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ABSTRACT

We analyze the welfare properties of rational expectations equilibria (REE) in economies

with asymmetrically informed agents and incomplete markets. We ask whether a planner

can improve upon an equilibrium allocation, using an individually rational and incentive

compatible mechanism, and subject to the same asset constraints as agents. For an REE

that reveals any information at all, the planner can generically bring about an interim Pareto

improvement even conditional on the information that is available to agents in equilibrium.

He can do so by altering prices while keeping their informational content ¯xed. Furthermore,

for any partially revealing equilibrium, the planner can generically e®ect an ex post Pareto

improvement by providing more information to agents, while controlling for price e®ects.

Journal of Economic Literature Classi¯cation Numbers: D52, D60, D82.

Keywords: Rational Expectations Equilibrium, Asymmetric Information, Incomplete Mar-

kets.
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1. Introduction

**This introduction is incomplete. References to the literature have yet to be added.

In this paper we examine the welfare properties of rational expectations equilibria

(REE) in economies with incomplete markets and asymmetric information. Our point of

departure is a paper on the subject by La®ont (1985). La®ont considers a class of economies

in which rational expectations equilibria can be implemented by an incentive compatible

mechanism. He then evaluates their performance relative to such mechanisms. In particular,

he provides an example of a fully revealing equilibrium that is interim ine±cient, and

a partially revealing equilibrium that is ex post ine±cient. He concludes that rational

expectations equilibria are not necessarily e±cient with respect to the amount of information

transmitted|they may reveal too much or too little.

We show that such examples are generic. Rational expectations equilibria, whether

fully or partially revealing, are ine±cient in the appropriate sense, for a generic subset

of agents' endowments. More strikingly, an REE that reveals any information at all is

generically interim ine±cient conditional on the amount of information it transmits. One

way to interpret this result is as follows. An equilibrium price function induces a partition

of the state space. Agents are subject to a budget constraint in each cell of this partition,

restricting wealth transfers across cells. Equilibrium prices across cells are generically set

ine±ciently. A planner can improve upon the allocation by altering prices across cells

(while preserving their informational content) and choosing portfolios of the given assets

that respect the altered budget constraints for each agent in each cell.

Thus we may say that rational expectations equilibria are typically price ine±cient. Are

they also typically informationally ine±cient, i.e. ine±cient with respect to the information

they reveal? We show that partially revealing equilibria are generically informationally ex

post ine±cient.

To sum up, we provide a fairly complete characterization of the welfare properties of ra-

tional expectations equilibria. We generalize known examples of ine±ciency to theorems on

generic ine±ciency. More importantly, the results we report are not only more general, but

also tighter, which leads us to a better understanding of why equilibria are ine±cient. We

carry out a careful analysis of the constraints that equilibrium allocations satisfy, and iden-

tify the particular constraints that are a source of ine±ciency. We are able to isolate three

possible sources of ine±ciency. One source is a pecuniary externality which has nothing to

do with information, public or private. The second source of ine±ciency is informational,
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but is not due to asymmetry of information; rather, it arises when an REE reveals infor-

mation that has \negative value" or does not reveal information that has \positive value."

Finally, ine±ciency may be due to asymmetry of information.

2. The Economy

We consider a two-period economy with a single physical consumption good. There are

¯nitely many types of agents with a continuum of each type. A typical agent is indexed by

(h; ¿), where h 2 H (with #H = H; H ¯nite) and ¿ 2 [0; 1]: The aggregate uncertainty in

the economy is described by the random variables ~s and ~t, taking values in the ¯nite sets S
and T respectively. We assume that ~s and ~t are independent (as will become clear shortly,

this entails no loss of generality). At date 0, agent (h; ¿) observes a signal ~sh¿ taking values

in the ¯nite set Sh. The agent's type h is publicly observable, but the signal ~sh¿ is private

information. A generic element of the sets S, T , and Sh is denoted, respectively, by s, t,

and sh. Let #S = S, #T = T , #Sh = Sh, and
P

h Sh by S. There are at least two

\agent-types," i.e. S ¸ 2. The signals f~sh¿g are independent of ~t but may be correlated

with ~s. We assume that ~t has full support, as does the joint distribution of (~sh¿ ; ~s), for

every h.1 We also assume the following (¼ denotes probabilities):

Assumption 1.

(i) ¼(~sh¿ = sh) = ¼(sh¿ 0
= sh) 8h 2 H; sh 2 Sh; and ¿; ¿ 0 2 [0; 1]:

(ii) ¼(~sh¿ = sh; sh0¿ 0
= sh0 j s) = ¼(~sh¿ = sh j s)¼(sh0¿ 0

= sh0 j s)

8(h0; ¿ 0) 6= (h; ¿); sh 2 Sh; sh0 2 Sh0
; s 2 S:

(iii) 8s; s0 2 S (s 6= s0); 9 sh 2 Sh (for some h) s.t. ¼f~sh¿ = sh j sg 6= ¼f~sh¿ = sh j s0g:

In other words, for any given type h the private signals of the agents have the same

distribution. Also, conditional on ~s, agents' private signals are independent across (h; ¿).2

Informally, we can think of the signal ~sh¿ as containing a common-value component insofar

as it is informative about ~s, and an idiosyncratic component (~sh¿ j~s = s). Assumptions

1(i) and 1(ii) imply that, for every type h, the idiosyncratic components are i.i.d. across ¿:

Finally, 1(iii) implies that ~s can be inferred by observing ~sh¿ for every (h; ¿), except possibly

1 The full support restrictions are imposed for notational convenience and allow our
results to be stated cleanly.

2 We sidestep the technical issues associated with a continuum of independent random
variables. These can be dealt with. See, for example, Al-Najjar (1995) and Sun (1998).
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for a set of agents of Lebesgue measure zero. Assumption 1(iii) is in fact just a nontriviality

condition that justi¯es our interpretation of ~s as the component of the aggregate uncertainty

that can be inferred from the private information of agents.

Agents of type h have a von Neumann-Morgenstern utility function uh. For the purpose

of smooth analysis, we make the following assumption:

Assumption 2.

(i) uh is twice continuously di®erentiable.

(ii) Duh > 0 and D2uh < 0.

(iii) limc!0 Duh(c) = 1:

The endowment of an agent of type h is a random variable !h : Sh £ S £ T ! IR+:

Thus, within the same type, agents' endowments di®er only insofar as they observe di®erent

private signals. We parameterize economies by agents' endowments

! := [!h(sh; s; t)]h2H;sh2Sh;s2S;t2T 2 IRSST :

By \generically" we mean \for an open subset of IRSST of full Lebesgue measure."

Agents can modify their state-contingent consumption by trading (at date 0, after

observing their private signals) J assets (J ¸ 2) whose payo® is r : S £ T ! IRJ :3 A

portfolio y 2 IRJ results in a payo® r ¢ y. At date 1, all uncertainty is resolved, assets

pay o®, and agents consume. Since we have a single-good economy, portfolios uniquely

determine consumption.

We assume that there is an asset, say asset J , whose payo® vector for any s, over the

state space T , is nonnegative and nonzero, i.e. for every s 2 S, rJ(s; t) ¸ 0, for all t 2 T ,

and rJ(s; t) > 0, for some t 2 T . Together with the monotonicity assumption on utility

functions, this ensures that the equilibrium price of asset J is positive. It also guarantees

that budget constraints are satis¯ed with equality. Finally, we denote by Rs the asset payo®

matrix conditional on state s, i.e.

Rs :=

0
B@

...

r(s; t)>
...

1
CA

t2T

3 Agents receive their private signals f~sh¿g before they trade. At the time of trade, any
remaining uncertainty in an agent's endowment is completely captured by the aggregate
variables ~s and ~t. Hence we restrict attention to contracts that depend only on aggregate
uncertainty as is standard in the rational expectations literature.
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where > denotes \transpose." By default all vectors are column vectors, unless transposed.

To summarize the information structure: endowments and asset payo®s are uncertain,

and this uncertainty is parameterized by the random variables f~sh¿gh2H;¿2[0;1], ~s, and ~t.

The idiosyncratic component of ~sh¿ a®ects only the endowment of agent (h; ¿). The random

variables ~s and ~t describe the common aggregate uncertainty that a®ects endowments and

asset payo®s. Furthermore, ~s can be perfectly inferred from f~sh¿gh;¿ , while ~t captures any

residual uncertainty, given the pooled information of all agents. This residual uncertainty

gives rise to the potential for gains from trade, even if ~s is fully revealed.4

Our informational assumptions generalize those of La®ont (1985). Agents in our econ-

omy are \informationally small" in the following sense: an individual's private signal is

informative about the aggregate uncertainty ~s, but ~s can be fully inferred from the pooled

information of the other agents (see also Gul and Postlewaite (1992)). This implies that

REE allocations are incentive compatible (see Lemma 4.1 below). Moreover, the presence of

an idiosyncratic component in the agent's signal, a®ecting only his own endowment but not

the payo® of assets traded, ensures that generically an REE allocation is strict (Bayesian-

Nash) implementable.5

Our description of private information is fairly general, and allows us to consider various

standard cases in a uni¯ed framework. In particular, we can have two types U and I, who

are respectively completely uninformed and (almost) perfectly informed. This case arises if

H = fU; Ig, SU is a singleton, and there is a signal sI 2 SI associated with each state s

such that ¼(s j sI) = 1 ¡ ², where ² is a small positive number.6 On the other hand, if Sh is

the same for all h and, for any given s, ¼(s j ~sh¿) is the same for all (h; ¿), then agents are

symmetrically informed (ex ante).

