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Abstract

We study games with strategic complementarities, arbitrary numbers of
players and actions, and slightly noisy payoff signals. We prove limit unique-
ness: as the signal noise vanishes, the incomplete information game has a
unique strategy profile that survives iterative dominance. This generalizes a
result of Carlsson and van Damme for two player, two action games. The sur-
viving profile, however, may depend on fine details of the structure of the noise.
We provide sufficient conditions on payoffs for there to be noise-independent

selection.

1 Introduction

In two player, two action games with common knowledge of payoffs, there often exist
two strict Nash equilibria. Carlsson and van Damme [1993a] showed a remarkable
result: if each player instead observes a noisy signal of the true payoffs, and if the ez
ante feasible payoffs include payoffs that make each action strictly dominant, then as

the noise becomes small, iterative strict dominance eliminates all equilibria but one.



In particular, if there are two Nash equilibria in the underlying complete information
game, then the risk dominant equilibrium (Harsanyi and Selten [1988]) must be played
in the game with noise.

Carlsson and van Damme’s result can be reconstructed in two, logically separate,
parts. First, there is a limit uniqueness result: as the noise in the incomplete in-
formation game becomes arbitrarily small, for almost any payoffs there is a unique
action that survives iterative elimination of dominated strategies. The second is a
noise independent selection result: as the noise goes to zero, the equilibrium played
(for a given realization of the payofls) is independent of the distribution of the noise.

In this paper, we show that Carlsson and van Damme’s first result generalizes
to many player, many action games with strategic complementarities. The second
result, however, does not generalize: we present a counterexample (a two player, four
action symmetric game) in which the equilibrium selected in the limit as the noise
goes to zero does depend on the structure of the noise. However, we identify sufficient
conditions under which noise independent selection does hold.

We consider the following setting. An unknown state of the world 6 € R is drawn
according to some prior. Each player i observes a signal that is equal to 0 + vn,,
where v > 0 is a scale factor and 7, is a random variable with density f;. Payoffs
depend on players’ actions and on #. Our substantive assumptions are (1) strategic
complementarities: for any state 0, each player’s best response is increasing in the
actions of her opponents; (2) single crossing: for any given opposing action profile,
a player’s best response is increasing in the state 0; and (3) limit dominant actions:
at sufficiently low (high) states 0, each player’s lowest (highest) action is strictly
dominant. Call this incomplete information game G (v). Under these and some
technical continuity assumptions, we show that limit uniqueness holds: as the noise
scale factor v goes to zero, there is an essentially unique strategy profile surviving
iterated deletion of dominated strategies (Theorem 1).

Without more stringent assumptions, however, there may not be noise-independent



selection: the limiting equilibrium played at a state # may depend on the noise den-
sities f;. We show that every local potential game with payoffs that are own-action
concave has noise independent selection, i.e., a unique Nash equilibrium that is played
in the limit of every noisy incomplete information game as the noise goes to zero. Lo-
cal potential games include both the potential games of Monderer and Shapley [1996]
and games with low p-dominant equilibria of Morris, Rob and Shin [1995] and Kajii
and Morris [1997a]. In particular, local potential games include (1) all two player,
two action games; (2) all many player, two action games with symmetric payoffs; and
(3) all two player, three action games with symmetric payoffs. In each of these cases,

we characterize the selected equilibrium.

2 The Game

The general game we analyze is as follows. There are I > 2 players, 1,..., 1. A state
0 € R is drawn from the real line according to a continuous and positive density
¢. Player i observes a signal z; = 0 + vn,, where v > 0 and each 7, is distributed
according to smooth density f; with support contained in the interval [—%, %] . Player
i’s action set is A;, where {0,1} C A; C [0,1]. We assume that either (a) each A; is
discrete or (b) each A; is the continuum [0,1]. wu; (a,0) is player i’s payoff if action
profile a is chosen and the state is . Call this game G (v).

Let Au;(a;, a;,a_4,0) be the difference in player i’s utility from playing a; versus

a, against a_; when the payoff parameter is 0:  Au;(a;, a;,a ,0) = ui(a;,a_;,0) —

u;(a;,a_;,0). We make the following assumptions on the payoff functions:

A1 (Strategic Complementarities):
If a; > a} and a_; > a’;, then (for all 0) Au; (a;,a;,a;,0) > Au; (a;,a},a’;,0).
A2 (Limit Dominant Actions):
There exist constants § < 0 such that Au; (0,a;,a ;,0) >01if a; # 0 and 0 < 0, and

A’U,Z‘ (1,@,‘,0/,1‘,8) > 0if a; 7é 1 and 6 > 5



If each player’s action space is finite, we can replace A2 by the weaker assumption:
A2 (Limit Unique Equilibrium):

There exist constants § < 0 such that for all 6 ¢ [0, 0], the complete information game
)

in which each player i’s payoffs are given by wu; (-, ¢) has a unique Nash equilibrium.

A3 (Single Crossing):
There is a Ky > 0 such that for all a; > o} and 0,60 € [0,0], 0 > 0, Au, (a;,a,a_;,0)—
A, (a;,a,a 4,0") > Ko(a; — a;)(0 — 6'). (If the action space is continuous and wu; is

differentiable, a sufficient condition for A3 is that W > 0 for all 6 € [0,0].)
A4 (Continuity with Respect to 0):

Each u; (a,0) is continuous with respect to 0.
A5 (Continuity with Respect to Actions):

Each u; (a,0) is continuous with respect to a.

A6 (Lipschitz):

For all # and a_;, there exists a constant K; such that for all a;, af,

’Aul (ai7 CL;, A, 6)’ < K (ai - CL;)
Also, for all 0 there exists a constant K such that for all a;, @, a_;, and a’ ,

‘Aui (a;,a.,a ;,0) — Auy; (ai, a;,a 9)‘ < Ky (a; — a) Z(aj — a;-)
J#

A strategy for player i is a function s; : R — A;. A strategy profile is a vector
of strategies, s = (s1,..., 7). Strategy profile s = (s1, ..., s7) is increasing if s; (z;) is
weakly increasing in ; for all i; strategy profile s is left continuous if limysrq, s:(77) =
s;(x;) for all i. Strategy profile s is higher than strategy profile s (s’ > s) if s} (z;) >
$; (z;) for all i =1,.., [ and z; € R.

Finally, let 7; (2 |z;, ) be player i’s conditional density over the vector z= (zj)j# =

.

(%) _, . of normalized differences in the signal errors when player 7 observes signal
J#e

xZ;.



3 Uniqueness

In this section we show that as the signal errors shrink to zero, iterative elimination
of strictly dominated strategies selects an essentially unique Bayesian equilibrium of
the game. We start with an intuition for the argument; a formal, general treatment

follows.

3.1 Intuition

To see the intuition for limit uniqueness, consider the case of a symmetric two player
game with a continuum of actions. Assume the two players have the same distribution
of signal errors. Further assume that a player’s payoff function is concave in her own
action, so that her best response does not jump in response to small changes in her
posterior distribution over the state # and her opponent’s action. Recall that a
player’s (pure) strategy is a function from her signal z; to an action a; € [0,1]. By
the assumption of limit dominant actions (A2), we know that a player who observes
a signal above some threshold must choose a; = 1. This means that no player will
ever choose (i.e., put positive weight on) a pure strategy that lies below the following

curve:

ai=1
0 dominant 1 dominant
a=0 Xi

Knowing this, and because of the strategic complementarities, a player will never
choose a strategy below the best response to this curve. So the best response to this

curve gives a new lower bound on the strategies that can be selected. We iterate



this process ad infinitum, and denote the limit by S. Note that S is a symmetric

equilibrium of the game.

ai=1
0 dominant S 1 dominant
a=0 Xi

Since 0 is dominant for low enough signals, there is a translation Sy of S far enough

to the left that a player will never choose a strategy that lies anywhere above Spy:

ai— 1

So S

;=0 Xi

Now we do iterations starting from Sy, but always using translations of Sy. That
is, we first find the rightmost translation S; of Sy such that a player never strictly
prefers to choose above Sy if she thinks her opponent’s strategy nowhere lies above
So. Note that Sy is the rightmost translation of Sy that nowhere lies below the best
response BR(Sp) to Sp:

ai— 1

a=0 Xi



We iterate this procedure and denote the limit S,,. Clearly, any strategy ever chosen
by any player must lie between S, and S.

