W1;1 ¡W1;2¡ ¢K1)
2

(W1;1+ W1;2 +K1¡ (e1;1 + e1;2))2

¸
+º(W1;1+W1;2+K1¡(e1;1+e1;2))

The objective of the league in period 1 is then to maximize

¦ = D1 + p1;1K
¤
2(jp; 1) + (1 ¡ p1;1)K

¤
2 (jp; 2) ¡ (e1;1+ e1;2) (11)

Given the e®ort level chosen by teams as a function of K1;w and K1;l, we have the following

result.

Proposition 5 Assume that the league maximizes the joint pro¯t of the teams. Then, full

revenue sharing is optimal, i.e., ¢K1 = 0.

Proof: Proceeding as in the proof of Proposition 4, one shows that @¦=@¢K1 < 0. 2

The proposition states that the cost of an increase of the demand through a higher e®ort

produced by teams is o®set by the cost of such an e®ort. Hence, the league chooses ¢K1

so that teams minimize their e®ort level.

3 Multi-period TV deal

So far, we have assumed that, at the beginning of each period, TV deals are negotiated for

one period. Now, we consider the case in which at the beginning of period 1, the league sells

the right to broadcast games for the two seasons and the payment is made at the beginning

of period 1. In such a case, the league decides two things: the allocation of prizes between

periods and then the allocation between the winner and the loser in each period. Such an

assumption has two implications. First, at the beginning of period 1, teams know prizes to

be awarded in the second period. This was not the case before since the K2 was dependent

of the winning team in the ¯rst period. Second, we do not have Dt = Kt, (t = 1; 2). If we

denote K the revenue of the league at the beginning of period 1, K = D1+ D2.

Also, note that the problem faced by teams in each period remains unchanged. Hence, the

e®ort levels in periods 1 and 2 remain unchanged as functions of ¢K1 and ¢K2, respectively.
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If the league maximizes the demand for sport, we are able to derive solutions in the corner

cases ® = 0 and ® = 1. When the league maximizes teams' joint pro¯ts, we have a more

general result.

Proposition 6 (i) Assume that the league maximizes the demand for sport. If ® = 1 and

° > º then K1 = K, K2 = 0, and ¢K1 = 2K1=3. If ® = 1 and ° < º then K1 = K,

K2 = 0 and ¢K1 = 0. If ® = 0, then K1 = K, K2 = 0 and ¢K1 = 0.

(ii) Assume that the league maximizes teams' joint pro¯ts. Then, K1;w = K1;l = K=2 and

K2 = 0.

Proof: See Appendix.

When deciding how to allocate money between teams and between periods, the league has

to take into account two types of e®ects. First, the importance sensitivity of the probability

of winning to e®ort (®) relative to its sensitivity to wealth (¯). As already mentioned, the

larger ®, the larger the e®ort level produced by teams. The second e®ect is the importance

of the sensitivity of demand to e®ort (°) relative to the sensitivity of demand to wealth

(º). For a given total e®ort produced by teams in the two periods, the league prefers to

concentrate these e®orts in period 1 since it generates an increase in total wealth in period

2. Hence, for any ® the league encourages e®ort in period 1. Also, for a given ¢K1, the

larger K1 the smaller the di®erence in relative wealth between the two teams in period 2,

hence the more balanced the competition. For these two reasons, the league sets K2 = 0.

When ® is large, the choice of ¢K1 for a given K1 depends on the values of ° and º. The

league faces a trade-o®. If ¢K1 is large, then teams produce a high e®ort level in period

1 hence generating a high demand in period 1. In such a case, the total pro¯t of teams is

small since teams face a high cost for such an e®ort level. It follows that the total wealth

in period 2 is small and so is the demand of period 2 generated by total wealth.