4 Most of the literature on general equilibrium with rational expectations (for example,
Radner (1979) and Allen (1981); also La®ont (1985)) does not consider asset trading specif-
ically, assuming instead that utilities are state-dependent and trading takes place in spot
commodity markets. Our framework reduces to this one if we de¯ne utilities directly over
assets and reinterpret assets as commodities.

5 Generic strict implementation implies that the incentive constraints are generically not
binding in the neighborhood of an REE allocation (see Fact 2 in the Appendix). An alter-
native modeling choice would be to consider an economy in which private information is
non-exclusive in the sense of Postlewaite and Schmeidler (1986). However, such an informa-
tional assumption is needlessly strong for our purposes. It implies that incentive constraints
do not restrict the set of feasible allocations. In our setup, on the other hand, incentive
constraints cannot be ignored because private information about idiosyncratic uncertainty
is exclusive.

6 If ² is zero, our full support assumption is violated. We reiterate, however, that this
assumption is made merely for convenience.
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3. Rational Expectations Equilibrium

In the economy described above, a consumption and portfolio allocation is described

by functions ch : Sh £ S £ T ! IR+ and yh : Sh £ S ! IRJ , for each type h. We will often

refer to an allocation simply by specifying portfolios, since portfolios uniquely determine

consumption7: ch = !h + r ¢ yh: Using the law of large numbers, the aggregate portfolio of

agents of type h in state s is

Z

[0;1]

yh(~sh¿ ; s)d¿ =
X

sh2Sh

¼(sh j s) yh(sh; s):

A price function is a map p : S ! P, where P := IRJ¡1 £ f1g: Note that we normalize the

price of asset J to one: pJ (s) = 1, for every s.

Definition 1. A rational expectations equilibrium (REE) consists of an allocation fyhg,

and a price function p : S ! P , satisfying the following two conditions:

(AO) Agent optimization: 8h 2 H and sh 2 Sh; yh(sh; ¢) solves

max
yh(sh;¢):S!IRJ

Euh[!h(sh; ~s; ~t) + r(~s; ~t) ¢ yh(sh; ¢) j sh; p]

subject to

p(s) ¢ yh(sh; s) = 0 8h 2 H; sh 2 Sh; s 2 S: (BCp)

(RF) Resource feasibility: 8s 2 S;

X

h;sh

¼(sh j s) yh(sh; s) = 0:

This is the standard de¯nition of an REE with asymmetric information (for example,

as in Radner (1979)).8 Agents know the equilibrium price function and this allows them to

make inferences from prices. Taking budget constraints to be equalities is without loss of

generality given our assumption that one of the assets (asset J) has a nonzero nonnegative

payo® and utility functions are increasing.

An REE is fully revealing if p(s) 6= p(s0) for s 6= s0 (s; s0 2 S); otherwise it is partially

revealing. To describe the information revealed by prices, it is convenient to associate with

7 Note that we restrict attention to symmetric allocations wherein agents of the same
type who observe the same signal hold the same portfolio.

8 Except that we consider asset trading explicitly. See footnote 4.

7



any price function p : S ! P , the partition Sp of S induced by p. A generic element of Sp

is denoted by Sp
s , which is the cell of Sp that contains s. Let Sp be the number of cells in

Sp, and Sp
s the number of states in Sp

s . (AO) implies that equilibrium portfolios satisfy

(MSp) Measurability: 8h 2 H; and sh 2 Sh; yh(sh; ~s) is p-measurable.

This constraint depends on the price function only through the partition induced by it;

hence it is indexed by Sp instead of p.

Since the state space S is ¯nite, a partially revealing REE generically does not exist

(Pietra and Siconol¯ (1998)). Hence we cannot make any generic welfare statements for

these equilibria. This leads us to consider a broader class of equilibria, that include rational

expectations equilibria, and exist generically.

Definition 2. A pseudo-rational expectations equilibrium (P-REE) consists of an alloca-

tion fyhg, and a price function p : S ! P, satisfying (AO) and

X

s02Sp
s

¼(s0)
X

h;sh

¼(sh j s0) yh(sh; s) = 0 8Sp
s 2 Sp:

A P-REE di®ers from an REE in that resource feasibility is required to hold only on average

within cells of the partition Sp, rather than for every s 2 S. Note that yh(sh; s) is invariant

with respect to s within any cell of the partition Sp. We can equivalently restate the above

condition as follows:

(RFSp) Resource feasibility given Sp: 8Sp
s 2 Sp,

X

h;sh

¼(sh;Sp
s ) yh(sh; s) = 0:

Generic existence of a P-REE follows from standard arguments:

Lemma 3.1. For any given partition of S, there generically exists a P-REE such that the

equilibrium price function induces this partition.

The de¯nition of a fully or partially revealing P-REE is analogous to that of a fully or

partially revealing REE. In the fully revealing case, REE and P-REE are identical. On the

other hand, while a partially revealing REE is partially revealing P-REE, the converse is in

general not true.
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Lemma 3.2. Any REE is a P-REE. Also, a fully revealing P-REE is a fully revealing REE.

In what follows, we will provide a characterization of the e±ciency properties of P-

REE. Working with P-REE rather than REE is only necessary for generic existence. Our

ine±ciency results do not depend on this construction.

4. E±ciency Criteria

For a given set of constraints (P), we say that an allocation fchg is (P)-constrained ex

ante e±cient if there does not exist an allocation fĉhg satisfying (P) such that Euh(ĉh) ¸
Euh(ch) for every h, with strict inequality for some h. It is (P)-constrained interim e±cient

if there does not exist an allocation fĉhg satisfying (P) such that Euh(ĉh j ~sh¿ = sh) ¸
Euh(ch j ~sh¿ = sh) for every h 2 H and every sh 2 Sh, with strict inequality for some h; sh.

An allocation is (P)-constrained Sp-posterior e±cient if there does not exist an allocation

fĉhg satisfying (P) such that Euh(ĉh j ~sh¿ = sh; ~s 2 Sp
s ) ¸ Euh(ch j ~sh¿ = sh; ~s 2 Sp

s )

for every h; sh; Sp
s , with strict inequality for some h; sh;Sp

s . Similarly, we de¯ne ex post

e±ciency wherein the utility of a type h agent is evaluated conditional on (~sh¿ ; ~s).

We impose the following restrictions on the set of attainable allocations. First, an

attainable allocation must satisfy resource feasibility. Second, we assume that exchange

is voluntary|agents cannot be forced below their autarky utility level. Third, as is stan-

dard for economies with private information (HolmstrÄom and Myerson (1983)), incentive

constraints must be satis¯ed.

In an REE the net trade of an agent depends not only on own his private information

but also on the information of other agents (unless the equilibrium is completely nonreveal-

ing). More generally, an important feature of a common-value environment, such as the

one studied in this paper, is that an agent's consumption may depend on common infor-

mation that the agent himself is not endowed with. Thus the allocation rule conveys some

information to the agent. Unless this information is made available to the agent when he

evaluates the allocation, renegotiation opportunities may arise. A necessary condition for

an allocation rule to be renegotiation-proof is that the information used by the allocation

rule be disclosed to the agents (see Forges (1994a, 1994b)). Furthermore, this disclosure

constraint must be satis¯ed if the allocation rule is to be implemented in a decentralized

way. In an REE, for example, the market mechanism provides agents with the information

on which their portfolios depend. Hence we impose the information disclosure constraint
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on the set of attainable allocations.9 Formally, given a price function p : S ! P (not nec-

essarily an REE price function), a p-measurable allocation rule must satisfy the following

two constraints:

(IRSp) Individual rationality: 8h 2 H; sh 2 Sh, and Sp
s 2 Sp;

Euh(!h + r ¢ yh j ~sh¿ = sh; ~s 2 Sp
s ) ¸ Euh(!h j ~sh¿ = sh; ~s 2 Sp

s ):

(ICSp) Incentive compatibility10: 8h 2 H; sh; ŝh 2 Sh, and Sp
s 2 Sp,

Euh[!h(sh; ~s; ~t) + r(~s; ~t) ¢ yh(sh; ~s) j ~sh¿ = sh; ~s 2 Sp
s ]

¸ Euh[!h(sh; ~s; ~t) + r(~s; ~t) ¢ yh(ŝh; ~s) j ~sh¿ = sh; ~s 2 Sp
s ]:

As with the measurability constraint (MSp), the (IRSp) and (ICSp) constraints de-

pend on the price function only through the partition induced by it. Both (IRSp) and

(ICSp) become tighter as Sp becomes ¯ner. In particular, the information disclosure con-

straint restricts the set of allocations by tightening the individual rationality and incentive

constraints|an allocation that is individually rational or incentive compatible given the

signals agents observe privately may no longer be so once they have the information that

the allocation rule itself reveals.

