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Abstract

We develop a theory of mechanism design when agents are able

to interfere with each others’ communication channels. We develop

a kind of revelation principle, the “Noninterference Principle” which

permits representation of arbitrary mechanisms by direct ones. The

incentives to interfere will depend on the mechanism chosen; inter-

ference thus constrains contractual design. For instance, authority

emerges as a governance mechanism which may economize on the costs

of securing channels, particularly when the organization needs to be

flexible and there is diversity in its members’ preferences. We also

show that there are environments in which the possibility of interfer-

ence actually facilitates full implementation by providing a means of

“protest” in undesired equilibria.

1 Introduction

In a recently publicized case [10], an employee of Morgan Stanley who had
been dismissed allegedly for expense account abuses claimed that on the con-
trary the cause of his dismissal was racism and homophobia. The firm tried
to produce testimony from a witness who was claiming that the employee
was in touch with a computer hacker to plant racist and homophobic e-mail
in the computers of the company. As a result, the employee was arrested on

∗Very preliminary and incomplete. Prepared for the ESSET, Gersenzee, Switzerland,
June 1999.

†This author benefited from the financial support of the Communauté française de
Belgique (projet ARC 98/03-221).
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charges of forgery, coercion and “computer trespass”. The lawyers for the
employee admitted that he payed the hacker $200 to plant the phony e-mail.
However, it later appeared that the witness had received a $10,000 payment
from the firm and the charges against the employee were dropped. What is
distinctive about this case is not that agents can process limited sets of sig-
nals or that signals arrive at their targets with noise. Rather, the distortions
in the signals arise because competing agents interfere with each other’s at-
tempts to transmit information. It is the effect of this aspect of imperfect
communication on contracting that we wish to explore in this paper.

There seems to be little practical reason to believe that the messages
transmitted during play of an arbitrary mechanism are immune to interfer-
ence, or that they can be made secure at zero cost. Typically mechanisms
rely on high powered incentives to play a certain way; a player who deviates
stands to punished heavily and the others rewarded. But this creates an
incentive to make other players “look bad.” If a player can effectively make
it appear that another player deviated, he will. The assumption that this
cannot happen, implicit in mechanism design, is extreme. A more natural
starting assumption would be that messages reach their target only imper-
fectly, depending on actions that other players take and perhaps on costly
investments in relevant technologies. Mechanisms must be designed bearing
in mind the endogeneity of interference.

One way in which this endogenous form of interference differs from other
forms of limited communication is that it does not seem subject to a tech-
nological fix. There have been vast improvements in the transmission and
processing of information over the last century. But this may do little to
diminish the benefits from forging a signature, for instance. On the contrary,
a computer which may be used to encode account information may also be
used by a sufficiently motivated hacker to change it. Endogenous interference
is thus likely a permanent feature of human existence.

Our approach to studying interference is straightforward. We begin with
the conventional mechanism design framework in which preferences are as-
sumed to depend on a set of states of the world. The actual state is common
knowledge among the players. Messages must be transmitted from the play-
ers to a mediator who, implements a decision based on the messages he
receives.

We depart from the standard set-up by taking the transmission of these
messages to be problematic: they may be interfered with by the players of
the mechanism.1 Each player is assumed to have a “channel” along which he

1Interference may also arise from physical sources. We leave discussion of this “exoge-

nous” interference to another paper.
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transmits his message; one player interferes with a second player by (prob-
abilistically) substituting the second player’s own message with a different
which he transmits along the second player’s channel (thus assuming his
identity).2

Now in practice the process by which players conduct interference might
be quite complicated, involving for example delicate extensive-form modeling
issues (you break into my office and steal my letterhead; later, I break into
yours and find a letter you have written in an imitation of my handwriting
on my letterhead; I replace this with a letter of my own and while I’m there
substitute a fake version of the letter you wrote on your own behalf but forgot
to mail, etc.). More generally, there are a many ways in which people might
interfere, ranging from rhetorical ploys to electronic jamming to outright
forgery. No doubt the ease of accomplishing interference will depend in part
on individual skills, on the physical nature of the messages themselves, on
encryption technology, on the availability of physical or institutional means
of sending secure messages, etc. A complete understanding of these issues
certainly falls out of the domain of competence of the economist (at least
these economists!)

We therefore take an agnostic approach, and simply posit that there is a
technology of interference with certain simple properties. Specifically, each
player transmits a message along every channel; the message that the medi-
ator receives on channel i may have been sent by player i or by some other
player j. The probability that i’s message in the guise of j arrives on j’s chan-
nel can be influenced by costly “efforts” that the players exert in securing
their own channels and accessing others. We make one important indepen-
dence restriction: the probabilities and effort costs are independent of the
messages sent and of the “physical” nature of the messages.

This “black box” approach to modeling the interference technology, though
crude, seems the natural starting point for investigating what allocations are
feasible in the presence of interference. A distinct advantage is that it yields
a generalization of the revelation principle, which we dub the “Noninterfer-
ence Principle” that allows representation of the potentially enormous set of
feasible mechanisms by the much smaller set of direct mechanisms. These
direct mechanisms involve having each player send a “signed” message on
behalf of himself and on behalf of each of the other players. The princi-
pal implements different allocations depending not only on the full set of
messages but also on the signatures. Any equilibrium of a mechanism with

2This model corresponds precisely to the internet practice of “spoofing.” Of course,

“channel” should be interpreted broadly; it can indicate for instance one player’s vocal

chords and the mediator’s ear. Interference may involve shouting or more clever and

deceptive rhetoric
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possible interference can be represented by a game in which the messages
consist of the true state of the world and the true identities of the players
who sent them.3 Thus, with all feasible allocations generated by a relatively
simple set of mechanisms, the study of mechanism design with interference
is amenable to optimization and/or equilibrium techniques.

We then go on to apply this apparatus in to a simple contracting envi-
ronment in which agents must take a common production decision; the total
surplus maximizing decision depends on the state of the world. Different
agents have different state dependent costs and benefits associated with the
decision. We show that if their preferences are consonant, then even with
the possibility of interference the first best can be achieved with no costs of
securing channels. However, when preferences differ enough, and when the
organization needs to be “flexible” (specifically, there is a large variance in
states and the optimal decision therefore also varies widely across states), this
will no longer be feasible. The second best mechanism may involve giving
“authority” or effective decision making power to one person. In the direct
game this is accomplished by securing his channel perfectly; in equilibrium
all other player’s messages are ignored. When all channels cost the same to
secure, this person is the one whose preferences are most consonant with the
organization objective.

Authority begins to assume the richer meaning it has in everyday par-
lance. Not only does it convey the notion of having the power to decide on
things which affect others. But also the idee that one’s word carries a lot
of weight relative to others’. Our model shows that these two ideas may be
closely connected: having the right to decide is equivalent to being the only
one with a perfectly secure channel. This idea broaches the question raised
in the recent debate on incomplete contracts by Maskin-Tirole: why can’t
message games substitute for authority? Our answer is that authority can
be modelled as a kind of message game (with interference) and can arise
endogenously as an optimal mechanism in certain environments.

1.1 Literature

Our work is related to a number of papers in organization theory. One
strand of the literature considers exogenous constraints on communication:
agents have limited ability to transmit or process information. Part of this
literature (e.g., Bolton-Dewatripont [3], Radner [17], Radner-van Zandt [18],

3Although all players are sending messages along all channels in the direct game, they
are being honest and “up front” about it (they are signing with their true identities) and
in this sense they are not interfering with each other.
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Segal [19]) ignores incentive problems and conceives of organizations essen-
tially as communication networks designed to overcome these limitations.
The design of the organization itself does not affect the ability of an indi-
vidual agent to communicate. Other papers (such as Green-Laffont [5] and
Melumad-Mookherjee-Reichelstein [14]) do incorporate incentives and exam-
ine how standard incentive schemes or how the design of communication
structures may be altered when communication is costly. By contrast, the
framework presented in this paper is not actually based on the inability for
agents to process information: messages in our set-up may be arbitrarily
complex and/or processed arbitrarily quickly. But neither is it inconsistent
with this approach. Indeed, a deeper examination of the technology under-
lying the interference probabilities might very well take these considerations
into account.