Note that one more iteration from S, yields S, itself. This implies that the best
response BR(S,, ) lies entirely to the right of S, and touches S, at at least one point.
Let P denote this point, and let z be the signal that corresponds to P. Let /' be the
point on S that is at the same height as P; let &’ be the signal that corresponds to
P

ai— 1

ai=0

Xi

We now exploit the fact that the signal errors are small. This means that a player
i can be sure that the payoff parameter 6 is very close to her signal x;. Consequently,
the prior over # is approximately uniform for values of # that are possible given her
signal. (Recall that we assume a smooth prior over §.) Thus, the posterior of a
player with signal x over the error in her signal, x — 6, is approximately the same as
the posterior of a player with signal 2’ over the error in her signal, 2’ — 6. Since the
signal error of the player’s opponent is independent of 0, the player’s posterior over the
difference between her signal error and that of her opponent is also about the same if
her signal is x as if her signal is /. But the difference between the two players signal
errors is just the difference between their signals: (z; — 0)—(z; — 0) = ;—x;. Thus,
a player’s posterior over the difference between her signal and that of her opponent
is about the same at x as at 2/. Thus, since S, is an exact translation of S, a player
who observes x and thinks that her opponent will play according to S, expects about
the same action distribution as a player who observes 2’ and thinks that the opponent

will play according to S. By construction, both players to want to play the same



action: P and P’ are at the same height. Since a player’s optimal action is strictly
increasing in her estimate of 6 (controlling for her opponent’s action distribution), x
and 2’ must coincide — otherwise, the player who observes ' would want to play a
higher action than a player who observes z. But this means that the curves S, and

S must also coincide: a unique equilibrium survives iterative strict dominance.

3.2 Formal Result

We now turn to the formal treatment of many player, many action games.

Theorem 1 G (v) has an essentially unique increasing strategy profile surviving it-
erative strict dominance in the limit as v — 0, i.e., there exists strateqy profile s*
such if s” is a sequence of equilibria satisfying iterative strict dominance in G (v),

then s (x;) — sf(x;) for almost all x; € R.

Proof. The proof has two parts. In the first (Lemma 2), we consider a simplified
game in which an agent’s prior over 6 is uniform and her payoff depends directly on
her signal rather than on 0. Because of the uniform prior, a player’s posterior over the
difference between her signal and those of other players is independent of her signal,
so we obtain uniqueness even when the noise is large. The argument generalizes the
“iterate with translations” approached used in the above intuition.

In the second part of the proof, we show that the original game “converges” to
the simplified one as the signal errors shrink. That is, a player’s posterior over
the differences between her signal and those of other players becomes approximately
independent of her own signal (Lemma 3). Moreover, in the limit it does not matter
whether a player’s payoffs depend on her signal or on 0 since these become arbitrarily
close. As a result, the strategy profiles surviving iterative dominance in the original
and simplified games converge to each other (Lemma 4).

The simplified game is defined as follows. Let the state ¢ be drawn uniformly from

some large interval that includes [¢, 6] and let player i’s payoff depend on her signal



x; instead of the state. Thus w; (a,x;) is player i’s payoff if action profile a is chosen
and she observes signal z;. Call this game GG* (). Note that with a uniform prior on
states, player i’s posterior 7;(z) over the vector z = (zj)j# = (E%“TZ)]# of normalized
differences between other players’ signals and her own signal is independent of x; and
v.

Lemma 2 shows that each game G* (1) has an essentially unique strategy profile

surviving iterative strict dominance, which is weakly increasing.

Lemma 2 There exists a weakly increasing strateqy profile s* such that any profile
s that survives iterative strict dominance must (a) be weakly increasing in xz; for all
i and (b) agree with s} except perhaps at the (at most countably many) signals z; at

which s¥ (z;) is discontinuous.
Proof. See appendix.

Lemma 3 shows that as v — 0, players’ posteriors over differences in the signal
errors in G(v), 7; (2 |x;, V), converge to the posteriors that would result from a uniform
prior distribution over . For any probability measure z on R™1 let ¥_ (1) be the
set of probability measures that differ from g by no more than ¢ for any event:

‘I’s(u)E{u’: sup !u(E)—u’(E)léﬁ}-

EQR171
Lemma 3 For any ¢ > 0 and compact interval B, there exists v > 0 such that
7 (- |zs,v) € U (m; () for all x; € B and all v < 7.

Proof. See appendix.

Lemma 4 uses the above results to show that as the signal noise shrinks, agents’
behavior in G(r) converges to the unique outcome of G*(v). Write s” (3) for the left

(right) continuous version of the essentially unique equilibrium of the game G* (v).



Lemma 4 For any > 0, there exists U > 0 such that for all v <V and any strategy

profile s of G (v) surviving iterated deletion of strictly dominated strategies,
S (24 2) > 8 (1) > 87 (2 — &)
Proof. See appendix.

Theorem 1 follows immediately from Lemmas 2 and 4. Q.E.D.

4 Noise Independent Selection: A Counterexam-
ple

In showing limit uniqueness, we began with a given noise structure and scaled it
down by taking the scale factor v to zero. Our result does not imply that the
selected equilibrium is independent of the structure of the noise (i.e., of the densities
£).

To obtain some intuition for when the selected equilibrium will be independent
of the structure of the noise, suppose the game has two players, each with the same
discrete action set A and the same payoff function, and each player’s noise term
has the same symmetric distribution f. Assume that each player follows the same
increasing strategy, s : R — A. As v — 0, what beliefs does each player have over
the action of her opponent at the critical point where she switches from one action
to another? Recall that for small v, each player’s posterior belief about the other’s
signal is computed approximately as if she had a uniform prior over 6.

Suppose first that there are two actions, so that

0,iffz<c
s(x) =

Lifz>c

A player observing signal ¢ will assign probability % to her opponent’s choosing action

0 and probability % to her opponent’s choosing action 1. This is independent of the

10



choice of ¢ and the distribution f. Thus as the noise goes to zero, ¢ must converge
to the payoff parameter at which the player is indifferent between the two actions if
she has a 50/50 conjecture over her opponent’s action. This is simply the symmetric
version of Carlsson and van Damme’s (1993) result.

Now suppose that there are three actions, 0, 1/2, and 1, so that

0,iffz <y
s(x)=< Life; <z <o

1if ey <z

A player observing signal ¢; will assign probability % to her opponent choosing action
0, some probability A to her opponent choosing action %, and probability % — A to her
opponent choosing action 1; a player observing signal ¢y will assign probability ; —-A
to her opponent choosing action 0, probability A to her opponent choosing action %
and probability % to her opponent choosing action 1. For any distribution f, we can
choose ¢; and ¢ so that A takes any value in [0,1/2]. In other words, the distribution
of noise does not effect the limiting conjectures that each player may end up having
over her opponent’s actions.