The resource feasibility constraint we impose on a p-measurable allocation is (RFSp),

the weaker feasibility condition that appears in the de¯nition of a P-REE. As we have argued

before, this is for technical reasons only. It ensures that a P-REE allocation is attainable.

For the case of a fully revealing price function, (RFSp) reduces to exact feasibility (RF).

To sum up, the set of attainable allocations are portfolios fyhg satisfying (RFSp),

(MSp), (IRSp), and (ICSp), for some function p. Under our assumptions, equilibrium allo-

cations are attainable:

Lemma 4.1. Consider a P-REE with price function p. Then the equilibrium allocation

satis¯es (RFSp), (MSp), (IRSp), and (ICSp).

9 More precisely the information about the aggregate uncertainty that is used by the allo-
cation rule must be made public. An agent's portfolio may also depend on the idiosyncratic
component of his private signal, but he does not have to be provided with this information
since he is endowed with it.

10 Note that we have assumed that the type of an agent (indexed by h 2 H) is public
information, so that the incentive constraint only applies within types.
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Proof. This is immediate from the de¯nition of a P-REE. The incentive constraint holds by

a revealed preference argument (see La®ont (1985), Proposition 2.2).

It is useful to consider the restrictions on attainable allocations, and in particular on

equilibrium allocations, that are implied by each constraint individually. The measurability

constraint (MSp) is vacuous if markets are interim complete (i.e. complete with respect

to the state space S £ T ). With interim incomplete markets, (MSp) becomes weaker as p

becomes more revealing (and is no longer binding when p is fully revealing). More informa-

tion has the e®ect of increasing the asset span, and is equivalent to the introduction of new

securities. The potentially positive value of information for the resource allocation problem

is thus re°ected by the measurability constraint. It is this constraint that underlies the ex

post ine±ciency of a partially revealing equilibrium (Propositions 6.1 and 6.3).

On the other hand, (IRSp) and (ICSp) capture one channel through which information

can have negative value. As noted above, these constraints become tighter as p becomes

more revealing. This can be a source of interim ine±ciency of a fully revealing equilibrium

(or more generally of an equilibrium that reveals some information), as is illustrated by the

following example:

Example 1: The Hirshleifer e®ect I

The aggregate uncertainty is described as follows: S = fs1; s2g and T = ftg, with ¼(s1) =

¼(s2) = 1
2 . There are two types: H = f1; 2g. Agents are symmetrically informed ex

ante: S1 = S2 = fŝ1; ŝ2g with ¼(s1 j ŝ1) = ¼(s2 j ŝ2) = 1
2 + ², where ² is a small posi-

tive number. Agents' endowments depend only on the aggregate state s and are given by

!1(s1) = !2(s2) = !H and !1(s2) = !2(s1) = !L, with !H > !L: Asset markets are

complete, so that the measurability constraint is irrelevant. In a fully revealing rational ex-

pectations equilibrium, there is no trade. For su±ciently small ², the equilibrium allocation

is interim Pareto dominated by the allocation in which all agents consume their ex ante

expected endowment, 1
2(!H + !L). Thus information has negative value in equilibrium, as

in Hirshleifer's (1971) original example with a public information signal. More precisely, the

REE is (RF, IRSq , ICSq )-constrained interim ine±cient, where Sq = fSg is the partition

associated with any nonrevealing price function q.11 It is, however, (IRSp)-constrained ex

ante e±cient, where Sp = ffs1g; fs2gg is the partition induced by the equilibrium price

11 Since there is no idiosyncratic uncertainty, incentive constraints do not impose any
restriction.
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function p. Hence we can identify the source of the ine±ciency of the market outcome as

the ex post individual rationality constraint (IRSp), which must be satis¯ed in equilibrium,

as opposed to the weaker interim individual rationality constraint (IRSq) that applies to a

nonrevealing allocation rule. k

This example is rather special in one respect. To see this consider the following:

Example 2: The Hirshleifer e®ect II

We modify Example 1 by introducing residual uncertainty T = ft1; t2g, with ¼(t1) = 3
4

and ¼(t2) = 1
4 . Asset markets are complete. Agents' private information is as in Exam-

ple 1. Their endowments are !1(s1; t1) = !1(s2; t2) = !2(s1; t2) = !2(s2; t1) = !H and

!1(s1; t2) = !1(s2; t1) = !2(s1; t1) = !2(s2; t2) = !L. There is a fully revealing ratio-

nal expectations equilibrium (with price function p) in which agents of type 1 consume

3
4
!H + 1

4
!L in state s1, and 1

4
!H + 3

4
!L in state s2, while the consumption of agents of

type 2 is the reverse across states. Thus agents are able to smooth consumption across

the residual uncertainty parameterized by T , but not across the uncertainty described by

S. For su±ciently small ², the equilibrium allocation can be interim Pareto dominated by

transferring a small quantity ´ from type 1 to type 2 agents in state s1, and doing the

opposite transfer in state s2. As in Example 1, the equilibrium allocation is (RF, IRSq ,

ICSq )-constrained interim ine±cient, where q is a nonrevealing price function. But in this

case, if ´ is su±ciently small, the dominating allocation satis¯es the ex post individual ra-

tionality constraints of the agents. The equilibrium allocation is, therefore, ine±cient in a

stronger sense: it is (RF, IRSp , ICSp)-constrained interim ine±cient. It is possible to bring

about a Pareto improvement by using a fully revealing allocation rule. In other words, the

fully revealing REE is ine±cient even conditional on the information it transmits. k

In Examples 1 and 2 we see that one source of interim ine±ciency of an REE is that

revelation of information restricts the transfers of wealth that agents can achieve across the

states S. In Example 1 the constraint (IRSp) captures this ine±ciency: it is possible to

improve upon the equilibrium allocation only by weakening this constraint. In Example 2,

on the other hand, (IRSp) is not binding. To understand the source of ine±ciency in this

case, we need to identify a tighter constraint that the equilibrium allocation satis¯es and

with respect to which it is e±cient. This turns out to be the budget constraint (BCp):

Proposition 4.2. A P-REE with price function p is (RFSp , MSp , BCp)-constrained ex

ante e±cient.
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Proof. Consider an REE (p; fch; yhg). If fchg is not (RFSp , MSp , BCp)-constrained ex ante

e±cient, there exists an allocation fĉhg which satis¯es (RFSp), (MSp), and (BCp), with

Euh(ĉh) > Euh(ch) for some h. But this means that the REE allocation fchg violates the

agent optimization condition (AO), a contradiction.

Thus the constraint (BCp) is tight enough to capture the ine±ciency of any P-REE, in

the sense that a planner subject only to (RFSp) and (MSp) can improve upon a P-REE

allocation only by violating (BCp), i.e. by implementing wealth transfers across states that

are not budget-feasible at equilibrium prices. In Example 2, in particular, the negative value

of information revelation in equilibrium is manifested through the imposition of multiple

budget constraints on agents, one constraint for each cell of the partition induced by the

price function.

On the other hand, if agents' welfare is evaluated conditionally on the information

revealed in equilibrium, then competitive equilibria are e±cient (relative to the existing

asset structure):

Proposition 4.3. A P-REE with price function p is (RFSp , MSp)-constrained Sp-posterior

e±cient.

Proof. Consider a P-REE with price function p and portfolio allocation fyhg. For each cell

of the partition Sp induced by the price function, we can associate a subeconomy in which

agents condition on being in that cell (as well as on any private information they may have).

In a typical subeconomy corresponding to the cell Sp
s , the indirect utility over portfolios (in

IRJ) of agent (h; ¿) is

V h
Sp

s
(y; ~sh¿ ) := Euh[!h + r ¢ y j ~sh¿ ;Sp

s ]:

For this subeconomy consider a (symmetric) competitive equilibrium (p 2 P; fyh : Sh !
IRJg) wherein, for every sh 2 Sh,

yh(sh) 2 arg max
y2IRJ

V h
Sp

s
(y; sh) s.t. p ¢ y = 0;

and asset markets clear:
X

h;sh

¼(sh;Sp
s ) yh(sh) = 0:

Since (p; fyhg) is an REE for the overall economy, (p(s); fyh(sh; s)g) is an equilibrium in

the subeconomy associated with the cell Sp
s . Furthermore, along the lines of the ¯rst welfare

13



theorem, the equilibrium in this subeconomy is Pareto e±cient relative to preferences fV h
Sp

s
g.

