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Abstract

This paper studies the stability of a finite local public goods economy in
horizontal differentiation, where a jurisdiction’s choice of the public good is
given by an exogenous decision scheme. In this paper, we characterize the
class of decision schemes that ensure the existence of an equilibrium with
free mobility (that we call Tiebout equilibrium) for monotone distribution
of players. This class contains all the decision schemes that lie between the
Rawlsian decision scheme and the median voter with mid-distance of the
two median voters when there are ties. In the last part of the paper, we
prove the non-emptiness of the core of this coalition formation game.

Keywords: Coalition structures, Tiebout equilibrium, C-stability, decision
scheme.

Journal of Economic Literature Classification: C71, D70, H73.

Guillaume Haeringer
Departament d’Economia i d’Història Econòmica and CODE
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1 Introduction

The aim of this paper is to study the stability of coalition structures, in
non-cooperative and cooperative frameworks. We advocate that coalitions
result from a contest between two opposite forces. On the one hand, individ-
uals might be attracted by big communities, clubs or networks, e.g., when
the power of coalitions increases with its size — as suggested by Demange
(1994) — or when there are increasing returns to scale. On the other hand,
individuals may feel better off in small structures, and seek to join small
groups rather than big ones. For instance, in small groups agents are usu-
ally more likely to be part of some kind of decision making processes than
in bigger ones. If one of these two forces has no or little influence, trivial
equilibria may be reached.1 By contrast, when both forces have comparable
effects, the outcome of the coalition formation process becomes harder to
predict, and finding stable coalition structures is more intricate.

Economic analysis offers a wide variety of problems that can be refor-
matted in terms of coalition formation, that range from party formation in
political economy to the origin of cartels in industrial organization. In all
these situations, a starting point is that individuals carry out economic or
political activities as coalitions, which are often determined endogenously.
Local public good economies are one of the most appealing frameworks for
the study of coalition structures. Such an economy is defined as follows.
There is a set of potential jurisdictions, each of them supplying a public
good bundle. Public goods have the property that the same amount of the
good is supplied to all agents. Local public goods, as introduced by Tiebout
(1956), are public goods whose consumption is only possible for agents living
in the jurisdiction that provides them. In models à la Tiebout, each juris-
diction has to finance the production of the public goods bundle it supplies.
The two forces that have been mentioned above are clearly defined in this
context. On the one hand, agents seek to join the jurisdiction that provides
their most preferred public good bundle; so, if each jurisdiction chooses its
own public good with respect to the tastes of its inhabitants, it is obvious
that agents may favor small communities, where their tastes are likely to
have a large impact on the choice of the public good. On the other hand,
when the cost of the public good production is independent of the number
of users (no crowding effects), the tax level paid by an agent decreases with

1In this paper, “equilibrium” means a state such that no player migrates from a coali-
tion to another one.
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the number of agents in the jurisdictions (or agents’ wealth), and therefore
agents also care about the ‘size’ of the jurisdictions they may enter. Con-
sequently they may favor those with many members rather than those that
supply their preferred public good bundle.

In this paper, we propose a coalition formation model in the vein of
local public goods economies, with the following characteristics. Individuals
in a finite population have to choose the location of a public good/facility.
Agents may form jurisdictions, and each jurisdiction finances its own public
goods. We suppose that a player’s utility in a coalition is increasing with the
number of agents in the coalition to which she belongs, and decreasing with
the distance between the agent’s location and that of her coalition’s public
good. A major assumption that we make is the existence of a decision
scheme, which refers to as a collective choice within each jurisdiction. The
rationale for a decision scheme is the following. In each jurisdiction, the
public good supplied is common to all inhabitants, and as agents may have
different tastes, it is reasonable to think that the choice of the public good is
made through some decision process, i.e., a decision scheme. For instance,
this latter can be either the result of a vote, or the decision of a social
planner. Our purpose is to study the impact of this assumption on the
existence of stable coalition structures, i.e., states in which no player move
from one jurisdiction to another, and to identify which decision schemes
ensure the existence of stable coalition structures.

In economies with a continuum of agents, several authors imposed a fixed
decision scheme. Eppel, Filimon, and Romer (1984, 1993), Konishi (1996),
Jehiel and Scotchmer (1997) and Alesina and Spolaore (1997) supposed that
consumers vote, but these latters also used a social planer who maximizes
the sum of individual utilities. However, in previous models with a finite
number of agents, the existence of a decision scheme was not assumed. The
model we propose in this paper contrasts with the existing literature in that
respect.2

2One finds in the literature two models of a finite local public good economy with a
fixed decision scheme, Rose-Ackerman (1979) and Greenberg and Shitovitz (1988). These
two models supposed that the decision scheme is a majority vote. Hence, the choice of the
jurisdiction corresponds to the choice of the median voter — see Black (1948). Greenberg
and Shitovitz (1988) studied a local public good economy with a finite set of agents and a
fixed decision scheme — the majority vote. However, their concern is about the existence
of a market equilibrium, and not about agents’ migrations. Rose-Ackerman (1979) studied
a model where consumers are allowed to migrate, but she also assumed that there is a
market for land. Her main concern was about the equilibria of the economy, when the land
market clears. However, her model differs from ours in that we do not fix an exogenous
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A major consequence of a fixed decision scheme is the following. In mod-
els that do not assume the existence of decision scheme, if a consumer joins
a jurisdiction the choice of the public good supplied remains unchanged.
Yet, in our model, this is not the case. This induces on individual moves
both positive and negative externalities. We show that the net effects of
these externalities are hard to disentangle. Indeed, when an agent enters
a jurisdiction, she may shift the location of the public good, which in turn
may affect the payoffs of those individuals who already belong to that juris-
diction — and individuals’ payoffs in the former jurisdiction as well. In our
model, unlike in Greenberg and Weber’s (1993), or in Konishi, Le Breton,
and Weber’s (1998), the decision of the jurisdiction can be affected by a
migrant. This implies that the migrant is not always welcome. A major
consequence is that different equilibrium concepts may not coincide, which
is the case in in Greenberg and Weber’s (1986) model. This impact of the
decision scheme is not shared with models with a continuum of agents. In
these economies, each individual has a zero weight in the population. If
an agent enters a jurisdiction, she has no influence on the decision scheme.3

For instance, Westhoff (1977, p. 86) assumed that “each individual takes the
levels of the public good and tax rate offered by his and other communities
as fixed, that is, he does not account for the effect of consumer migration.”

Another consequence of the decision scheme assumption is that the local
public good economy model can be understood as a two-stage game. The
first stage is devoted to the formation of coalitions, and the second stage
is devoted to the choice of the public good. This allows us to define an
associated hedonic game, that has proved useful for the study of coalition
formation. Hedonic games are games in which the utility of a player depends
on the identity of other members of her coalition. These games were first
defined by Drèze and Greenberg (1980), and recently developed by Banerjee,
Konishi, and Sönmez (1998), and Bogomolnaia and Jackson (1998).

An interesting feature of our model is about the differentiation of public
goods. In the local public good economy literature, most authors focused on
the vertical differentiation case. Public good bundles proposed in different
jurisdictions differ in quality, in the level supplied, or in both. However,

number of jurisdictions.
3Jehiel and Scotchmer (1997) bypassed this by adding a constraint on consumers’

moves. They assumed that only coalitions with a size greater than a minimal threshold
are authorized to move. Thus, moves in their model have the same properties as in ours.
However, Jehiel and Scotchmer could not make anymore the difference between individual
and collective moves.
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little attention has been paid to the horizontal case, when jurisdictions have
to choose the location of the public good. This difference is important since
in the vertical case, if the tax rate were to remain unchanged, all consumers
would agree to choose the highest level/quality of public good. In the hori-
zontal case, the cost of the public good is fixed and a change in the location
of the public good yields some players better off and other worse off. Hence,
our model follows the same line of research as Alesina and Spolaore’s (1997),
Jehiel and Scotchmer’s (1997), or more rencently Le Breton and Weber’s
(2000), who studied models where agents have to choose the location of a
government. Unlike us, their models assume the existence of a continuum
of agents. As we shall see, our results sharply contrast with theirs.