The other strand of literature is that in which communication is endoge-

nously limited by the design of the organization itself. Here the literature is
perhaps more sparse. Fudenberg-Tirole’s theory of signal jamming is close
in spirit to our notion of interference. Aside from the context in which the
idea is applied, there is a methodological difference between our approach
and theirs in that the signal jamming structure itself is not endogenously de-
termined by the agents in the model. Perhaps more closely related in spirit
are “influence activities” (Milgrom-Roberts [15]). However, their focus is on
the weakening of incentive schemes in response to influence costs; they too
take as given the communication and decision making structures.

Finally, the notion of authority has appeared in a number of recent papers,
beginning with Grossman-Hart [6] (see for instance Hart [7], Hart-Moore [8],
Aghion-Tirole [2]). These papers start from the assumption that allocations
cannot be completely specified by contracts; decisions are then necessarily
made by one of the parties without having been specified in advance, which is
interpreted as power or authority. We certainly think this is a useful notion
of authority. There have been a number of recent criticisms of this approach
(Maskin-Tirole [13]) based on the fact that incompleteness can be filled by ap-
propriate message games. Both sides of the debate miss the connection to the
security of communication channels, and therefore the idea of an authority
as one who is influential as well as powerful. Moreover, the scope for author-
ity arises endogenously here: agents are perfectly capable of conceiving of

writing arbitrarily complex contracts. But interference problems limit what

could actually be carried out via contract.
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2 A Model of Interference

We consider an environment with 2 agents. The extension to n agents is

straightforward, but introduces some minor complications that we wish to

avoid at present. The state space is Θ and the set of decisions is D. At time

t = 1, a realization of the state θ ∈ Θ is observed by all the n agents but

not by outside parties. Agents have state contingent preferences on decisions

and we assume that these preferences are represented by vNM utility func-

tions ui. ui (d, θ) denotes the utility of agent i if decision d ∈ D is chosen

in state θ; when d is a lottery, ui (d, θ) denotes the expected utility of the

lottery d. At time t = 0, a “contract” is signed: a contract is here a mech-

anism, i.e., ({Mi} , g) where Mi is the set of messages available to agent i

and g : ×2

i=1
Mi → D is a message contingent decision rule. Assume that the

agents have at the time of contracting common beliefs F about the distri-

bution of the states of the world. We assume that F has a continuous and

positive density and has a bounded support
[
θ, θ

]
. Traditional mechanism

design assumes that each agent has access to a perfectly “secure” channel

of communication: when message mi

i
is received on channel i, it is known

that agent i sent this message. We depart from this assumption and assume

that after contracting but before the realization of the state4, agents can exert

efforts e that enable them to secure their channels and to interfere on other

agents’ channels. To keep things tractable, we use an indirect representation

and assume that efforts translate into a probability distribution over mes-

sages received on each channel. Given a vector of efforts e =(e1,e2) , there

is a probability µ
i
(e) that a message that he sends on his channel arrives

safely and a probability 1 − µ
i
(e) that the interference of the other agent

succeeds.5 The (private) cost of effort is c
i (ei) . Note that this formulation

4The extension of the analysis to the case where the effort levels are exerted after the

realization of the state is straightforward but somewhat more complex.
5In general, and agent can spend effort not only to secure his channel but also to

interfere on other channels, i.e., i′s effort is a vector ei =
(
ei
1
, ei

2

)
and the probability that

player i succeeds on channel j is µi
j (e) , where e =

(
e
1
, e

2
)
. In the application we assume

that µ
i
i (e) depends only on eii.

The general formalism can allow different interesting situations. For instance, suppose

that µii (e) is differentiable. In general, we should expect that more effort on one’s channel

increases security, ∂µii/∂e
i
i > 0, that more effort by the other agent on one’s channel

decreases security, ∂µii/∂e
j
i < 0. Of interest are the cross effects of one’s effort on the

security of the other agent’s channel . For instance, if
∂2µ1

1

∂e2
1
∂e2

2

< 0 by increasing his effort

to secure his own channel
(
e
2

2

)
player 2 finds it easier (needs a lower e

2

1
) to interfere on

the other’s channel. A simple example of this could be learning-by-doing: learning how to
secure an internet network makes you learn how to get into other people’s network (and
reciprocally).
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Figure 1:

allows for public investments in security before contracting (e.g., creation of
secured court proceedings, or of a postal service which ensures against mail
fraud); public investments could make channels secure even in the absence
of private investment, that is µ (0) = µ

0
> 0. Hence, while there might be a

social cost associated with the public investment, they might also make con-

tracts more efficient once µ0 is sunk. Note that even if µ0 = 1, interference

by the agents might generate µ < 1 in some contracting environments.

Interference by agent i on channel j takes the form of agent i sending

a message mi
j on channel j. Let mi = (mi

1
,mi

2
) be the vector of messages

that agent i sends on the two channels. Communication is then summarized

by a vector µ = (µ1, µ2) . For instance, µ =(1, 0) represents a situation in

which channel 1 is secure but channel 2 is not, µ = (1, 1) is a case where each

channel is secure and µ =(0,0) is a case where each channel is not secure.

Note that the two last cases are equivalent from a mechanism design point

of view: in µ =(0,0) , each agent has in fact access to a secure channel: the

channel of the other agent! For a given µ, if agents playm1
,m

2
, the outcome

will be a lottery g
µ (m1

,m
2) :

g

(
m

1

1
,m

1

2

)
with probability µ1 (1− µ2) (1)

g
(
m

1

1
,m

2

2

)
with probability µ

1
µ
2

g
(
m

2

1
,m

1

2

)
with probability (1 − µ

1
) (1 − µ

2
)

g
(
m

2

1
,m

2

2

)
with probability (1 − µ1)µ2.

Hence, agents play an “extended two-stage game”: at the first stage
they choose to secure their communication channels and then they play the
message game that they contracted upon.

To summarize, the sequence of events is as follows.
In this extended game the strategy of each agent consists of an effort

level ei
∈ R

2 and of a message sending strategy σi : Θ × R2
→ (M1

×M2) ,
i.e., σi (θ, ei) is the interference strategy of agent i in state θ when his effort
choice was ei.
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It will be convenient to denote the probability that agent i succeeds on
channel 1 and agent j succeeds on channel 2 by πij (e) . From (1), we have
π11 (e) = µ

1
(e) (1 − µ

2
(e)) , etc. From g andm, we can also define four func-

tions hij (m) = g
(
mi

1
,m

j

2

)
, i = 1, 2, j = 1, 2. Let π (e)= (π11 (e) , π12 (e) , π21 (e) , π22 (e))

and h =(h11, h12, h21, h22). Then, if agents use strategies m the outcome is

the lottery π (e) ·h (m) that selects outcome hij (m) with probability πij (e) .
An equilibrium is defined in the usual way: for given e, the strategies σi

must form an equilibrium and for each i, ei must be optimal given e−i
and

σ:

e
i
∈ argmax

êi

∫
u

i
(
π

(
e
−i, êi

)
· h

(
σ−i

(
θ, e−i

)
, σi

(
θ, êi

))
, θ

)
dF (θ)− ci

(
ê

i
)
, for all i

(2)

σi
(
θ, ei

)
∈ argmax

m
i

u
i
(
π

(
e
−i, ei

)
· h

(
σ
(
θ, e−i

)
,mi

)
, θ

)
, for all θ, for all i.

We can define our concept of implementation.

Definition 1 A decision rule f : Θ→ D is implementable at cost c if there

exists a mechanism (M, g) and an equilibrium (e,σ) of the extended game

such that g
µ(e) (σ (θ)) = f (θ) and c1 (e1) + c2 (e2) = c.

