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Abstract: This paper provides cumulative distribution functions, densities, and fi-
nite sample critical values for the single-equation error correction statistic for testing
cointegration. Graphs and response surfaces summarize extensive Monte Carlo sim-
ulations and highlight simple dependencies of the statistic’s quantiles on the number
of variables in the error correction model, the choice of deterministic components,
and the estimation sample size. The response surfaces provide a convenient way for
calculating finite sample critical values at standard levels; and a computer program,
freely available over the Internet, can be used to calculate both critical values and
p-values. Three empirical examples illustrate these tools.

Keywords: cointegration, critical value, distribution function, error correction, Monte
Carlo, response surface.

JEL classifications: C22, C52.

*The first author is a staff economist in the Division of International Finance, Board of Gov-
ernors of the Federal Reserve System, Washington, D.C. 20551 U.S.A., and the second author
is the Sir Edward Peacock Professor of Econometrics in the Department of Economics, Queen’s
University, Kingston, Ontario, Canada K7L 3NS. The authors may be reached on the Internet at
ericsson@frb.gov and jgm@qed.econ.queensu.ca respectively. The views in this paper are solely the
responsibility of the authors and should not be interpreted as reflecting the views of the Board
of Governors of the Federal Reserve System or of any other person associated with the Federal
Reserve System. The second author’s research was supported in part by grants from the Social
Sciences and Humanities Research Council of Canada. An earlier version of this paper appeared
under the title “Finite Sample Properties of Error Correction Tests for Cointegration”. We are
grateful to Shaghil Ahmed, David Bowman, Jon Faust, David Hendry, Seren Johansen, Fred Joutz,
Andy Levin, Jaime Marquez, Bent Nielsen, and John Rogers for helpful comments and discussion;
to Hayden Smith and Sebastian Thomas for research assistance; and to Jurgen Doornik and David
Hendry for providing us with a beta-test version of GiveWin Version 2.0. Monte Carlo simula-
tions and the graphs of the cumulative distribution functions and densities were obtained from
modified versions of programs for MacKinnon (1994, 1996). Response surfaces were obtained us-
ing PcGive Professional Version 9.2, and 3D graphics were generated from GiveWin: see Doornik
and Hendry (1996). The paper’s tables of response surface coefficients and the computer pro-
gram for calculating critical values and p-values are available from the second author’s home page
(http://www.econ.queensu.ca/pub/faculty /mackinnon/).



1 Introduction

Three general approaches are widely used for testing whether or not nonstationary
economic time series are cointegrated: single-equation static regressions, due to Engle
and Granger (1987); vector autoregressions, as formulated by Johansen (1988, 1991);
and single-equation conditional error correction models, initially proposed by Phillips
(1954, 1957) and further developed by Sargan (1964). While all three have their
advantages and disadvantages, testing for cointegration with any of these approaches
requires nonstandard critical values, which usually are calculated by Monte Carlo
simulation. Engle and Granger (1987) tabulate a limited set of critical values for
their procedure. MacKinnon (1991) derives a more extensive set with finite sample
corrections based on response surfaces, and MacKinnon (1996) provides a computer
program to calculate critical values for Engle and Granger’s test at any desired level.
Johansen (1988), Johansen and Juselius (1990), and Osterwald-Lenum (1992) include
critical values for the Johansen procedure under typical assumptions about determin-
istic terms and the number of stochastic variables. Johansen (1995), Doornik (1998,
1999), and MacKinnon, Haug, and Michelis (1999) provide more accurate estimates of
these critical values, with the last of these papers also providing computer programs
to calculate critical values and p-values.

By contrast, critical values for the single-equation error correction procedure are
scant, perhaps because error correction models substantially predate the literature
on cointegration. Banerjee, Dolado, Galbraith, and Hendry (1993) tabulate critical
values for an error correction model with two variables at three sample sizes; and
Banerjee, Dolado, and Mestre (1998) list critical values for models with two through
six variables at five sample sizes. Harbo, Johansen, Nielsen, and Rahbek (1998),
MacKinnon, Haug, and Michelis (1999), and Pesaran, Shin, and Smith (1999) list
asymptotic critical values for a related but distinct procedure for single- and multiple-
equation error correction models.

The current paper addresses this dearth by providing an extensive set, of cointe-
gration critical values for the single-equation error correction model. These critical
values include finite sample adjustments similar to those in MacKinnon (1991, 1996)
for the Engle-Granger procedure, they are very accurate numerically and are easy to
use in practice, and they encompass and supercede comparable results in Banerjee,
Dolado, Galbraith, and Hendry (1993) and Banerjee, Dolado, and Mestre (1998). We
also provide a freely available program, similar to the one in MacKinnon (1996) for
the Engle-Granger procedure, that computes both critical values and p-values for the
error correction statistic. Conditional error correction models are ubiquitous empiri-
cally, so these tools for calculating critical values and p-values should be of immediate
use to the empirical modeler. Finally, general distributional properties are of con-
siderable interest. Accurate numerical approximations to the entire distribution of
the error correction statistic are calculated herein and offer insights into the nature



of that statistic, particularly relative to the Dickey-Fuller and Engle-Granger statis-
tics. Graphs highlight the error correction statistic’s properties and relationships,
and show for the first time what many of its various distributions and densities look
like. Throughout, the focus is on testing for cointegration, rather than on the comple-
mentary task of estimating the cointegrating vectors, assuming a given cointegration
rank, as in Stock (1987), Phillips and Loretan (1991), and Stock and Watson (1993).

This paper is organized as follows. Section 2 sets the backdrop by considering the
three common procedures and their relationships to each other. Section 3 outlines
the structure of the Monte Carlo analysis for calculating the distributional properties
of the cointegration test statistic based on the single-equation error correction model.
Section 4 presents the Monte Carlo results, which include cumulative distributions,
densities, and critical values with finite sample corrections. Section 5 applies the finite
sample critical values derived in Section 4 and the computer program for calculating
p-values to empirical error correction models of U.K. narrow money demand (from
Hendry and Ericsson (1991)), U.K. consumers’ expenditure (from Davidson, Hendry,
Srba, and Yeo (1978)), and U.S. federal government debt (from Hamilton and Flavin
(1986)). Section 6 concludes.

2 An Overview of Three Test Procedures

This paper focuses on finite sample inference about cointegration in a single-equation
conditional error correction model (ECM).! To motivate the use of conditional ECMs,
this section describes the analytics of and inferential methods for the three common
approaches for testing cointegration: the Johansen procedure (Section 2.1), the con-
ditional error correction model (Section 2.2), and the Engle-Granger procedure (Sec-
tion 2.3). Differences between the three approaches turn on their various assumptions
about dynamics and exogeneity (Section 2.4).

2.1 The Johansen Procedure

Johansen (1988, 1991) derives a maximum likelihood procedure for testing for coin-
tegration in a finite-order Gaussian vector autoregression (VAR). That system is:

¢
.Tt:Zﬂ'ixt_i‘i‘(I)Dt—f‘Z‘:t 6tNIN(O,Q), tzl,...,T, (1)
i=1
where z; is a vector of k variables at time ¢; 7; is a k X k matrix of coefficients on the
ith lag of x;; £ is the maximal lag length; ® is a k x d matrix of coefficients on Dy, a
vector of d deterministic variables (such as a constant term and a trend); ; is a vector

IStrictly speaking, the models examined herein are equilibrium correction models; see Hendry
(1995a).



of k unobserved, sequentially independent, jointly normal errors with mean zero and
(constant) covariance matrix €2; and 7' is the number of observations. Throughout,
x is restricted to be (at most) integrated of order one, denoted I(1), where an I(j)
variable requires jth differencing to make it stationary.