4 Teams have multiple sources of revenue

In this section, we assume that teams have revenues that are not submitted to possible

revenue sharing by the league. For example, these revenues may come from local TV deal

or from merchandising. However, we assume that these revenue are dependent of past

performance, the idea being that the better a team is performing, the more attractive it is,

hence the higher its revenue. Formally, we assume that the winner of the competition in

period t receives Kt;w+A with A strictly positive and independent of the degree of revenue

sharing chosen by the league. As before, the loser receives Kt;l. Under such an assumption

we have the following results.
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Proposition 7 Assume that the league maximize the demand for sport and let

A¤ =
2±

®(1 ¡ °)

�
1 ¡ ¯2

(W2;1¡ W2;2)
2

(W2;1+ W2;2)2

¸
+

2º

®(1 ¡°)
(W2;1 +W2;2)

If A > A¤ then

K2 =
°®A

2
+ ±

�
1 ¡ ¯2

(W2;1¡ W2;2)2

(W2;1+ W2;2)2

¸
+ º(W2;1+ W2;2)

¢K2 = 0 and e2;i = ®A=4 (i = 1; 2). If A � A¤ then

K2 =
°®A

2 +®(1 ¡ °)
+

±(2 +®)

2 + ®(1 ¡ °)

�
1 ¡¯2

(W2;1 ¡ W2;2)2

(W2;1 + W2;2)2

¸
+

º(2 +®)

2 + ®(1 ¡°)
(W2;1+ W2;2)

¢K2 = 2K2¡®A
2+® e2;1 = e2;2 = ®(¢K2+ A)=4

Proof: See Appendix.

When the additional source of revenue is not too large (i.e., smaller than A¤ so that the

league does not choose full revenue sharing), it generates a higher revenue for the league.

The reason is that A a®ects the e®ort level produced by teams in two ways. The ¯rst e®ect

is a direct one. If the amount earned by the winning team increases, it provides incentives

for teams to increase their e®ort level. This generates an indirect e®ect: the league increases

the level of revenue sharing so that

e2;i = K2;l =
®(K2 +A)

2(2 +®)

When the additional source of revenue is large (i.e., lager than A¤), the league chooses full

revenue sharing and teams' e®ort level is only determined by A. Furthermore, the losing

team makes a loss.

In period 1, the problem teams face is the same as in period 2. Therefore,

e1;1 = e1;2 = ®(¢K1 +A)=4 (12)

From Proposition 7 and equation (12), we deduce the following result.

Proposition 8 Assume that the league maximizes the demand for sport. If °(3 ¡°) > 3º ,

there exist ¹A > 0 and ® < 1 such that if A < ¹A and ® > ®, then ¢K1 > 0.

This result suggests that in a league in which revenues from TV deals represent a fraction

not too large of team revenues, full revenue sharing is not damaging to e®ort since other

source of revenues provide incentives for teams to produce e®ort. Conversely, in a league

in which revenues from TV represent a large fraction of teams' revenues, then the league

chooses a performance-based allocation.
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5 Unobservable E®ort

So far, we have implicitly assumed that e®ort produced by team players was observable,

hence teams could o®er e®ort-based compensation to players. In this section, we relax this

assumption. A direct consequence is that teams can only o®er performance-based contracts

to players. Let ¹t;i(w) and ¹t;i(l) the fraction of the gain paid to players when team i earns

Kt;w and Kt;l, respectively. The objective of team i is to maximize

¼t;i = pt;i(1 ¡ ¹t;i(w))Kt;w + (1 ¡ pt;i)(1 ¡ ¹t;i(l))Kt;l

subject to ¹t;i(w) ¸ 0, ¹t;i(l) ¸ 0, and

e¤t;i 2 Argmax pt;i¹t;i(w)Kt;w +(1 ¡ pt;i)¹t;i(l)Kt;l (13)

This last equation represents the incentive compatibility constraint.

Let ¢Kt;i = ¹t;i(w)Kt;w ¡ ¹t;i(l)Kt;l. Then, proceeding as in the proof of Proposition 1,

one shows that the equilibrium of the e®ort game is such that

e¤t;i = Sup

½
0;

®(¢Kt;i)
2¢Kt;j

(¢Kt;1 +¢Kt;2)2

¾
(14)

with i 6= j. It follows that if e¤t;i > 0, then

pt;i = ®
¢Kt;i

¢Kt;1 +¢Kt;2
+ ¯

Wt;i

Wt;1 +Wt;2
(15)

From these results, we derive the following proposition about the compensation of players

by teams.

Proposition 9 Assume that ¢Kt > 0. There exists an equilibrium such that

(i) ¹t;i(l) = 0 (i = 1;2)

(ii) If Wt;i > Wt;j, then 0 < ¹t;i(w) < ¹t;j(w) and pt;i > pt;j.

(iii) ¹t;I (i = 1; 2) is an increasing function of Kt;w.