We will sometimes make the following assumption.

Assumption There exists a “unanimously worst outcome” d0 : for any state

θ, and any agent i, ui (d, θ) is minimized at d = d0. We normalize

utilities in such a way that ui (d0, θ) = 0 for all θ, all i.

3 Example : Facilitating Coordination

There are two agents, indexed by i = 1,2 and two states, θ and φ. The set of
possible decisions is {a, b, c} . Interference probabilities are exogenous (i.e., µ
is given). Payoffs are as follows ( ε ∈ [0,1)).

a b c

θ 2, 2 3, ε 0,0
φ ε, 3 2, 2 0,0

Hence, agent 1 always prefer b to a to c while agent 2 always prefer a to
b to c. Note that the surplus maximizing decision rule f (θ) = a, f (φ) = b is
not Nash implementable (failure of monotonicity) and is not subgame perfect
implementable (failure of a “test pair”)
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As we will show shortly, it is nevertheless easy to (weakly) implement f

in Nash: the direct game g (θ, θ) = a, g (φ, φ) = b, g (θ, φ) = g (φ, θ) = c has
indeed a truthful equilibrium. However, the direct game has also other equi-
libria. In particular, it is possible that a is always the equilibrium outcome.

With the possibility of interference, the truthful equilibrium is fragile.
Note that since agent 2 gains 1 if a is chosen instead of b in state φ, as long
as the cost of interference is less than 1, agent 1 will like to interfere and
have a as the equilibrium outcome. Similarly for agent 2 who would like to
interfere and generate outcome b in state θ.

But if both agents can interfere, then it is possible to fully implement

f by the direct revelation game. Moreover, in case ε = 0, any symmetric

interference technology µ1 = µ2 = µ ∈ (0, 1) will make the direct game fully

implement f. The result, while somewhat surprising, is actually intuitive. In

state θ, agent 1 has a gain of 1 if he successfully interferes and obtains b

rather than a; however, since a is the surplus maximizing decision, the other

agent, agent 2, loses more than 1 when decision b is chosen instead of a :
therefore, agent 2 has even more incentive than 1 to interfere if she believes

that agent 1 will not be truthful.

Consider a symmetric interference technology and the direct game (Θ, g) ,
where g has been defined above and ε = 0. We claim that in state θ the

unique equilibrium outcome is a. By symmetry, this shows that in state φ

the unique equilibrium outcome is b.

Observation Consider ε = 0 and the direct game (Θ, g) . Truth-telling is

the unique equilibrium of the game for any µ = (µ, µ) with µ∈ (0,1).

Proof. Consider state θ. Assume that agent 1 sends θ1
1

on his channel and

θ1
2

on the other channel: agent 1 uses the strategy
(
θ1
1
, θ1

2

)
in the “extended

game”. Suppose that agent 2 sends θ2
2

on his channel and θ2
1

on 1
′s channel,

i.e., uses
(
θ2
1
, θ2

2

)
in the extended game. Then since an agent succeeds on his

channel with probability µ and succeeds on the other agent’s channel with

probability 1− µ, there are four possible outcomes

g
(
θ1
1
, θ1

2

)
with probability µ (1− µ)

g
(
θ1
1
, θ2

2

)
with probability µ2

g
(
θ2
1
, θ1

2

)
with probability (1− µ)2

g
(
θ2
1
, θ2

2

)
with probability (1− µ) µ.

Note that if a agent sends (θ, θ) , the best response of the other agent is to

send (θ, θ) . For instance, if 1 sends (θ, θ) , agent 2 gets the maximum payoff

of 2 in sending (θ, θ) : any other strategy will generate a lower probability of
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getting decision a. If agent 2 sends (θ, θ) , since the outcome is c in cases of

conflicts, if agent 1 sends (φ,φ) , he obtains a payoff of 5µ (1 − µ) which is

less than 2 since µ ∈ (0, 1) . If agent 1 sends (θ, φ) or (φ, θ) his payoff is less

than 2 since he will either agree with agent 2 on state θ or will disagree with

positive probability. Hence truth-telling is indeed an equilibrium play.

Consider the other possible pure strategies of agent 1. Let u2
((

θ2
1
, θ2

2

)∣∣ (θ1
1
, θ1

2

))

be the payoff to agent 2 of using
(
θ2
1
, θ2

2

)
when agent 1 uses

(
θ1
1
, θ1

2

)
. Suppose

that
(
θ1
1
, θ1

2

)
= (θ, φ) ; then

u2 ((θ, θ)| (θ,φ)) = 2
(
µ2 + µ (1 − µ)

)

u2 ((θ, φ)| (θ,φ)) = 0

u2 ((φ, θ)| (θ,φ)) = 2µ2

u2 ((φ, φ)| (θ,φ)) = 0,

and the unique best response of agent 2 is (θ, θ) since µ ∈ (0, 1) . But then

by the previous remark, (θ, φ) is not a best response to (θ, θ) . The same

reasoning applies for all other strategies
(
θ1
1
, θ1

2

)
of agent 1. Hence, the unique

pure equilibrium strategy in state θ is truth-telling. Note that truth-telling

is in fact a strict Nash equilibrium. It then follows that truth-telling is also

the unique equilibrium in mixed strategies.

Remark 2 We have so far assumed that agents cannot exert effort and
change the security of their channels. Consider the case ε = 0. Letting µ

0
> 0

be the initial (symmetric) security of the channels, say due to existing public
investments, etc., assume that each agent can increase the security on his
channel to µ > µ

0
at cost c (µ− µ

0
) . Assume that agent 2 does not invest in

security, hence that µ
2
= µ

0
. If agent 1 has security µ

1
≥ µ

0
on his channel,

then, given that agent 2 is truthful, agent 1 obtains by deviating in state θ a
payoff

u1 ((φ, φ) , (θ, θ)) = 3µ1 (1 − µ0) + 2µ0 (1 − µ1)

agent 1 finds it beneficial to deviate only if u1 ((φ, φ) , (θ, θ)) ≥ u1 ((θ, θ) , (θ, θ)) =
2, i.e., if

µ
1
(3− 5µ

0
) ≥ 2 (1− µ

0
) .

If µ
0
≥

3

5
, agent 1 cannot gain from deviating, even if his channel is more

secure (µ
1
> µ

0
) and since he does not want to interfere, agent 1 has no

incentive to invest in more security. Similarly, for µ
0
∈

[
1
3
,
3
5

)
, the condition

is µ1 ≥
2(1−µ0)
3−5µ0

> 1 which is impossible.

10



If µ0 <
1
3
then agent 1 gains in state θ when µ1 ≥

2(1−µ
0
)

3−5µ0
. Assuming that

each state has equal probability, agent 1’s utility gain is equal to 1
2
δ (µ1) −

c(µ1 − µ0), where δ (µ1) = µ1 (3− 5µ0) − 2 (1− µ0) is the utility gain in

state θ. Note that δ (µ1) is increasing and is equal to zero at µ1 = 2(1−µ
0
)

3−5µ
0

,

which is strictly greater than 2
3
since µ0 ≥ 0. Hence, in order to replicate the

outcome without deviation, agent 1 needs to exert an effort that will increase

the security on his channel by at least 1

3
, and the smaller µ

0
is, the larger the

effort that agent 1 has to exert to replicate the outcome without deviation,

and the more costly it is. Clearly, if c
(
2

3

)
is large enough, even if µ0 is close

to 0, agent 1 will not want to deviate. For instance, let c (µ
1
− µ

0
) = µ

1
−µ

0

for µ
1
≥ µ

0
, the marginal gain of agent 1 is

1

2
δ′ (µ

1
)− c

′ (µ
1
) = 2− 5µ

0
.