The VAR in (1) may be rewritten as a vector error correction model:

(-1
Aﬂft = TT¢_1 + ZPiAxt—i + (I)Dt +Er &~ IN(O, Q), (2)
i=1
where 7 and I'; are:

- (zw) s 8

i=1
Fi = —(7Ti+1+"'+776) izlu"'7£_17 (4)

I}, is the identity matrix of dimension k, and A is the difference operator.? For any
specified number of cointegrating vectors r (0 < r < k), the matrix 7 is of (potentially
reduced) rank r and may be rewritten as:

T =af, (5)
where o and 3 are k x r matrices of full rank. By substitution, (2) is:
-1
Al’t = Oéﬁ/l’t_l + ZPiAxt—i + (I)Dt +Er & v IN(O, Q) (6)
i=1

In (6), § is the matrix of cointegrating vectors, and « is the matrix of “weighting
elements”.

Johansen (1988, 1991) derives two maximum likelihood statistics for testing the
rank of 7 in (2) and hence for testing the number of cointegrating vectors in (2).
Critical values appear in Johansen (1988, Table 1) for a VAR with no deterministic
components, in Johansen and Juselius (1990, Tables A1-A3) for VARs with a constant
term, and in Osterwald-Lenum (1992) and Johansen (1995, Chapter 15) for VARs
with no deterministic components, with a constant term only, and with a constant
term and a linear trend. Doornik (1998, 1999) derives a convenient approximation
to the maximum likelihood statistics’ distributions using the Gamma distribution,
and MacKinnon, Haug, and Michelis (1999) provide computer programs to calculate
critical values and p-values for the Johansen procedure.

2The difference operator A is defined as (1 — L), where the lag operator L shifts a variable
one period into the past. Hence, for x;, Lx; = x; 1 and so Axy = x4 — x4 1. More generally,
A;:W = (1 — L%)%x, for positive integers i and j. If i or j is not explicit, it is taken to be unity.



2.2 Single-equation Conditional Error Correction Models

Without loss of generality, the VAR in (1) can be factorized into a pair of conditional
and marginal models. If the marginal variables are weakly exogenous for the coin-
tegrating vectors (3, then inference about cointegration using the conditional model
alone can be made without loss of information relative to inference using the full
system (the VAR); see Johansen (1992a, 1992b). This subsection derives a single-
equation conditional model from the VAR and delineates two related approaches for
conducting such inferences about cointegration from that conditional model, where
the second of those approaches is the focus of the Monte Carlo analysis in Sections 3
and 4 and of the empirical analysis in Section 5.

For expositional clarity, assume that (1) is a first-order VAR with no deterministic
components. Its explicit representation as the vector error correction model (2) is:

Ay, = manYi—1 + Ta2Z—1 +En (7)
Az = TonYi—1 + T(22)%—1 + €2, (8)

where x, = (y; 2;), y; is a scalar endogenous variable, z; is a (k — 1) x 1 vector of
potentially weakly exogenous variables, 7 is partitioned conformably to x; as {7},
and ¢, = (g1 €5,). From (6), equations (7)—(8) may be written as:

Ay, = oqffz g +ey (9)
Azt = &Qﬂ,xt_1+€2t, (10)

where o/ = (o o). Equations (9)—(10) always may be factorized into the conditional
distribution of y; given z; and lags on both variables, and the marginal distribution
of z, (also given lags on both variables):

Ay, = ’YEJAZt + ’Ylﬁ/xt—l + V1t (11)
Azt = Cl/gﬂ/xt_l -+ Eat, (12)

where 7y = Q1,0%4, 71 = a1 — Q05 an, vy = £1 — Q9 €as, the expectation
E(v14e2t) is zero (by construction), and the error covariance matrix € in (1) is {;;}.
Equivalently, the error £1; in (9) may be partitioned into two uncorrelated components
as €1, = V1 + Yy€a, and then ey, is substituted out to obtain (11).

The variable z; is weakly exogenous for [ if and only if as = 0 in (12), in which
case (11)—(12) becomes:

Ay, = 7oAz +7v, 8w 1 + vy (13)
Azt = &9¢, (14)

where v, = a;. The test for weak exogeneity in Johansen (1992a) is a test of ay = 0.
If ay = 0, the conditional ECM (13) by itself is sufficient for inference about
(3 that is without loss of information relative to inference from (11)—(12) together.
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Two distinct approaches have evolved for testing cointegration in the conditional
ECM (13): one is due to Harbo, Johansen, Nielsen, and Rahbek (1998), and the other
originates from the literature on error correction models. The current paper analyzes
the second approach, and a clarification between the two approaches is central to
understanding their respective properties.

Harbo, Johansen, Nielsen, and Rahbek (1998) derive the likelihood-ratio statistic
for testing cointegrating rank in a conditional subsystem obtained from a Gaussian
VAR when the marginal variables are weakly exogenous for . For a single-equation
conditional model such as (13), the null hypothesis being tested is ;3 = 0, i.e., that
the cointegrating rank for x is zero. The alternative hypothesis is that 7,3 # 0,
implying that x has a cointegrating vector # with at least one nonzero element.

The second approach stems from the literature on error correction models and
is based on transformations of (13), with an auxiliary assumption about the nature
of x’s cointegration. Specifically, the conditional ECM (13) can be motivated as a
reparameterization of the conditional autoregressive distributed lag (ADL) model; see
Davidson, Hendry, Srba, and Yeo (1978) and Hendry, Pagan, and Sargan (1984) inter
alia. Data transformations imply reparameterizations, and two transformations are
of particular interest:

differencing :  pyx + poi_1 — Az + (g + o) Te1
differentials :  pyy + poze = pa(ye — 20) + (01 + p2) 2,

for arbitrary coefficients p; and p,. Repeatedly applying these two transformations
rearranges a conditional ADL into the conditional ECM (13):

Y = Mgz + MNze1+ Ay + v (15)
Yy = %JAZ,: + Aézt_1 + Xoyr—1 + v (16)
Ay = 70Dz + Nsz-1 + V-1 + Vi (17)
Ay, = YAz +7v, (Y1 — 8z 1) +vn (18)
Ay, = 7oAz + 7,001 + v, (19)

where Ao, A1, Ay, A3, and 6 are various coefficients; and the cointegrating vector 3
has been normalized on its first coefficient (i.e., for y) such that 3 = (1 —§'). In
practice, significance testing of the error correction term typically has been based on
the t-ratio for y; in (17) (not in (18) or (19)): this is the “PcGive unit root test” in
Hendry (1989, p. 149) and Hendry and Doornik (1996, p. 235), which here is denoted
the ECM statistic.

When interpreted as a test for cointegration of z, this approach requires an ad-
ditional assumption: namely, that the variables in z are not cointegrated among
themselves. Thus, v, = 0 in (17) implies (and is implied by) a lack of cointegration
between y and z, whereas v; < 0 implies cointegration. The ¢-ratio based upon the
least squares estimator of v, in (17) is the ECM statistic analyzed in Sections 3, 4,
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and 5. That t-ratio is denoted r4(k), where d indicates the deterministic components
included in the ECM, or the number of such deterministic components, depending
upon the context; and k is the total number of variables in  (not to be confused with
the number of regressors in the ECM). This t-ratio is used to test the null hypothesis
that v, = 0, i.e., that y and z are not cointegrated. If weak exogeneity does not hold,
critical values generally are affected; see Hendry (1995b).

To summarize, the ECM statistic k4(k) is designed to detect cointegration involv-
ing y in the conditional model (13). The procedure in Harbo, Johansen, Nielsen,
and Rahbek (1998) is designed to detect any cointegration in z in the conditional
model (13), where that cointegration may include y or it may be restricted to z
alone. While both derive from conditional models, the two statistics are testing dif-
ferent hypotheses. They have different distributions — even asymptotically — and
so require separate tabulation.

Harbo, Johansen, Nielsen, and Rahbek (1998, Tables 2-4) present asymptotic
critical values for their statistic for (typically) & = 2,...,7 with several choices of de-
terministic terms, and allowing for conditional subsystems (i.e., with more than one
endogenous variable) as well as conditional single equations. Pesaran, Shin, and Smith
(1999, Tables T.1*-T.5*) estimate the 5% and 10% critical values for up through 5
weakly exogenous variables and 12 endogenous variables. Using response surfaces,
MacKinnon, Haug, and Michelis (1999, Tables 2-6) extend and more precisely es-
timate the 5% critical values in Harbo, Johansen, Nielsen, and Rahbek (1998) and
Pesaran, Shin, and Smith (1999) for up through 8 weakly exogenous variables and 12
endogenous variables. They also make available a program that calculates asymptotic
critical values at any level and p-values.