Hence the REE is Sp-posterior e±cient in the set of allocations satisfying (RFSp) and (MSp).

The following is immediate:

Corollary 4.4. A fully revealing REE is (RF)-constrained ex post e±cient.

The above proposition and corollary generalize Proposition 2.3 in La®ont (1985).

These results identify restricted notions of e±ciency that are satis¯ed by rational ex-

pectations equilibria. We will now show that these restrictions are quite tight|if we relax

them, rational expectations equilibria are typically ine±cient. We proceed by identifying

necessary conditions satis¯ed by an REE allocation on the one hand and by a constrained

e±cient (in the appropriate sense) allocation on the other. We then prove that, generically,

these conditions cannot hold simultaneously.

5. Price Ine±ciency of REE

In our setup there is some resolution of uncertainty before trading takes place (the

private signals f~sh¿g and the information about the aggregate state S that is revealed by

prices). While asset markets allow agents to trade risks, subject to the incompleteness of

markets, that are resolved after the trading stage, no asset is available to reallocate income

across states that are resolved at the initial stage, and attainable allocations depend on

asset prices. The economy can thus be viewed as an incomplete markets economy with

two periods and multiple goods, but no assets traded at the initial date. As shown by

Hart's (1975) well-known example, this economy may have Pareto-ranked equilibria. We

will show that indeed this source ine±ciency is present in the setup under consideration and

leads to the (generic) constrained ine±ciency of competitive equilibria when agents' welfare

is evaluated at the ex ante or interim stage (in the latter case when some information

is revealed in equilibrium).12 More precisely, we will show that competitive equilibrium

allocations can be improved upon, even if we ¯x the amount of information revealed in

equilibrium.

12 As argued by HolmstrÄom and Myerson (1983), the notion of interim e±ciency appears
more appropriate in situations of incomplete information such as the one under consideration
(rather than ex ante e±ciency, since the economy begins after the agents' private information
is revealed to them).
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We should note that this result does not rely on the presence of asymmetric information,

and point to the presence of a \price ine±ciency" also in situations associated with what is

commonly known as the Hirshleifer e®ect.

As a preliminary step we state the following result:

Proposition 5.1. A P-REE with price function p, such that Sp > 1, is generically (RFSp ,

MSp)-constrained interim ine±cient (and, therefore, (RFSp , MSp)-constrained ex ante inef-

¯cient).

Since, as we argued above, markets open only \after" some information is revealed (by

the price function p) it is, generically, possible to bring about a Pareto improvement by

reallocating risks relative to such information. This result is fairly obvious and so is the

proof, which is omitted. It is in fact the analogue of results showing that equilibria with

incomplete markets are Pareto ine±cient generically. The way the planner is able to improve

is essentially by \completing" the market.

Proposition 5.1 generalizes La®ont's (1985) Proposition 3.2 on the possibility of in-

terim ine±ciency of fully revealing equilibria. We show, however, that a stronger form of

ine±ciency holds in the present setup: it is possible to improve even without \being able to

complete the market." In other words, the situation illustrated by Hart's example is generic.

The source of ine±ciency is the presence of a price externality due to the fact that with

incomplete markets the set attainable allocations depends on prices (at each information

node; in our setup at each element of Sp.) It can then be shown that an improvement can be

achieved by inducing a change in prices, but maintaining the same structure of constraints.

Accordingly, we introduce the following:

(BCSp) Information-preserving budget constraints: 8h 2 H; sh 2 Sh, and s 2 S;

q(s) ¢ yh(sh; s) = 0

for some function q : S ! P , such that Sq = Sp.

We restrict a p-measurable allocation rule to satisfy (BCSp) in addition to (RFSp), (MSp),

(IRSp), and (ICSp). By analyzing (BCSp) separately from the other constraints, we are

able to separate the informational role of prices from their allocative function.

Let JSp
s

be the number of linearly independent assets in the subeconomy corresponding

to the cell Sp
s . We assume that JSp

s
¸ 2 (note that this rules out Example 1), for every Sp

s 2
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Sp, and de¯ne JSp :=
P

Sp
s 2Sp JSp

s
: We continue to use the notation p for the price function

and yh for portfolios with the understanding that these pertain only to the nonredundant

assets in the subeconomy under consideration.

Proposition 5.2. A P-REE with price function p is generically (RFSp , MSp , IRSp , ICSp ,

BCSp)-constrained interim ine±cient, provided JSp
s

· S · JSp ¡ Sp, for every Sp
s 2 Sp.

It is generically (RFSp , MSp , IRSp , ICSp , BCSp)-constrained ex ante ine±cient, provided

JSp
s

· S, for every Sp
s 2 Sp, and H · JSp ¡ Sp.

The proof is in the Appendix. Note that the condition for generic interim ine±ciency

in the above proposition cannot hold for a nonrevealing P-REE (since in this case JSp
s

=

JSp = J , and Sp = 1). Indeed, from Proposition 4.3 it follows that a nonrevealing P-REE

is (RFSp , MSp)-constrained interim e±cient. The condition for generic ex ante ine±ciency,

however, does cover the case of nonrevealing P-REE.

Since there is no trading at the ex ante stage, using ex ante e±ciency as the welfare

criterion may be too strong. This point has been made by HolmstrÄom and Myerson (1983).

However it is only for the case of completely nonrevealing equilibria that we invoke ex ante

e±ciency. The crucial feature of our environment is that agents have private information

when they enter the market. The source of interim ine±ciency is that the process of trade

itself reveals some information. This (interim) ine±ciency result will survive even if agents

can trade at the ex ante stage provided asset markets are incomplete with respect to Sp.

Proposition 5.2 shows that rational expectations equilibria are interim ine±cient even

conditional on the amount of information transmitted, and with the planner subject to

budget constraints in each subeconomy comparable to those that apply in equilibrium.

The price ine±ciency result may be thought of as an example of the \folk theorem"

that an equilibrium allocation with competitive agents is generically ine±cient whenever the

agents face constraints that depend on endogenous variables, such as prices, in addition to

the usual budget constraint. Other examples have been studied by Stiglitz (). The closest

in spirit to our paper is Geanakoplos and Polemarchakis (1986) (G-P) who demonstrate

generic ine±ciency with incomplete markets and many goods. The culprit in their paper,

as in ours, is a \pecuniary externality" that arises because competitive agents ignore the

e®ect of their actions on equilibrium prices. However, the planner's problem in the two cases

is quite di®erent. In G-P the planner is free to reallocate income across states (albeit by

using the existing assets) and subsequently agents trade to (an ex post e±cient) competitive
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equilibrium. The planner in this paper cannot do any reallocation at the ex ante stage. He

can only alter prices, and choose a portfolio allocation that is budget-feasible for the agents

at these prices. This allocation is not ex post optimal for the agents, nor is it ex post e±cient.

It seems reasonable to conjecture that if we allow a prior round of trade with asset markets

that are su±ciently incomplete, a G-P type of result will hold in our setup.

The point is then similar to the one considered by Stiglitz (1982) and later formalized

by G-P. The main issue concerns the precise de¯nition of what \inducing" a price change

means. What Stiglitz (and G-P) consider is a reallocation of agents' income across nodes,

or state-contingent transfers and taxes. These are moreover required to lie in the asset span,

or to be attainable via the existing asset structure. The change in prices is then generated

by equilibrium in spot commodity markets. Hence the allocations which can be so achieved

are ex post Pareto optimal.

In our setup, the notion of constrained optimality formalized by G-P does not apply

since there are no assets (similarly for Hart's example, for that matter). We develop di®erent

notion of constrained optimality which is intended to capture another way to \induce" a

change in spot prices (in our setup asset prices at the intermediate date of trade). In

particular we show that generically a Pareto improvement can be achieved with no transfer

of income across nodes, but by \moving" prices away from their competitive values. For

instance, we could think of perturbing prices away from their equilibrium values and clear

then markets via some prespeci¯ed rationing scheme (or other mechanism). In this way the

feasible allocations (achievable in this way) are no longer ex post optimal (as they are in

G-P) but still we will show that an improvement can be generically achieved by trading o®

some ex post ine±ciency with some gains from trade achieved by changes in the attainable

set induced by changes in prices. To keep things simple we will consider here the case in

which the planner can choose prices at each node and reallocate commodities within each

state s subject to a budget constraint. Hence no transfer of income can take place (at those

prices). We show that generically competitive equilibria are interim (and hence ex ante)

ine±cient if the number of agent-types is not too large.

We conjecture however that a similar result holds (with a tighter bound on the number

of agents, possibly) even if the planner can only change prices and the allocation is then

determined by some prespeci¯ed rationing scheme.