If µ0 <
2

5
, the marginal gain is positive and agent 1 maximizes his payoff

from deviating to µ
1
= 1, which yields a net gain of −2µ

0
< 0. If µ

0
∈

(
2

5
,
1

3

)
,

the maximum from deviation is attained at µ
1
= µ

0
. Hence, independently

of the initial public investment µ
0
∈ (0, 1), the unique equilibrium of the

extended game is for agents not to modify the security of their channel, to be

truthful and the surplus maximizing decision rule is fully implemented by the

direct game.

Obviously, if the marginal cost c
′ (µ1 − µ0) is “small” around 0, agent 1

will in general gain from deviating if µ0 is small. For instance, if c (µ1 − µ0) =
(µ

1
−µ

0
)2

2
, it is possible to show that agent 1 will not deviate only if µ0 >

5
7
− 4

35

√
15. If µ

0
is smaller than this bound, then both agents will invest in

additional security.

Remark 3 The assumption that the set of decisions is {a, b, c} is not in-

nocuous. If one extends D to include lotteries over these outcomes,6 then

the decision rule f (θ) = a and f (φ) = b is monotonic. For instance, letting

π denote the lottery (π22, π11, 1 − π11 − π22) , agent 1 prefers a to π in state
θ but prefers π to a in state φ and monotonicity is not violated for f. As it
is well known, monotonicity is far from being sufficient when there are only
two agents ([16]). Nevertheless, for the example at hand, if lotteries can be
used, full implementation is obtained by the following game (when channels
are secure). Let h : Θ2 → {a, b, c} be such that h (θ1, θ2) = c if θ1 �= θ2 and
h (θ, θ) = f (θ) . The messages are M1 = M2 = Θ2, and the outcome func-
tion is the lottery g

((
θ1
1
, θ1

2

)
,
(
θ2
1
, θ2

2

))
that selects h

(
θi
1
, θ

j

2

)
with probability

πij. If lotteries cannot be used as outcomes, then our model suggests that the

6For another use of lotteries in implementation, see Abreu-Matsushima [1].
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design of communication structures that are not perfectly secure can create

the desired randomization.

The result of Observation 3 generalizes to any ε ∈ [0, 2/3) : one can always
find a symmetric interference structure (µ, µ) such that the efficient decision

is the unique equilibrium outcome of the extended game corresponding to the

direct game (Θ, h) where h (θ, φ) = h (φ, θ) = d0 and h (θ, θ) = a, h (φ, φ) = b.
The proof of the following proposition mimics the proof of Observation 3: the

bounds on µ are found by imposing that for any strategy
(
θi
1
, θj

2

)
of agent

i, agent −i’s unique best response is (θ, θ) . Note that as ε is close to 0, µ
can be chosen as small as we want but that as ε approaches 2/3, µ must be

chosen close to 1

2
. For ε ≥ 2/3, it is not possible to rule out b in state θ as

an outcome of this mechanism.

Proposition 4 Suppose that ε ∈
[
0,

2

3

)
. Choose µ ∈

(
1

2
−

√
2−3ε

8+4ε
,

1

2
+

√
2−3ε

8+4ε

)
.

Then the unique equilibrium of the extended game corresponding to the direct

game is the efficient decision rule.

There are two main lessons to draw from this example. First, interference
structures can facilitate the implementation of desired decision rules since by
creating “voice” on other agents’ channels, interference creates the possibility
for agents to signal their disagreement. This intuition is very similar to the
type of construction used in the implementation literature. In fact, as we
noted in our Remark 3, the logic is in fact equivalent since there exists, in
a perfectly secured environment, a mechanism in which each agent sends
an ordered pair of states and the decision rule depends on the results of
a lottery that selects a pair among all possible pairs. We show in the next
section that while we do not insist on full implementation here, the revelation
principle by which we can describe the set of allocations is based on the same
logic. Second, the example suggests that there is a relationship between the
stakes (measured by 2− ε) and the minimal security of channels required for
implementation. The agent who gains by imposing the inefficient decision
gains 1 but the other agent loses 2− ε. As ε increases, the other agent loses
less from a deviation and therefore has less incentives to signal the deviation
or to secure his channel. This explains why as ε increases it is more difficult

to obtain full implementation with a given security structure. In general,
the logic that agents have less incentives to interfere when the stakes are
lower seems rather intuitive. We will show in an application how this logic
is articulated and how our approach can provide some foundations for the
emergence of authority relationships in some contracting environments and
the emergence of “consensual” relationships in others.
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4 The Noninterference Principle

The previous example proved that a direct game satisfying truth-telling can

implement the surplus maximizing decision rule. Readers familiar with the

revelation principle would not be surprised by this observation. However, it

turns out that some care must be taken before generalizing this observation.

Indeed, a necessary condition for (Θ, h) to represent the outcome of an

equilibrium σ of (M,g) is that h (θ, θ) = gµ (σ1 (θ) , σ2 (θ)) where µ = µ (e) ,
e is the equilibrium choice of effort levels. Suppose that there is a worst

outcome and that h (θ, φ) = h (φ, θ) = d0. If agent 1 uses strategy (φ,φ) in the

direct game and if agent 2 uses the strategy (θ, θ), the outcome is h (φ, φ) =
gµ (σ1 (φ) , σ2 (φ)) with probability π11 and h (θ, θ) = gµ (σ1 (θ) , σ2 (θ)) with
probability π22. Incentive compatibility requires that

π11u
1
(
gµ

(
σ1 (φ) , σ2 (φ)

))
≤ (1 − π22)u

1
(
gµ

(
σ1 (θ) , σ2 (θ)

))
. (3)

But the equilibrium conditions in (M,g) require that

u1
(
gµ

(
σ1 (φ) , σ2 (θ)

))
≤ u1

(
gµ

(
σ1 (θ) , σ2 (θ)

))
(4)

and there is no immediate relationship between the two conditions. In the
direct game, when agent 1 interferes, he can in fact change (with some prob-
ability) the strategy that agent 2 uses in the initial mechanism. To avoid this
problem, one needs to be able to distinguish whether a message received on
channel 2 was sent by agent 1 or by agent 2. Obviously, the structure does
not allow us to have this information and therefore agents must “self-signal”
their identity. To induce agents to signal their identity, it is then necessary
to adjust the outcome with respect to the believed origin of the message.
Hence, if one receives on channel 1 a message labeled “1” and on channel 2 a
message labeled “1”, the outcome will be a function h11 while if one receives
on channel 1 a message labeled “2” and on channel 2 a message labeled “1”,
the outcome will be a function h21. In the example above, all the hij func-
tions were taken to be the same, but this is not a general property. In fact,
since it is also necessary to induce the agents to invest in the “right” level
of security, it is necessary in general to have different functions hij (the next
example will be such an example).

A way to think of our revelation principle is that we first create for each
initial channel i, two “virtual” channels, one for each agent . Incentive com-
patibility requires that each agent “tells the truth”: announces the true state
and his true identity on his virtual channel. On each initial channel i, the
probability that the message sent on the virtual channel j succeeds is equal to
µi if i = j and is equal to 1−µ

i
if j �= i. The figure below is a representation

of the principle.
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Figure 2:

Hence, we have here a “two-dimensional” incentive compatibility problem

and it is this additional dimension that enables us to replicate in the direct

game the independence of strategies that exists in the initial game.

A direct game is defined by message setsM1 = Θ×{1,2} , M2 = Θ×{1, 2}
and an outcome function h ((θ, i) , (φ, j)) = hij (θ, φ) . Fixing µ, we define

a truth-telling equilibrium in the extended game by the strategy γi (θ) =
((θ, i) , (θ, i)) .7

Proposition 5 Consider an equilibrium (e, σ) of the extended game corre-

sponding to the mechanism (M,g) and consider the decision rule f (θ) =
gµ(e)

◦ σ (θ) . There exists a direct game (Θ× {1, 2} , h) such that, if γ is the

truth-telling strategy, (e,γ) is an equilibrium of the corresponding extended

game and such that f (θ) = hµ(e)
◦ γ (θ) .