We deduce that

e¤t;i =
®¹t;i(w)2¹t;j(w)Kt;w

(¹t;1(w) +¹t;2(w))2

and

pt;i = ®
¹t;i(w)

¹t;1(w) +¹t;2(w)
+ ¯

Wt;i

Wt;1+ Wt;2

The proposition says that players are only compensated in case of success and the incentives

are more important for the team with the smaller wealth. It follows that players from the

wealthier team exert a lower e®ort. However, in equilibrium, the wealthier team has a

14



higher probability of winning the competition. A direct consequence of (iii) is that the

level of revenue sharing in°uences the e®ort level produced by teams in two ways: directly

through the di®erence of gains between the winner and the loser, and indirectly through

the compensation scheme of the players (¹t;i(w)).

We turn now to the problem of the league. A main di®erences with the case of observable

e®ort is that teams never make losses. Hence, in period 1, the league does not have to take

into account the possibility that a team will have a negative wealth if it loses in period 1.

From the previous proposition we derive the following results about the level of revenue

sharing in period 2.

Proposition 10 Assume that the league maximizes the demand for sport. Then:

(i) ¢K2 = K2.

(ii) There exists ® < 1 such that if ® > ® and °(6 ¡°) > 36º then ¢K1 > 0.

The proposition states that, qualitatively, the results obtained in the case of observable

e®ort still hold if this assumption is relaxed. That is, the league minimizes the level of

revenue sharing in the second period and if the in°uence of e®ort on demand is large

enough with respect to the in°uence of total wealth, then the league does not choose full

revenue sharing in the ¯rst period.

6 Conclusions

We presented a theoretical model of revenue sharing in sport leagues. Our main results

derive explicit conditions under which revenue sharing may be optimal. These can be

summarized by looking at the relative importance of the incentive to win versus (future)

competitive balance. Higher revenues sharing increases future demand through a better

competitive balance, but decreases current demand through a lower e®ort to win from

teams. If the league maximizes the demand for sport, then a performance-based reward

scheme (as used by European top soccer leagues for national TV deals) may be optimal.

Conversely, if the league act as a cartel and maximizes joint pro¯ts, then full revenue sharing

(as used by US team sport leagues for national TV deals) is always optimal .

Our results are also interesting for the moral-hazard literature since our model presents

an example of a repeated agency problem between a principal and multiple agents in which

the di®erence in output produced by the agents is detrimental to the principal. In this

setting, the principal faces a trade-o® between \output balance" among agents and incen-

tives to produce large quantities. Our results show that the principal may have incentive to

\invest" in \output balance", i.e., lower the output today in order to get a lower di®erence

in outputs tomorrow.
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Appendix

Proof of Proposition 1: Assume that ¢K2 > 0. If e2;j > 0 then the FOC of pro¯t

maximization for player i yields

e2;i = Max
³
0;

p
®e2;j¢K2 ¡ e2;j

´
(16)

and if e2;j = 0 then e2;i = 0 is not a best reply to e2;j . Therefore, equilibria are solution of

the system of equation (16) A solution is given by (26). If ¢K2 = 0, then teams' expected

revenue is independent of their e®ort level. Hence, teams' objective is to minimize the cost

of e®ort, thus they choose e2;i = 0. 2

Proof of Proposition 2: Given that K2;l = K2 ¡ K2;w, ¢K2 = 2K2;w ¡ K2 and the

demand for sport, the problem of the league is to choose K2;w so as to maximize the e®ort

produced by teams. From Proposition 1, we derive that the league choose K2;w such that

K2 ¡K2;w = ®2K2;w ¡K2=4 (17)

Hence,

K2;w =
1 + ®=4

1 + ®=2
K2 (18)

This implies

¢K2 =
K2

1 +®=2
(19)

Proof of Proposition 4: Let

H =
¢K1

³
(W1;1+ W1;2) + ®¯(W1;1¡W1;2)2

2(W1;1+W1;2)

´
+(¯ + ®=2)(W1;1 ¡W1;2)

2

(W1;1 +W1;2+ K1 ¡®¢K1=2)3

@D

@¢K1
= ¡ 2¯2±(2 + ®)

2 + ®(1 ¡ °)
H +

®

2

µ
° ¡ º(2 +®)

2 + ®(1 ¡ °)

¶

If °(3 ¡ °) > 3º, then there exists ® < 1 such that for all ® > ®, @D
@K1

> 0. Conversely, if

°(3 ¡°) � 3º, then for all ® 2 [0;1] @D=@¢K1 < 0. 2

Proof of Proposition 6: Assume that the league maximizes the demand for sport. If

® = 1, then the league maximizes

D =
(° ¡ º)

2
¢K1 +

°

2
¢K2 +2 [± + º(W1;1 +W1;2)] + ºK1 (20)

subject to K = K1+ K2, ¢Kt � Kt;l (t = 1; 2).