Critical values for the ECM statistic x4(k) appear in Banerjee, Dolado, Galbraith,
and Hendry (1993, Table 7.6) for £ = 2 with a constant term, and in Banerjee, Dolado,
and Mestre (1998, Table I) for kK = 2,...,6 with a constant term and with a constant
term and a linear trend. In both articles, the maximum number of variables is too
small for some empirical purposes, the estimates of the critical values are relatively
imprecise, and finite sample adjustments are impractical from the reported critical
values. The results in Section 4 address these limitations. In the next subsection, the
derivation in (15)—(19) clarifies the relationship between the ECM and Engle-Granger
procedures.

2.3 The Engle-Granger Procedure

Engle and Granger (1987) propose testing for cointegration by testing whether the
residuals of a static regression are stationary. The usual unit root test used is that
of Dickey and Fuller (1979, 1981), which is based on a finite-order autoregression.
Engle and Granger’s procedure imposes a common factor restriction on the dynamics
of the relationship between the variables involved. If that restriction is invalid, a



loss of power relative to the ECM and Johansen procedures may well result. This
subsection highlights that role of the common factor restriction by expressing the
model for Engle and Granger’s procedure as a restricted ECM.

Reconsider the conditional ECM derived from a first-order VAR:

Ay = 70Dz + 71 (y — 8'2)e-1 + vy, (20)
where the putative disequilibrium is:
wy =y — 8'2. (21)

Engle and Granger’s cointegration test statistic can be formulated in terms of these
two equations, thus establishing the relationship between it and the ECM statistic.
Specifically, subtract 6’ Az; from both sides of (20) and re-arrange:

Aly = 8'2)e =7y — &'2)e-1 + [(0 — 6) Az + w1y (22)
From the definition of w; in (21), equation (22) may be rewritten as:
Awy = yywy_q + ey, (23)
where w, is the Engle-Granger residual and, by construction, the disturbance e; is:
er = (v — 8 Az + vy (24)

The t-ratio on the least squares estimator of v, in (23) is the Dickey-Fuller statistic
for testing whether w has a unit root and hence whether y and z lack (or obtain)
cointegration with cointegrating vector (1 —¢'). Below, that t-ratio is denoted 74(k),
paralleling 7 (and 7, and 7,) in Dickey and Fuller (1979).

If the cointegrating coefficient 6 is known, then the ¢-ratio on ~, in (23) has a
Dickey-Fuller distribution (equivalent to assuming k& = 1), as originally tabulated
by Dickey in Fuller (1976, Table 8.5.2). If § is estimated by least squares prior to
testing that «; = 0, then other critical values are required. Engle and Granger (1987,
Table II) give such critical values for the bivariate model (k = 2) with a constant
term. The response surfaces in MacKinnon (1991, Table 1) allow construction of
critical values with finite sample adjustments for £k = 1,...,6 with a constant term
and with a constant term and a linear trend. MacKinnon (1996) provides a computer
program to calculate numerically highly accurate critical values at any desired level
for k =1,...,12 with deterministic terms up to and including a quadratic trend.

The t-ratio on 7y, in (23) ignores potential information contained about Az in e,
as (24) highlights. Equivalently, (22) (and so (23)) imposes the restriction v, = é:
namely, the short-run elasticity (v,) equals the long-run elasticity (), where both
elasticities are of y with respect to z. More generally, the Engle-Granger procedure



imposes a common factor restriction, as follows from rewriting (21) and (23) as an
equilibrium relationship with an autoregressive error:

v = 8z + wy wy = (14w 1 + €. (25)

Equation (25) motivates the use of unit root statistics in testing for cointegration. If
w has a unit root, then v; = 0, w is nonstationary, and y and z are not cointegrated.
Conversely, if w has its root inside the unit circle, then v; < 0, w is stationary, and
y and z are cointegrated.

Nonetheless, (25) imposes a restriction on the dynamics of the relationship be-
tween y and z. Letting L be the lag operator, (25) is:

1= L+ 7))Ly = [1 = (14 7,)L]6 "2 + ey, (26)

where [1 — (1 + ~,)L] is the factor common to y, and z (hence the name common
factor restriction). Rewriting (25) as the ADL (15) or ECM (18) obtains:

Yo = z— (1+7)0 21+ 1 +7)p-1 + e (27)
or Ay, = Dz +y(y—82) + e, (28)

highlighting the restrictiveness of the Engle-Granger procedure relative to the ECM
procedure.

Even under an invalid common factor restriction, e; may remain white noise, as
would occur in (24) if z were a pure random walk. Nonetheless, e; would not be an
innovation with respect to current and lagged z and lagged y, noting that e; includes
Az;. Empirically, estimated short- and long-run elasticities often differ markedly, so
imposing their equality in the Engle-Granger procedure is arbitrary and hazardous.
Weak exogeneity is assumed in the presentation above but is not required for the
Engle-Granger procedure. See Kremers, Ericsson, and Dolado (1992) for a general
derivation of the common factor restriction in the Engle-Granger procedure.

2.4 A Comparison

The Johansen, ECM, and Engle-Granger procedures all focus on whether or not the
feedback parameters for the cointegrating vector(s) are nonzero: « for the Johansen
procedure, o for the ECM procedure, and 7, (which is a; under weak exogeneity) for
the Engle-Granger procedure. The procedures differ in their assumptions about the
data generation process, and those assumptions imply both advantages and disadvan-
tages for empirical implementation. For all three procedures, numerical computations
are easy and fast for both estimation and testing.

Table 1 compares the assumptions of these procedures and their implied advan-
tages and disadvantages. For the procedure using the conditional ECM, the advan-
tages are severalfold. The conditional ECM (or, equivalently, the unrestricted ADL)
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is a common starting point for modeling general to specific in a single-equation con-
text. Also, weak exogeneity is often valid empirically. And, the ECM procedure
is robust to many particulars of the marginal process, e.g., specific lag lengths and
dynamics involved. While the ECM procedure assumes weak exogeneity and often
assumes at most a single cointegrating vector, the procedure’s appeal has made it
common in the literature — hence the need for a clear understanding of the proce-
dure’s distributional properties. The next two sections describe the structure of the
Monte Carlo analysis used for calculating such properties (Section 3) and the results
obtained (Section 4).

3 The Structure of the Monte Carlo Analysis

The objective of this paper is to provide information on finite sample inference about
cointegration in conditional error correction models. Section 2 motivated the interest
in the ECM statistic by clarifying its relationships to the Johansen and Engle-Granger
procedures. The remaining sections examine the distributional properties of the ECM
statistic.

Because no analytical solution is known for even the asymptotic distribution of
the ECM test statistic, distributional properties are estimated by Monte Carlo simu-
lation. This section outlines the structure of that Monte Carlo simulation. Section 3.1
describes the focus of the current paper’s simulation, the model estimated, and the
data generation process. Sections 3.2 and 3.3 sketch the design and simulation of the
Monte Carlo experiments, and Section 3.4 discusses post-simulation analysis.

3.1 The Focus, the Model, and the Data (Generation Process

The general object of interest is the distribution of the ECM test statistic k4(k)
under the null of no cointegration. Asymptotic properties are derived in Kiviet and
Phillips (1992), Campos, Ericsson, and Hendry (1996), and Banerjee, Dolado, and
Mestre (1998), with certain invariance results appearing in Kiviet and Phillips (1992).
Finite sample properties appear in Banerjee, Dolado, Galbraith, and Hendry (1993),
Campos, Ericsson, and Hendry (1996), and Banerjee, Dolado, and Mestre (1998), but
are all very limited in terms of their experimental design.? In the current paper, two
aspects are of primary concern: the cumulative distribution of the ECM statistic, and
critical values at common levels of significance.