This implies noise independent selection: any profile (cy, ¢o) that is an equilibrium
as ¥ — 0 under a noise structure f must also be an equilibrium under any other noise
structure f’. To see why, let us distinguish between two cases. In the first, ¢y —cy does
not shrink to 0 as v — 0. This means that A converges to 1: for sufficiently small v,
a player with signal ¢; is indifferent between 0 and 1/2 and thinks that her opponent
will play 0 or 1/2 with equal probabilities; a player with signal ¢, is indifferent between
1/2 and 1 and puts equal probabilities on her opponent’s playing 1/2 and 1. These
signals clearly must converge to particular payoff parameters, independent of the
structure of the signal errors (since the player’s beliefs are independent of f).

In the second case, lim,_,o (¢; — ¢a) = 0. Here, A need not converge to 1. But if

we replace the signal error structure f with some other structure f’, we can construct

an equilibrium near the one given by f by simply adjusting the gap between ¢; and

11



Co 50 as to keep A the same under [’ as under f. Since the gap between ¢; and ¢y
asymptotically shrinks to zero, we can make this adjustment without changing the
limit to which both cutoffs converge. Thus, under f’ there is a sequence of equilibria
of the incomplete information game that converges to the same limit as the sequence
of equilibria under f. This explains why there is noise-independent selection. In the
next section, we show that there is selection is noise-independent for two player, three
action, symmetric-payoff games, even with general asymmetric noise distributions f;.

With four or more actions, the above property ceases to hold. The set of conjec-
tures a player can have over her opponent’s action does depend on the structure of the
noise. We now present a counterexample with four actions, in which the equilibrium
selected in the limit depends on the noise. Let [ =2, A] = A, = {0, %, %, 1} and
let G (v) and G (v) be two games satisfying the assumptions of Section 2; these two
games are identical except that in G (), 1, and 7, are distributed according to the

density

fn)=1

on the interval [—%, %], in G (v), n, and 7, are distributed according to the density

Fn)=2—4]

on the interval [—%, %] . Note that under a uniform prior on #, the resulting symmetric

distributions of z = 1, — 1, have support [—1, 1] and densities

w(z) =1—|z|
2(1+2)%,if —1<z<-1
) =4 1-22if ~b<a<)

2(1—2),ifL<2<1

12



Assume that u (-,0") = g* (-), where g* is given by the following symmetric matrix:

s [0 : 1
0 | 2000,2000 | 1936,1656 | 1144,1056 | 391,254

% 1656, 1936 | 2000, 2000 | 1600, 1800 | 1245,1000
% 1056, 1144 | 1800, 1600 | 2000, 2000 | 1660,2160
1 | 254,391 1000, 1245 | 2160, 1660 | 2000, 2000

One may verify that this is a game of strategic complementarities, since each row of

the following table is increasing.

g5 (al—l—%,@)—g}‘(al,@) as =0 CLQZ% a2:§ as =1
a; =20 —344 | 64 456 854
a) = % —600 | —200 | 400 415
a) = % —802 | —800 | 160 340

(Also note that payoffs are concave in each player’s own action, since each column in

the above table is decreasing.) Let strategy profile §[k] be defined by:

;

1 1
§,lfl€—1§$l<k‘
2 1

\

Lemma 5 Let the interaction structure be given by 7. There exists € > 0 and §>0
such that if 8 € |0* —3, 0* +68| and payoffs are always given by wu(-,0%), the best

response to strateqy profile s[k| is less than or equal to Sk + 2.

PROOF. If player 1 observes xy, she believes that xy— x is distributed according

to 7. If she believes that her opponent is following strategy $s [k], her conjectures

13



over her opponents’ actions are the following:

— 1 — 2
CL2—0 CL2—3 CL2—3 CL2—1

11 23 17 1

. 4|2 96 96 12

Player 1’s Signal

I 25 23 23 25

96 96 96 96

L] 1 17 23 1

k+il 96 96 2

One may verify that if player 1 observes signal k — l and has payoffs given byu (-, 0"),
then she strictly prefers action 0 to action % (since —( 344) + % (64) + % (456) +
E (854) = _T < 0). Similarly, if player 1 observes signal k and has payoffs given
by w(-,0%), she strictly prefers action % to action % (since —( 600) + ( 200) +
% (400) + ;—2 (415) = —;—2 < 0) and if player 1 observes signal k + Z and has payoffs
given by u (+,0"), she strictly prefers action % to action 1. By continuity, these strict
preferences will be maintained for signals in a small neighborhoods of those cutoff
points and for payoffs in a small neighborhood of u (-,0%). W

Now consider the game GP (v,0%), which is like G (v), except that the payoff

functions are replaced by:
Uy (a,Q) ) if 0 S 8
uy (a,0) = (a 0" + 6) if 0 *+

~

ul-(a,@),lfQ 0" +6

)

Corollary 6 In the game GP (v,0%), any strategy s satisfying iterated deletion of
strictly dominated strategies satisfies s < § [8* 16— 1/} thus s; (xz;) =0 for all z; <
0" +6— 2.

PROOF. By induction, verify that if strategy profile s survives k + 1 rounds of
deletion of strictly dominated strategies, then s < s [max (Q —v+ kg, 0" + 5— I/)}
[

Now we have:

Lemma 7 If s” is the essentially unique equilibrium of G (v), then s (z;) = 0 for
all z; < 0* 45—

14



But now let strategy profile s [k]| be defined by:

,
: 7
0,lf$i<kf—%

1 _ 7 .
5. [K] () = s if b — o <a <k

0 7
1,1f%§k‘—|—$l

\
Lemma 8 Let the interaction structure be given by w. There exists € > 0 and 6 > 0
such that if 0 € (0" — 6,0" + 6] and payoffs were always given by u(-,0%), the best

response to strateqy profile s[k| is more than or equal to s[k — &].

PROOF. If player 1 observes xy, she believes that xy— x is distributed according
to 7. If she believes that her opponent is following strategy $s [k], her conjectures

over her opponents’ actions are the following:

— -1 -2 —
CL2—0 CL2—3 CL2—3 CL2—1
7|t 301 203 121
. 2% | 2 1250 1250 1250
Player 1’s Signal
L 162 301 301 162
625 1250 1250 625
7 | 421 203 301 1
k+ 35 | 1550 1250 1250 2

One may verify that if player 1 observes signal k — % and her payoffs are given by
u(+,0), then she strictly prefers action % to action 0 (since %(—344) + % (64) +
% (456) + % (854) = % > 0). Similarly, if player 1 observes signal k and her
payofls are given by w (-, 0"), she strictly prefers action % to action % and if player 1
observes signal k + % and her payoffs are given by u (-,0"), she strictly prefers action
1 to action % By continuity, these strict preferences will be maintained for signals in
a small neighborhoods of those cutoff points and for payoffs in a small neighborhood

of u(-,0%). m

But now mimicking the above argument, we have:

Lemma 9 If s¥ is the essentially unique equilibrium of G* (v), then s? (x;) = 1 for

all z; > 0" — 6+ v.

15



5 A Sufficient Condition for Noise-Independent Se-
lection

In this section we show that there is noise-independent selection at some parameter 6
if (a) payofls at 0 are own-action concave and (b) the complete information game with
these payoffs has a strategy profile that is a local potential mazimizer. This strategy
profile must be played in the limit, regardless of the structure of signal errors.

Let H be the set of complete information games g = (g1, ...,91), ; : A — R. Let

F' be the set of noise structures f = (fi, ..., f;), where each f; is a smooth density on
the interval [—%, %] Our arguments so far have established limit uniqueness, which

can be restated as follows:

Corollary 10 There exists an assignment a : H x ' — A of action profiles to
complete information games and noise structures such that for any incomplete infor-
mation game G (v) as defined above, if s* is the limit, as v — 0, of any sequence
of strategy profiles that survive iterative strict dominance in G (v), then s* (z) =

a ({uZ ()}, ,f) for almost all x.