We consider two frameworks, non-cooperative and cooperative, and study
the main equilibrium concepts to which they are usually associated, namely
Tiebout-stability and C-stability respectively. Depending on whether in-
dividuals are free or not to leave and to enter a jurisdiction, and on whether
or not collective moves are allowed, different concepts of equilibrium can be
obtained — Nash, Strong-Nash, Coalition-Proof or Core like concepts are
the most common ones. In other words, a local public good economy can be
modeled either as a non-cooperative game — e.g., Westhoff (1977) or Kon-
ishi, Le Breton, and Weber (1998) — or as a cooperative game — Guesnerie
and Oddou (1979). This paper will embody these two frameworks. The
two concepts of stability that we shall study are that of Tiebout-stability
and C-stability. In the former, individuals are free to leave and to enter any
coalition, without the consentment of the other players, but only individual
decisions are allowed. In the latter, group decisions are allowed and the free
exit assumption still holds. However, when entering a coalition, a group of
agents must have the consentment of all players in that coalition. We also
assume that with these two stability concepts, players are always free to
create a new coalition. In other words, the maximal number of coalitions is
not fixed.

It turns out that when the distribution of players in the space is mono-
tone, a Tiebout equilibrium always exists if and only if the decision scheme
is between the Ralwsian decision scheme and the median voter, if the tie-
breaking rule consists of taking the mid-point between the two median agents
when the number of players is even in the coalition. As we make the as-
sumption that players have the same utility functions, the Rawlsian deci-
sion scheme corresponds to the mid-point between the most “marginalistic”
agents of a jurisdiction, i.e., the pair of agents with the greatest distance
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between their respective location. It can be observed that this latter co-
incides with the median voter only when the distribution of agents on the
characteristic space is uniform.

The paper is organized as follows. The next section presents the local
public good economy model that we use throughout. It contains a descrip-
tion of the agents, their preferences, and the main assumptions we make on
decision schemes. In section 3, we study equilibria with free mobility, that
we call Tiebout equilibria, and characterize the decision schemes that ensure
the existence of a Tiebout equilibrium. In section 4 we study the case in
which multilateral moves are allowed, but without the free entry assump-
tion. These equilibria are called C-stable coalition structures. In section 5,
we study the intersection of the Tiebout equilibria and C-stable coalition
structures. We show that a Tiebout-stable coalition structure may not be
C-stable and vice-versa, yet they can have a non-empty intersection. This
contrasts with Greenberg and Weber (1986) who showed that with a model
similar to ours, any C-stable coalition structure is also Tiebout-stable. We
conclude in section 6. All proofs are relegated to the Appendix.

2 The Model

We denote by N the set of agents, and assume that it is finite, N =
{1, . . . , n}. A coalition S is any subset of N , and |S| denotes its size. A
coalition structure B = {S1, . . . , Sk} is any partition of N in coalitions,

Sh ∩ Sh′ = ∅, ∀ h 6= h′, and
k⋃

h=1

Sh = N.

For each coalition structure B we designate by S(i,B) the coalition i
belongs to. When no confusion is possible, we write S(i) instead of S(i,B).
Throughout the paper, ⊂ and ⊆ will respectively denote the weak and the
strong set inclusion.

2.1 Locations

We suppose that agents are scattered over a subset of the real the line, Ω.
Each i player’s location is given by pi ∈ Ω. In the sequel, we will refer to pi as
the position of agent i. We understand pi as a fundamental characteristic
of player i, and as such pi does not depend on the coalition i belongs to.
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A natural assumption is that pi is the public good location that i would
have chosen if she was alone. A logical consequence is that if agent i has
to choose between two public good locations, she will prefer the one that
is closest to her ideal choice, pi. Hence, players’ preferences over locations
are single peaked. However, we shall assume later that agents’ utilities
also depend on the coalition’s size to which they belong, and thus the single
peakedness property will no longer hold.

In the sequel, we will put the emphasis on the class of monotone distri-
butions of players’ positions over Ω.

Definition 1 The distribution of players (p1, . . . , pn) is monotone if ei-
ther,

|pi − pi−1| ≥ |pi+1 − pi|, ∀ i = {2, . . . , n− 1},
or |pi − pi−1| ≤ |pi+1 − pi|, ∀ i = {2, . . . , n− 1}.

We say that the distribution is strictly monotone if it is monotone and a
strict inequality holds for at least one i = {2, . . . , n − 1}. The distribution
is uniform if the equality holds for all i = {2, . . . , n− 1}.

In other words, in a monotone distribution, the distance between two
consecutive players is always non-decreasing (or non-increasing) along Ω.

We say that a coalition is connected if, when considering two players in
it, all players with intermediate positions belong to the same coalition.

Definition 2 A coalition S is connected if i, k ∈ S implies that j ∈ S for
all j such that pi ≤ pj ≤ pk.

Connectedness for a coalition structure occurs provided the previous
property holds across all coalitions.

Definition 3 A coalition structure B is connected if all coalitions S ∈ B
are connected.

2.2 Decision schemes

The second fundamental assumption of our model is that no agent can decide
by herself the public good that will be chosen in her community, unless she
is the only member of that community. Thus, when several agents form a
community, a unique public good will be chosen by a decision scheme.
We shall assume that the decision scheme solely depends upon the positions
of players.
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Definition 4 A decision scheme F is an application that maps for each
coalition S the vector of players’ positions, (pi)i∈S , to a point in Ω,

F :
⋃

S∈2N\{∅}

Ω|S| → Ω. (1)

For each community S, F ((pi)i∈S) will give the location of a public good
in Ω that will be the public good supplied to all agents in S. To simplify
the notation we write F (S) instead of F ((pi)i∈S). In other words, a decision
scheme assigns to any coalition S a point in Ω, given the positions of players
in S. We assume that F (S) does not depend on agents outside S. We shall
impose some consistency properties on the decision scheme. That is, we
restrict ourselves on decision schemes having the following properties.

Assumption 1 (Pareto optimality) For any coalition S, F (S) is higher
or equal to the lowest position in S, and lower or equal to the highest position
in S, that is,

F (S) ∈ [min
i∈S

pi; max
i∈S

pi].

Pareto optimality has a simple interpretation. Any change of the value of
F (S) makes at least one player in S worse off. Let us suppose that F does
not satisfy this assumption, and consider F (S) < pi = minh∈S ph. Then,
taking pi instead of F (S) makes all the members of S strictly better off.

Assumption 2 (Invariance) Let g : R → R be any monotone increasing
function and µ ∈ R. Define p′i := g(pi) + µ. Then for all i ∈ S ⊆ N ,

F ((p′j)j∈S) ≤ g(F ((pj)j∈S)) + µ if f is convex,

F ((p′j)j∈S) ≥ g(F ((pj)j∈S)) + µ if f is concave.

This assumption merely says that the relative positions to the outcome
of the decision scheme should not depend on the scale choosen for Ω, nor its
origin.

Several decision schemes satisfy these properties. The most common
ones are the median voter,4 which we denote Fmed, and the social planner
maximizing the sum of individual utilities. Given the symmetry assumption,
this latter is equivalent to minimizing the distance between each agent’s

4The median voter in S is the player i such that the sets {j ∈ S : pj ≤ pi} and
{j ∈ S : pj ≥ pi} have the same cardinality.
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position and the outcome of the decision scheme, which yields the mean of
the positions.

Another decision scheme that satisfies theses properties is the mean of
the extremes.5 It consists of taking the point at the mid-distance between
the two players with the lowest and highest positions. Formally, it is given
by

F ext(S) =
pmin(S) + pmax(S)

2
, (2)

where

pmin(S) = {pi : pi ≤ pj , ∀ j ∈ S},
pmax(S) = {pi : pi ≥ pj , ∀ j ∈ S}.

2.3 Utility functions

Each agent’s utility function depends on two arguments, the distance be-
tween the choice of the coalition she belongs to and her position, and the
size of her coalition. Thus, we implicitly assume that the utility of an agent
does not depend on the coalitions to which she does not belong.

First, each agent i in S measures the difference between her position pi
and the outcome of the decision scheme for her coalition, F (S). We denote
this difference by δi(S), and it is given by,

δi(S) = |F (S)− pi|, ∀ i ∈ S.