3The current paper, like much of the literature, focuses on cointegration tests when the coin-
tegrating vectors are unknown a priori. Kremers, Ericsson, and Dolado (1992), Hansen (1995),
Campos, Ericsson, and Hendry (1996), and Zivot (1996) consider distributional properties for the
ECM statistic when the cointegrating coefficients are known. In that case, the statistic’s distribution
contains nuisance parameters, even asymptotically. Horvath and Watson (1995) and Elliott (1995)
analyze properties of cointegration tests from a VAR when the cointegrating vectors are prespecified.



The estimated model is the conditional ECM resulting from a possibly cointe-
grated, (th-order, k-variable VAR, assuming weak exogeneity of z; for § and with v,
scalar. That is, the estimated model is:

-1
Ay, =d' Az + V2 1+ DAz + ¢\ D+ vy vy ~ IN(0,02), (29)
i=1

where a, b, I'y;, and ¢, are coefficients on Az, x;_1, Ax;_;, and D, in the conditional
ECM; and o2 is the conditional ECM’s error variance. Because b’ = (b; by ... by) =
v, in the notation of the ECM (19), then b; is v;, which is the coefficient of interest
in the ECM statistic £4(k). The deterministic component D; may include a constant
term, a constant term and a linear trend, or a constant term, a linear trend, and a
quadratic trend. The corresponding ECM statistics are denoted r.(k), ke (k), and
Ket(k) respectively. If no variables are included in Dy, then the ECM statistic is
denoted £,.(k) (nc for no constant term).

To examine the properties of the ECM statistic under the null hypothesis of no
cointegration, the data generation process is a standardized multivariate random walk
for x:

Az, ~ IN(0, Ij,). (30)

3.2 Specifics of the Experimental Design

The analysis focuses on the finite sample properties of the ECM statistic. Three
“design parameters” are central to the statistic’s distributional properties: the esti-
mation sample size (T'), the total number of variables in z; (k), and the number of
deterministic components in D, (d). To provide results for a wide range of situations
common in empirical investigations, the simulations span a full factorial design of the
following choices for T', k, and D;:

T = (20,25,30,35,40,45,50, 55,60, 70, 80,90, 100, 125, 150, 200, 400, 500, 600, 700, 1000)
k= (1,2,3,4,5,6,7,8,9,10,11,12)

Dy = (none; constant term; constant term, ¢; constant term, t, ). (31)

The values of T" include both large and small sample sizes, thereby aiming to provide
information on both the test statistic’s asymptotic properties and its finite sample
deviations therefrom. The design includes all positive integer values of k through 12,
sufficient for virtually all empirical applications. The choice of D; implies four test
statistics: Kpe(k), Ke(k), Ket(k), and Kee(k). Deterministic terms may be included in
the model because they are required for adequate model specification: namely, the
deterministic terms enter the data generation process. Also, a deterministic term
of one order higher than “required” may be included in the model in order to ob-
tain (asymptotic) similarity to the coefficients of the lower order deterministic terms;
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see Kiviet and Phillips (1992), Johansen (1994), and Nielsen and Rahbek (1998).
Throughout, the model’s lag length is set to unity (¢ = 1).

One minor modification exists for the experimental design in (31). Because
2k — 1 + d degrees of freedom are used in the estimation of (29), some smaller values
of T" are not considered for larger values of k£ that imply 2k —14-d close to or exceeding
T. Specifically, T' = 20 is dropped for k = 8; T' = (20, 25) are dropped for k = (9, 10);
and T = (20,25, 30) are dropped for k = (11, 12).

3.3 Monte Carlo Simulation

This paper aims to provide numerically accurate estimates of the ECM statistic’s
distribution, particularly in its tails, where inference is commonly of concern. Thus,
a large number of replications are simulated for each experiment in (31): specifically,
10 million replications for each pair of T" and k. Such large numbers of replications do
not pose difficulties for calculations of sample moments, but they are problematic for
calculating quantiles — and hence cumulative distribution functions — because the
full set of replications must be stored and sorted. As a reasonably efficient second-
best alternative, the adopted design divides each experiment into 50 sets of 200,000
replications apiece, determines the quantiles for each set, and then averages the es-
timated quantile values across the sets. Partitioning each experiment into several
sets also provides an easy way to measure experimental randomness. To estimate
accurately the complete densities and cumulative distributions of the ECM statistic,
a large number of quantiles are calculated: 221 in total, corresponding to p = 0.0001,
0.0002, 0.0005, 0.001, 0.002, 0.003, ..., 0.008, 0.009, 0.010, 0.015, 0.020, 0.025, ...,
0.495, 0.500, 0.505, ..., 0.975, 0.980, 0.985, 0.990, 0.991, 0.992, ...,0.997, 0.998,
0.999, 0.9995, 0.9998, 0.9999, where p denotes the quantile’s percent level.

Because so many random numbers were generated, it was vital to use a pseudo-
random number generator with a very long period. The generator used is that in
MacKinnon (1994, 1996), which combines two different pseudo-random number gen-
erators recommended by L’Ecuyer (1988). The two generators were started with
different seeds and allowed to run independently, so that two independent uniform
pseudo-random numbers were generated at once. Each pair was then transformed
into two N(0,1) variates using the modified polar method of Marsaglia and Bray
(1964, p. 260). See MacKinnon (1994, p. 170) for details.

3.4 Post-simulation Analysis

These Monte Carlo simulations generate a vast quantity of information: 221 estimated
quantiles on 50 sets of replications for (typically) 21 sample sizes with 12 different
values of k and four choices of D;: over ten million numbers. Graphs and regressions
provide two succinct ways of conveying and summarizing such information. This pa-
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per uses both means: graphs of asymptotic and finite sample cumulative distributions
and densities, and response surfaces for finite sample critical values. An explanation
is helpful for interpreting both the response surfaces and the graphs.

Typically, authors have tabulated estimated critical values for several sample sizes
or for one large (“close to asymptotic”) sample size. Such tabulations recognize the
dependence of the critical values on the estimation sample size. That dependence can
be approximated by regression, regressing the Monte Carlo estimates of the critical
value on functions of the sample size. Such regressions are response surfaces: see
Hammersley and Handscomb (1964) and Hendry (1984) for general discussions.

Here, for each triplet defined by the quantile’s percent level p, the number of
variables k, and the choice of deterministic components D;, a response surface of the
following form was estimated:

q(T;) = oo + 1 (T7) ™"+ 02(T7) 72 + 05(T7) > + us. (32)

The dependent variable ¢(T;) is the estimated finite sample pth quantile from the
Monte Carlo simulation with the ith sample size T;, which takes the values for T
in the experimental design (31). The regressors are an intercept and three inverse
powers of the adjusted sample size T (= T; — (2k — 1) — d); 0, 01, 02, and O3 are the
corresponding coefficients; and w; is an error that reflects both simulation uncertainty
and the approximation of the quantile’s true functional form by the cubic in (32).

The benefits of these response surfaces are several. First, they reduce consump-
tion costs to the user by summarizing numerous Monte Carlo experiments in a simple
regression. Second, and relatedly, the coefficient 0, is interpretable as the asymptotic
(T' = o0) pth quantile for the choice of k and D; concerned. Estimation of that asymp-
totic quantile does not necessarily require very large sample sizes in the experimental
design. Third, response surfaces reduce the Monte Carlo uncertainty by averaging
(through regression) across different experiments. Fourth, response surfaces reduce
the specificity of the simulations by allowing easy calculation of quantiles for sample
sizes not included in the experimental design (31). Fifth, p-values and critical values
at any level can be calculated from the response surfaces, as by the computer pro-
gram accompanying MacKinnon (1996) for the Engle-Granger statistic 74(k) and by
the one accompanying this paper for the ECM statistic x4(k). Finally, and relatedly,
response surfaces for commonly used quantiles (e.g., p = 5%) are easily programmed
into econometrics computer packages so as to provide empirical modelers with esti-
mated finite sample critical values directly. For instance, response surfaces in Mac-
Kinnon (1991) for the Dickey-Fuller critical values appear in PcGive; see Hendry and
Doornik (1996, p. 212).