If º > °, then D is decreasing in ¢K1 and increasing in ¢K2. Hence, the league sets
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¢K1 = 0 and ¢K2=4 = K2;l. Therefore, K1;w = K1;l = K1=2, and K2;l = K2=4. It follows

that the problem of the league is to choose K1 and K2 (with K1 + K2 = K) so as to

maximize D = °K2=2 + ºK1. Given that º > °, the league chooses K1 = K and K2 = 0.

Now, assume that ° > º. Then, the league sets ¢K1=4 = K1;l and ¢K2=4 = K2;l. Then,

the league maximizes

D = ((° + º)K1+ °K2)=2 (21)

We deduce that the league chooses K1 = K and K2 = 0. Furthermore, ¢K1=4 = K1;l

implies ¢K1 = 2K=3.

Assume that ® = 0. Then, the demand in period 1 is not in°uenced by the allocation

chosen by the league. It follows that the objective of the league is to maximize

F = W1;1

W1;1+W1;2

h
1 ¡ (W1;1¡W1;2+¢K1)2

(W1;1+W1;2+K1)2

i
+ W1;2

W1;1+W1;2

h
1 ¡ (W1;1¡W1;2¡¢K1)2

(W1;1+W1;2+K1)2

i

+º(W1;1 +W1;2+ K1)
(22)

It is straightforward that F is increasing in K1. Hence, the league set K2 = 0. Now,

dF=d¢K1 > 0 is equivalent to

¡2(W1;1+ W1;2)¢K1 ¡ 2(W1;1 ¡ W1;2)
2 < 0 (23)

Therefore, The league chooses ¢K1 = 0.

Assume that the league maximizes teams' joint pro¯t. Given that et;1 = et;2 = ®¢Kt=4,

the league maximizes

¦ = 2(° ¡ º ¡ 1)e1;1 + ±
³
®
2 + ¯ W1;1

W1;1+W1;2

´h
1 ¡¯2 (W1;1¡W1;2+¢K1)2

(W1;1+W1;2+K1¡2e1;1)2
i

+±
³
®
2 + ¯ W1;2

W1;1+W1;2

´h
1 ¡ ¯2 (W1;1¡W1;2¡¢K1)2

(W1;1+W1;2+K1¡2e1;1)2
i

+2(° ¡ 1)e2;1+ ºK1

(24)

subject to K = K1+ K2, ¢Kt � Kt;l (t = 1; 2).

It is straightforward that ¦ is decreasing in the e®ort in period 2. Hence the league sets

¢K2 = 0. Now,

@¦
@¢K1

= ®(° ¡ º ¡ 1)=2 ¡ ¯2f®2 (®(W1;1¡W1;2)
2+2¢K1(W1;1+W1;2+K1))g

(W1;1+W1;2+K1¡2e1;1)3

¡
¯2¢K1

W1;1+W1;2
(K1(W1;1+W1;2)+(W1;1+W1;2)2+®

2 (W1;1¡W1;2)2)
(W1;1+W1;2+K1¡2e1;1)3

¡
¯2(W1;1¡W1;2)2

µ
K1

W1;1+W1;2
+1+®

2

¶

(W1;1+W1;2+K1¡2e1;1)3 < 0

(25)

Hence, ¢K1 = 0. Furthermore, it is straightforward that at ¢K1 = 0, @¦=@K1 > 0 while

@¦=@K2 = 0. Hence, we have the desired result. 2
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Proof of Proposition 7: Proceeding as in the proof of Proposition 1, one shows that

e2;1 = e2;2 =
®(¢K2 +A)

4
(26)

Then, proceeding as in the proof of Proposition 2, we obtain that the league chooses

K2;w = Max

½
4K2 +®(K2¡ A)

2(2 + ®)
;
K2

2

¾
(27)

This implies

¢K2 = Max

½
2K2¡ ®A

2 + ®
; 0

¾
(28)

If ¢K2 > 0, then K2 is given by (7) and K2 > ®A=2 is equivalent to A < A¤. If ¢K2 = 0

then K2 = ®A¤=2, then K2 < ®A=2 is equivalent to A > A¤. 2.