Proof. Appendix.
When there is a worst outcome, incentive compatibility of agent 1 takes

two forms, depending on the nature of his deviation. Agent 1 can either tell
the truth about the state but lie about his identity or he can lie about the
state but tell the truth about his identity. Additional conditions are that e

is indeed an equilibrium, i.e., that (2) holds for the direct game.

7Note that we require truth-telling only when agent i has taken his equilibrium effort. If

agent i deviates from his equilibrium effort, his play in the extended game will be different

from truth-telling.
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5 Authority as a Solution to the Interference

Problem

Consider a firm with n agents. The agents have to decide on which production

technology to use, and we index the technology by a parameter q ∈ R+ that

we will also call “decision”. Once the technology is settled upon, an output

is realized that is equal to Y (q) = Y − 1

2
(q − q∗)2 ; 8 Agents might disagree

on which technology is best, and this disagreement might be a function of

the state of the world. For instance, engineers and marketing people might

disagree on the degree of quality that the production line should produce:

the larger the quality, the slower the pace of the production. Engineers

value quality but marketing people value volume. Among engineers, some

might prefer to produce sport cars while others might prefer to produce

station wagons. We represent the preferences of the agents by αi (θ) q, where
θ ∈

[
θ, θ

]
⊂ R

+ indexes the state of the world and each α
i is differentiable.

Total surplus is maximized at

q
∗ (θ) = q∗ +

∑
αi (θ) .

A contract specifies an income Ii (θ) and a decision q (θ) for each an-
nounced state θ. We impose budget balancing:

∑
Ii (θ) = Y (q (θ)) .

The first best is attained when each agent does not invest in securing his
channel and “tells the truth”. We will prove that as long as the preferences of
the agents are consonant, even if an agent can perfectly interfere with other
agents’ channels, he will still prefer not to interfere and to tell the truth.

Trivially, if for each θ the sum
∑

αi (θ) is constant (for instance, α is an
element of the n−1 simplex), there is a uniform optimal decision and agents
can contract ex-ante on this decision. (There is no need for message games
to reveal the state unless one is also worried about ex-post utility levels.)

When the sum of the benefits varies across states, implementation is less
obvious. Starting from µ = (0, 0) , if agent 1 deviates and secure his channel
perfectly, he can decide on the outcome since π11 = 1. A sufficient condition
for such a deviation not to be beneficial is when agent 1 will in fact choose
the outcome that would have been chosen under µ =(0, 0) . This sufficient
condition amounts to show that the initial contract would make agent 1 be

8By risk neutrality and the absence of moral hazard in production, this might as well be

the mean of a stochastic variable. We will consider this interpretation when we introduce

monotone mechanisms.
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truthful even if he could choose the outcome. The same reasoning applies to

agent 2. Conditions for an agent to be “classically” incentive compatible are

that for each θ, θ̂:

I i (θ) + αi (θ) q∗ (θ) ≥ Ii

(
θ̂
)
+ αi (θ) q∗

(
θ̂
)

Ii

(
θ̂
)
+ αi

(
θ̂
)
q∗
(
θ̂
)
≥ Ii (θ) + αi

(
θ̂
)
q∗ (θ) .

Adding the two inequalities yield
[
α

i (θ)− α
i
(
θ̂

)] [∑(
α

j (θ)− α
j
(
θ̂

))]
≥ 0. (5)

Moreover, dividing both sides by
(
θ − θ̂

)2
and taking the limit as θ→ ˆθ

yield

α
i′ (θ)
∑

α
j′ (θ) ≥ 0. (6)

If (5) does not hold, then an agent who can interfere perfectly with other
agents’ messages has an incentive to deviate from truth-telling. If the cost
of interfering perfectly goes to zero, (6) is in fact a necessary condition for
implementation of the first best. It is not sufficient in general (this has to
do with global versus local incentive compatibility). We provide a sufficient
condition below.

Definition 6 Let αi be the derivative of αi and α′ = (α1′
, . . . , α

n′) . The

agents have consonant preferences if α′ ≥ 0 or if α′ ≤ 0.

Linear case α
i (θ) = α

i
θ. In this case, consonance occurs when all αi are

of the same sign.

Proposition 7 Suppose that agents are consonant. Then the first best can

be implemented.

Proof. Incentive compatibility implies that I
i (θ) is differentiable

9
and

that

I
i′ (θ) = −α

i (θ)
∑

α
j′ (θ) .

9Indeed, combing the two incentive compatibility conditions, we obtain

αi

(
ˆθ
)(

q∗
(
θ̂
)
− q∗ (θ)

)
≥ I i (θ) − I i

(
θ̂
)
≥ αi (θ)

(
q∗
(
θ̂
)
− q∗ (θ)

)

.Since q∗
(
θ̂
)
− q∗ (θ) =

∑(
αj

(
θ̂

)
− α

j (θ)
)
and since αj is differentiable, by dividing all

sides by θ − θ̂ yields the result.
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It follows that

I
i (θ) = I

i (θ) −

∫ θ

θ

α
i
(
θ̃

)∑
α

j′

(
˜θ

)
d˜θ. (7)

Choose {I i (θ)} in such a way that,

∑
I
i (θ) = Y −

1

2

(∑
α

j (θ)
)2

.

It follows that
10

∑
I

i (θ) = Y −
1

2

(∑
α

j (θ)
)2
−

∫ θ

θ

(∑
α

i
(
θ̃

))(∑
α

j′

(
θ̃

))
dθ̃

= Y −
1

2

(∑
α

j (θ)
)2

.

and budget balancing is satisfied everywhere.

We prove our claim if we show that the local incentive compatibility

condition implies the global incentive compatibility condition. Here, the

argument is familiar from the regulation literature. Let ui

(
θ̂, θ

)
= Ii

(
θ̂
)
+

αi (θ) q∗
(
ˆθ
)

be the utility of i if he interferes in state θ and succeeds in

obtaining the outcome of state ˆθ. Suppose that there exist ˆθ and θ such

that ui

(
ˆθ, θ

)
−ui (θ, θ) > 0. Standard arguments show that failure of global

incentive compatibility implies that

∫
θ̂

θ

∫
θ

x

∂2ui (x, y)

∂x∂y
dydx > 0.

However by consonance,

∂2ui (x, y)

∂x∂y
= αi′ (x)

∑
α

j′ (y) ≥ 0

and we obtain a contradiction (for instance, if ˆθ > θ, then x > θ and the
integrand is negative).

Example 8 In the linear case, if
∑

αj �= 0 and agents are consonant, the

first best decision rule q∗(θ) can be implemented with a mechanism with a

linear sharing rule Ii (θ) = siY (q∗ (θ)) , where si =
αi
∑
α
j .

10Indeed, note that the primitive of the function
∑

α
j (θ)
∑

α
j′ (θ) is

1

2

(∑
α
j (θ)

)2
.
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We now come to the case in which the first best decision is state contingent

and in which agents are not consonant.

Here we appeal to our noninterference principle. We assume that µ
i
(e)

depends only on i′s effort level on his own channel, in particular, it is not
possible for agent 1 to change the security level on channel 2. This enables
us to identify the effort level of i by µ

i
and to define the cost of effort by

c (µi) (we assume symmetric cost functions). We restrict attention to the
linear case: αi (θ) = αiθ for all i and all θ.

5.1 Two Agents

Assume that α1 (θ) = αθ, that α2 (θ) = βθ and that α + β > 0 while

α > 0 > β. To simplify notation, let q∗ = 0. The first best is

q∗ (θ) = (α+ β) θ.

Note that agent 1 would like q to increase (since α < 0) and agent 2
would like q to decrease (since β > 0) with respect to the first best situation.
However, agent 1 has the same direction of preferences as the first best while
agent 2 has an opposite direction of preferences. We are interested in finding
contracts that maximize the ex-ante total surplus of the relationship. The
underlying assumption is that agents can make ex-ante transfers in order
to select such a contract. As we can anticipate from our previous work
([11], [12]), the conclusions (in terms of information structure) will be quite
different if agents have limited means of transferring money ex-ante, say
because they have limited wealth and/or because the financial market is
imperfect.