Having estimated response surfaces of the form (32) for all experiments, it is rel-
atively easy to plot estimated asymptotic distribution functions of the ECM statistic
from the estimated values of 6. Section 4.1 does so for both densities and cumulative
distribution functions. Finite sample densities and distributions may be constructed
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from the Monte Carlo simulations directly, or from evaluation of (32) at finite sam-
ple sizes. Details of the numerical procedures for constructing the graphs appear in
MacKinnon (1994, 1996).

While the response surfaces of the form (32) are convenient for constructing graphs
of the asymptotic distributions, there are too many response surfaces to report them
all: 10,608 response surfaces in total, i.e., 221 x 4 x 12. For testing cointegration,
however, response surfaces at common levels of significance are of particular interest,
so Section 4.2 reports response surfaces for 1%, 5%, and 10% levels. These response
surfaces parallel those in MacKinnon (1991) for the Engle-Granger test statistic 74(k).

4 Monte Carlo Results

This section graphs estimated cumulative distribution functions and densities for the
ECM statistic (Section 4.1) and reports selected response surfaces for that statistic
(Section 4.2). Section 4.3 then examines critical values for the ECM statistic that
were previously estimated in the literature and shows that the response surfaces in
Section 4.2 encompass and supercede much of that work.

4.1 Cumulative Distribution Functions and Densities

Figures 1-4 plot the asymptotic cumulative distribution functions (CDFs) for the
ECM statistics kpe(k), ke(k), ke(k), and ke (k) respectively. Each figure graphs the
CDFs for k = 1,...12, along with the CDF for N(0,1). Because the ECM statistic
for £ = 1 is the Dickey-Fuller statistic, that special case is labeled explicitly on the
graphs as 74(1).

Several features are notable in Figures 1-4. First, the cumulative distribution
shifts systematically in the negative direction as the number of variables k increases.
The shift is numerically relatively constant, about —0.2 for an incremental increase in
k, although the shift appears to be gradually declining in magnitude as k increases.
Second, comparing CDF's across figures, the magnitude of the shift appears to decline
as the number of deterministic components increases. Third, even for k = 2, the
discrepancy between the CDF of N (0, 1) and that of the ECM statistic is considerable
and increases as the number of deterministic components increases. Thus, inferences
about cointegration when using the ECM statistic would be hazardous if (e.g.) a
standardized normal distribution were assumed.

Figures 5-8 plot the corresponding asymptotic densities, which demonstrate those
distributional shifts as well. Additionally, the densities highlight the unique shape of
the distribution of the Dickey-Fuller statistic. Figure 5 in particular brings out the
asymmetry in the density of the Dickey-Fuller statistic 7,.(1), a feature apparent in
MacKinnon (1994, Figure 3) and also noted by Abadir (1995), both analytically and
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in his Figure 1.

As discussed in Section 2, comparisons of the ECM and Engle-Granger (EG) pro-
cedures are of considerable interest. MacKinnon (1994, 1996) numerically estimated
the distributions for the Dickey-Fuller statistic applied to the Engle-Granger cointe-
gration residuals. In the current Monte Carlo simulations, those distributions were
estimated, based on the pseudo-random numbers used for estimating the distributions
of the ECM statistic. Figures 9-12 plot the asymptotic CDF's of the ECM and Engle-
Granger statistics for £ = 2 and k = 12. For all choices of deterministic components,
the CDF of the Engle-Granger statistic 74(k) is shifted to the left of that for k4(k),
substantially so for larger values of k.

Figures 13-16 plot the corresponding asymptotic densities, which make the nature
of the shifts more apparent. The density of 74(2) is shifted by only a few tenths relative
to kq(2), whereas that for 74(12) is often shifted by one to two units relative to xq(12).
Figures 13-16 also show that the distribution of the ECM statistic x4(k) is relatively
close to normality with unit variance, whereas the distribution of 7,4(k) is not.

Figures 1-16 all concern asymptotic properties. While asymptotic properties are
essential for understanding the nature of the ECM statistic, empirical sample sizes are
often small, so it is valuable to assess the discrepancies between asymptotic and finite
sample distributions. Figures 17 and 18 plot asymptotic and finite sample densities
for k4(2) and k4(12), where “finite sample” is T' = 20 for £4(2) and T' = 50 for k4(12).
For all choices of deterministic components, the asymptotic densities tend to be more
peaked than the finite sample ones, perhaps reflecting the contribution of estimation
uncertainty to the latter. While the finite sample densities tend to shift to the left
as the sample size increases, this does not hold uniformly for all parts of the density.
Shifts to the right are particularly noticeable in the left tails in Figure 17. Figures 17
and 18 each include the densities for all four possibilities of deterministic components
for a given ECM statistic. Each additional deterministic component systematically
shifts the statistic’s density to the left, and the incremental shift is almost invariant
to the total number of deterministic components.

4.2 Response Surfaces for Critical Values

As just discussed, the distribution of the ECM statistic k4(k) depends systematically
on the number of variables k, the number of deterministic components d, and the
sample size T'. The current subsection quantifies these dependencies through response
surfaces for three quantiles: those at 1%, 5%, and 10%.

To motivate these dependencies, consider Figure 19, which plots the data to be
analyzed in the response surfaces. Specifically, each 3D graph in Figure 19 plots the
within-experiment average for the estimated quantile against k and (7%/100)7! (a
rescaled inverse of the adjusted sample size), given the choice of d and the quantile’s
percent level p. The previously noted dependencies on d, k, T', and p are all apparent
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in Figure 19. Additionally, T" appears to have relatively little affect on the 5% and
10% quantiles.

Tables 2-5 list the least squares estimates of the response surface coefficients
0s, 01, 05, and 05 for the 1%, 5%, and 10% quantiles with & = 1,...12.* The
conditional ECM is estimated with no deterministic terms (Table 2), with a constant
term only (Table 3), with a constant term and a linear trend only (Table 4), and
with a constant term, a linear trend, and a quadratic trend (Table 5). The tables
also include the estimated standard error (“s.e.”) for 0., to provide a measure of
uncertainty for the estimated asymptotic quantile. This standard error is always
smaller than 0.001, assuring high precision in the estimates. The estimated standard
errors are jackknife heteroskedasticity consistent standard errors from MacKinnon
and White (1985), as the experimental design may induce some heteroskedasticity in
the estimated quantiles across different sample sizes.

The tables report an additional measure of uncertainty: &, the estimated equation
standard error from the response surface (32). The estimate & reflects both the
simulation uncertainty from estimating the quantile ¢(7;) rather than knowing it
and the approximation error from using the cubic form in (32) rather than the true
functional form. The experimental design also permits estimating the simulation
uncertainty alone and so evaluating the statistical adequacy of the response surface.
Specifically, the design implies 50 independent estimates of the quantile ¢(7;); see
Section 3.3. A given response surface regression includes 50 values for ¢(7;) across all
values of the sample size, entailing (e.g.) 1050 “observations” (50 values x 21 sample
sizes) in the response surface for k. (2) at the 1% level. Thus, an average of the pure
simulation uncertainty in a given response surface may be estimated by the equation
standard error from a regression of ¢(7;) on a set of (e.g.) 21 dummies, one for each
sample size. The response surface (32) is nested within this more general regression,
and comparison of the two equations generates an F-statistic for formally testing the
statistical significance of the error in approximating the response function’s functional
form; see Ericsson (1991). In spite of the large number of replications, this test rejects
at the 5% level for only 7 of the 144 response surfaces (4.86%). No rejection increases
& by more than 1.1%. Thus, a cubic in the inverse of the adjusted sample size
appears statistically and numerically adequate to approximate the simulated finite
sample behavior at the 1%, 5%, and 10% quantiles for this experimental design.

As they stand, Tables 2-5 provide a valuable tool for judging whether or not coin-
tegration is present in empirical conditional ECMs. Econometric software packages
could easily generate finite sample critical values for users from Tables 2-5. Even
without direct incorporation into such packages, calculation of critical values is triv-
ially easy from the tables. For instance, for a conditional four-variable (k = 4) ECM

4The response surfaces reported in Tables 2-5 differ slightly from those underlying Figures 1-
18. The former are estimated by OLS, whereas the latter are estimated by GMM, using methods
discussed in MacKinnon (1996). The two approaches yield numerically very similar results.
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with a constant term estimated on 47 observations, the finite sample critical value at
the 5% level is —3.84, i.e., —3.7592 — (2.92/39) — (3.7/39?) + (5./39°) from Table 3,
noting that 7% =47 -7 —1 = 39.