On the other hand, if we were to allow for a round of trade before the uncertainty

resolved by p is revealed (as well as after that), then an improvement could also be achieved
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by reallocating portfolios at the initial round of trade, by an application of G-P argument.

6. Informational Ine±ciency of REE

The generic ine±ciency result of the previous section holds even if markets are complete.

The ine±ciency results of this section rely on market incompleteness.

Example 3: Adverse selection

**To be added. k
When we consider the possibility of improving upon a P-REE by using more infor-

mation, we do not wish to exploit the fact that the resource feasibility constraint (RFSp)

is weaker than exact feasibility state by state. We require that any deviation from the

equilibrium portfolio allocation does satisfy exact feasibility. Formally, given a P-REE with

portfolio allocation fyhg, we restrict the set of attainable allocations fyh + ¢yhg to satisfy

(RF)
X

h;sh

¼(sh j s)¢yh(sh; s) = 0; 8s 2 S:

Clearly (RF) is a stronger restriction that (RFSp). We do not impose exact feasibility on

fyh + ¢yhg, for then the P-REE allocation fyhg itself would be unattainable in general.

Recall that Rs is the asset payo® matrix conditional on state s. For ŝ 2 Sp
s , let

RSp
s ;ŝ :=

0
BBBBBBBBBBB@

0
BBBBBBB@

...

Rs0

...

1
CCCCCCCA

s02Sp
s

...........

...........

0
...

Rŝ
...

0

1
CCCCCCCCCCCA

:

Proposition 6.1. A P-REE with price function p is generically (RF , IRSp , ICSp , BCp)-

constrained ex post ine±cient, if S ¸ 3, and provided there is a cell Sp
s , and a state ŝ 2 Sp

s ,

such that rank (RSp
s ;ŝ) ¸ JSp

s
+ 3.

The proof is in the Appendix. This result generalizes La®ont's (1985) Proposition 4.2

on the possibility of ex post ine±ciency of partially revealing equilibria.

A P-REE satis¯es (RFSp), (MSp), (IRSp), (ICSp), and (BCp). The proposition states

that the planner can (generically) bring about a Pareto improvement ex post (and hence also
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ex ante and interim) by relaxing (MSp), the constraint that the portfolios be measurable with

respect to the price function. Thus the planner improves upon the equilibrium allocation

by using more information to construct portfolios. This amounts to adding new securities

that increase the rank of the asset payo® matrix in the subeconomy Sp
s by at least 3, as

the condition, rank (RSp
s ;ŝ) ¸ JSp

s
+ 3, says. For this to be possible, asset markets must be

su±ciently incomplete, and the P-REE must be partially revealing.

Note that the additional information used by the planner is not made available to the

agents themselves. If this information had to made public, a Pareto improvement may not

be possible without violating the individual rationality and incentive constraints.

Example 4

The economy is the same as in Example 2, except that markets are incomplete. The asset

payo® matrix is 0
BBBB@

1 0 1

1 0 0

0 1 1

0 1 0

1
CCCCA

;

where the states of the world are ordered as f(s1; t1); (s1; t2); (s2; t1); (s2; t2)g. Thus markets

are complete with respect to s, and with respect to t, conditional on s. Both types of agent

have the same utility function: u(c) = ac ¡ 1
2c2, where a is a parameter that is su±ciently

large to ensure that marginal utility is increasing over the relevant range of consumption.

This economy has a nonrevealing P-REE in which the price of each asset is equal to its

expected payo®, i.e. p1 = p2 = 1
2 , and p3 = 3

4 : Agents are able to smooth consumption

across the states s1 and s2 by trading the ¯rst two securities. Agents of type 1 sell asset 1

and buy asset 2, thus transferring consumption from s1 to s2, while agents of type 2 take the

opposite side of this trade. However, due to the incompleteness of markets, agents are not

able to smooth consumption within the two subeconomies indexed by s1 and s2. Agents wish

to trade asset 3 in opposite directions in the two subeconomies, but they cannot distinguish

these subeconomies in a nonrevealing equilibrium. Indeed, the equilibrium amount of trade

in asset 3 goes to zero as ² tends to zero. By making the allocation of asset 3 contingent

on the state s, it is possible to bring about a Pareto improvement in each subeconomy. To

be precise, the P-REE allocation is (RF, IRSp , ICSp)-constrained ex post ine±cient. Note,

however, that a Pareto improvement can only be brought about by using an allocation

rule that reveals additional information to agents. If the true state (s1 or s2) is revealed
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to agents, a feasible allocation must respect the ex post individual rationality constraints

of all agents. Consider, for instance, the subeconomy indexed by s1. An ex post e±cient

allocation smoothes consumption completely across t1 and t2, so when we look for a Pareto

improvement in this subeconomy, we may restrict attention to allocations of consumption

that are nonrandom for each agent. Suppose a is very large, so that agents are close to risk

neutral. Then a Pareto improving allocation must assign consumption to each agent-type

that is close to the equilibrium expected consumption of that agent-type (or better). In the

subeconomy under consideration, at the P-REE, the expected consumption of agent-type

(1; ŝ2) is

E(c1(ŝ2)) = (
3

4
!H +

1

4
!L) ¡ 1

4
(!H ¡ !L) ¡ ²

2
(!H + !L) ¡ 2a²:

The maximum consumption that a Pareto improving allocation can assign to this agent

E(c1(ŝ2)) + ·, where · can be made arbitrarily small by choosing a su±ciently large. But

for small ·, this agent-type is better o® consuming his endowment (which gives him expected

utility 3
4!H + 1

4!L): Thus the P-REE allocation is (RF, IRSq)-constrained ex post e±cient,

where Sq is the partition ffs1g; fs2gg: k

In Example 4, we see the two countervailing e®ects of more information. A fully

revealing allocation rule induces the Hirshleifer e®ect, which shrinks the set of feasible

allocations through a tighter individual rationality constraint. At the same time, there is a

positive spanning e®ect, captured by a weaker measurability constraint, that expands the

set of attainable allocations. In this example, the ¯rst e®ect dominates.

Since the individual rationality and incentive constraints are generically not binding

at an equilibrium, we should expect to be able to make a local improvement, by using only

a small amount of extra information, which is made public. The problem is that with the

partition representation of information on a ¯nite set S, no change in information is \small."

In order to rectify this problem, we proceed with the following construction. We index

the elements of S by i = 1; : : : ; S, and analogously de¯ne the set § := f¾1; : : : ; ¾Sg. Let

~¾ be a random variable, taking values in §, that is independent of ~t and, conditionally on

~s, also of ~sh¿ , for all (h; ¿), (i.e. ¼(~sh¿ ; ~¾ j ~s) = ¼(~sh¿ j ~s) ¼(~¾ j ~s)), with ¼(¾j) = ¼(sj) for

every j. We control for prices by de¯ning p : § ! P, with p(¾j) = p(sj) for every j.

Given a P-REE with price function p and portfolio allocation fyhg, consider the set of

consumption allocations fchg satisfying:
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(RF~¾) Resource feasibility: 8h 2 H,

ch = !h + r ¢ (yh + ¢yh)

and, 8s 2 S; ¾ 2 §;
X

h;sh

¼(sh j s)¢yh(sh; ¾) = 0:

(M~¾) Measurability: 8h 2 H; and sh 2 Sh; yh(sh; ~s) + ¢yh(sh; ~¾) is ~¾-measurable.

(IR~¾) Individual rationality: 8h 2 H; sh 2 Sh, and ¾ 2 §,

Euh(ch j ~sh¿ = sh; ~¾ = ¾) ¸ Euh(!h j ~sh¿ = sh; ~¾ = ¾):

(IC~¾) Incentive compatibility: 8h 2 H; sh; ŝh 2 Sh, and ¾ 2 §,

Euh
£
!h(sh; ~s; ~t) + r(~s; ~t) ¢ [yh(sh; ~s) + ¢yh(sh; ¾)] j ~sh¿ = sh; ~¾ = ¾

¤

¸ Euh
£
!h(sh; ~s; ~t) + r(~s; ~t) ¢ [yh(ŝh; ~s) + ¢yh(ŝh; ¾)] j ~sh¿ = ŝh; ~¾ = ¾

¤
:

(BCp;~¾) Budget constraints: 8h 2 H; sh 2 Sh, and ¾ 2 §,

p(¾) ¢ ¢yh(sh; ¾) = 0:

Conditions (M~¾), (IR~¾), and (IC~¾) are essentially the same as (MSp), (IRSp), and (ICSp)

respectively, except that ~¾ replaces p. Conditions (RF~¾) and (BCp;~¾) are the analogues of

(RF) and (BCp) respectively. The set of attainable allocations are those that satisfy (RF~¾),

(M~¾), (IR~¾), (IC~¾), and (BCp;~¾) for some ~¾.