Thus except at jump points, the action profile that players must play in the limit
at any state 0 is uniquely determined by the payoffs at that state and the noise
structure. There is no multiplicity of equilibria (unlike in the complete information
case), but the equilibrium played may depend on the noise structure.

For some games, it is possible to identify the limiting behavior independently of
the noise structure. In other words, for some games g € H, a(g,f) = a* for all f € F.
In this case, we say that a* is the noise independent selection of g. We will give a
sufficient condition for this to hold.

If A; is a discrete action set, write a;“ for the next action above a; and a, for the
next action below a;. We now define own-action concavity and the notion of a local

potential maximizer.

16



Definition 11 The complete information game g with discrete action sets is own-
action-concave if g; (af,a_;) — gi(ai,a) < g;(a,a-;) — g; (a; ,a_;) for all a; €
AN{g;,a;} anda_; € A_;. The complete information game g with continuous action
sets A; = [0, 1] is own-action concave if, for any e >0, g; (a; + ,a_;) — g; (a;,a_;) s

weakly decreasing in a; € (0,1 —¢).

Definition 12 Action profile a* is a local potential mazimizer (LP-mazimizer) of g
if there exists a local potential function v : A — R with v (a*) > v (a) for all a # a*

and, for each i, a function p, : A; — R, such that for alli=1,..,1 anda _; € A,

v(as,a ) —v(a; a ) > p(as) [gi (ai,a3) — gi (a; ,as)] ifa; >af (1)

and v (a;,a_;) —v (a;“, a,i) >, (a;) [gl- (a;,a ) — g; (a;“, a,i)} if a; < al

if A; is discrete. If A; is continuous, there must be a constant ¢;, independent of a;

and a_;, such that if § € [0, ¢;] then
v(a;+6,a ) —v(ag,a ;) > p(a;) [gi (@i +6,a ) — gi (@i, a )] if a; > af (2)
and v(a;,a ) —v(a;+6,a ) > p; (a;) [gs (a5, 05) — gi (as + 6,a4)] ifa; <aj (3)

Importantly, the LP-maximizer property guarantees that a profile is a strict Nash

equilibrium if payoffs are own-action concave:

Lemma 13 If a* is an LP-mazimizer and g is own-action concave, then a* is a strict

Nash equilibrium.

Proof. Consider any player i and any alternative action a;. WLOG assume

a; > af. In the continuous case, for any é € [0, ¢;],
0>w (a;‘ + 6ua’ii> - <a’:7a’ii> > p;(af) <9z‘ (a;‘ + 6ua’ii> — G <a’:ua’ii>>

SO g; (a;‘ + 6, a’ii) < g; (a;?‘, aii). By own-action concavity, g; (a;‘, a’ii) exceeds g; (ai, afi)
for any a; > af. An analogous argument shows the same for any a; < a. The proof

is analogous for the case of discrete actions. ®
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Proposition 14 states that if, at some state 0, payoffs are own-action concave and
have an LP-maximizer, then that LP-maximizer must be played in the limit as the

signal errors shrink, regardless of the noise structure.

Proposition 14 If s* is the essentially unique limiting equilibrium of G (v) and a* is

1

an LP-mazimizer of the own-action concave complete information game (g; (-,60"));_;,

then s* (0°) = a*.

Proof. Let g, be some particular payoff function for player 7 with the property
that action 0 is a dominant strategy. Fix some 6" € R and consider the incomplete
information game G** (v, 0*) with uniform prior, noise structure f and payoff functions

g; (CL,Q*) , lf xX; Z 8*
'gi (auaji) =

g, (a),if z; <0

*

Suppose that action profile a* = (a! )1'1:1 is an LP-maximizer of the complete informa-

tion game g= (g; (-, Q*))Z.Izl and that this game is own-action concave.

For now, fix v = 1. We will be interested in left-continuous, weakly increasing
strategies for player ¢ where she never chooses an action above af. Any such strategy
can be represented by a function (; : [0,a] — R where (,(a;) is the highest signal at
which an action less than or equal to a; is played.

We wish to define the unique left-continuous best response to strategy profile ¢
in the game G** (1,0") . Note that the assumpion that a* is an LP-maximizer (and
thus, by lemma 13, a strict Nash equilibrium) and the strategic complementarities
assumption imply that the best response to ¢ will itself involve each player i choosing
an action less than or equal to af. We write 3 (¢) = (5, (C))fil for this best response.

To give an explicit expression for 3, (¢), first write sfi for player i’s strategy

7

written in standard notation, i.e., sgi (z;) = min{a; : ¢;(a;) > =z;}. (It is correct
to take the min because of left continuity.) Write s:-i (x_;) = (sgj (atj)) and
J#e
‘ I
st (x) = (351 (a:j))jl. Now if player i observes z; < 6%, action 0 is dominant.
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If player i observes x; > 0, her payoff to choosing action a;, if she believes her

opponents are following strategies (_;, is

/ / gi ((ai, sii (a:,l)) ,a:l-) (f[l fi(x; — 9)) dx_,do.

fER SC,.L‘ER,171

Thus an action less than or equal to a; is a best response if

I
min ar(%grj?x / / Gi ((a;, 3:}‘ (a:,l)) 7371‘) (Jl_[l [i(z; — 8)) dr_;do » < a;.

fcR g ;cRI-1

Recall that (; (a;) is the largest value of z; at which an action less than or equal to

a; is played under i’s strategy. Thus 3, (¢) (a;) is the maximum of 6" and

I
max { x; : min { argmax / / Gs ((a;, s< (a:,l)) ,a:z-) (H fi(z; —0) | dx_;do
ajcA; =1

fER SC,.L‘ER,171

Now define:
ay

V= [ [ [ @) = @) dmican - 0)--dF (G far) - 000

9 a1=0  a;=0

(The integrals are evaluated as sums if the action set is discrete.) Intuitively, V ()
is the expected value of v (a) — v (a*), conditional on § > 0" — % The expectation is
taken with respect to the improper prior, so this expression will only be well defined
if each player eventually plays a?, i.e., if (; (af) is finite for all i. Otherwise V() will
equal —oo, since v (a) < v (a*) for all a # a*.

Now consider the sequence ¢°, ¢', ..., where ({ (a;) = 0" for all i and a; € [0, a}],
and (" = (qu) for all » > 0. An induction argument shows that this is an

increasing sequence: (7 (a;) > (7 *(a;) for all n, 4, and a;. Moreover, V(¢°) is finite
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and negative. We will show that V' (") is increasing in n. Thus, V (lim,, ., (") #
—oo. This implies that in the limiting strategy profile lim,, .., (", each player i plays
a? if her signal is high enough.