Suppose that there can be two levels of effort: high effort makes the
channel perfectly secure (µ

i
= 1) and low effort makes the channel insecure

(µ
i
= 0). The cost of high effort is c > 0 and the cost of low effort is zero.

We consider only pure strategy equilibria in effort levels.
There are four possible communication structures sinceµ ∈{0, 1}2 . In the

case µ =(1, 0) , agent 1 can select the outcome and agent 2 cannot interfere.

We view this situation as a situation of “authority”. The case µ =(0, 1) is

the mirror case but we will show that this case is ex-ante dominated by the

previous case: if an agent has authority, it should be the agent who has

the same direction of preferences as in the first best. This result generalizes

nicely to the n person case.

Whether or not authority emerges as the optimal communication struc-

ture depends on the implied cost that the incentive compatibility constraints

impose on the ex-ante contract and on the stakes that are present in the
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first best contract. Remember that two sets of conditions must be satisfied:

first, truth-telling must hold given the equilibrium structure µ, second, no

agent must want to change his effort level. For instance, agent 2 does not

want to increase µ
2

and agent 1 does not want to decrease µ
1

when respect

to µ = (1, 0) .

5.1.1 A Necessary Condition for Authority

When µ =(1, 0) , agent 1 can effectively select the messages that will be

received since π =(1, 0,0, 0). Incentive compatibility of agent 2 is immediate

since agent 2 has “no voice”. By sending a message
((

θ1
1
, i
)
,
(
θ1
2
, j
))

agent

1 effectively selects the decision hij

(
θ1
1
, θ1

2

)
. Incentive compatibility means

that agent 1 prefers to send the message ((θ, 1) , (θ, 1)) in state θ. This implies

two conditions:

• Agent 1 does not want to misrepresent the state.

• Agent 1 does not want to lie about his identity.

The second condition is easily satisfied by assuming that hij = d0 as
long as ij �= 1. The first condition is easier to satisfy if h11 (θ, φ) = d0

whenever θ �= φ. Since by sending ((φ, 1) , (φ,1)) agent 1 selects the decision
h11 (φ, φ) , the first condition is satisfied when for each state θ, agent 1 prefers
h11 (θ, θ) to h11 (φ,φ) for any φ. Since the worst decision is chosen if the two
announced states disagree, we might simply write h11 (θ) to denote h11 (θ, θ)
and we have just stated that h11 (considered as a function of one variable)
must be incentive compatible in the “classical” sense. From our previous
observations, this implies that in h11 = (I11, q11) , q11 is increasing in θ and
I11 is differentiable and satisfies I ′

11
(θ) = −αθq′

11
(θ).

Now, we have to verify that agents indeed want to exert the right efforts

in terms of securing their channels. If agent 1 does not exert effort, then

π = (0, 0, 1, 0) , i.e., each agent succeeds on the other channels. Since 2 is

incentive compatible and sends ((θ, 2) , (θ, 2)) , if 1 sends
((

θ1
1
, i
)
,
(
θ1
2
, j
))

,

the final message that is received is
(
(θ, 2) ,

(
θ1
2
, j
))

. However, since h2j = d0,
agent 1 does not gain by exerting a low level of effort as long as his expected
equilibrium utility is positive (i.e., there is enough surplus in the relationship
to compensate 1 for his cost of effort c), which is what we will assume from
now on.

Suppose now that agent 2 deviates and exerts the high level of effort,
i.e., generates a security structure (1, 1) and π = (0, 1, 0, 0) . Since agent 1

is incentive compatible and send ((θ,1) , (θ, 1)) in state θ, if agent 2 sends((
θ2
1
, i
)
,
(
θ2
2
, j
))

in state θ, the final message will be
(
(θ, 1) ,

(
θ2
2
, j
))

. Since
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h1j

(
θ, θ2

2

)
= d0 whenever j �= 1 or θ2

2
�= θ, agent 2 can either replicate the

decision h11 (θ, θ) or obtain the worst outcome d0. Hence, agent 2 cannot be
made strictly better off. As long as c > 0, agent 2 will not exert the high
level of effort.

Clearly, incentives to exert the high effort level are strongest for agent 1,
the larger is his payoff under µ =(1,0) . It follows that we might as well take
h11 to be the efficient decision rule, subject to the incentive compatibility
condition (7).

Lemma 9 Let W ∗ be the first best level of total ex-ante surplus and assume

that W ∗ > c. A lower bound on the total welfare is that obtained with 1-

authority and is equal to W ∗

− c.

Proof. Using q11 (θ, θ) = q∗ (θ) and I11 (θ, θ) = I11 (θ)−α (α+ β)
(∫

θ

θ
θ̃dF

(
θ̃
))

,

agent 1 is incentive compatible given µ =(1, 0) and the outcome function h11.

The arguments in the text conclude the proof.

What about 2′s having authority? Replicating the reasoning in the text,

if the equilibrium is µ = (0, 1)–agent 2 has authority– h22 must be incentive

compatibility. However, incentive compatibility for 2 implies that q22 is non-

increasing in θ; this is a simple illustration of 2 having a different direction

of preferences than the first best. It is straightforward then that the surplus

maximizing contract–conditional on µ = (0,1) and truth-telling being an

equilibrium– is for q22 (θ, θ) to be a constant. Maximizing welfare subject to

a constant decision yields q22 (θ, θ) = (α + β)
(∫

θ̃dF
(
θ̃
))

, i.e., the constant

decision should be equal to the first best decision at the average state. It
follows that authority to 2 yields a lower total surplus than the combination
of insecure channels and a constant decision (since c is saved in the later
case). Letting E denote the expectation with respect to F, and var the
variance, total welfare is then equal to

Y +
1

2
(α+ β)2 (E [θ])2 = W ∗

−

1

2

{
E
[
θ
2
]
− (E [θ])2

}

= W
∗

−

var [θ]

2
.

The following is then immediate.

Proposition 10 1-authority dominates a constant decision rule if and only

if the cost of securing a channel is such that c ≤
(α+β)2

2
var [θ] .

From Proposition 7, if β = 0, then 1 and 2 are consonant and the first best

can be attained with µ = (0, 0) . Hence, as long as β is not “too negative”, the
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best contract compatible with µ = (0, 0) dominates the best contract with

µ =(1, 0) . When β = −α, the optimal decision is the decision q = 0. Hence,

as long as β is “not too different” from−α, the structure µ =(0, 0) will again

be optimal.

Hence, if 1-authority is optimal, it will be optimal for intermediate values

of β. We show indeed below that 1-authority is optimal when β takes inter-

mediate values. But we also show that 1-authority is more likely to emerge

as the variance in the first best decisions is important. This shows how the

stakes created in the efficient decision rule (stakes that are proportional to
the variance of the state) influence the incentives of agents to interfere and
how these stakes make the cost c spent by agent 1 for securing his channel
the exact bound on contract efficiency. This bound is attained only when
agent 1 has authority.

5.1.2 A Sufficient Condition for authority

Assume that µ =(0, 0) is part of an equilibrium, i.e., that both agents exert
the low effort. In this case, each agent has access to a secure channel: the
channel of the other agent. The easiest way to satisfy incentive compatibility
is to set hij (θ, φ) = d0 when ij �= 21 or when θ �= φ. This is enough to make

any decision rule incentive compatible once µ = (0, 0) is given.
Now, each agent can unilaterally change the security structure and once

he has done so he can select in each state θ the outcome in the range of h21

that he prefers. Remember that if agent 1 secures his channel, then with
probability one his message will succeed on both channels (π = (1, 0, 0, 0))
and by using the strategy ((φ, 2) , (φ,1)) he can effectively “select” the out-
come h21 (φ, φ) . Because only the deviations in which the same message is
sent on each channel can be beneficial, we simplify notation and write h (φ)
instead of h21 (φ, φ) ; no ambiguity should arise. We also write the shares
and the decision rule that are chosen under h21 (θ, θ) as Ii (θ) and q (θ) . It is
convenient to write the decision rule in terms of a shift with respect to the
first best decision

q (θ) = (α+ β) d (θ) (8)

Note that the first best decision rule corresponds to d (θ) = θ for each θ.
Denote the expected utility of agent i when the decision corresponding

to state φ is implemented while the state is θ by ui (φ, θ)

ui (φ, θ) = I i (φ) + αiθq (φ) .