We parameterize the random variable ~¾ by ¦ := f¼ijg, where ¼ij := ¼(si; ¾j), with

X

j

¼ij = ¼(si) 8i; and
X

i

¼ij = ¼(sj) 8j: (1)

The notation i 2 Sp
j is shorthand for si 2 Sp

sj
. The following is easily veri¯ed (we

simply choose ~¾ to have the same information content as p):

Lemma 6.2. Suppose p is a P-REE price function. Then the equilibrium allocation satis¯es

(RF~¾), (IR~¾), (IC~¾), and (BCp;~¾), with f¢yhg = 0 and the following choice of ¦:

¼ij =

8
<
:

¼(si)¼(sj)P
k2Sp

j

¼(sk)
if i 2 Sp

j ;

0 if i =2 Sp
j .

For a fully revealing REE

¼ij =

(
¼(si) if i = j;

0 if i 6= j.
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Perturbing the probabilities ¦ allows us to perturb the information of agents in a

smooth way. In doing so, we do not change the support of ~¾, nor do we change the

dependence of p on ¾.

We now show that a partially revealing P-REE is generically ex post ine±cient, even

if feasible allocations are restricted by the information disclosure constraint. For ease of

exposition, we state and prove the result for the case of a nonrevealing P-REE (with Sp
s =

S). The extension to the general partially revealing case is immediate.

Proposition 6.3. A nonrevealing P-REE with price function p is generically (RF ~¾, M~¾,

IR~¾, IC~¾, BCp;~¾)-constrained ex post ine±cient provided S ¸ S +2, and provided there are

states sm and sn in S, such that min [rank (RS;sm
); rank(RS;sn

)] ¸ J + 2(S + 2).

The proof is in the Appendix.
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APPENDIX

First we need to introduce some more notation. Let

ch
sh;s := [!h(sh; s; t) + r(s; t) ¢ yh(sh; s)]t2T

be the vector of state-contingent consumption of agent (h; ¿), conditional on the information

(~sh¿ = sh; ~s = s). De¯ne the function Uh
sh;s

: IRT
+ ! IR as follows:

Uh
sh;s(c

h
sh;s) = ¼(sh; s)

X

t2T
¼(t) uh[!h(sh; s; t) + r(s; t) ¢ yh(sh; s)]:

Thus Uh
sh;s(c

h
sh;s) is the expected utility (up to a multiplicative constant) of agent (h; ¿)

conditional on (~sh¿ = sh; ~s = s). For ease of notation we often drop the argument ch
sh;s.

Recall that JSp
s

is the number of linearly independent assets in the subeconomy associ-

ated with Sp
s . Given a price function p, we adopt the convention of disregarding redundant

assets in each subeconomy, so that

RSp
s

:=

0
B@

...

Rs0

...

1
CA

s02Sp
s

has full column rank JSp
s

(we always retain the J-th asset which serves as numeraire).13

The agent optimality condition (AO) can be restated as follows: for every h 2 H; sh 2
Sh; and Sp

s 2 Sp, yh(sh; s) maximizes
P

s02Sp
s

Uh
sh;s0(ch

sh;s0) subject to p(s) ¢ yh(sh; s) = 0;

and subject to yh(sh; ¢) being p-measurable. Under Assumption 2, the solutions of (AO)

are then characterized by the following system of ¯rst order conditions:

X

s02Sp
s

R>
s0DUh

sh;s0 ¡ ¸h(sh; s) p(s) = 0; 8h 2 H; sh 2 Sh; s 2 S; (A:1)

p(s) ¢ yh(sh; s) = 0; 8h 2 H; sh 2 Sh; s 2 S; (A:2)

where ¸h(sh; ¢) : S ! IR is a p-measurable function. By Walras' law, for each Sp
s 2 Sp,

the market-clearing equation for one asset is redundant. Hence, the resource feasibility

condition can be written as

X

h;sh

¼(sh;Sp
s ) ŷh(sh; s) = 0; 8s 2 S; (A:3)

13 Note that the submatrix Rs0 of RSp
s

has JSp
s

columns corresponding the assets that
are linearly independent in the subeconomy Sp

s ; thus Rs0 does not have full column rank in
general.
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where ŷh(sh; s) is the vector obtained from yh(sh; s) by deleting the last element.

The endogenous variables that describe a P-REE in the cell Sp
s are

»Sp
s

:= [yh(sh; s); ¸h(sh; s); p̂(s)]h2H;sh2Sh 2 IR
SJSp

s £ IRS £ IR
JSp

s
¡1

;

where p̂(s) is the vector obtained by deleting the last element of p(s). Note that »Sp
s

is

invariant with respect to s in the cell Sp
s . Thus

» := [»Sp
s
]Sp

s 2Sp 2 IRSJSp £ IRSSp £ IRJSp¡Sp

is a complete speci¯cation of the endogenous variables of the equations (A.1){(A.3). We

denote the equations (A.1) by f(»;!) = 0, and the equations (A.2){(A.3) by g(»;!) = 0.

Then, » is a P-REE if and only if

F (»;!) :=

Ã
f(»;!)

g(»;!)

!
= 0:

This system has SJSp + SSp + JSp ¡ Sp equations, which is equal to the dimension of ».

We denote the components of F corresponding to the cell Sp
s by FSp

s
(»Sp

s
;!Sp

s
), where

!Sp
s

:= [!h(sh; s0; t)]h2H;sh2Sh;s02Sp
s ;t2T 2 IR

SSp
s T

++ :

The functions fSp
s

and gSp
s

are de¯ned analogously.

We denote by diag a2A[z(a; b)] the (block) diagonal matrix with typical entry z(a; b),

where a varies across the diagonal entries, while b is ¯xed; diag a2A[z(b)] is the diagonal ma-

trix with the term z(b) repeated #A times. Finally, we de¯ne ySp
s

:= fyh(sh; s)gh2H;sh2Sh

and y := [ySp
s
]Sp

s 2Sp :

It is easily seen that D»;!F has a diagonal structure:

D»;!F = diag Sp
s 2Sp [D»Sp

s
;!Sp

s
FSp

s
]

Furthermore,

D»Sp
s

;!Sp
s
FSp

s
=

Ã
D»Sp

s
fSp

s
D!Sp

s
fSp

s

D»Sp
s
gSp

s
0

!
;

D!Sp
s
fSp

s
= diag h;sh [f: : : R>

s0D2Uh
sh;s0 : : :gs02Sp

s
];
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and

D»Sp
s
gSp

s
=

0
BBBBB@

diag h;sh [p(s)>]

...... 0

...... Y >
Sp

s

: : : : : : : : : : : : : : : : : : : : : : : : : : :

f: : : ¼(sh; Sp
s ) Î> : : :gh;sh

...... 0

...... 0

1
CCCCCA

;

where

YSp
s

:= [: : : ŷh(sh; s) : : :]h;sh

is the ((JSp
s
¡1)£S) matrix of agents' portfolios in the cell Sp

s , and Î is the (JSp
s
£(JSp

s
¡1))

matrix de¯ned by

Î :=

0
B@

I(JSp
s

¡1)

: : :

0

1
CA :

The following two results can be established using standard arguments (see, for instance,

Citanna, Kajii, and Villanacci (1998)):

Fact 1. The matrices D!Sp
s
fSp

s
and D»Sp

s
gSp

s
have full row rank. Hence, so do D»Sp

s
;!Sp

s
FSp

s

and D»;!F . Also, D!f and Dyg have full row rank.

Fact 2. At a P-REE with price function p, the constraints (IRSp) and (ICSp) are generi-

cally satis¯ed with strict inequality, for every h 2 H, sh; ŝh 2 Sh (sh 6= ŝh), and Sp
s 2 Sp.

In the proofs of Propositions 5.2, 6.1, and 6.3, we restrict endowments to be in the generic

subset for which Fact 2 holds. The next lemma is a preliminary step to proving Proposition

5.2.

Lemma A.1. Consider a P-REE with portfolio allocation fyhg. Generically, for every

Sp
s 2 Sp, YSp

s
has full row rank (JSp

s
¡ 1), provided S ¸ JSp

s
.