We define the utility of agent i as a mapping ui : N× R+ → R, with,

ui(|S|, δi(S)), (3)

and ui is increasing with respect to its first argument and decreasing
with respect to its second argument. Moreover, we also suppose that u is
concave with respect to coalition size and distance.

5Notice that Westhoff (1977), Konishi (1996), Alesina and Spolaore (1997), and Je-
hiel and Scotchmer (1997) all made the assumption of a uniform distribution of agents.
Thus, all their results still hold when their decision scheme is replaced by the mean of
the extremes. Alesina and Spolaore (1997, section VI, p. 1044) weakened the uniform
distribution assumption, but they only presented how the model would change — such as
the outcome of the decision scheme.
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Assumption 3 (Concavity)

(i) with respect to the coalitions size: For all s ∈ N and δ ∈ R+,

ui(s+ 1, δ)− ui(s, δ) ≥ ui(s+ 2, δ)− ui(s+ 1, δ).

(ii) with respect to the distance δ: For all s ∈ N and δ, δ′ ∈ R+,
such that δ ≤ δ′,

ui(s, δ)− ui(s, δ + ε) ≤ ui(s, δ′)− ui(s, δ′ + ε), ∀ ε > 0.

The concavity with respect to the first argument means that the positive
effect of an increase in the coalition size is greater for small coalitions than
for big ones. Concavity with respect to the second argument of ui reads
as follows. We know that if δ increases, ceteris paribus, then the utility
decreases. Concavity says that for a same positive variation on δ, the greater
δ is, the greater the loss of utility is.

The concavity assumptions can be reinterpreted as follows. It is usually
assumed that public goods are produced using private goods. The main
idea behind is that of decreasing returns to scale in the production of the
public good. In the model, we assume that the cost of the public good
is the same for all coalition, whatever their size. This refers to as pure
public goods in the terminology of Bewley (1981).6 A natural assump-
tion is then that per capita cost of the public good decreases as population
size increases, which can be understood as a weak congestion effect. In our
model, we make players’ preferences dependent on the difference between
their position and the outcome of the decision scheme in their coalition. As
we explained, our model is better understood as a local public good econ-
omy with horizontal differentiation, which is often interpreted as a location
problem — see for instance Ireland (1987). Thus, in our model, it can be
understood that agents experience a transportation cost, and the concavity
assumption simply means that this cost is convex, such as a quadratic cost.

We also suppose that agents’ utilities have the same functional form.
Thus, agents only differ in their positions on Ω.

6Bewley (1981) distinguished initially between two cases of public goods, pure public
goods and pure public services. In the former, the cost is independent of population and
in the second the cost of the public good is proportional to population. He also pointed
out a third case, when the per capita cost of public goods is a U -shape function of the
population.
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Assumption 4 (Symmetry) There exists a u : N× R+ → R such that

ui(x, y) = u(x, y), ∀ x, y ∈ R+, ∀ i ∈ N.

This last assumption undoubtedly puts strong restrictions on players’
preferences. It should be noted, however, that a similar assumption was al-
ready made in the literature on coalition formation. For instance, Greenberg
and Weber (1986) supposed that all players have the same utility function
and only differ in their income.7 However, it turns out that this assump-
tion is crucial for the existence of a Tiebout equilibrium (see example 2 on
page 18) or a C-stable coalition structure (see example 4 on page 20).

However, this assumption implies a nice property on the mean of the
extremes. This decision scheme is the unique Rawlsian decision scheme.
Indeed, in any coalition S, the player with the lowest utility is player i∗

such that δi(S) ≤ δj(S), ∀ j ∈ S. Clearly, if the outcome of the decision
scheme is not the mid-point between the two extreme players, then one can
increase the utiliy of player i∗ by moving the outcome to F ext(S), and if the
outcome is located beyond F ext(S), then there is one player with a lower
utiliy than i∗.

At last, it can be observed that contrary to Greenberg and Weber (1986),
Alesina and Spolaore (1997), Jehiel and Scotchmer (1997), and Konishi,
Le Breton, and Weber (1998) we do not make any assumption on the func-
tional form of u, such as quasi-linearity, separability, or continuity.8

2.4 The coalition formation game

Our model can be presented as a hedonic coalition formation game. The
concept of hedonic game was first introduced by Drèze and Greenberg (1980).
They defined hedonic games as those in which the utility of a player has two
arguments, her consumption bundle and the coalition to which she belongs.
The dependence of the utility on the members of the coalition was called
by Drèze and Greenberg (1980) the “hedonic aspect”. Clearly, the model
we present has this feature too, since the utility of an agent depends on the
choice of the coalition (the public good location in our case), and also on
the identity of the members of the coalition through its size.

7A similar assumption is found in other models, such as in Eppel, Filimon, and Romer
(1984, 1993), Jehiel and Scotchmer (1997), and Alesina and Spolaore (1997).

8Most of the utility functions that we shall use in the examples or in the proofs are
not continuous. However, it is easy to see that these utility functions can be extended in
order to be continuous. Continuity of these utility functions would simply have rendered
the examples or the proofs more cumbersome.
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Bogomolnaia and Jackson (1998), Banerjee, Konishi, and Sönmez (1998),
and Barberà and Gerber (1999) have recently refined Drèze and Green-
berg’s (1980) model in more tractable ways. They focused on “pure hedonic
games”, i.e., hedonic games in which no redistributional issue has to be
solved within coalitions. In these games, a player’s payoff only depends on
the composition of members of the coalition she belongs to. Our model can
also be seen as a pure hedonic game, since the decision scheme F is fixed
for all coalitions and known by all players. We suppose that information is
perfect and that players are rational. Thus, each player is able to compute
the utility she will obtain for any coalition she may belong to. This allows us
to define, for each player i ∈ N , a preorder <i over Ni, the set of coalitions
to which i can belong,

Ni = {S ⊆ N : S 3 i}.

The preorder is defined as follows. For all S, T ∈ Ni,

u(|S|, δi(S)) ≥ u(|T |, δi(T ))⇔ S <i T.

For each player i, the preorder <i represents her preferences over coali-
tions, and we refer to a n-tuple of preferences as a preference profile.
Therefore, an equivalent definition of the coalition formation game is a pair
(N,<), where N is the set of players and < stands for (<i)i∈N , a prefer-
ence profile such that <i is a weak ordering over Ni. The strict preference
relation and the indifference relation are respectively denoted �i and ∼i.
Players’ preferences are said to be strict if for all i ∈ N , and all S, T ∈ Ni,
we either have S �i T or T �i S.

The last fundamental concept we will refer is that of individual ratio-
nality. A coalition S ∈ Ni is individually rational for player i if S <i {i},
which means that i’s utility level in S is higher or equal to the utility she
would receive if she was alone. Throughout this paper, we assume that
each individual is always able to create her own coalition. Thus, it is natu-
ral to focus our study on individually rational coalition structures, that is,
coalition structures in which all players belong to an individually rational
coalition.

3 Tiebout equilibrium

The first equilibrium concept we study is that of Tiebout equilibrium.
This refers to the case where only individual decisions are allowed, but all
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players are free to enter any existing coalition. We call it an equilibrium
with free mobility. This concept has been introduced by Tiebout (1956),
who described it as a situation in which agents “vote with their feet.” How-
ever, the framework proposed by Tiebout (1956) was fairly unclear, and
many interpretations arose. Some authors defined the Tiebout equilibrium
as an equilibrium where only individual moves are allowed, others interpret
Tiebout’s (1956) equilibrium concept as a strong Nash like or a core like
concept — e.g., Guesnerie and Oddou (1979). We follow in this paper
Westhoff’s (1977) interpretation, which is an equilibrium with individual
moves.

Definition 5 A partition B = {S1, . . . , Sk} is a Tiebout equilibrium,
or a Tiebout-stable coalition structure, if for all i ∈ N , we have,

S(i) <i T ∪ {i}, ∀ T ∈ B ∪ {∅}.

Adding {∅} to B in the definition of the Tiebout equilibrium means that
each player is free to create her own coalition. This contrast with other
models, such as Westhoff’s (1977) or Rose-Ackerman’s (1979), who assumed
that there is a maximal number of coalitions.