Proof of Proposition 8: Let

A¤1(A) = 2±
®(1¡°)

h
1 ¡ ¯2 (W1;1¡W1;2+¢K1+A)2

(W1;1+W1;2+K1(A)+A¡®(¢K1+A)=2)2

i

+ 2º
®(1¡°)(W1;1 +W1;2+ K1(A) + A ¡®(¢K1+ A)=2)

A¤2(A) = 2±
®(1¡°)

h
1 ¡ ¯2 (W1;1¡W1;2¡¢K1¡A)2

(W1;1+W1;2+K1(A)+A¡®(¢K1+A)=2)2

i

+ 2º
®(1¡°)(W1;1 +W1;2+ K1(A) + A ¡®(¢K1+ A)=2)

with

K1(A) =
°®A

2 +®(1 ¡°)
+

±(2 + ®)

2 +®(1 ¡°)

�
1 ¡ ¯2

(W1;1 ¡W1;2)
2

(W1;1 +W1;2)2

¸
+

º(2 + ®)

2 + ®(1 ¡ °)
(W1;1+W1;2)

(29)

De¯ne the functions F1(A) and F2(A) as follows

F1(A) =

(
F1;s(A) if A � A¤1
F1;l(A) if A > A¤1

F2(A) =

(
F2;s(A) if A � A¤2
F2;l(A) if A > A¤2

where
F1;l(A) = °®A

2 + ±
h
1 ¡¯2

(W1;1¡W1;2+¢K1+A)
2

(W1;1+W1;2+K1(A)+A¡®(¢K1+A)=2)2
i

+º(W2;1+ W2;2 +K1(A) +A ¡ ®(¢K1 +A)=2)

F1;s(A) = °®A
2+®(1¡°) + ±(2+®)

2+®(1¡°)
h
1 ¡ ¯2 (W1;1¡W1;2+¢K1+A)2

(W1;1+W1;2+K1(A)+A¡®(¢K1+A)=2)2

i

+ º(2+®)
2+®(1¡°)(W1;1 +W1;2+ K1(A) +A ¡ ®(¢K1+ A)=2)

F2;l(A) = °®A
2 + ±

h
1 ¡¯2

(W1;1¡W1;2¡¢K1¡A)2
(W1;1+W1;2+K1(A)+A¡®(¢K1+A)=2)2

i

+º(W2;1+ W2;2 +K1(A) +A ¡ ®(¢K1 +A)=2)
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F2;s(A) = °®A
2+®(1¡°) + ±(2+®)

2+®(1¡°)
h
1 ¡ ¯2 (W1;1¡W1;2¡¢K1¡A)2

(W1;1+W1;2+K1(A)+A¡®(¢K1+A)=2)2

i

+ º(2+®)
2+®(1¡°)(W1;1 +W1;2+ K1(A) +A ¡ ®(¢K1+ A)=2)

Let

D = D1+ p1;1F1;s(A) + (1 ¡ p1;1)F2;s(A)

where D1 and p1;1 are given by (10) and (9), respectively. Now, it is straightforward that

there exists ¹A2 such that if A < ¹A2, then F1(A) = F1;s(A) and F2(A) = F2;s(A). Therefore,

if A < ¹A2, then proceeding as in the proof of Proposition 4, one shows that if °(3¡°) > 3º,

there exists ® such that @D=@¢K1 > 0. Let

¹A1 =
2±

®(1 ¡ °)

�
1 ¡ ¯2

(W1;1¡ W1;2)
2

(W1;1+ W1;2)2

¸
+

2º

®(1 ¡°)
(W1;1 +W1;2)

Proceeding as in the proof of proposition 7, one shows that if A < ¹A1, then

¢K1 =
2K1(A) ¡ ®A

2 + ®
(30)

Then, then assumption of perfect competition in the broadcasting industry in period 1 (i.e.,

D1 = K1) implies that K1 is given by (29). Hence, taking ¹A = Min( ¹A1; ¹A2), we have the

desired result. 2

Proof of Proposition 9:

Proof of part (i). From equations (14) and (15), we derive that

@¼t;i
@¹t;i(w)

=
®¢Kt;jKt;w

(¢Kt;1 +¢Kt;2)2
[(1 ¡¹t;i(w))Kt;w ¡ (1 ¡¹t;i(l))Kt;l] ¡ pt;iKt;w (31)