As with Figures 1-19, Tables 2-5 show the systematic and regular dependence of
the properties of the ECM statistic on the number of variables k and the number of
deterministic components d. This dependence leads to a simple rule of thumb that is
captured in the following OLS “meta” response surface for the asymptotic 1%, 5%,
and 10% quantiles 0., reported in Tables 2-5:

—0.60 at the 1% level
(0.02)

O = —29%5 — 0187k — 0.33(d—1) + { 0  atthe5% level (33)
(0.03) (0.003)  (0.01)
+0.32 at the 10% level
(0.02)

R*=0.987 & =0.109 number of “observations” = 132,

where R? is the squared multiple correlation coefficient, and & is the standard devia-
tion of the residuals. Values of 6 for k = 1 (the Dickey-Fuller statistic) are excluded
in (33), as only £ > 1 is of interest for testing cointegration. From (33), a crude
approximation .uqe to the (lower) 5% critical value for the ECM statistic is:

Oerude = —3.0 — 0.2k — 0.3(d — 1). (34)

The negative coefficients in (34) can be easily remembered as a “3/2/3” rule of thumb:
an intercept of —3.0, a coefficient of —0.2 on the number of variables in z, and a
coefficient of —0.3 on the number of deterministic terms over and above a constant
term.

Figure 20 highlights this near-linear dependence of the asymptotic quantile 6., on
k and d. Each 3D graph in Figure 20 plots ., against k and d, given the quantile’s
percent level p. The surfaces are virtually planar except for the Dickey-Fuller statistic
(k =1), which is excluded from (33) and (34).

Equations (33) and (34) quantify the straightforward dependencies of the ECM
statistic’s quantiles on k and d, they provide a mechanism for extrapolating critical
values for values of k and d outside the experimental design (31), and they offer a
rough-and-ready way of assessing empirical results when Tables 2-5 are not available.
Preferably, though, Tables 2-5 or the related computer program should be used.

4.3 An Encompassing of Existing Monte Carlo Results

Two previous studies — Banerjee, Dolado, Galbraith, and Hendry (1993) and Baner-
jee, Dolado, and Mestre (1998) — report estimated critical values for the ECM statis-
tic with k£ > 1. Dickey, as reported in Fuller (1976), generated critical values for k = 1
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(i.e., for the Dickey-Fuller statistic); and the response surfaces in MacKinnon (1991)
for 74(k) include 74(1). This subsection shows that these previous results for the 1%,
5%, and 10% levels are subsumed and superceded by the response surfaces reported
in Tables 2-5.

This encompassing of pre-existing Monte Carlo studies is achieved by evaluating
the response surfaces in Tables 2-5 over the experimental designs of those past studies
and comparing the critical values derived from Tables 2-5 with those reported in the
studies’ simulations. Deviations between the two types of critical values typically
are small relative to the estimated simulation uncertainty of the pre-existing Monte
Carlo studies or are simply small numerically. Hence, Tables 2-5 encompass those
studies. For this purpose, the simulation uncertainty associated with the response
surfaces in Tables 2-5 is treated as negligible. That assumption seems reasonable.
The largest value of 6 in Tables 2-5 is under 0.02, and each (T, d, k, p) quadruplet
includes 50 estimates of the quantile, implying an associated standard error of the
response surface quantile of under 0.003. Frequently, that standard error is under
0.001. The remainder of this subsection briefly describes the Monte Carlo simulations
in each study and the outcomes of the encompassing exercise.

Banerjee, Dolado, Galbraith, and Hendry (1993, Table 7.6, p. 233) report esti-
mated critical values at the 1%, 5%, and 10% levels for x.(2) at T' = (25,50, 100),
using 5000 replications per experiment. Deviations relative to the response surfaces
from Table 3 are all under 0.1 in absolute value. Using the values of 6 in Table 3 as a
benchmark and rescaling by the square root of the ratio of simulations calculated, the
estimated standard errors for the three quantiles in Banerjee, Dolado, Galbraith, and
Hendry (1993) are approximately 0.063, 0.032, and 0.025. Thus, the observed discrep-
ancies between the estimated quantiles in Banerjee, Dolado, Galbraith, and Hendry
(1993) and those calculated from Table 3 appear as expected, given the simulation
uncertainty of the former.

Banerjee, Dolado, and Mestre (1998, Table I) report estimated critical values
at the 1%, 5%, 10%, and 25% levels for k.(k) and kq(k) (k = 2,...,6) at T =
(25, 50,100,500, 00), using 25,000 replications per experiment. Deviations relative to
the response surfaces from Tables 3 and 4 are all under 0.2 in absolute value, and are
typically 0.04 or smaller in magnitude.® The estimated standard errors for the 1%,
5%, and 10% quantiles in Banerjee, Dolado, and Mestre (1998) are approximately
0.028, 0.014, and 0.011.

Fuller (1976, Table 8.5.2, p. 373) lists numerous quantiles for 7,.(1), 7.(1), and
T(1) at T = (25, 50,100, 250,500, 00). Standard errors for most estimates are re-
ported to be less than 0.02, and critical values are reported to two decimals. Devia-
tions relative to the response surfaces from Tables 2—4 are all under 0.015 in absolute
value and are typically no more than 0.007 in magnitude, close to what would be

5Deviations for the 25% level were not calculated, as the 25% level was not included in Tables 2-5.
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expected from pure rounding errors.

Inter alia, MacKinnon (1991, Table 1) reports response surfaces for 7,,.(1), 7.(1),
and 7.,(1). For the sample sizes simulated in his study and in the current paper,
deviations between critical values calculated from his response surfaces and those in
Tables 2-4 are all smaller than 0.02 in absolute value and are typically smaller than
0.003 in magnitude.

To summarize, the response surfaces in Tables 2-5 for the 1%, 5%, and 10% levels
numerically encompass corresponding results from previous Monte Carlo studies in
Fuller (1976), MacKinnon (1991), Banerjee, Dolado, Galbraith, and Hendry (1993),
and Banerjee, Dolado, and Mestre (1998). Simulation uncertainty in those previous
studies appears to be the dominant factor explaining discrepancies relative to the
response surfaces in Tables 2-5.

5 Three Empirical Applications

This section applies the finite sample critical values derived above and the computer
program for calculating p-values to three empirical error correction models. Sec-
tion 5.1 considers a model of U.K. narrow money demand from Hendry and Ericsson
(1991), Section 5.2 a model of U.K. consumers’ expenditure from Davidson, Hendry,
Srba, and Yeo (1978), and Section 5.3 a model of U.S. federal government debt from
Hamilton and Flavin (1986). The models in Davidson, Hendry, Srba, and Yeo (1978)
and Hendry and Ericsson (1991) have played significant roles in the literature on
ECMs and cointegration, and Hamilton and Flavin (1986) was one of the early pa-
pers to employ unit root statistics for testing economic hypotheses. Each subsection
briefly reviews the estimated equation and considers corresponding conditional ECM
tests. Tables summarize the results, reporting the empirical ¢-values for testing coin-
tegration, along with corresponding critical values and p-values. Use of the critical
values from Tables 2-5 for the ECM statistic affects the economic inferences drawn
in the second two studies.

Several issues arise in testing for cointegration in these models. First, the ECMs
for money demand and consumers’ expenditure were each derived from unrestricted
ADLs. Both the ADLs and the ECMs allow testing of cointegration, although these
ECMs require slight modification to apply the critical values from Tables 2-5. Sec-
ond, dynamic specification affects the degrees of freedom used in estimation. Hence,
when computing critical values, the adjusted sample size T is calculated as T'— h
(rather than as T'— (2k +d — 1)), where h is the total number of regressors, including
deterministic variables. The calculation of p-values utilizes h similarly. Third, the
choice of deterministic variables affects the t-values and the corresponding critical
values and p-values, so potentially affecting inference. Finally, omitted seasonality is
important in the model of consumers’ expenditure, as is nonlinearity of the determin-

18



istic trend and lack of weak exogeneity in the model of government debt. Throughout
this section, capital letters denote both the generic name and the level of a variable,
logarithms are in lowercase, and OLS standard errors are in parentheses (- ).