Notice that when the distribution of players is motone, the median voter
always lies on the same side of the mean of the extremes. Without loss of
generality, we consider now only motone distributions such that the distance
between two consecutive players is non-decreasing. Clearly, in this case it
holds that Fmed(S) ≤ F ext(S), ∀ S ⊆ N . It turns out that if the deci-
sion scheme F does not lie between the median voter and the mean of the
extremes, a Tiebout equilibria may not exist.

Proposition 1 If F (S) /∈ [Fmed(S), F ext(S)], then there is a utility func-
tion and a strictly monotone distribution of players’ positions over Ω such
that no Tiebout equilibrium exists.

This result is new, since usually authors do not tried to characterize
which decision schemes ensure the existence of an equilibrium.9 Proposi-
tion 1 asserts that when the distribution of consumers on Ω is not uniform,
then the mean is not the right concept to be used in order to ensure the
existence of a Tiebout equilibrium. Moreover, if we choose the median voter,
then the only tie-breaking rule consists of taking the mid-poind between the

9Barberà and Beviá (1999) also provide a characterization of the decision schemes that
ensure the stability of coalitions. However, their model is different from ours as in their
model players’ utilities do not depend on the size of the coalition.
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two median voters. From now on, anytime we shall use the median voter
this specific tie-breaking rule will hold.

3.1 Equilibrium existence

It turns out that our model makes the task of finding equilibria a difficult
one. In fact, as soon as an agent enters a coalition, she induces two effects
on her “new partners.” First, she has a positive effect, as the size of the
coalition increases. But she also has a negative effect due to the shift of
the outcome of the decision scheme that her arrival induces. For some
players the distance between their position and the outcome of the decision
scheme decreases, but for other it increases, and thus the net effect for all
players is hard to predict. The next result characterizes the set of Tiebout-
equilibria for the class of monotone distributions. The regularity showed by
these distributions is such that we can somehow master the net effect of the
moves performed by players.

To make the point, consider the uniform distribution with F = F ext.
Using Lemma 1 in the Appendix, we can restrict ourselves to connected
coalitions. Thus, if we consider that the decision scheme F is the mean of
the extremes, any player’s move to another coalition shifts the decision of
her former and her new coalition by an equal amount.10 In other words,
if p denotes the distance between any two consecutive players in Ω, i.e.,
|pi − pi−1| ≡ p ≡ |pi − pi+1|, p > 0, then for i entering coalition S we have
F (S ∪{i}) = F (S)± p

2 . Whether one adds p/2 or substracts p/2 from F (S)
depends on the relative positions of i and F (S).

Consider now agent i who is at the border of her coalition. That is,
consider coalitions,

{pi, pi+1, . . . , pi+k}, with k = 0, . . . , n− i, (4)

or coalitions,

{pk, pk+1, . . . , pi}, with k = 1, . . . , i. (5)

Let Si be the set of coalitions that satisfy equation (4) or (5). We claim that
for any coalition S ∈ Si, its size is sufficient to infer the utility level of agent
i. Indeed, any player j such that both S and S ∪ {j} belong to Si has a
positive effect and a negative effect on the utility of player i. As we supposed
that u is concave with respect to its two arguments, it implies that there is

10Of course, this only holds if the former coalition was not a one player coalition.
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a critical coalitional size h∗, such that for coalitions in Si of size larger than
h∗, the shift in δi (which is equal to p/2), outweighs the effect on the utility
due to the increase in the coalition size. Conversely, for coalitions in Si of
size smaller than h∗, the increase in coalition size outweighs the shift in δi.
Thus, for any player, preferences over coalitions in Si can be summarized
in preferences over coalition sizes, and these preferences are single peaked.
Formally, this means that,

∃ h∗ ∈ N such that |S| ≤ |T | ≤ h∗ ⇒ T <i S,

and

h∗ ≤ |T | ≤ |S| ⇒ T <i S,

where h∗ is called the peak. Clearly, if the distribution is strictly monotone,
then agents may have two peaks, one for coalition satisfying (4), and one
for coalitions satisfying (5). We now state our existence result.

Proposition 2 If the distribution of players’ positions on Ω is monotone
and if F is between the mean of the extremes and the median voter, then a
Tiebout-equilibrium always exists.

A straightforward consequence of propositions 1 and 2 is the following
theorem.

Theorem 1 If the distribution of players’ positions on Ω is monotone, then
a Tiebout-equilibrium always exist if and only if F is between the mean of
the extremes and the median voter.

In the proof of proposition 2 we construct a coalition structure such that
only one kind of move is worthy for players. We then show that if even
if such moves occur, then back moves are unworthy. The conclusion rests
then on the finiteness of the player set, and hence the number of moves.11

However, if we construct a coalition structure in the same way we did in the
proof of proposition 2, if a player moves from one coalition to another, we
cannot avoid subsequent moves performed by other players in the opposite
direction when the distribution of players’ positions is not monotone. This
claim is an immediate consequence of the following example.

11A comparable argument is used in Milchtaich and Winter (1998) in their proofs of
theorems 1 and 2, which establish the existence of Tiebout equilibrium in their model.
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Example 1 Let the set of players be N = {a, b, c, d, e, f} with the following
positions on the real line, pa = 0, pb = 9, pc = 19, pd = 27, pe = 34, and
pf = 40. Consider the following utility function,

u(|S|, δ(S)) =


|S| if δ(S) ≤ 4,
|S| − βδ(S) if 4 < δ(S) < 19

2 ,

|S| − 10000δ(S) if δ(S) ≥ 19
2 .

with 2
13 < β < 2

11 .
First, observe that b is closer to a than c. Hence, b prefers {ab} to

{bc}. Moreover, the distances between b and d, and c and d are respectively
greater that the distances between d and f and d and e. Thus, for any
decision scheme between the median voter and the mean of the extremes, d
prefers {def} to {bcd}. Notice also that {abc} and all coalitions with four
players or more are not individually rational. We then obtain the following
preference, for any decision scheme between the median voter and the mean
of the extremes.12

{ab} �a {a},
{bcd} �b {ab} �b {bc} �b {b},
{bcd} �c {cd} �c {bc} �c {cde} �c {c},
{cde} �d {de} �d {cd} �d {def} �d {bcd} �d {d},
{def} �e {ef} �e {ed} �e {cde} �e {e},
{ef} �f {def} �f {f}.

In this example, no Tiebout equilibrium exists. We can observe that as
soon as c is alone, then d joins {c}. But b prefers {bcd} to coalitions {ab}
and {b}. As soon as b joins {cd}, then d joins {ef}, which yields b to leave
{bc} to join {a}. To conclude, observe that if {cde} is formed, then e leaves
this coalition to join {f}. �

As the example illustrates, such reverse moves can create cycles. This
means that a Tiebout equilibrium may not exist when the distribution of
players’ positions over Ω is not monotone.

3.2 On the symmetry and concavity assumptions

The assumption that players are symmetric is not new in the literature.
In fact, this assumption is common to the three models that are the most

12We do not present coalitions that are not individually rational. For instance, {abc} is
not individually rational for a and c, but it is for b. Hence, {abc} does not appear in b’s
preferences.
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similar to ours, namely the models of Jehiel and Scotchmer (1997), Alesina
and Spolaore (1997), and Milchtaich and Winter (1998). The following
example shows that a Tiebout equilibrium may not exist in our model when
players have different utility functions.

Example 2 Let N = {a, b} be the set of players and pa = 0, and pb = 4 be
their positions on Ω. If F is the mean of the extremes, then F ({a, b}) = 2.
Let the utility functions be,
ua(|S|, δa(S)) = 3|S| − δa(S),
ub(|S|, δb(S)) = 3|S| − δb(S)2.

We then get ua(1, 0) = ub(1, 0) = 3, and ua(2, δa({ab})) = 4 and
ub(2, δb({ab})) = 2. Since {ab} �a {a} and {b} �b {ab} no Tiebout equilib-
rium exists. �

However, we advocate that in the horizontal differentiation case this
assumption can be easily justified. As we have seen, the horizontal differen-
tiation model can be interpreted as a location choice model. Thus, agents
differ in their location in a geographic space, and therefore it seems natural
to think that their transportation costs are identical. Thus, utility levels
may represent agents’ monetary payoffs in the economy.