@¼t;i
@¹t;i(l)

= ¡ ®¢Kt;jKt;l

(¢Kt;1 +¢Kt;2)2
[(1 ¡ ¹t;i(w))Kt;w ¡ (1 ¡¹t;i(l))Kt;l] + (pt;i ¡ 1)Kt;l (32)

Assume that there exists an equilibrium with ¹t;i(w) > 0. This implies that

(1 ¡ ¹t;i(w))Kt;w ¡ (1 ¡¹t;i(l))Kt;l > 0

In turn, this implies that @¼=@¹t;i(l) < 0 in equilibrium. Hence, ¹t;i(l) = 0. Now, we need

to show that the system of equations

®¹t;j(w)

(¹t;1(w) + ¹t;2(w))2
[(1 ¡ ¹t;i(w))Kt;w ¡ Kt;l] ¡ pt;iKt;w = 0 i = 1;2 i 6= j (33)

has a solution in (0; 1) £ (0; 1) which satis¯es the second order conditions of pro¯t maxi-

mization.

From equation (31), it is straightforward that if ¹t;i(l) = 0 then @2¼t;i=(@¹t;i(w))2 < 0.

Now, when ¹t;1(w) and ¹t;2(w) converge to 0 at the same speed (so that there exists H > 0

such that H < ¹t;i(w)=¹t;j(w) (i = 1;2 and i 6= j) as when ¹t;1(w) and ¹t;2(w) converge
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to 0), then the LHS of (33) goes to in¯nity. Furthermore, for any given ¹t;i(w) > 0,

®¹t;j(w)=(¹t;1(w)+¹t;2(w))2 converges to 0 as ¹t;j(w) converges to zero. Hence, we deduce

that by continuity, there exist ¹t;1(w) and ¹t;2(w) such that the system of equations (33)

has a solution in (0; 1) £ (0; 1).

Proof of part (ii): We use a contradiction argument. Assume that Wt;i > Wt;j and ¹t;i(w) ¸
¹t;j(w). This implies that pt;i > pt;j . From (33), it follows that

¹t;j(w)

¹t;i(w)
>

(1 ¡¹t;j(w))Kt;w ¡Kt;l

(1 ¡ ¹t;i(w))Kt;w ¡ Kt;l

The LHS of this inequality is smaller than 1 while the RHS is larger than 1. Hence, the

inequality does not hold and if Wt;i > Wt;j then ¹t;i(w) < ¹t;j(w).

Now, ¹t;i(w) > ¹t;j(w) implies ¼t;i > ¼t;j follows directly from (33).

Proof of part (iii): Let Rt = Kt=Kt;w. From (33), we deduce that

@¹t;i(w)

@Rt
= ¡ [¹t;j(w)(2 ¡Rt)(¹t;1(w) + ¹t;2(w))]¡1 (34)

Hence, ¹t;1(w) and ¹t;2(w) are increasing functions of Kt;w.

2

Proof of Proposition 10:

Proof of (i): From Proposition 9, we know that in each period the e®ort level is increasing

in Kw. Hence, we only need to show that (p2;1¡ p2;2)
2 is not increasing in ¢K2.

p2;1¡ p2;2 = ®
¹2;1(w) ¡¹2;2(w)

¹2;1(w) +¹2;2(w)
+ ¯

W2;1¡ W2;2

W2;1+ W2;2

Let Rt = Kt=Kt;w.

d(p2;1 ¡ p2;2)

dR2
=

2(¹2;2(w)
d¹2;1(w)
dR2

¡¹2;1(w)
d¹2;2(w)
dR2

)

(¹2;1(w) +¹2;2(w))2
(35)

From equation (34), we derive that d(p2;1¡ p2;2)=dR2 = 0. It follows that D2 is increasing

in ¢K2 and so the leagues sets ¢K2 = K2.