Let ¢ = ¢" for any n > 0. Define dF*(a_4|0) to be

dFI(C[(aI) - 9) o 'dFi+1(Ci+1(az‘+1) - e)sz?l(ﬂ(C)ifl(az‘fl) - 9) e 'dF1<ﬂ<C>1<a1) - 9)

This is the probability of the action profile a_; at the state @ if players i — 1 and
under play according to 3(¢) while players i + 1 and above play according to (. We
separate V(5(¢)) — V(¢) into a telescopic sum and then integrate each summand by

zj;//{/ v(as, a_s) —v(a*))d
dF(a_;|0)d0

F(B(C)slai) = 0)
—Fi(¢(as) — 0) a;=0

Z//{ asai) — v(a’))
(a;) = 0) ] Wdal} dF(a_;|0)do

parts:

—Fi(¢i(as) —

X
a;

Fi(3(¢)s(as) — 0) ] } dF(a_0)do
0)

)—9)

S

Since no action above af is played in either strategy profile, 3(();(a;) = (;(a;) =

00, SO

a¥

Fi(B(O)i(as) - 0) ] } Z

= —(v(0,a-;) —v(a”))
—Fy(Gi(a:) — 0)

{(U(%az‘) —v(a”))

E(Qe) ~0) | |
~RlGa)-0) |

a; =0

since a* maximizes v and since 3(¢);(0) > ¢;(0). Thus,

vy -vioz-Y [ f { / FB(C)ilas) = 6) ] Mdaz}dﬁ(ai@)de

~F(¢ () — 0) Da;

_ ;Y ov(a;,a_;) Fi(B(¢)i(a;) — 0) o .
) Zz;a/o G/a/i 9, —F3(¢(a;) — 6) ] AF"(a—[6)dbda;

20



But for any a; and 0, F;(5(¢):(a;) — 0) — F;((;(a;) — 0) is just the probability that a
signal is observed between (,(a;) and 3(();(a;) - the interval where under ¢ player i
plays more than a; and her best response to ( is to play something no greater than a;.
If instead players 1 through i — 1 play according to (3(¢), player i’s best response in
this interval is still no greater than a; by strategic complementarities. Therefore, by
own-action concavity, player 7’s payoff, conditional on getting a signal in this interval,

must be weakly decreasing in her own action:

—5(¢)
[ [ ot [ A0 ]
f )b | @) - 0) B

Since a; < af, W < ui(ai)% by the LP-maximizer condition. Thus:

V(p(Q) - V(C)

Z / / / Boltn as) Fi(iff)(a,-)—e) dFi(a_;|0)d0da;

¢
—0 0 a_; —Fy(7;(a;) — 0)

Y —B(¢)
Fi(z; > (a;) — 0 .
Z / (@i / / O9ilas, ) (@ as) = 6) dF*(a_;|0)d0da;

—F(% (a;) = 0)
>0

as claimed.

This implies that for all i and a; € [0,a}], (}'(a;) converges to some finite upper
bound (;°(a;) as n grows. Let 5! be this upper bound written in standard notation
(i.e., 5} (x;) = min{a; : ¢{° (a;) > x;}). This is the smallest strategy profile surviving
iterated deletion of strictly dominated strategies in G** (1,0"); moreover, there exists
a ¢ > 0 such that 5] (z;) = a} for all i and z; > 0" +c.

Changing v is equivalent to relabeling the game G** (v,0"). Thus if we write §” for
the unique strategy profile surviving iterated deletion of strictly dominated strategies
in G** (v,0%), we have ¥ (z;) = s’ (—11/—9*> This in turn implies that 87 (z;) = a} for

all z; > 0" + ve.
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But now if s” is the essentially unique equilibrium of G* (1), we have that s > §”
(this is true because the game G* (1) has everywhere higher best responses than the

game G** (v,0)). So we have:
Lemma 15 For all e > 0, there exists U such that for allv < U, s/ (0" + ) > a}.
A symmetric construction gives:

Lemma 16 For all = > 0, there exists U such that for allv < 7T, s7 (0" — ) < af.

%

This proves the proposition. Q.E.D.

5.1 Sufficient Conditions for an LP-Maximizer to Exist

The LP-maximizer conditions of Definition 12 are rather complex. In Sections 5.1.1
and 5.1.2, we describe simpler conditions that are sufficient for an action profile to be
an LP-maximizer. In Sections 5.1.3 to 5.1.5, we apply those results to give a complete

characterization of the LP-maximizer in certain special classes of games.

5.1.1 Weighted Potential Maximizers

One sufficient condition for a* to be a local potential maximizer is that a* is a weighted
potential maximizer. This is a slight generalization of Monderer and Shapley [1996]’s

notion of an action profile that maximizes a potential function for a game.

Definition Action profile a* is a weighted potential mazimizer (WP-mazximizer) of
g if there exists a vector pe Rfr and a weighted potential function v: A — R
with v (a*) > v (a) for all a # a*, such that for all i = 1,..,1, a;, a; € A; and

a_; € A,Z‘,

v (% a;)—v (a;, a_;) = i, 9 (% a_;) — gs (a;, a—z‘)] .
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5.1.2 p-Dominance Conditions

Let p = (p1,...,psr). The notion of p-dominance is a many player, many action game
generalization of risk dominance (see Kajii and Morris [1997]). An action profile a*
is p-dominant if it is a best response for each player i if she puts weight at least p;

on her opponents’ playing according to a*:

Definition 17 Action profile a* is p-dominant in g if

Z)\ Cl , A >Z)\ au Z);
for alli, a; € A; and N\; € A (A ;) with X ( ) > p;i.

For low enough p, p-dominance is a sufficient condition for an action profile to be

an LP-maximizer.

I
Lemma 18 If action profile a* is p-dominant for some p with > p; < 1, then a* is
i=1

an LP-maximizer.

Proof: see Morris [1999].

5.1.3 Two Player, Two Action Games with Two Strict Nash Equilibria

Let I = 2 and Al = A2 = {0,1} Let g1 (0,0) > g1 (1,0), g1 (1,1) > 7 (0,1),
92(0,0) > g5(0,1) and g5 (1,1) > go(1,0), so (0,0) and (1,1) are both strict Nash

equilibria. Now let

q* _ g1 (07 0) g1 (170)
! g1 (070)_91 (170)+91 (171> g1 (071)
* g2 (070) g2 (071)

= 00 (0,0) — g2 (0,1) + g2 (L, 1) — g2 (1,0)

A weighted potential function v is given by the following matrix:

0 1

0lgi+a | 4
1| g 1
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(0,0) is a WP-maximizer if ¢; + g5 > 1 and (1,1) is a WP-maximizer if ¢} + ¢5 < 1.
Thus, generically, there is a WP-maximizer. The WP-maximizer is the risk dominant

equilibrium in the sense of Harsanyi and Selten (1988).

5.1.4 Many Player Two Action Games with Symmetric Payoffs

Let A; = {0,1} and suppose g; (a;,a ;) = g(a;,a_;) depends only on a; and the
number of players j # i who play 1. Let £ (n) be the relative payoff to playing 1
versus 0 when n other players play 1. (Le., £ (n) = g(1,a_;) —¢(0,a_;) for any a_; in
which n players play 1.) Assume strategic complementarities: i.e., £ (n) is increasing
in n. Let the potential function be
m—1
> & (k) , if the number of players playing 1 in a is m > 0
v(a) =< ko0
0, if no players play 1 in a
Also set p; = 1 for all i. One can easily verify that 1 =(1,..,1) is the WP-maximizer
if Iijlf (k) > 0 and that 0 is the WP-maximizer if Iil € (k) < 0. Thus generically in
thfs:g:lass of games, there exists a WP-maximizer. 0
An equivalent characterization of the WP-maximizer is the following. Suppose
that a player had a uniform prior over the number of her opponents choosing action
1. If 1 is a best response to that conjecture, then 1 is the WP-maximizer; if 0 is a
best response to that conjecture, then 0 is the WP-maximizer. These are equivalent
since %Eé;(l) (k) is just the relative payoff to playing 1 if one has such a uniform

prior.

5.1.5 Two Player Three Action Games with Symmetric Payoffs

Let I =2, Ay = Ay = {0,1,2}; g1 (a1,a2) = g2 (ag,a1) = Wq, Wa,, Where Wy, > Wy,
for all y # = and wyy — Wary > Wy — Wy if £ > 2" and y > /. Write Aﬁ%’y, for the

net expected gain of choosing action x rather than y against a 50/50 conjecture on
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whether the opponent will choose action 2’ or 7'. Thus
y
Apry = Watg + Wary — Wylg — Wyry.