Like Symmetry, we can also show that the concavity assumption is nec-
essary for the existence of Tiebout equilibria. This is shown by the following
example.

Example 3 Consider five players, a, b, c, d and e, whose position on the
line are pa = 0, pb = 2 − ε, pc = 3, pd = 4 and pe = 5. This distribution is
monotone, so we know by proposition 2 that a Tiebout equilibrium exists.
Consider the following utility function, with ε < 0.1.

ui(|S|, δi(S)) =



|S| if δi(S) ≤ 1
2 + ε

2 ,

|S| − 2.1δi(S) if 1
2 + ε

2 < δi(S) ≤ 3
4 ,

|S| − 2.1 if 3
4 ≤ δi(S) ≤ 1,

|S| − 2.1− 1
10δi(S) if 1 < δi(S) < 3

2 + ε
2 ,

|S| − 5− 100δi(S) if 3
2 + ε

2 ≤ δi(S).

It is easy to show that for any decision scheme lying between the median
voter and the mean of the extremes, we get the following preference profile
(again, only individualy rational coalitions are represented).

{abc} �a {a},
{abc} �b {bc} �b {bcd} �b {b},
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{bc} ∼c {cd} �c {cde} �c {abc} �c {c},
{cde} �d {cd} ∼d {de} �d {bcd} �d {d},
{de} �e {cde} �e {e}.

We leave to the reader to check that there does not exist any Tiebout-
stable coalition structure. �

Hence, concavity with respect to δ is also necessary to ensure the exis-
tence of Tiebout equilibria.13

4 C-stable coalition structures

The second equilibrium concept we use is that of C-stable coalition struc-
tures, which was first introduced by Guesnerie and Oddou (1979) for TU-
games, and later adapted by Greenberg and Weber (1986) for NTU-games.

As in the Tiebout equilibrium, a player is free to leave her coalition, but
now, a player can enter a coalition only if all its members are better off
when accepting this new entrant. This somewhat refers to a club, where
before a new member joins, its current members proceed to a vote. Here,
the vote is by unanimous consent.

Definition 6 A coalition structure B is blocked by a coalition S /∈ B if,

S �i S(B, i), ∀ i ∈ S.

To make precise the concept of blocking consider any coalition structure
B. If there is a group of players S that is not in B, such that all players in S
are stricly better off in S than in their respective coalition in B, then we say
that S blocks B. Other authors considered a weaker stability concept. They
required that when a coalition blocks all players must be as well off as in
their respective coalition, and at least one player must be strictly better off.
It turns out that this stability concept may easily prevent C-stable coalition
structures to exist. For instance, consider three players, a, b and c, uniformly
distributed on Ω, and utility functions such that {ib} �i {i} �i {ibj}, with
i ⊂ {ab} and j = {ab}\{i}. Clearly, if we use the mean of the extremes, then
we have {ab} ∼b {bc}. Thus, the coalition structure {{ab}, {c}} is blocked by

13As the size of the coalition and the distance to the outcome of the decision scheme
plays somewhat similar roles, an example in the same vein of example 3 where concavity
with respect to the coalition size does not hold and inexistence of Tiebout equilibria can
be found.
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coalition {bc} and the coalition structure {{a}, {bc}} is blocked by coalition
{ab}. Hence, there does not exist any C-stable coalition structure.

Given the moves allowed, if a coalition structure is blocked, then it can-
not be a candidate for stability. Indeed, under the assumptions of free exit
and freedom for any group of players to make a new coalition, if a coalition
S blocks a coalition structure B then members of S will leave their coali-
tion, which will disrupt B. Hence, a coalition structure is C-stable if it not
blocked by any coalition. The next definition gives a precise definition of
C-stability.

Definition 7 A coalition structure B = {S1, . . . , Sk} is C-stable if there
is no coalition S /∈ B that blocks B.

We now introduce the main result of this section.

Proposition 3 If F is the mean of the extremes then there always exists a
C-stable coalition structure.

4.1 On the symmetry assumption

Again, the assumption that players have the same utility function plays a
crucial role. The next example shows that even if positions are uniformly
distributed and F is the mean of the extremes, a C-stable coalition structure
may not exist.

Example 4 Consider 8 players, a, b, c, d, e, f and g, whose positions on Ω
are pa = 0, pb = 1, pc = 3, pd = 5, pe = 7, pf = 8.9, pg = 10.9. Utilities
are given by,

ua(|S|, δa(S)) =

{
|S| − 10−10δa(S) if δd(S) ≤ 3,
|S| − 100δa(S) if δd(S) > 3,

ub(|S|, δb(S)) = |S| − 10−10δb(S),

uc(|S|, δc(S)) =

{
|S| − δc(S) if δd(S) ≤ 1,
|S| − 100δc(S) if δd(S) > 1,

ud(|S|, δd(S)) =

{
2|S| − 0.9δd(S) if δd(S) ≤ 2,
2|S| − 3

2δd(S) if 2 < δd(S),

ue(|S|, δe(S)) = 2|S| − 100δe(S),
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uf (|S|, δf (S)) = 2|S| − 10−10δf (S),

ug(|S|, δg(S)) = 2|S| − 10−10δg(S).

We then get the following preferences over coalitions (like in example 1,
only the coalitions that are individually rational are presented),

{abcd} �a {ab} �a {a},
{abcd} �b {bcd} �b {bfg} �a {ab} �b {bd} �b {bf} �b {bg} �b {b},
{abcd} �c {bcd} �c {c},
{def} ∼d {bcd} �d {abcd} �d {bd} ∼d {df} ∼d {d},
{def} �e {e},
{bfg} �f {def} �f {fg} �f {df}, {bf} �f {f},
{bfg} �g {fg} �g {bg} �f {g}.

Observe that if e is alone, the only possible coalition structures must
contain either {abcd} or {bcd}. Indeed, any coalition structure containing
{e} and neither {abcd} nor {bcd} is blocked by one of these two coalitions.
But any coalition structure including these coalitions is blocked by {def},
and any coalition structure with the coalition {def} is blocked by {bfg}.
In this case, e remains alone, and we then have a cycle. Thus there is no
C-stable coalition structure. �

5 Unicity and intersection of equilibrium concepts

Jehiel and Scotchmer (1997) proposed a similar model to the one presented
in this paper, but assuming the existence of a continuum of agents. In
their paper, Jehiel and Scotchmer supposed that only a positive measure of
agents can move. Since their argument was made upon arbitrary infinitesi-
mal moves, an equilibrium with free mobility in their model can almost be
considered as a Tiebout equilibrium. One of their results is that the Tiebout
equilibrium and the C-stable equilibrium are both unique and do coincide.
It turns out that this result does not hold true in our model. Indeed, the
coalition structure constructed in the proof of propositions 2 and 3 are not
unique. For instance, it can happen that h∗ divides |N |. This would im-
ply that we could construct a coalition structure such that all coalitions
have size h∗, which is obviously Tiebout-stable, and may not necessarily be
identical to the coalition structure that we would have obtained with the
procedure used in the proof proposition 2. If h∗ does not divide |N | and the
distribution is uniform, one can construct two C-stable coalition structures
by using the procedure of the proof of proposition 3, one starting with player
1 and one starting with player n.
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We just showed that the same set of assumptions in our model guaran-
tees the existence of a Tiebout equilibrium and a C-stable coalition struc-
ture. However, we can also show that a C-stable coalition structure is not
necessarily Tiebout-stable, which contradicts again Jehiel and Scotchmer’s
results.

Example 5 Let the set of players be N = {a, b, c} with the following po-
sitions on the real line pa = 0, pb = 3 and pc = 5, and the following utility
function:

u(|S|, δ(S)) =


|S| if δ(S) ≤ 1,
|S| − 0.6δ(S) if 1 < δ(S) < 1.1,
|S| − 0.65δ(S) if 1.1 ≤ δ(S).