Proof of (ii). Assume that ® = 1. In such a case,

¹2;1(w) = ¹2;2(w) =
2K2;w ¡K2

3K2;w

and

e2;1 = e2;2 =
2K2;w ¡K1

12
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From part (i), we know that K2;w = K2. We deduce that

K2 =
± + º(W2;1+ W2;2)

1 ¡ ®°=6
(36)

Now, consider the problem of the league in period 1. Teams face the same problem as in

period 2. Hence,

¹1;1(w) = ¹1;2(w) =
2K1;w ¡K1

3K1;w

Therefore, if team i wins in period 1, then

W2;i = W1;i +

µ
1 ¡ 2K1;w ¡ K1

3K1;w

¶
K1;w

while if it looses,

W2;i = W1;i + K1;l

We deduce that, in period 1, the league maximizes

D = (± + º(W1;1 +W1;2)(1 +
6

6 ¡ °
) + (2K1;w ¡K1)(

°

6
¡ 6º

6 ¡°
)

Hence, if °(6 ¡°) > 36º then dD=dK1;w > 0. By continuity, we derive that there exists ®

such that if ® > ® dD=dK1;w > 0, ¢K1 > 0. 2

The case of fully rational teams

Fully rational teams take into account the impact of their action at time 1 on their wealth in

period 2. Since probabilities of winning in period 2 and the revenue of the league in period

2 depend on teams' wealth, it follows that they take into the in°uence of their action in

period 1 on p2;1(i) and K¤
2 (k; i) (k = d; jp and i = 1;2). In period 2, the problem of the

fully rational team is identical to that of a myopic team.

Formally, in period 1, fully rational team i solves the following problem

Maxp1;i

h
K1;w + p2;i(i)K

¤
2;w(k; i) + (1 ¡ p2;i(i))K

¤
2;l(k; i) ¡ e2;i(i)

i

+p1;i

h
K1;w + p2;i(j)K

¤
2;w(k; j)+ (1 ¡ p2;i(j))K

¤
2;l(k; j) ¡ e2;i(j)

i
¡ e1;i

(37)

with i 6= j, k = d; jp, and e2;i(m) represents the e®ort produced by team i in period 2 if

team m wins in period 1 (m = 1;2).

In the corner cases ® = 0 and ® = 1, we are able to derive closed form solution in

the e®ort game played by teams. First, if ® = 0, it is straightforward that teams do not

produce any e®ort . Hence, the problem faced by the league is identical to the case with

myopic teams. Therefore, the league sets ¢K1 = 0. If ® = 1 we have the following result.
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Proposition 11 (i) Assume that the league maximize the demand for sport and ® = 1.

Then

e1;1 = e1;2 =
(3 ¡ °)¢K1

12

If °(3 ¡°) ¸ 3º the league sets ¢K1 = 5K1=6. If °(3 ¡°) < 3º the league sets ¢K1 = 0.

Proof: If ® = 1, then

K¤
2 (d;1) = K¤

2(d;2) =
3

3 ¡°
(± + º(W1;1 +W1;2+ K1 ¡ e1;1¡ e1;2))

and p2;j(i) = 1=2 (i; j = 1; 2). Proceeding as in the proof of Proposition 1, we obtain that

the equilibrium e®ort produced by teams in period 1 is

e1;i = e1 =
(3 ¡ °)¢K1

2[2(3 ¡ °) +3º]

The objective of the league in period 1 is to maximize

D = 2

µ
° ¡ 3º

3 ¡ °

¶
e1+

µ
1 +

3

3 ¡°

¶
(± + º(W1;1 +W1;2))

Hence, if °(3 ¡°) < 3º, the league sets ¢K1 so as to minimize the e®ort level produced by

teams, i.e., ¢K1 = 0. Conversely, if °(3 ¡ °) > 3º the leagues sets ¢K1 so as to maximize

the level of e®ort by teams, i.e.,

(3 ¡°)¢K1

2[2(3 ¡°) +3º]
= K1;l

Given that ¢K1 = 2K1;w ¡K1 and K1;l = K1 ¡K1;l, we obtain

K1;w =
5(3 ¡ °) + 6º

6[(3 ¡°) + º]

We deduce that ¢K1 = 5K1=6. By continuity, it implies that if °(3 ¡°) > 3º, there exists

® such that if ® > ®, then ¢K1 > 0. 2

From Proposition 11 we deduce that fully rational teams choose a lower e®ort level than

myopic teams. The reason is that they take into account the in°uence of their e®ort in

period 1 on the demand of period 2 through their wealth. It follows that by decreasing

their e®ort level, they increase their future wealth, hence increasing the revenue of the

league in period 2 and their expected gain in that period.
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Country Best/Worst

England 2.2

France 1.8

Germany 1.7

Italy 3.4

Table 1: Ratio of revenues for the season 1999-2000 is some top European soccer leagues. Source:

L'Equipe.
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