Note that Azzfy, = Agfy, and Azzfy, = —Ag%’m,. Note that A7 > 0 implies that action
profile (x, x) pairwise risk dominates action profile (y,y). Now we have the following

complete (for generic games) characterization of the LP-maximizers.

e (0,0) is the LP-maximizer if AJ} > 0 and either (1) A2 > 0 or (2) A2l >0

A _ AR
andA—g% < A_%%
e (1,1) is the LP-maximizer if A > 0 and A}3 > 0.

e (2,2) is the LP-maximizer if A2}l > 0 and either (1) Al§ > 0 or (2) Af} > 0 and

AOQ AOQ
AOl > A21 .
01 21

The following example illustrates these conditions:

(91,92) | O 1 2
0 4,4 0,0 | —6,-3
1 0,0 1,10,0
2 ~3,-6 (0,022

(0,0) is the LP-maximizer, since A} = 3, A2l = 1, A% = 2 and A = 1. Note
that (2,2) pairwise risk dominates both (1,1) and (0,0), but nonetheless is not the
LP-maximizer.

Proving the above claims (i.e., constructing the local potential functions) involves
tedious algebra. Here, we will just note two cases to illustrate the issues.

Case 1: A{) >0 and A{2 > 0. Consider the following local potential function:

v |0 1 2

0 —Aig Wo1 — W11 —&

1| wor—wi1 |0 Wo1 — W11
2 —& Wo1 — W11 —A%%
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for some small but strictly positive . Setting a* = (1,1) and uy (0) = py(2) =
o (0) = p15 (2) = 1, one can verify that the inequalities of equation (1) are satisfied.

. A0l 21 02 02 AR AR

Consider the

following local potential function:

v |0 1 2

0]|e e+ A [w(1,0) —w(0,0)] | Ar [wos — wia] + Ag [wig — wao]
L | &+ Ay [wio — woo) _)\QA%% A [W1g — W]

2 | A1 [wog — wig] 4+ Ag [wia — was] | Ag [wig — wio) 0

for some small but strictly positive £ and positive A\; and Ay such that
AL T A AR
Setting a* = (0,0), 1y (1) = py (1) = Ay, £ (2) = py (2) = A9, one can verify that the

inequalities of equation (1) are satisfied.

6 Conclusion

For two player, two action games, Carlsson and van Damme [1993a] showed that a
unique equilibrium is played as the noise in the payoff signals goes to zero. They
also showed that the equilibrium selected is independent of the structure of the noise.
In the language of this paper, they showed both a limit uniqueness and a noise
independent selection result. One contribution of this paper is to identify sufficient
conditions under which both results generalize to many player, many action games.
In doing so, we generalize a number of papers in the literature. For many player,
two action games, Carlsson and van Damme [1993b], Kim [1996], and Morris and
Shin [1998, 1999] showed limit uniqueness results, for particular assumptions about

1

the structure of the noise.” Our results here show both limit uniqueness and noise

LCarlsson and van Damme [1993b], Kim [1996] and Morris and Shin [1998] assume uniform

noise distributions, while Morris and Shin [1999] assume normally distributed noise. In fact, the
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independent selection results that do not depend on the shape of the noise. Carlsson
and Ganslandt [1998] show limit uniqueness and noise independent selection results
for a minimum effort coordination game. Since theirs is a potential game, these results
too are special cases of the analysis of this paper. Our general sufficient condition for
noise independent selection (own-action concavity and the local potential maximizer
condition) also works in settings where there are no existing results (e.g., two player
three action games).

We also showed by example the limits to noise independent selection. Our example
in which noise independent selection fails is for a two player, four action symmetric
payoff game. This example is minimal in the sense that noise independent selection
must hold with two players and symmetric payoffs if there are fewer than four actions.
Carlsson [1989] gives a three player, two action example in which noise independent
selection failed.

Our analysis emphasizes the distinction between limit uniqueness and noise in-
dependent selection. We are able to show a quite general limit uniqueness result by
combining the local noise structure of Carlsson and van Damme [1993a] with the
appropriate monotonicity properties for a many player, many action game. But noise
independent selection imposes much more structure on the payoffs on the game. In
this sense, it is easy to get limit uniqueness without noise independent selection.

Our noise independent selection results are related to work on the robustness of
equilibria to incomplete information (Kajii and Morris [1997]). A Nash equilibrium
of a complete information game is robust to incomplete information if every incom-

plete information game in which payoffs are almost always given by that complete

continuum player assumption in Morris and Shin [1998, 1999] and the unbounded support of the
noise distribution in Morris and Shin [1999] are not consistent with the model of this paper; however,
these differences affect neither the limit uniqueness result nor the noise independent selection. (There
was a mistake in the characterization of the noise independent selection in Morris and Shin [1998];

the corrected version in Heinemann [1999] is consistent with the characterization in this paper).
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information game has an equilibrium in which that Nash equilibrium is almost al-
ways played. Kajii and Morris showed that risk dominant equilibria of two player,
two action games and, more generally, p-dominant equilibria of many player, many

I
action games with Y p; < 1 are robust to incomplete information. The global games

introduced by Caﬂ;én and van Damme [1993a] and studied in this paper represent a
different way of adding an intuitively small amount of incomplete information about
payoffs. However, one can show that if a complete information game has a robust
equilibrium, then that equilibrium must be the noise independent selection. Thus,
the sufficient conditions for noise independent selection in this paper are in fact also
sufficient for robustness to incomplete information (see Morris [1999)]).

Our limit uniqueness argument exploits the stationarity of the distribution of
signal differences in the limit as the noise shrinks. We show that multiple equilibria
would require that there be two agents who want to play the same action (or, with
discrete actions, who are indifferent between the same two actions) and who face
the same distribution of opponents’ actions, yet who see different signals. Since
this is impossible, the equilibrium is unique. A closely related argument underlies
limit uniqueness results for dynamic games with complete information and frictions
in changing actions (Burdzy, Frankel, and Pauzner [1999]; Frankel [2000]; Frankel
and Pauzner [1999a,b]). In such games, payoff shocks also give rise to a unique
equilibrium. While the present paper relies on the stationarity of signal differences,

the cited papers use the stationarity of the payoff shocks to prove an analogous result.?

Appendix

Proof of LEMMA 2. Define BR;(s,z;) to be the set of optimal actions for a player

2Frankel [2000] extends this argument to the case of general nonstationary payoff shocks. He
shows that space and time can be transformed so that the payoff shocks are stationary in the new

coordinates, whereupon the prior argument can be applied.
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1 who sees signal x; and whose opponents play according to the strategy s:

BR;(s, ;) = arg max / 7 (2) u; ((ai, (sf (x; + sz))j#) ,a:l-) dz
aiEAi
zeRI-1

where

mi(2) = / [i (=) ] fi (25— 0)do

I
Note that by A4 and A5 and the theorem of the maximum, BR; must be upper-
hemi-continuous in x;, even if s is discontinuous. (Because of the noise in the signals,
i’s posterior over the distribution of opponents’ actions changes continuously in z;).

We first do iterated dominance to establish a lower bound on the actions players

can choose for each signal. We define a sequence of strategy profiles s* = (s’f, e s’})

for k=0,1,... as follows. Let s (x;) = 0 for all z; € R and let s""! be the smallest
best response to s*: s/ (x;) = min BR;(s*, x;). A1 and A3 imply that (i) s¥ (x;)

%
k

%

all (i,z;). A2 implies s¥ () = 0 and s/ (5) = 1 for all 7 and for £k > 1. Let s be

is weakly increasing in x; for all (i,k) and (i) sf (z;) is weakly increasing in k for
defined by s, (z;) = limy .o s (z;). A player i seeing signal z; must choose an action
that is at least s, (x;). By induction, s, is weakly increasing. Since BR; is upper
hemicontinuous and (by an induction argument) min BR;(s, z;) is weakly increasing
In z;, s; (x;) must be left continuous.