Proof. Fix a partition Sp and a cell Sp
s of this partition. We will show that generically, at

a P-REE that induces the partition Sp, there is no solution ± to the equations ±>ŶSp
s

= 0

and ± ¢ ± = 1, where ŶSp
s

is obtained from YSp
s

by deleting its ¯rst column. Consider the

equation system

¡Sp
s
(»Sp

s
; ±;!Sp

s
) :=

0
B@

FSp
s
(»Sp

s
;!Sp

s
)

±>ŶSp
s

± ¢ ± ¡ 1

1
CA = 0:
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Its Jacobian is

D»Sp
s

;±;!Sp
s
¡Sp

s
=

0
BBBBBBBBB@

D»Sp
s
fSp

s
0

... D!Sp
s
fSp

s

: : : : : : : : : : : : : : : : : : : : : : :

D»Sp
s
gSp

s
0

... 0

D»Sp
s
(±>ŶSp

s
) Ŷ >

Sp
s

... 0

0 2±> ... 0

1
CCCCCCCCCA

: (A:4)

Note that the matrix

DySp
s

Ã
gSp

s

±>ŶSp
s

!
=

0
B@

diag h;sh [p(s)>]

f: : : ¼(sh;Sp
s ) Î> : : :gh;sh

¡
0 diag fs2;:::;Sg[(±

> 0)]
¢

1
CA

is row-equivalent to

0
BBBBBBBBBBBBB@

p(s)> 0 : : : 0

¼(s1;Sp
s ) Î> ¼(s2;Sp

s ) Î> : : : ¼(sS;Sp
s ) Î>

0 p(s)> : : : 0

0 (±> 0) : : : 0
...

...
. . .

...

0 0 : : : p(s)>

0 0 : : : (±> 0)

1
CCCCCCCCCCCCCA

; (A:5)

where we have relabelled the set £hSh as fs1; s2; : : : ; sSg. Since pJ(s) = 1 and, at any zero

of ¡Sp
s
, ± 6= 0, the matrix (A.5) has full row rank, and hence so does the lower left block of

D»Sp
s

;±;!Sp
s
¡Sp

s
(as partitioned in (A.4)). Furthermore, by Fact 1, D!Sp

s
fSp

s
has full row rank.

Hence, the whole matrix D»Sp
s

;±;!Sp
s
¡Sp

s
has full row rank. By the transversality theorem,

for !Sp
s

in a generic subset ESp
s

of IR
SSp

s T
++ , the same is true for D»Sp

s
;±¡Sp

s
at all zeros of

¡Sp
s
(»Sp

s
; ±;!Sp

s
). But this system has more independent equations, (SJSp

s
+S+JSp

s
¡1)+S,

than unknowns, (SJSp
s

+ S + JSp
s

¡ 1) + JSp
s

¡ 1, since, by hypothesis, S > JSp
s

¡ 1: So

¡Sp
s
(»Sp

s
; ±;!Sp

s
) = 0 has no solution, for any !Sp

s
2 ESp

s
:

Since the Cartesian product of generic sets is generic in the product space, it follows that

for a generic subset E := £Sp
s 2SpESp

s
of IRSST

++ there is no solution to ¡Sp
s
(»Sp

s
; ±;!Sp

s
) = 0

for any Sp
s 2 Sp. This establishes the result.

Proof of Proposition 5.2. We restrict endowments to be in the generic subset for which

the rank condition of Lemma A.1 holds. An (RFSp , MSp , IRSp , ICSp , BCSp)-constrained
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interim e±cient allocation fyhg solves the program

max
X

h;sh

¹h(sh)
X

s2S
Uh

sh;s(c
h
sh;s)

subject to the constraints (RFSp), (MSp), (IRSp), (ICSp) and (BCSp), for some strictly

positive weights ¹ := f¹h(sh)gh;sh . By Fact 2, at a P-REE, the constraints (IRSp) and

(ICSp) are not binding. Therefore, necessary conditions for a P-REE allocation to be

(RFSp , MSp , IRSp , ICSp , BCSp)-constrained interim e±cient are that there exist strictly

positive weights ¹ and a function q with Sq = Sp such that

¹h(sh)
X

s02Sp
s

R>
s0DUh

sh;s0 = º(s)¼(sh; Sp
s ) + °h(sh; s) q(s); 8h 2 H; sh 2 Sh; s 2 S;

(A:6)

q(s) ¢ yh(sh; s) = 0; 8h 2 H; sh 2 Sh; s 2 S; (A:7)
X

h;sh

°h(sh; s) ŷh(sh; s) = 0; 8s 2 S; (A:8)

for some p-measurable functions º : S ! [Sp
s 2SpIR

JSp
s (with º(s) 2 IR

JSp
s for every s), and

°h(sh; ¢) : S ! IR.

From (A.2), (A.7), and the fact that YSp
s

has full row rank, we get q = p. Then it

follows from (A.1) and (A.6) that

¹h(sh)¸h(sh; s)p(s) = º(s) ¼(sh;Sp
s ) + °h(sh; s) p(s); 8h 2 H; sh 2 Sh; s 2 S:

Since, for every s, pJ (s) = 1 and, from Walras' law, ºJ(s) = 0; we obtain

¹h(sh)¸h(sh; s) = °h(sh; s): (A:9)

Multiplying both sides of (A.9) by ŷh(sh; s), summing over (h; sh), and using (A.8), we get:

Á(»; ¹;!) :=
X

h;sh

¹h(sh)¸h(sh; s)ŷh(sh; s) = 0 8s 2 S: (A:10)

Since ¸h(sh; ¢) and ŷh(sh; ¢) are p-measurable, (A.10) consists of (JSp ¡ Sp) distinct equa-

tions.

If a P-REE is (RFSp , MSp , IRSp , ICSp , BCSp)-constrained interim e±cient, it follows

from the foregoing analysis that

©(»; ¹; !) :=

Ã
F (»;!)

Á(»; ¹; !)

!
= 0:
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The Jacobian of ©, D»;¹;!©, is row/column-equivalent to the block triangular matrix

0
B@

Dy;p̂f D¸;¹f D!f

Dy;p̂Á D¸;¹Á 0

Dy;p̂g 0 0

1
CA ;

where the subscripts p̂ and ¸ are used to denote derivatives with respect to fp̂(s)gSp
s 2Sp and

f¸h(sh; s)gsh2Sh;Sp
s 2Sp respectively. Now D¸Á = diag Sp

s 2Sp [YSp
s

diag h;sh(¹h(sh))], which

has full row rank. From Fact 1, D!f and Dyg also have full row rank. Therefore, D»;¹;!©

has full row rank and, by the transversality theorem, for a generic subset of endowments

so does D»;¹©, at every solution of ©(»; ¹;!) = 0: But then this set of solutions must be

empty, since JSp ¡Sp > S ¡1 implies that the system ©(»; ¹;!) = 0 has more independent

equations than unknowns. (Note that we can normalize one of the weights ¹ to be one.)

The argument for generic ex ante ine±ciency is analogous, the only di®erence being

that the weights f¹hg are invariant with respect to sh.

Proof of Proposition 6.1. Consider a P-REE with price function p and portfolio allocation

fyhg. If it is (RF, IRSp , ICSp , BCp)-constrained ex post e±cient, then in particular it is ex

post e±cient in the subeconomy Sp
s and, therefore, ¢y := f¢yh(sh; s0)gh2H;sh2Sh;s02Sp

s
= 0

is a solution to the following program, for some strictly positive weights f¹h(sh; s0)gh2H;sh2Sh;s02Sp
s
.

(Note that Fact 2 allows us to ignore (IRSp) and (ICSp).)

max
¢y

X

h;sh

X

s02Sp
s

¹h(sh; s0)Uh
sh;s0(ch

sh;s0)

subject to

ch
sh;s0 = [!h(sh; s0; t) + r(s0; t) ¢ (yh(sh; s) + ¢yh(sh; s0))]t2T ; 8h 2 H; sh 2 Sh; s0 2 Sp

s ;

X

h;sh

¼(sh j s0)¢yh(sh; s0) = 0; 8s0 2 Sp
s ;

p(s) ¢ ¢yh(sh; s0) = 0; 8h 2 H; sh 2 Sh; s0 2 Sp
s :

The ¯rst order conditions, evaluated at ¢y = 0, give us

¹h(sh; s0)R>
s0DUh

sh;s0 = º(s0)¼(sh j s0) + °h(sh; s0) p(s); 8h 2 H; sh 2 Sh; s0 2 Sp
s ;

for some functions º : Sp
s ! IR

JSp
s , and °h : Sh £ Sp

s ! IR: In particular, this implies that,

for any given s0 2 Sp
s , the marginal utility vectors R>

s0DUh
sh;s0 lie in the two-dimensional

subspace of R
JSp

s spanned by º(s0) and p(s), for every (h; sh).
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Now consider three pairs (h; sh), identifying three agent-types, indexed by fh1; h2; h3g,

and de¯ne

Ã(»; ´;!) := ´1R
>
ŝ DUh1

ŝ + ´2R
>
ŝ DUh2

ŝ + ´3R
>
ŝ DUh3

ŝ = 0; ´ 2 IR3;

for some ŝ 2 Sp
s such that rank (RSp

s ;ŝ) ¸ JSp
s

+ 3. Then, a necessary condition for the

P-REE allocation to be (RF, IRSp , ICSp , BCp)-constrained ex post e±cient is that

ª(»; ´;!) :=

0
B@

F (»; !)

Ã(»; ´; !)