For any decision scheme between the mean of the extremes and the
median voter, it is easy to see that the only Tiebout stable coalition structure
is {abc}, and that the only C-stable coalition structure is {{a}, {bc}}. �

The fact that the set of Tiebout equilibria and the set of C-stable coalition
structures do not coincide is essentially due to the presence of the decision
scheme. As Greenberg and Weber (1993) pointed out, when a player joins
a coalition, she does not affect the choice of the coalition, unless there is
a new alternative that makes all players better off. The intersection of the
set of C-stable and Tiebout stable coalition structures has been called by
Greenberg and Weber (1986) the set of strong Tiebout equilibria. In
their model, Greenberg and Weber (1986) studied what we defined in this
paper as the set of C-stable coalition structures, but without assuming the
existence of a decision scheme. In their framework, it turns out that a C-
stable coalition structure is also a Tiebout stable coalition structure. The
above examples just showed that it is not the case in our model. Combining
this observation with Jehiel and Scotchmer’s (1997) results, this also shows
that a fixed decision scheme has much stronger effects in the finite case than
in the infinite case.

6 Conclusion

In this paper, we studied the stability of coalition structures when a fixed
decision scheme is imposed on coalitions when determining the location of
the public good. We showed that in the distribution of players is monotone,
then a Tiebout equilibrium always exists if and only if the decision scheme

22



lies between the median voter (with the mid-point as the thie-breaking rule)
and the Rawlsian decision scheme. This latter proved useful when construct-
ing stable coalition structure. Indeed, under the symmetry assumption, the
two extreme players have the same utility level. It can be noticed that these
two players are usually the firsts to deviate (particularly in the Tiebout
case). Hence, it does not seem surprising that if one wants to ensure the
stability of coalition structures, the decision scheme should particularly take
care of extreme players. This result contrast with other results recently ob-
tained by Le Breton and Weber (2000). Their model is that of Alesina and
Spolaore (1997), which is a model similar to ours, but with a continuum
of players and with transferable utilities. They show that there exist com-
pensation schemes, or lump sum transfers, between players located close to
the outcome of the decision scheme (the government in their framework)
and players close to the borders of coalitions that ensure the existence of
C-stable coalition structures. Clearly, our model could be easily written as
a TU-game. Provided that with lump sum transfers lemma 1 still holds
true, we may conclude using theorem 1 that lump sum transfers can be
asymmetric if one uses standard decision schemes such as the median voter.
Indeed, theorem 1 says that stability is always ensured if the two extreme
players have the same utility level. Hence, we may end up with some cases
where one of the extreme players have a positive net transfer, the other one
a negative net transfer, and no transfer between intermediate players are
necessary.

A last remark is about the contrast between our results and that of
previous paper, especially Greenberg and Weber’s (1993) paper. Their game
has positive externalities, which implied that the set of C-stable coalition
structures is also a Tiebout equilibrium. In our game, players’ moves may
induce negative externalities due to the fixed decision scheme, which can be
somehow reinterpreted as congestion effects.

Appendix

Before proving proposition 1 let us introduce the following result.

Lemma 1 Let F be a decision scheme satisfying Pareto Optimality and
Sensitivity. If B is a Tiebout equilibrium, then B is connected.
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Proof Let B be a Tiebout-stable coalition structure, such that there is
one coalition, say S, that is not connected, i.e., that there exists T 6= ∅ with
pi < pj < pk with i, k ∈ S and j ∈ T . Because B is an equilibrium, we have:

ui(|S|, δi(S)) > ui(|T |+ 1, δi(T ∪ {i})), ∀ i ∈ S.

Throughout the proof, we shall indifferently use i or pi to denote the same
player. We shall show that there exists at least one i ∈ S such that ui(|T |+
1, δi(T ∪ {i})) > ui(|S|, δi(S)); or j ∈ T such that uj(|S|+ 1, δj(S ∪ {j})) >
uj(|T |, δj(T )) contradicting that B is an equilibrium — given that T is
(partly) surrounded by S. Without loss of generality, we shall assume that
F (T ) ≤ F (S). We consider two cases.

(i) T is completely surrounded by S. Take i ∈ S such that pi ≤ pk, ∀ k ∈
T , and some j ∈ T such that pj ≤ F (T ). We obtain the following order:
pi < pj < F (T ) ≤ F (S). Two sub-cases occur.

(a) F (S ∪ j) ≤ F (T ∪ i). We then have δj(S ∪ j) < δj(T ), because
F (T ∪ i) < F (T ) and F (S ∪ j) < F (T ). But B is a Tiebout equilibrium,
we have uj(|T |, δj(T )) ≥ uj(|S| + 1, δj(S ∪ j)). As δj(S ∪ j) < δj(T ), we
necessarily have |T | > |S| + 1, otherwise j would deviate to S. But notice
that δi(T ∪i) < δi(S). This implies that ui(|T |+1, δi(T ∪i)) > ui(|S|, δi(S)),
a contradiction.

(b) F (S ∪ j) > F (T ∪ i). We suppose that F (T ) ≤ F (S ∪ j) — if
the converse inequality would hold, then the argument is the same as in (a).
This implies that |F (T ∪i)−F (S)| > |F (T )−F (S∪j)|, which is tantamount
to

|δi(T ∪ i)− δi(S)| > |δj(T )− δj(S ∪ j)|. (6)

Moreover, as B is a Tiebout equilibrium, we have: uj(|T |, δj(T )) > uj(|S|+
1, δj(S∪ i))⇒ u(|T |+1, δj(T )) > u(|S|, δj(S∪ j)) — indices on u in the last
inequality are deliberately omitted. It suffices to show that this implies that
u(|T | + 1, δi(T ∪ i)) > u(|S|, δi(S)). But notice that δj(S ∪ j) < δi(S) and
(6) imply, together with the concavity of u, the desired inequality. Then i
moves to T , a contradiction.

(ii) T is not completely surrounded by S, i.e., T is not connected too.
Let A = {(i, j) ∈ S×T : |pi−F (S)| > |pj −F (S)|}. That is, A is the set of
couples (i, j) ∈ S×T such that j is closer to F (S) than i is. We necessarily
have A 6= ∅, otherwise S would be connected. Let B = {(i, j) ∈ S × T :
|pi−F (T )| > |pj−F (T )|}, the set of couples (i, j) ∈ S×T such that j is closer
to F (T ) than i is. If A ∩ B 6= ∅, then we are back in case (i). Indeed, for
(i, j) ∈ A∩B we get |δi(T ∪ i)−δi(S)| > |δj(T )−δj(S∪j)|. We are then left

24



with the case where there is (i, j) such that i is closer to F (T ) than j is and
j is closer to F (S) than i is. These two statements respectively imply that
ui(|S|, δi(S)) > ui(|T |+1, δi(T ∪ i))⇔ u(|S|+1, δi(S)) > u(|T |, δi(T ∪ i)) —
again, the indices on u are deliberately omitted. This last inequality is
tantamount to u(|S| + 1, δj(S ∪ j)) > u(|T |, δj(T )), which implies that j
moves to S, a contradiction. �

Proof of proposition 1 We first show that if |N | = 2, then the propo-
sition holds. Let u be such that u(1, 0) = u(2, 1

2), i.e., both individuals are
indifferent between staying alone and being together. It is straightforward
to see that if F 6= 1

2 , no Tiebout equilibrium exists. Without lost of gen-
erality, suppose that F = 1

2 + η, with η > 0. Then u2(2, 1
2 − η) > u2(2, 1

2)
but u1(2, 1

2 + η) < u1(2, 1
2). That is, player 2 always makes a coalition with

player 1, but this latter always flees the former (the same argument applies
when F = 1

2 − η, by reversing player 1 and player 2’s roles). Thus the only
possibility for an equilibrium when n = 2 is that F = 1

2 .
We now proceed to the more general case, when n is any positive integer.