If i unilaterally exerts the high effort, then in state θ he will send mes-
sages in order to maximize ui (φ, θ) . Let φi (θ) be a solution to the problem
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maxφ u
i (φ, θ) . Then agent i will decide not to exert the high effort level only

if

E
[
ui

(
φi (θ) , θ

)]
− c ≤ E

[
ui (θ, θ)

]
. (9)

The surplus maximizing mechanism conditional on agents exerting the
low effort will solve the problem

{
maxh W (h) = E [W (θ)]

s.t. (9), i = 1, 2.
(10)

where W (θ) is the total surplus in state θ given the mechanism h. By budget
balancing, W (θ) = Y (q (θ)) + (α+ β) θq (θ) .

We note that a revealed preference argument implies that q
(
φ1 (θ)

)
and

u1
(
φ1 (θ) , θ

)
are increasing in θ and that q

(
φ2 (θ)

)
and u2

(
φ2 (θ) , θ

)
are

decreasing in θ (see the proof in the appendix for details). We will not
attempt here to fully characterize the solution to (10), but rather we will
derive conditions under which the optimal welfare in (10) is less than W ∗−c,

which proves that 1-authority is indeed optimal.

Consider again the moral hazard constraint for agent 2. Clearly, for each

θ, and each θ̂,

u2
(
φ2 (θ) , θ

)
≥ u2

(
θ̂, θ

)

= I2
(
θ̂
)
+ β (α+ β) θd

(
θ̂
)

Hence, taking expectations with respect to θ̂ we have,

u2
(
φ2 (θ) , θ

)
≥ E

[
I2

(
θ̂
)]

+ β (α+ β) θE
[
d
(
θ̂
)]

.

Taking expectations over θ, we finally obtain

E
[
u2

(
φ2 (θ) , θ

)]
≥ E

[
I2 (θ)

]
+ β (α + β)E [θ]E [d (θ)] .

The expected equilibrium payoff to agent 2 is

E
[
u2 (θ, θ)

]
= E

[
I2 (θ)

]
+ β (α + β)E [θd (θ)]

Since by (9) E
[
u2

(
φ2 (θ) , θ

)]
≤ E [u2 (θ, θ)] + c, it follows that a necessary

condition for (9) is (using the fact that β < 0)

E [θd (θ)] ≤ E [θ]E [d (θ)]−
c

β (α+ β)
. (11)
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Total welfare is W (h) = Y −
(α+β)2

2
E

[
d (θ)2

]
+ (α+ β)2E [θd (θ)] and

must be greater thanW ∗

−c = Y +
(α+β)2

2
E

[
θ
2
]
−c. Therefore, if 1-authority

is not optimal, we must have

E [θd (θ)] ≥
E

[
θ
2
]
+ E

[
d (θ)

2
]

2
−

c

(α+ β)2
. (12)

Combining (11) and (12), we obtain the condition

E
[
θ2

]
+ E

[
d (θ)2

]

2
−E [θ]E [d (θ)] ≤ c

−α

β (α + β)2

⇐⇒

var [θ] + var [d (θ)]

2
+

1

2
(E [θ]−E [d (θ)])2 ≤ c

−α

β (α + β)2
. (13)

Note that the right hand side is positive since β < 0 and is greater than
c

(α+β)2
since −β < α. The left hand side is minimized when the variance of

d (θ) is equal to zero and when the expectation of θ and of d [θ] are equal. This
happens for the (best) constant decision that we described in the previous
section. Whenever the mechanism in (10) is not the constant decision, the

left hand side is greater than var[θ]

2
. Therefore (13) is violated whenever11

var [θ]

2
>

c

(α + β)2
−α

β
.

Proposition 11 1-authority is the optimal interference structure when
var[θ]

2
>

c

(α+β)2
−α

β
.

The condition in Proposition 11 is intuitive. The first best decision is
increasing with the state and the variance of the first best decision is pro-
portional to the variance of the state (is equal to (α+ β)2 var [θ]). For any

mechanism, if agent 2 was able to select the decision (in the range of the
decisions available in the mechanism), he would do so in such a way that
the decision is a decreasing function of the state. The larger the variance in
the decision rule of the mechanism, the greater is the benefit for agent 2 to
select his preferred decisions. The variance of the first best decision depends
both on the variance in the state and on the difference in the preference
parameters of the two agents. As long as c, the cost of interfering is not too
large, a large initial variance of the state and a large initial first best weight
will create incentives for agent 2 to interfere.

11The bound on the right hand side achieves its minimum value of 27c

4α2
for β = −

1

3
α.

The condition can therefore be satisfied for some values of β when var [θ] > 27c

2α2
.
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5.2 n Agents

The basic logic of the case n = 2 extends to the case n ≥ 3. Consider

the situation in which the {αi} are decreasing in i,
∑

αi > 0 and there

exists k such that αk > 0 > αk+1. In this case, agents {1, . . . , k} have

consonant preferences with the first best and agents {k + 1, . . . , n} have

dissonant preferences with the first best. Our principle extends readily to

the n agent case. It is now necessary to define for each channel i a vector

µi =
(
µ

j

i , j = 1, . . . , n
)

in the n−1 simplex where µ
j

i denotes the probability
with which agent j succeeds on channel i).

To simplify, continue to assume that agents can either secure their channel
or not. If channel i is secured, i.e., ei = 1, then µi

i = 1 (only player i can
succeeds on channel i). If channel i is not secured, i.e., ei = 0, then µ

j

i =
1

n−1

(each player has an equal chance of succeeding on channel i). Suppose that
e = 0, i.e., that µ

j

i =
1

n−1
for j �= i. As before, as long as the security

structure does not change, any mechanism is incentive compatible in our
sense. Suppose that agent j exerts high effort e1 = 1 (at cost c > 0) and
deviates from truth-telling. Since other agents are telling the truth, as long
as h = d0 when announcements about the state disagree, agent j will be able

to select a decision q (φ) �= q (θ) with probability p =
(

1

n−1

)
n−1

and with

probability 1 − p will select decision d0. Clearly for n large, the probability

of selecting d0 is close to one and no agent can gain by exerting high effort.12

For small values of n, an agent might still benefit from exerting high

effort and deviating from truth telling. Replicating the reasoning that we

made for the case n = 2, we can show that as long as var [θ] is large enough,

the best mechanism with e = 0 is dominated by authority. In the n = 2

case, authority should be given to the agent who has the same direction of

preferences as the first best, i.e., to agent 1 since α1 > 0. However, since

agent 1 must be incentive compatible in the classical sense, it is necessary

that the sharing rule for agent 2 is a non trivial function of the state. In the

case n ≥ 3, if there exists j such that αj
=

∑
αi, then we can give authority

to j, pay all other agents a fixed wage and make agent j the full residual

claimant for the revenue. This is suggestive of the fact that authority should

be given to agents whose preferences coincide with the social preferences.

This also suggests that we should observe authority figures who are somehow

“consensual” rather than extremists.

12We might question however the relevance of the assumption that a large number of

agents have common information while outsiders do not.
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6 Discussion

Our examples illustrate that the consideration of interference can lead to new
insights about contracting and organization. The noninterference principle
makes the program tractable. Already it leads to a new interpretation and
account of authority in organizations: in environments where communication
cannot be secured at no cost, and when the stakes are sufficiently high, it
may be optimal to give to one person authority in its dual sense: the power
to decide and the power of influence.