´ ¢ ´ ¡ 1

1
CA = 0;

for some ´ 2 IR3. The Jacobian, D»;´;!ª, is row-equivalent to

0
BBBBBBB@

D»f 0
... D!f

D»Ã D´Ã
... D!Ã

: : : : : : : : : : : :

0 2´> ... 0

D»g 0
... 0

1
CCCCCCCA

;

and D!

¡f
Ã

¢
is given, up to a permutation of columns, by

0
BBBBBBBB@

(: : : R>
s0D2Uh1

s0 : : :)s02Sp
s

... 0
... 0

... 0

0
... (: : : R>

s0D2Uh2

s0 : : :)s02Sp
s

... 0
... 0

0
... 0

... (: : : R>
s0D2Uh3

s0 : : :)s02Sp
s

... 0

0
... 0

... 0
... ¤

0 : : : ´1R>
ŝ D2Uh1

ŝ : : : 0
... 0 : : : ´2R>

ŝ D2Uh2

ŝ : : : 0
... 0 : : : ´3R>

ŝ D2Uh3

ŝ : : : 0
... 0

1
CCCCCCCCA

:

At any zero of ª, ´ is nonzero; without loss of generality, let ´1 be nonzero. Then

Ã
(: : : R>

s0D2Uh1

s0 : : :)s02Sp
s

0 : : : ´1R>
ŝ D2Uh1

ŝ : : : 0

!

has the same row rank as R>
Sp

s ;ŝ, which is by assumption at least JSp
s

+ 3. Therefore,

row rank

·
D!

µ
f

Ã

¶¸
¸ row rank (D!f) + 3:

Since D»g has full row rank (by Fact 1), at any zero of ª,

row rank (D»;´;!ª) ¸ row rank (D»;!F ) + 4:
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In other words, relative to the equilibrium equations, the equation system ª = 0 has three

additional unknowns (´ 2 IR3) and at least four additional (locally) independent equations.

Generically, therefore, the system has no solution.

Proof of Proposition 6.3. Without loss of generality, assume that n = S. Consider a P-REE

with price function p and portfolio allocation fyhg. Let ¢y := f¢yh(sh; ¾j)gh;sh;j , and

W :=
X

h;sh;t;i;j

¹h(sh; si)¼(shjsi)¼ij ¼(t)uh[!h(sh; si; t)+r(si; t)¢yh(sh; si)+r(si; t)¢¢yh(sh; ¾j)]:

The P-REE allocation is (RF~¾, IR~¾, IC~¾, BCp;~¾)-constrained ex post e±cient only if

¼ij = ¼(si)¼(sj) 8i; j and ¢y = 0 (A:11)

solves

max
¦;¢y

W subject to (RF~¾);VCp;~¾; and (1); (A:12)

for some strictly positive weights f¹h(sh; si)gh;sh;i. Fact 2 allows us to ignore the (IRSp)

and (ICSp) constraints.

It can easily be veri¯ed that, if the weights f¹hg are chosen to be invariant with

respect to si, the ¯rst order conditions for (A.12) are satis¯ed at (A.11). The second order

necessary condition is that the Hessian D2W (evaluated at (A.11)) be negative semide¯nite

when restricted to the directions that satisfy the constraints of (A.12). The directions for

¼ij and ¢yh(sh; ¾j) are respectively denoted by ®ij 2 IR and ¯h(sh; ¾j) 2 IRJ . Let

® :=

0
B@

...

f®ijgj
...

1
CA

i

; and ¯ :=

0
BB@

...

f¯h(sh; ¾j)gh;sh

...

1
CCA

j

:

The directions satisfying the constraints of (A.12) are solutions to

³1(®) :=

0
BBBBBBB@

1 : : : 1 0 : : : 0 : : : 0 : : : 0 0 : : : 0

0 : : : 0 1 : : : 1 : : : 0 : : : 0 0 : : : 0
...

...
. . .

...
...

0 : : : 0 0 : : : 0 : : : 1 : : : 1 0 : : : 0

IS IS : : : IS IS

1
CCCCCCCA

® = 0; (A:13)
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and

³2(¯) :=

0
BBBBBBBBBB@

diag j

2
664

[: : : ¼(sh j s1) Î> : : :]h;sh

...

[: : : ¼(sh j sS) Î> : : :]h;sh

3
775

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

diag h;sh;j(p
>)

1
CCCCCCCCCCA

¯ = 0; (A:14)

where we have suppressed the dependence of p on s, since p is constant. Thus the second

order condition for (A.12) can be stated as follows:

( ®> ¯> ) D2W

Ã
®

¯

!
· 0 (A:15)

for all ® and ¯ satisfying

³(®; ¯) :=

Ã
³1(®)

³2(¯)

!
= 0:

The set of zeros of ³1 and ³2 are subspaces of dimension S(S ¡ 2) + 1 and S(J ¡ 1)(S ¡ S)

respectively. Therefore, the set of zeros of ³ is nonempty. We assume for simplicity that the

equations in (A.14) are linearly independent (if not, our argument goes through by deleting

redundant equations).

Note that

D2W =

Ã
0 D2

¦;¢yW

(D2
¦;¢yW )> D2

¢y;¢yW

!
:

Therefore,

(®> ¯> )D2W

Ã
®

¯

!
= 2®>(D2

¦;¢yW )¯ + ¯>(D2
¢y;¢yW )¯: (A:16)

If the ¯rst term of (A.16) is nonzero for some ®; ¯, this term can be made positive and

arbitrarily large by appropriately rescaling ® (which is always possible by (A.13)), without

a®ecting the second term of (A.16). This will result in a violation of (A.15). Hence, for

(A.11) to be a solution to (A.12), we must have

v(®; ¯) := ®>(D2
¦;¢yW )¯ = 0

for all ®; ¯ satisfying ³(®; ¯) = 0 (with D2
¦;¢yW evaluated at (A.11)). Equivalently, the set

of solutions to

¨(®; ¯) :=

Ã
v(®; ¯)

³(®; ¯)

!
= 0
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and to ³(®; ¯) = 0 must coincide. This implies that D®;¯¨ does not have full row rank at

any zero of ¨. (Suppose not, i.e. suppose there is a zero of ¨, (®¤; ¯¤), at which D®;¯¨

has full row rank. Then, by the local submersion theorem, D®;¯¨ has full row rank on a

neighborhood N of (®¤; ¯¤). Let ¨N and ³N be the restriction to N of ¨ and ³ respectively.

Then, zero is a regular value of ¨N and ³N . By the preimage theorem, the set of solutions

to ¨N (®; ¯) = 0 is either empty or is a manifold of dimension one less than the manifold of

the set of solutions to ³N(®; ¯) = 0. In other words, ¨ and ³ do not have the same zeros.)

Straightforward computations yield

v(®; ¯) =
X

h;sh;i;j

¹h(sh; si)

¼(si)
®ij¯

h(sh; ¾j)
>(R>

si
DUh

sh;si
);

and

D®v =

0
@: : :

X

h;sh

¹h(sh; si)

¼(si)
¯h(sh; ¾j)

>(R>
si

DUh
sh;si

) : : :

1
A

i;j

:

From the foregoing argument, D®;¯v lies in the row space of D®;¯³ , at every zero of ³.

In particular, D®v is spanned by the rows of D®³, i.e. there exist a 2 IRS¡1 £ f0g, and

b 2 IRS, such that

X

h;sh

¹h(sh; si)

¼(si)
¯h(sh; ¾j)

>(R>
si

DUh
sh;si

) = ai + bj ; 8i; j: (A:17)

Using (A.17) to substitute for ai and bj , we obtain:

X

h;sh

[¯h(sh; ¾j) ¡ ¯h(sh; ¾S)]>
·
¹h(sh; si)

¼(si)
(R>

si
DUh

sh;si
) ¡ ¹h(sh; sS)

¼(sS)
(R>

sS
DUh

sh;sS
)

¸
= 0;

8i; j = 1; : : : ; S ¡ 1: (A:18)

This condition must hold for all ¯ satisfying (A.14). Since (A.14) and (A.18) are both linear

in ¯, the coe±cients of ¯ in (A.18) are linearly dependent on those in (A.14), i.e. there

exist ci 2 IRS¡1 £ f0g, and dh(sh) 2 IR, such that

¹h(sh; sm)

¼(sm)
(R>

sm
DUh

sh;sm
)¡¹h(sh; sS)

¼(sS)
(R>

sS
DUh

sh;sS
) =

SX

i=1

¼(sh j si) ci+dh(sh) p; 8h; sh:

(A:19)

This implies that the vectors on the left hand side of (A.19) lie in an (S + 1)-dimensional

subspace of RJ (the one spanned by fcig and p), for every (h; sh). By an immediate

reformulation of the argument in the proof of Proposition 6.1, we can show that, generically,

the vectors fR>
sm

Uh
sh;sm

; R>
sS

Uh
sh;sS

g are linearly independent across S + 2 agent-types.

Therefore, generically, condition (A.19) cannot hold.
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