We next construct an upper bound on players’ actions. For any A € 3, let
s* = (s7,...,s7) denote the translation of s to the left by A: for all i and x,
s)M(x;) = s;(w; + \). Let Ao be large enough that, for all i, s)°(0) = 1; since s*°
is weakly increasing, a player 7 with any signal z; will never play an action that is

greater than sl’-\o (x;). Now let Ay be the smallest number such that no player i who

expects others to play according to s**-1 will ever play above sf‘k; more precisely,
)\k = 1nf{)\ : 8? (a:l) Z max BRZ‘<S>\k71 s QTZ) VZ, QTZ}

A1l and A3 imply that A; is weakly decreasing in k. Let A\, = lim_ o, Az, and

denote 5 = s*=. (Note that As, > 0 since the iterations cannot go beyond s.)
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By construction, a player 7 who sees signal x; will never play an action that exceeds
the right continuous version of §;: lim,|,, 5;(2) > max BR;(S,z;) for all x;. We will
show that by contradiction that A, = 0: s and s coincide. This means that any
equilibrium must be a weakly increasing function that agrees with s at all points of
continuity. This will prove the lemma since a monotonic function can have at most

a countable number of discontinuities.

Claim 1 There is a player i and a signal z} such that §;(zf —¢) < max BR;(3, 2} +¢)

for all € > 0.

Proof Since 5 is the limit of the iterations from the left, for all £ > 0 there is a player
i and a signal z; such that 5;(z; — ¢) < max BR;(S5,z;). (Otherwise let £ be such
that there is no i and z; for which 5;(z; — £') < max BR;(3, z;); define A\, = A\ — ¢
The limit of the iterations must be no greater than X__, a contradiction.) Since the
number of players is finite and each §; is weakly increasing, there must be a particular
player i such that for all ¢ > 0, 5;(x;(2)—¢) < max BR;(3, x;(¢)) for some z;(¢). Define

zi(e) = x;(22) — &; we know that for all € > 0, 5;(z}(c) — £) < max BR;(3, z}(c) + ).

7

Since for all e, zi(2) € [0, 0], there is a convergent subsequence of z}(z) as £ — 0; let
x} be the limit. For all ¢ > 0, 5,(z} —¢) < max BR;(3,z; +¢). (Why: we can take &
small enough that 5;(z}(') — £/2) < max BR;(5, z}(c') + £/2) and |z(") — z}| < £/2;
hence, 5;(x}(') —</2) > 5;(2f —<) and max BR; (3, z,(<')+2/2) < max BR;(5, 2} +¢).)
Q-E.D.(ctaim 1

Claim 2 If A\, > 0 then max BR;(5, z}) = 5;(z7).

7

Proof Consider a player A receiving the signal 2} + A, who believes that the other
players play according to s. By construction, she must be willing to play the action
a = s;,(zf + M), 16, a € BR;(s, 27 + As). By A3, a player B receiving the signal
x}, who believes that the other players play according to S (and who thus expects

the same distribution of opponents’ actions as player A) cannot be willing to play an
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action a’ > a: since A\, > 0, this would imply that player A strictly prefers a’ to a, a
contradiction. This shows that max BR;(5,z}) < a =3;(z}). Moreover, since BR; is
upper hemicontinuous and max BR; (S, x;) is weakly increasing in z;, max BR;(3, z;)
is right continuous in x;.  Hence, max BR;(S,z}) = lim. omax BR;(5,z} + <) >

limeEi(aﬁf - 5) = §Z<a?:) SO max BRZ<§, ,17:) = §Z<$:) Q-E-D-(Claim 2)

Since 5;(zf — ) < max BR;(S,z} + <) for all £ > 0 and 5;(x}) = max BR;(5, x}),
and since both $;(z;) and max BR;(S,x;) are weakly increasing in z;, there are two

possibilities: either

(a) for all £ > 0, max BR,(3,z} + ) > max BR;(S, z}), or
(b) for all € > 0, 5;(xf — &) < 35;(z}).

We will show that each is impossible.

First, (a) implies that min BR;(3,z} + &) > max BR;(5,z}) for all ¢ > 0.> We
claim that min BR;(s, zf+A.) > min BR;(3, zf +¢) for small enough . The intuition
is that a player facing strategy s and getting signal x} + A, has a strictly higher payoft
parameter than someone facing strategy s and getting signal z} + ¢, but the action

distribution they face converges to that faced by the second player as ¢ — 0. To

show this, it is enough to prove:

(*) For all a; and a,
A= / 7i(2) Aui(as, a;, 5;(xF + & + V) iti, X7+ €)dz
zeRi-1
is no greater than

B [ Al dhs o] + A+ vz af Az
zeRl-1

3Otherwise, suppose that ¢’ > 0 is such that a = min BR;(3,z} +¢') < max BR;(3,z}). Then
by A3, player ¢ strictly prefers action a to any higher action if she observes any signal z} + ¢ that

is lower than z} 4+ ¢’. This contradicts condition (a).
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Since by definition 5;(x;) = 5,;(7; + Ax),
B [ m) (e S o + )i a7 + ) @
zeRI-1

Aui((a;,a;,5;(xF + €+ v2)i4), T + Ao
:A—I—/ 7Ti(Z (( J( J)J#) ) ds
zeRl-1

—Au;((as, a5, 55 (xf + = +vz)) ), v +€)

_/ s Aus((ai, a,5;(2f + 2 +v25) ), 0 + Ao) "
zeRI-1 ’

—Auy((as, @i, 5507 + v2) ), 7+ Aso)

Consider the last expression, the sum of three terms. By A3 there is a constant K
such that the middle term in this expression is at least K (A — £)(a; — a;).4 This

approaches a strictly positive limit as & shrinks.

By AG, there is a constant K’ such that the last term in (4) is no greater than

/G%I1 m4(2) [K’(ai — a;) Z(Ej(a:;“ Vetuz) =5 +vy)| de

J#i

= K'(a; — a}) Z/ m:(2) (5 (zf + e+ vzy) —55(xf +vzy))dz

Because each 35; is bounded and continuous almost everywhere, each integral in this
sum converges to zero as ¢ shrinks (by the bounded convergence theorem), so the sum
does as well. So the sum of the last two terms in (4) converges to a strictly positive
limit as £ shrinks. This proves (*). Hence, 5;(z}) = s;(2} + Aoo) > min BR;(s, 2} +

Aso) > max BR;(S, z}), contradicting Claim 2.

“With a continuous action space, let

24,
K= min Fui(e,y)

> 0
a,y€[0,1) x [z} +e,27 + oo da; 0y ’

with a discrete action space, let

! * ! *
K— min A (ai,a5, a3, 2F + Aoo) — Ay (a4, 0,04, 2% +¢€)

0.
(@ —a) (o —©) ”

32



Condition (b) implies that for all & > 0, s;(z} — ¢ + A) < s;(2F + A). A
player facing strategy 5 and getting signal z} has a strictly lower payoff parameter
than someone facing strategy s and getting signal ! — ¢ + A, for small enough &,
but the action distribution they face converges to that faced by the second player as
€ — (0. Hence, by an analogous argument to that given in the preceding paragraph,
they cannot want to play a higher action than someone facing strategy s and getting
signal xf — = + A, if ¢ is sufficiently small. Thus, for small enough ¢, 5;(z}) <
s;(xf — e+ Ao) < 8;(xF + M), which is impossible.