There are a number of obvious extensions to the model that we have not
yet considered, including continuous effort choices. More interesting perhaps
is a comparison of voting with authority: even if a median voter would make
the same decision as the representative player with authority, the differences
in the costs of securing channels may make authority desirable. On the other
hand if the distribution is skewed so that the representative and the median
are very different, authority will not perform well and majority rule may
dominate.

We outline some issues on the agenda.
One observation is that a person who is already influential may end up

getting decision power because it is very cheap to secure his channel. For
instance, reputation could be an important source of channel security; thus
a bankrupt Donald Trump can get control over new real estate development
projects. Similarly, if we relax the assumption that there is no binding limit
to ex-ante transfers, considering the surplus maximizing outcome is no longer
justified. With wealth effects, for instance, we might expect the wealthiest
to get authority, even if this isn’t optimal, simply because they are able to
afford secure channels (Legros-Newman [11], [12]). Someone with a great
reputation may get authority (decision power) for the same reason.

Authority as we have modeled it can help to explain why corporations are
frequently personified by one individual. It can also help us understand why
the one agent paradigm might be reasonable, especially when the standard
mechanism desing approach would predict a strong discontinuity between
the one and the two agent models. For instance, as should be well known, if
two agents have correlated information in a firm, they will not be subject to
borrowing constraint while a one agent firm would be. Once one allows for
interference, contracts that would relax the borrowing constraint in the two
agent case may no longer be feasible.
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7 Appendix

7.1 Proof of Proposition

Step 1: Consider an equilibrium (e, σ) of the extended game corresponding

to (M,g) . Consider sets M̂ i that are disjoint and that contain two different

“copies” of Θ. For instance, let M̂1 = M̂2 = Θ×{1,2} . Below we fix e at his

equilibrium value and let σi (θ) stands for σi (θ,µi) , .πij stands for πij (e) ,

etc. We want to show that there exists a function h : M̂1 ×
ˆM2 → D such

that in the extended game corresponding to the direct mechanism
(
ˆM,h

)
,

agents find it optimal to “tell the truth” on each channel : hence agent i finds

it optimal to send ((θ, i) , (θ, i)) in state θ when the other agent is telling the

truth. Moreover, we want to argue that with such mechanism, each agent also

finds it optimal to play his equilibrium e
i when the other agent is expected

to do the same.

We define h as follows.

h ((θ, i) , (φ, j)) =

{
g
(
σi
1
(θ) , σj

2
(θ)

)
if θ = φ

d0 otherwise.

We claim that the strategy γ where γi (θ) = ((θ, i) , (θ, i)) is an equilibrium of

the extended game corresponding to
(
M̂, h

)
. Note that h

(
γi
1
(θ) , γj

2
(θ)

)
=

g
(
σi
1
(θ) , σj

2
(θ)

)
and therefore that hµ ◦ γ = gµ ◦ σ. To show the equilib-

rium property of γ assume that in state θ agent 1 decides to use a strategy((
θ1
1
, i
)
,
(
θ1
2
, j
))

. Since agent 2 uses the strategy γ2 (θ) = ((θ, 2) , (θ, 2)) , the

outcome is the lottery

h
((

θ1
1
, i
)
,
(
θ1
2
, j
))

with probability π11

h
((

θ1
1
, i
)
, (θ, 2)

)
with probability π12

h
(
(θ, 2) ,

(
θ1
2
, j
))

with probability π21

h ((θ, 2) , (θ, 2)) with probability π22

Note that the outcome h ((θ, 2) , (θ, 2)) arises with probability π22 inde-

pendently of the strategy of agent 1. Hence, only the first three outcomes

depend on the strategy of agent 1. If θ1 �= θ2 �= θ the agent obtains a lottery

in which he gets d0 with probability 1 − π22 and h ((θ, 2) , (θ, 2)) with prob-

ability π22; hence agent 1 cannot be strictly better off than when he plays

γ1 (θ) . Consider now the case θ1 = θ2 = φ. Using the definition of h, the
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above lottery is

g
(
σi
1
(φ) , σj

2
(φ)

)
with probability π11

g
(
σi
1
(φ) , σ2

2
(θ)

)
with probability π12

g
(
σ2

1
(θ) , σj

2
(φ)

)
with probability π21

g
(
σ2

1
(θ) , σ2

2
(θ)

)
with probability π22

If agent 1 prefers strictly this lottery to the lottery when there is truth-

telling, this implies that he prefers to play the strategy
(
σi
1
(φ) , σj

2
(φ)

)
in

state θ in the initial game. But this contradicts the equilibrium property of

σ in the initial extended game.

Suppose now that agent 1 want to choose ê
1 �= e

1 at the first stage.

Let µ̂ = µ (ê1, e2) be the new vector describing the security of the channels.

When the agents play, agent 2 does not obtain information about the effort

level of 1 and continues to use his truthful strategy. Suppose that agent 1

uses a strategy γ̂1 (θ) and has a higher ex-ante utility:

Eu
1
(
h
µ̂
(
γ̂1 (θ) , γ2 (θ)

)
, θ
)
− c1

(
ê
1
)
> Eu1

(
hµ

(
γ1 (θ) , γ2 (θ)

)
, θ

)
− c1

(
e
1
)
.

We note that since hij (φ, θ) = d0, for any θ,

max
m̂

1∈M̂1×M̂2

u
1
(
h
µ̂
(
m̂1, γ2 (θ)

)
, θ

)
≤ max

m1∈M1×M2

u
1
(
gµ̂

(
m1, σ2 (θ)

)
, θ

)
.

Indeed, if the maximum on the right hand side is attained at m1 such

that m1 =
(
σi
1
(θ1) , σ

j

2
(θ2)

)
for some ij and some θ1, θ2, then agent 1 by

using m̂1 = ((θ1, i) , (θ2, j)) will either obtain the same payoff or will ob-

tain a strictly lower payoff if θ1 or θ2 is not equal to θ. It follows that

maxσ̂1 Eu
1
(
g
µ̂
(
σ̂1 (θ) , σ2 (θ)

)
, θ
)
−c1 (ê1) > Eu1 (gµ (σ1 (θ) , σ2 (θ)) , θ)−c1 (e1) ,

which contradicts the assumption that (e,σ) is an equilibrium of the ex-

tended game (M,g) .
Note that we can dispense of the assumption of a worst outcome quite

easily by defining

h ((θ, i) , (φ, j)) = g
(
σi
1
(θ) , σj

2
(φ)

)

and going through the same steps as before. Finally, defining hij (θ, φ) =
h ((θ, i) , (φ, j)) establishes the proposition.

7.2 Proof of Monotonicity

We first show that q
(
φi (θ)

)
and ui

(
φi (θ) , θ

)
are increasing in θ when i = 1

and are decreasing in θ when i = 2. Consider two states θ and θ̂. By definition
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of φi,

I i
(
q
(
φi (θ)

))
+ αiθq

(
φi (θ)

)
≥ I i

(
q
(
φi

(
θ̂
)))

+ αiθq
(
φi

(
θ̂
))

Ii
(
q
(
φi (θ)

))
+ αiθ̂q

(
φi

(
θ̂
))

≥ I i
(
q
(
φi (θ)

))
+ αiθ̂q

(
φi (θ)

)

which implies that

αi

(
θ − θ̂

)(
q
(
φi (θ)

)
− q

(
φi

(
θ̂
)))

≥ 0.

When θ > θ̂ implies that q
(
φi (θ)

)
≥ q

(
φi

(
θ̂
))

when αi ≥ 0 and implies

q
(
φi (θ)

)
≥ q

(
φi

(
θ̂
))

when αi ≤ 0. Note that the above conditions can be

written

αi

(
θ − θ̂

)
q
(
φi (θ)

)
≥ ui

(
φi (θ) , θ

)
− ui

(
φi

(
θ̂
)
, θ̂
)
≥ αi

(
θ − θ̂

)
q
(
φi

(
θ̂
))

.

As q ≥ 0, the result follows.
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