5.1 U.K. Narrow Money Demand

Hendry and Ericsson (1991, equation (6)) model U.K. narrow money demand as a
conditional ECM, whose final parsimonious form is as follows.

A(m—p) = — 069 Ap, — 017 Alm—p—i)e_y — 0.630 R
(0.13) (0.06) (0.060)
— 0093 (m—p—i)_, + 0.023 (35)
(0.009) (0.004)

T =100 [1964Q3 — 1989Q2] R?*=0.76 & = 1.313%

The data are nominal narrow money M; (M, in £ millions), real total final expendi-
ture (TFE) at 1985 prices (I, in £ millions), the TFE deflator (P, 1985 = 1.00), and
the net interest rate (R™, in percent per annum expressed as a fraction). The last
series is the differential between the three-month local authority interest rate and a
learning-adjusted retail sight-deposit interest rate.

While the t-value on error correction term (m —p —1i);—; in (35) is very large and
negative (—10.87), even asymptotic significance levels are not known, given the pres-
ence of nuisance parameters; see Kremers, Ericsson, and Dolado (1992) and Kiviet
and Phillips (1992). This difficulty arises because one of the coeflicients in the coin-
tegrating vector — the long-run income elasticity — is constrained. One solution is
to estimate that coefficient unrestrictedly, as occurs when estimating (35) with 4,4
added.

Alm—p), = — 070 Ap, — 018 A(m—p—i)_y — 0.611 R
(0.13) (0.06) (0.067)
— 0.088 (m—p—1i)1 + 0006 i ; — 0.05 (36)
(0.011) (0.010) (0.12)

T =100 [1964Q3 — 1989Q2] R?*=0.76 & = 1.317%

The t-value on (m — p — 7)1 in (36) is —7.78, which is significant at the 1% level
for k.(4), with critical value of —4.45. In fact, the finite sample p-value for —7.78 is
0.0000.

Equations (35) and (36) can be derived from an unrestricted fifth-order autore-
gressive distributed lag model in m — p, Ap, 7, and R"®*. The ECM statistic for that
ADL is —5.17, also significant at the 1% level for k.(4), with critical value of —4.47.
Its finite sample p-value is 0.0014, indicating a minor loss in power from estimating
additional coefficients on dynamics relative to (36).

Both this fifth-order ADL and the ECM in (36) include one deterministic com-
ponent: a constant term. Table 6 reports the statistic r4(4) for the four choices of
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deterministic components considered in the sections above; the value of h; the fi-
nite sample, asymptotic, and crude critical values at the 1%, 5%, and 10% levels;
finite sample and asymptotic p-values; the estimated equation standard error ¢; and
an F-statistic for testing the significance of omitted deterministic components. The
symbols T, *, and ** denote rejection at the 10%, 5%, and 1% levels respectively.
With a constant term, linear trend, and quadratic trend included, the statistic ke (4)
is insignificant at the 10% level for both the ADL and the ECM: their p-values are
0.3859 and 0.4544. With fewer deterministic components, cointegration is detected
at the 0.5% level or smaller in the ADL and the ECM, as the statistics ke (4), £c(4),
and K,.(4) show.

The final column in Table 6 lists the F-statistics for testing the significance of
the omitted deterministic components in the corresponding regressions, relative to
the regressions for obtaining k. (4): degrees of freedom for the F-statistics appear
in parentheses as F'(-, ), and the statistics’ p-values are in brackets [-]. These
F-statistics indicate that the constant term, linear trend, and quadratic trend are
statistically insignificant, so all the reported ECM statistics in Table 6 make sta-
tistically justifiable assumptions about these deterministic components. The statis-
tics Kne(4), ke(4), and ke (4) reject at standard levels, but kg (4) does not, pointing
to the value of parsimony in deterministic components for obtaining increased power
of the cointegration test, when parsimony is merited. The insignificance of a linear
trend is particularly interesting. In a system analysis of this dataset, Hendry and
Mizon (1993) find a second cointegrating vector, which includes a linear trend; but in
their system model, that cointegrating vector does not enter the equation for money.

Table 6 lists the asymptotic and crude critical values at the 1%, 5%, and 10%
levels, and these differ by 0.21 at most from the calculated finite sample critical
values. Likewise, the finite sample and asymptotic p-values in the table differ by only
modest amounts. These numerically small discrepancies are not surprising because
the sample size is relatively large (7" = 100).

5.2 U.K. Consumers’ Expenditure

Davidson, Hendry, Srba, and Yeo (1978, equation (45)**) model U.K. consumers’
expenditure on nondurables and services, obtaining the following parsimonious ECM.

Ayep = 0.48 Agiy — 023 AjAgiy — 0.09 (¢ —1d)¢ 4
(0.03) (0.04) (0.01)
(0.002) (0.02) (0.10)

T =71[1958Q2 — 1975Q4] R*=0.96 & = 0.601%

The data are U.K. consumers’ expenditure on nondurables and services (C, in £ mil-
lions, 1970 prices), U.K. personal disposable income (I, in £ millions, 1970 prices),
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the implicit deflator for C' (P, 1970 = 1.00), and a dummy variable for certain tax
effects (D*). The t-value on (¢ — )4 in (37) is —8.10, but, as with (35), the criti-
cal values in Tables 2-5 are not directly applicable. Adding i;—4 to (37) solves this
problem.

A4Ct = 0.46 A4it — 0.22 A1A4it — 0.055 (C—Z.)t74 + 0.0007 Z‘t,4
(0.03) (0.04) (0.024) (0.0004)
(0.002) (0.02) (0.10)

T =71[1958Q2 — 1975Q4] R>=0.96 & = 0.591%

The t-value on (¢ — )¢ 4 in (38) is —2.31, which is not significant at even the 10%
level for k,,.(3): its p-value is 0.1845.

Equation (37) was derived from an unrestricted ADL in ¢, i, and Ap.® Table 7
reports the ¢t-values for both the ADL and the ECM (38) with various choices of deter-
ministic components. None of the t-values is significant, ostensibly casting doubt on
the interpretation of (37) in Davidson, Hendry, Srba, and Yeo (1978). Alternatively,
this evidence may indicate the considerable statistical value of imposing long-run
restrictions that are in fact correct; see Horvath and Watson (1995).

Another explanation for these negative results turns on model mis-specification.
First, (37) contains hidden seasonality: quarterly dummies are statistically significant
when added to (37). Table 7 reports an additional set of ¢-values derived from mod-
els including quarterly dummy variables (labeled with “+@),;”). These ECM statistics
present modest evidence in favor of cointegration, with k. (3), k¢(3), and K,.(3) (but
not ke (3)) all rejecting at the 10% level. That said, the F-statistics for the determin-
istic components are sometimes significant. Second, an additional variable (liquid-
ity) may be required to obtain cointegration; see Hendry and von Ungern-Sternberg

(1981).

5.3 U.S. Federal Government Debt

The third model is an ADL from Hamilton and Flavin (1986, p. 816), relating real
U.S. federal government debt to a deterministic nonlinear trend or “bubble” (1 + r)*
and the budget surplus.