Since neither (a) nor (b) can hold, A, must equal 0.

When the action set is finite, assumption A2 can be replaced by A2'. The
beginning of the proof must be modified as follows. Let a¢ and @ be the unique
Nash equilibrium strategy profiles for @ < @ and for 8 > 6, respectively. For any
positive integer n, consider the vector x given by z; = § — nv for all i. Since g is the
unique Nash equilibrium for the payoff vector x, the only way that the players can
play something other than g is if some player j is uncertain (under s) about some
other player’s action: for some i # j, s, must take on more than one value for signals
zi € 0—(n+1)v,0—(n—1)v].° Since s, is monotonic and A4; is finite, this condition
can hold for at most a finite set of positive integers n. In particular, thereisa ¢ < @
below which @ must be played: foralli,ifx; <8 =0—v Zfil | A;| then s, (0) = a,.
Likewise, @ must be played for signals above 0 =0+v 25:1 | Ay

We now iterate from above to obtain an upper bound on the set of equilibrium
strategies. For all i, let 30 (z;) = 1 for all ; € R and let s¥1! (;) = max BR;(s*, 2;).
Let 5 be defined by s; (x;) = limg . 57 (x;). A player i seeing signal x; must choose an
action that is at most §; (z;). By induction, §; is weakly increasing. The preceding
argument implies that under 3, players must play a for signals below ¢ and @ for

signals above 7.

5Because of the bounded supports, player j knows that all other players’ signals will be within v

ofzy =0 —nv.
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For any A € R, let s* = (s7,...,s}) denote the translation of s to the left by A.
Let Ao be large enough that, for all 7 and signals x;, sl’-\o (i) > 8 (z5). (Mo = 9 — s
will suffice.) Players cannot choose actions that lie above s*. The rest of the
proof proceeds as before: we iterate from the left using translations s** until we

reach a limit, and prove (using identical arguments) that this limit must equal s.

Q-E-D-Lemma 2

Proof of LEMMA 3. Denote
max ¢ (z; + v0')

o'c[-3$,1]

2?2
plv) = max sup— e o )
ve[-3.4]

Let b < oo be such that B C [-b+1,b— 1]. Since ¢ is positive, it has a positive mini-
mum over the compact interval [—b,b]. Since it is also continuous, max,,_ 1.4 & (x; +v0')—
272
ming,e[il 1 ¢ (z; + v8') converges to 0 as v — 0 uniformly for z; € [—b,b]. Hence,
22

max ¢ (z; + v0') — min ¢ (x; +v0)

o'c[-1.4] o'c[-%

V) = max supl -+ - i —1lasv—0.
pv) i1, 0 H)E] Ifn?l ¢ (z; + v0")
o'cl-5:3

Since the support of each f; is contained in the interval [—%, %], for all x; € B,

<7 (zlxi,v) < pv)m(2).

since

J 0O f(252) 15 (iyd) do

f=—o00 JFi

7 (2 |xi,v) =

o0

[ e0) f (%) do

f=—00

S ¢t v0) fi (=0 T1 f3 (2 — 0) dOf
_ 0'=-00 J#i )

70 ¢ (z: +v0') fi (—0") dO’

0'=
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Thus, for any event 7 C RI 1,

/%i(z]a:i,u)dz— /m(z)dz < /m(z)dz max<p(l/)—1,ﬁ—1>

clE zeE ck

1
Smax <p<l/)—1,m—1> .
Q'E'D-Lemma 3

Proof of LEMMA 4. We begin with a claim.

Claim 19 Let s be an increasing strateqy profile satisfying

/ 7 (2) Auy (si (i), ai, (85 (2 + Uzj))j# ,a:l-) dz >0

z€RI-1

foralli=1,...1, x; € R and a; < s; (x;).

Lemma 20 Then, for any £ > 0 and for any compact interval B, there exists 6 > 0,
such that

/ 7 (2) Auy (si (@) s ai, (85 (@ +v25)) ;T + 5) dz >0,

zeRI-1

foralli=1,.. 1,7, € Us(m;), z; € B and a; < s; (x;).

Proof. For all 6 > 0 and 7, € ¥ (7;),

zeRI-1
.

(1-06) [ mi(2)Au (si (@) s i, (85 (@ + v25)) 1y T + 5) dz

> 2RI
\ +6Au; (s; (:) , 5,05, 2; + €)
)

(1-6) f () A, (Si (z3) , as, (85 (25 + I/Zj))j# L1+ 5)

dz
2€RI-1 —Auy (si (@) s i, (85 (@i + v25)) 0, ,a:z-)
>
T +@=6) [ mi(z)Au (si (@) s ai, (85 (@ + v25)) 14 ,a:l-) dz
zeRI-1

| +6An, (si (aﬁz) ;3,04 Q)
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By A3, we can find a constant K3 > 0 such that for all z; in the com-
pact interval B, the first term is at least (1 — ) Kae(s; (z;) —a;). The second
term is at least 0, by the premise of the lemma. By A6 there is a constant
K3 such that the third term is at least —8K3 (s; (z;) — a;). Thus the sum is at
least ((1 —6) Koe — 6K3) (s; (%) — a;).  This expression must be positive (for all

a; < s; (x;)) if we choose § such that % < II((Q;. Q.E.D.c1aim 19

By construction of s, we know that for allb>¢,i=1,....,1 and z; € R

/ 7 (2) Ay (gl (x; — ), a, (gj (x; — b+ Uzj))j# Xy — b) dz >0

zeRI-1
for all a; < s, (x; —b). This implies (by lemmas 3 and 19) that there exists ¥ such

that for all v < v, b > ¢ and x; € R,

~ b
/ 7 (2 |xs, v) Aug <§i (x; — b) , a, (gj (x; — b+ Uzj))j# Xy — §> dz>0

zeRI-1

for all a; < s, (z; — ). This implies (changing notation only) that

i - b
/ / &; (x4, 0] x;) Auy <§i (x; — b) , a, (gj (x; — b))j# X — §> dx_;d0 >0

f=—ocox_,ecRI-1

for all a; < s, (z; — b), where

¢ (74,0| 7;) = — :
.9’
f ¢<8/) fz (sz:zy )dgl
f'=—00
6 Assuming A2, lemma 19 implies this for 2; —b € [#,0]. For z; — b not in this interval, the result

holds since s;(x; —b) must be either 0 or 1, depending on which is dominant at the payoff parameter
x; —b. Assuming A2’ instead of A2, lemma 19 implies this for z; —b € [§' — ﬂ,?l + 7], where §' and
' are defined near the end of the proof of proposition 2. Below 8, a must be played; above 91, a
must be played. Thus, for z; —b < @' — 7, s,(x; — b) = g, and 3; (i —b+vz) = a; for all z; that
has positive probability under both 7; (2) and 7; (#|z;,v). Hence, changing the distribution of 2

leaves the integral unchanged. The same holds for z; — b > 0 +v.
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Now if v < % we have by assumption A3 that

o0

/ / &; (x4, 0| x;) Auy (gl (x; — b) ,a,, (gj (x; — b))j# ,8) dx_;d0 >0 (6)
f=—o0x_;ceRI-1

for all a; < s;(x; —b). Set v < T = min{%,ﬁ}. Consider the strategy profile &
where s, (z;) = s, (z; — b). By equation 6, we know that, in G (v), each player’s best
response to &' is always at least §'.

Since this is true for any b > &, this ensures that iterated deletion of strictly
dominated strategies (using translations of s as in the proof of lemma 2), cannot lead
below s/ (z; — ). A symmetric argument (using a symmetric version of lemma 19,

whose proof is analogous) gives the upper bound. Q.E.D.pcmma 4
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