We must examine two cases, when F (S) > F ext(S) or F (S) < Fmed(S).
Consider the first case, F (S) > F ext(S), that is, F (S) = F ext(S) +

η, where η > 0.14 By lemma 1, we can restrict to connected coalition
structures. Consider a set of players N = {1, . . . , n}, n ≥ 2, with the
following distribution on Ω: p1 = 0, p2 = 1 and |ph+2 − ph+1| = |ph+1 −
ph|+ ε, ∀ h ∈ N and ε > 0. Thus ps = s− 1 + (s−2)(s−1)

2 ε, ∀ s ∈ N .
Thus, if N is partitioned into two coalitions, S = {1, . . . , s} and N\S =

{s+ 1, . . . , n}, and if F is the mean of the extremes,

F (S) =
1
2
ps =

s− 1
2

+
(s− 2)(s− 1)

2
ε

F (N\S) =
pn + ps+1

2
=
n− s− 1

2
+

(n− 2)(n− 1)− s(s− 1)
2

ε

Thus we deduce,

δs+1(S ∪ {s+ 1}) =
s

2
+
s(s− 1)

4
ε

δs+1(N\S) =
n− s− 1

2
+

(n− 1)(n− 2)− s(s− 1)
4

ε

14Using assumption 2 we should have F (S) = F ext(S) +η(S), whith η(S) depending on
coalition S. However, this does not change the argument of the proof.
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Let h∗ be the player such that,

δh∗({h∗, . . . , n}) < δh∗({1, . . . , h∗})
and δh({h, . . . , n}) > δh({1, . . . , h}), ∀ h < h∗,

and define δ∗ = {δh∗({h∗, . . . , n}). Choose ε sufficiently small such that
h∗ = dn2 e. Consider the following utility function,

ui(|S|, δi(S)) =

{
K + s− β1(δi(S))δi(S) if δi(S) < δ∗

K + s− β2(δi(S))δi(S) if δi(S) ≥ δ∗
(7)

where K > 0 such that any connected coalition is individually rational.
Let β1(δi({i})) and β2(δi(N)) be such that {1} ∼1 N . For s + 1 < h∗, let
δa(s+1) = δs+1({1, . . . , s+ 1}), δb(s+1) = δs+1({s+ 1, . . . , n}), δc(s+1) =
δn−s({1, . . . , n− s}), and δd(s+ 1) = δn−s({n− s, . . . , n}).

Adjust now β1(δs+1({1, . . . , s+ 1})) and β2(δs+1({s+ 1, . . . , n})) such
that, for s+ 1 ≤ h∗,

u

(
s+ 1 ;

δa(s+ 1) + δd(s+ 1)
2

)
= u

(
n− s ;

δb(s+ 1) + δc(s+ 1)
2

)
.

(8)

We posit β1(s+ 1) = 1.

Claim The utility function defined in eq. (7) satisifies assumptions 3
and 4 and is increasing (resp. decreasing) with respect to the coalition size
(resp. distance).

To prove the claim, it suffices to show that β2(s + 1) > 1 and that
β2(s+ 1) ≥ β2(s). Indeed, it can be observed that u is decreasing in δ only
if β2(s+ 1) < β1(s+ 1), which implies concavity.

Equation (8) implies that,

s+ 1− δa(s+ 1) + δd3(s+ 1)
2

= n− s− β2(s+ 1)
δb(s+ 1) + δc(s+ 1)

2
,

(9)

which yields,

β2(s+ 1) =
2n− 3s− 2 + γ(s+ 1, ε)
n− s− 1 + γ′(s+ 1, ε)

(10)
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with,

γ(s+ 1, ε) =
(n− 2)(n− 1)− (n− s− 2)(n− s− 1) + s(s− 1)

4
ε (11)

γ′(s+ 1, ε) =
(n− 2)(n− 1) + (n− s− 2)(n− s− 1)− s(s− 1)

4
ε. (12)

If we choose ε sufficiently small, β2(s+ 1) > 1 ∀ s < h∗ is tantamount to,

2n− 3s− 2 > n− s− 1⇔ n− 2s− 1 > 0.

Clearly, this is trivially satisfied since s < h∗ = dn2 e. It remains to check
that β2(s+ 1) < β2(s). That is,

2n− 3s− 2 + γ(s+ 1, ε)
n− s− 1 + γ′(s+ 1, ε)

<
2n− 3s+ 1 + γ(s, ε)
n− s+ γ′(s, ε)

(13)

Again, if we choose ε sufficiently small, (13) is tantamount to,

2n− 3s− 2
n− s− 1

<
2n− 3s+ 1

n− s
⇔ n− 1 > 0.

Thus, u is increasing in the coalition size and decreasing in δ, and concave
with respect to its two arguments, which completes the proof of the claim.

Because the distribution of players is “increasing”, i.e., ε > 0, we have
δa(s+ 1) < δd(s+ 1) < δ∗ and δb(s+ 1) > δc(s+ 1) ≥ δ∗. Hence, using eq.
(8) we have

us+1(s+ 1, δa) > us+1(n+ s, δb), (14)
un−s(n− s, δc) > un−s(s+ 1, δd), (15)

Equation (8) is illustrated in figure 1) with
u∗ = u

(
s+ 1 ; δa(s+1)+δd(s+1)

2

)
= u

(
n− s ; δb(s+1)+δc(s+1)

2

)
ua = u(s+ 1 ; δa(s+ 1)) ud = u(s+ 1 ; δd(s+ 1))
ub = u(n− s ; δb(s+ 1)) uc = u(n− s ; δc(s+ 1))

Thus, any coalition structure of the form

B = {{1, . . . , s} ; {s+ 1, . . . , n}} = {S ; N\S}
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s

u∗

ua

ud
ub

uc

Figure 1: Illustration of eq. (8) and (14).

is unstable unless S = {N\{n}, N} and F is the mean of the extremes, as
s+ 1 prefers to join {1, . . . , s} than staying with {s+ 1, . . . , n}. Moreover,
given the shape of u, as long as B has three or more coalitions, B is unstable
as any player at the border of a coalition wants to move to the coalition
next to hers, if its size is greater or equal. Indeed, let us suppose that a
coalition structure has three or more coalitions. Let us suppose that for
some individual i at the border of her coalition, say S, we have δi(S) < δ∗.
If i moves to the coalition next to hers, say T , we have δi(T ∪{i}) < δ∗. For
ε sufficiently small, i will choose the coalition that maximizes the number
of members, that is, i chooses S if s > t + 1 and T otherwise. Conversely,
let us suppose that δi(S) > δ∗. Then, there is a coalition, say T , such that
T is next to S with |S| + |T | < |N | and an individual at the border of
T and next to S, say j, such that δj(T ) < δ∗ < δj(S ∪ {j}). We claim
that uj(S ∪ {j}) > uj(T ). Let us suppose that T = {1, . . . , t+ 1} and
S = {t+ 2, . . . , n− k}, with 1 < k < n− 2t− 3. Without loss of generality,
let us suppose that k = 1.15 We then have, uj(S ∪ {j}) > uj(T ) equivalent

15We shall see that the difference between uj(S ∪ {j}) and uj(T ) does not crucially
depend on k.
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to,

n− 1− s− β̂2(t+ 1)
(
n− 2− t

2
+

(n− 2)(n− 3)− t(t− 1)
4

ε

)
>
t

2
− t(t− 1)

4
ε,

where β̂2(t+ 1) is β2(t+ 1) in which n is replaced by (n− 1) — see equation
(10). This is tantamount to,

n− 1− 2n− 3t− 4 + γ̂(t+ 1, ε)
n− t− 2 + γ̂′(t+ 1, ε)

(
n− t− 2

2
+

(n− 2)(n− 3)− t(t− 1)
4

ε

)
>

3t
2
− t(t− 1)

4
ε (16)

where γ̂ and γ̂′ are respectively γ and γ′ in which n is replace by n − 1 —
see equations (11) and (12). If ε is sufficiently small, then (16) yields,

3t
2

+ 1 >
3t
2
.

Clearly, the above equation is always satisfied, which proves the claim.
Hence, as soon as a player is at the border of two coalitions, say S and
T such that |S|+ |T | < |N |, then she moves to the largest coalition. Thus,
the only candidate left for stability is the coalition N . Let F ∗ be the value
of F (N) if F is the mean of the two extremes. Suppose that F = F ∗ + η,
with η > 0. If N is formed, then 1 is better off if she leaves N and form a
coalition by herself, and if N\{n} is formed, then n enters N\{n}. But then
2 joins 1, . . . , until n−1 joins {1, . . . , n− 2}, or n joins {1, . . . , n− 1}. We
then have a cycle.

We now proceed to the second case, where F (S) < Fmed(S). It is
readily verified that by assumption 2 and for ε small enough, the following
inequalities are satisfied

δa(s+ 1) >δd(s+ 1)
δb(s+ 1) <δc(s+ 1)

Hence, the converse of eq. (14) and (15) holds

us+1(s+ 1, δa) < us+1(n+ s, δb),
un−s(n− s, δc) < un−s(s+ 1, δd).

Thus, we obtain the opposite dynamic of the previous case, that is, player s
goes from coalition {1, . . . , s} to coalition {s + 1, . . . , n}. To see that there
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exists a stable coalition structure when F (S) = Fmed(S) is easy. Indeed,
consider again some player s+ 1 < h∗. We then have δa(s+ 1) < δd(s+ 1)
and δb(s+1) > δc(s+1). Hence we obtain the same dynamics as in the first
case, that is player s goes from coalition {s+1, . . . , n} to coalition {1, . . . , s},
except player n who prefers to stay alone than being with {1, . . . , n − 1}.
Thus, any player k has a lower utility than player 1 in coalition {1, . . . , k},
which means that the entrance of a player cannot trigger the departure of
an opposite player like before. �

Proof of proposition 2 We provide the proof for F = F ext. The
case for F = Fmed is similar. Construct the following coalition structure.
If the distribution is monotone, w.l.o.g. say that |p2 − p1| ≥ |p3 − p2|,
then form coalition S1 with player 1 and player 2, add player 3, 4, and
so on, until player i − 1 such that ui(|S1| + 1, δi(S1) ∪ {i}) < ui(1, 0).
Then, form a second coalition, S2, with player i, i + 1, and so on, un-
til player j − 1 such that uj(|S2| + 1, δj(S2) ∪ {j}) < uj(1, 0). Repeat
this procedure until the last player is reached, yielding the coalition struc-
ture B = {S1, . . . , Sk}. Observe that the only players that would wish
to move are those in Sk−1, who move to Sk. Indeed, by construction, no
player in Sh+1 wants to move to Sh, h = 1, . . . , k − 1, that is, for any
i ∈ Sh+1, we have ui(|Sh| + 1, δi(Sh ∪ {i})) < ui(1, 0). Because the dis-
tribution is monotone, δj(Sh ∪ {j}) ≥ δi(Sh ∪ {i}), which implies that
uj(|Sh| + 1, δj(Sh ∪ {j})) < uj(1, 0), for any j ∈ Sh−1. Consider now Sk
and Sk−1. If no player moves from the latter to the former, we are done.
Suppose then that there exists i ∈ Sk−1 who moves to Sk. Consequently,
some player in Sk−2 can decide to move to Sk−1. We claim that i will
not decide to move back to Sk−1. Consider player i + 1. By construc-
tion, we know that ui+1(|Sk−1| + 1, δi+1(Sk−1 ∪ {i + 1})) < ui+1(1, 0). If
i enters Sk−1 ∪ {j}\{i}, then, again because the distribution is monotone,
δi(Sk−1 ∪ {j}) < δi+1(Sk−1 ∪ {i+ 1}). Thus ui(|Sk−1|+ 1, δi(Sk−1 ∪ {j})) <
ui(1, 0). After j moves, another player in Sk−1, Sk−2 or Sk−3 may move to
Sk, Sk−1 or Sk−2 respectively, but repeating the argument of before, it can
be shown that no player, consequently to such moves, will want to move to
a coalition with a lower index. �

Proof of proposition 3 Let N = {1, . . . , n} be the set of players. The
proof proceeds by construction.
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Step 1 For each player i, let S∗i ∈ Si be the coalition such that ui(|S∗i |, δi(S∗i )) ≥
ui(|T |, δi(T )), ∀ T ∈ Si. Observe that S∗ is connected, and that if i is the
player with the lowest (resp. highest) position in S∗, then ui(|S∗i |, δi(S∗i )) =
uj(|S∗i |, δj(S∗i )), where j is the player with the highest (resp. lowest) po-
sition in S∗. Construct now the coalition S1 such that S1 = S∗i for some
i ∈ N and ui(|S∗i |, δi(S∗i )) ≥ uj(|S∗j |, δj(S∗j )), for all j ∈ N . We are then left
with the set of player N\S∗i .

Step k Let Nk−1 = {S1, . . . , Sk−1} be the set of coalitions already formed.
Define the set

Ŝk,i = {S ⊆ N\Nk−1 : i has the lowest or highest position in S}.

For each S ∈ Ŝk,i, consider the coalitions TS1 , . . . , T
S
l in Nk−1 that are

surrounded by S. That is, for all 1 ≤ h ≤ l, ∃ i, k ∈ S such that pi < pj < pk,
for all j ∈ TSh . Call a coalition TSh candidate for S if all players in TSh are
better off if they join S: ui(|TSh |+ |S|, δi(TSh ∪S)) > ui(|TSh |, δi(TSh )), for all
i ∈ TSh . Let T c,S1 , . . . , T c,Sl′ be the collection of candidate coalitions for S,
and let T (S, k − 1, i) = {T c,S1 } ∪ · · · ∪ {T

c,S
l′ }. Define now the set

Sk,i = {S ⊆ T (S, k − 1, i) ∪N\Nk−1}

That is, Sk,i is such that if S contains some players in T c,Sh , then S contains
all players in T c,Sh .

Let Sk,∗i be the coalition such that ui(|S∗i |, δi(S∗i )) ≥ ui(|T |, δi(T )), ∀ T ∈
Sk−1,i, Define the coalition Sk ≡ Sk−1,∗

i , where i is the player such that

ui(|Sk,∗i |, δi(S
k,∗
i )) ≥ uj(|Sk,∗j |, δj(S

k,∗
j )), ∀j ∈ N\Nk−1.

Continue this procedure until all players have be assinged to some coalition
(it may be that there are one-player coalitions), and call B the coalition
structure obtained. We claim that B is C-stable.

Clearly, by construction, no collection of coalitions can coalesce to form
a coalition, say T . Indeed, consider the player, say i, with the lowest po-
sition in T . Observe that i was also the agent with the lowest position
in S(i,B), we have S(i,B) = Sk,∗i , where k is the step when S(i,B) was
formed. This contradicts the fact that i blocks with T , i.e., ui(|T |, δi(T )) >
ui(|S(i,B)|, δi(S(i,B))). Thus, the only possibility is that if some coalition
T blocks, it disrupts another coalition S ∈ B. Two cases occur, whether a
disrupted coalition is surrounded by T or at the border of T .
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Consider the first case. Let S be the disrupted coalition, with i, j, k ∈ S,
pi ≤ pj ≤ pk, i, k ∈ T and j /∈ T . Assume that i and k are respectively the
players in S with the lowest and highest position. Because S is surrounded
by T , there exists some player h ∈ T such that pk ≤ ph. Hence, for any
player in l ∈ S, we have F (T ∪ {l}) = F (T ). Observe that i and k have
the same utility level in S. Hence, if i blocks with T , so does k. Let
∆k = δk(T ) − δk(S). (Define analogously ∆i and ∆j .) Clearly, we have
either ∆i ≥ ∆j and δi(T ) ≥ δj(T ) or ∆k ≥ ∆j and δk(T ) ≥ δj(T ). Assume
that the first pair of inequalities holds. Because i blocks with T , we have
ui(|S|, δi(S)) > ui(|T |, δi(T )). Hence, by the concavity assumption, it must
be also the case that uj(|S|, δj(S)) > ui(|T | + 1, δj(T )). In other words, j
also blocks with T .

Consider now the second case, when a disrupted coalition is at the border
of T . Let i ∈ S be the player at the border of T . W.l.o.g. suppose that i has
the lowest position in T . Consider now j, such that pi ≤ pj and j is at the
border of S. Suppose first that i 6= j. Clearly, ui(|S|, δi(S)) > uj(|S|, δj(S)).
But then this contradicts the fact that j is such that uj(|Sk,∗j |, δj(S

k,∗
j )) ≥

ui(|Sk,∗i |, δi(S
k,∗
i )), where k is the step when S is formed. If i = j, then

S being formed instead of T implies that ui(|S|, δi(S)) ≥ ui(|T |, δi(T )), a
contradiction with the fact that i blocks with T , which completes the proof
of the claim. �
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