B = 4841 — 2268 (1+7) + 069 B,; + 020 B
(26.40) (21.29) (0.21) (0.24)
- 130 S, — 0.63 S, (39)
(0.13) (0.31)

T =23[1962—1984] R*=098 6 =7.405

6The ADLs in Table 7 include five lags of ¢ and 4, but four lags of Ap, with the latter corresponding
to five lags of p in Davidson, Hendry, Srba, and Yeo (1978, Table 3). The ADLs in Table 7 use Ap
rather than p, as Ap itself behaves like an I(1) variable.
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The data are the adjusted debt (B) for the end of the fiscal year and the adjusted
surplus (S) for the fiscal year (both in $ millions, 1967 prices). The variable r is
set to 0.0112, the average ex post real interest rate on U.S. government bonds over
1960-1984. The coefficient on (1 + )" is statistically insignificant, consistent with
the absence of a speculative bubble. From this and related evidence, Hamilton and
Flavin (1986, pp. 816-817) conclude that “... the data appear quite consistent with
the assertion that the government has historically operated subject to the constraint
that expenditures not exceed receipts in expected present-value terms.”

This interpretation of the evidence assumes a long-run solution to (39) relating
debt and surplus. That is equivalent to assuming both cointegration between B and
S, and the presence of the corresponding cointegrating vector in (39). Empirically,
however, (39) does not support cointegration of B and S. Rewriting (39) as an
unrestricted ECM obtains the following equation.

AB, = 4841 — 2268 (1+7)' — 010 B,_; — 020 AB,_,
(26.40)  (21.29) (0.08) (0.24)
— 130 AS, — 192 S, (40)
(0.13) (0.36)

T =23[1962—1984] R*=094 & =7.405

The t-value on B;_; is —1.36, which is insignificant at the 10% level for xk.(2), with
critical value of —3.53. Using the critical value for k.(2) assumes that (1+7)! is well
approximated by a linear trend, which, visually, it is. Alternatively, the 10% critical
value for k.4 (2) is —3.95, again with no rejection. The finite sample p-values under
these two alternative assumptions are 0.8386 and 0.9247. Notably, estimating (40)
(or (39)) with ¢ and ¢? rather than with (1 + )" obtains a statistically significantly
better-fitting model, pointing to mis-specification in (40).

Table 8 reports the t-values and critical values for (40) with various choices of
deterministic components. The bubble (1 + )" is statistically insignificant in (40),
whereas a linear trend and quadratic trend in its stead are statistically significant.
Even so, the resulting t-value for k.4 (2) is —2.96, which is insignificant at the 10%
level, having a p-value of 0.3688. Cointegration does not appear to hold in this
conditional model, undercutting the economic inferences drawn by Hamilton and
Flavin (1986).

The sample size in (40) is the smallest of the three models examined. Correspond-
ingly, the finite sample adjustments for critical values are typically larger numerically
in Table 8 than in Tables 6 and 7, with the largest adjustment being —0.72 at the
1% level, i.e., about two thirds of a standard error in the ¢-value. The p-values have
small finite sample adjustments, which mainly reflect each reported t-value being far
from the lower tail of the associated density; cf. Figure 17.

The single-equation results in Table 8 all assume that S is weakly exogenous,
whereas S does not appear to be so empirically. Starting with a second-order vector
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autoregression in B and S, a single cointegrating vector is apparent from the Johansen
procedure when (1 + 7)" or a linear trend is restricted to lie in the cointegration
space. Weak exogeneity of S is rejected, as is that of B, invalidating cointegration
analysis in a conditional single equation such as (39). Without weak exogeneity, single
equation inference about cointegration is hazardous at best; and testing the implied
exogeneity assumptions is clearly important. For example, in the Johansen procedure,
the coefficient on the bubble (1 4 7)* or on the linear trend is statistically significant
and negatively related to B, whichever type of trend is included. That contrasts with
the statistical insignificance of the coefficient on (1 + )" in (39). Furthermore, the
negative coefficient on the trend is economically surprising and puzzling, although
it may be indicative of certain non-ergodic features of the data: see Kremers (1988)
inter alia.

In summary, the first two empirical analyses illustrate the importance of parsi-
mony, both in the choice of deterministic terms and in the reduction from an ADL to
a simpler ECM. Mis-specification can render inference hazardous, whether the mis-
specification is direct (as with the omitted quarterly dummies) or indirect (as with an
assumption of weak exogeneity). Imposition of valid restrictions on the cointegrating
vector may increase power, although asymptotically correct critical values for such
ECM statistics have been derived only for the case when all cointegrating coefficients
are known; see Hansen (1995, Table 1).

6 Conclusions

This paper has assessed the distributional properties of the ECM statistic for testing
cointegration. Graphs and response surfaces provide complementary summaries of
the vast array of results from the Monte Carlo study undertaken. Both the graphs
and the response surfaces highlight some simple dependencies of the quantiles on the
number of variables in the ECM, the choice of deterministic components, and the
estimation sample size. The reported response surfaces provide a computationally
convenient way for calculating finite sample critical values at the 1%, 5%, and 10%
levels. The response surfaces also encompass and supercede much of the literature’s
previous estimates of critical values for the ECM statistic. A computer program, freely
available over the Internet, can be used to calculate p-values and critical values at
any level. Empirical conditional ECMs are ubiquitous in the cointegration literature,
so these tools should be of immediate use to the empirical modeler. Three previous
empirical studies illustrate how critical values and p-values for the ECM statistic can
be employed in practice, and how their use may affect economic inferences.

Several limitations of the current study come to mind, thereby suggesting some
possible extensions. First, the model’s lag order is assumed to be (and is) unity
throughout the Monte Carlo analysis. For longer lags, the adjusted sample size may
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be corrected for additional degrees of freedom lost in estimation and thence used to
calculate critical values from a response surface, as in Section 5. This refinement may
not be sufficient in itself, so an extended analysis, such as in Cheung and Lai (1995)
for the Dickey-Fuller statistic, may be required. Second, all of the ECM statistics with
deterministic components have those components fully unconstrained in estimation.
In analyzing a similar statistic, Harbo, Johansen, Nielsen, and Rahbek (1998) and
Doornik, Hendry, and Nielsen (1998) argue strongly for constraining the highest-order
deterministic component to lie in the cointegration space, so distributional properties
for so constrained versions of k.(k), ke (k), and ke (k) are of interest. That said, vir-
tually all empirically calculated ECM statistics to date have been with unconstrained
deterministic components. Finally, the current paper has considered the properties of
the ECM statistic only under the null of no cointegration. While Banerjee, Dolado,
Galbraith, and Hendry (1993), Campos, Ericsson, and Hendry (1996), and Baner-
jee, Dolado, and Mestre (1998) present some calculations on the power of the ECM
statistic, further analysis could be illuminating, particularly comparisons with the Jo-
hansen procedure and the Engle-Granger procedure under various assumptions about
weak exogeneity and common factor restrictions.
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Table 1. A Comparison of the Johansen, ECM, and Engle-Granger Procedures

for Testing Cointegration.

Aspect Procedure
Johansen ECM (both types) Engle-Granger
Statistic Maximal eigenvalue kq(k); Harbo et al. Ta(k)
and trace statistics. (1998) statistic.
Assumptions ~ Well-specified Weak exogeneity Common factor
full system. of z for S. restriction.
Advantages Maximum likelihood Starting point for Intuitive.
of full system. ECM modeling; Super-consistent
Determines r (the unrestrictive dynamics.  estimator of (.
number of Weak exogeneity often
cointegrating vectors), is valid empirically.
B, and a. Robust to particulars
of the marginal process.
Disadvantages Full system should Weak exogeneity Comfac often is invalid.

Sources for
critical values
and p-values

be well-specified.

Johansen (1988, 1995),
Johansen and Juselius
(1990),
Osterwald-Lenum (1992),
Doornik (1998, 1999),
MacKinnon et al. (1999).

is assumed.
r <1 is imposed
(usually).

Banerjee et al. (1993),
Banerjee et al. (1998),
this paper;

Harbo et al. (1998),
Pesaran et al. (1999),

MacKinnon et al. (1999).

Inferences on (3 are messy.
Biases in estimating S.

r < 1 imposed (usually).
Normalization affects
estimation. Dynamics
may be of interest.

Engle and Granger (1987),
MacKinnon (1991),
MacKinnon (1994),
MacKinnon (1996).
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Table 2. Response Surface Estimates for Critical Values
of the ECM Test of Cointegration xy.(k)
(no deterministic terms).

~

k  size 0o (s.e.) 01 0 03 &
1 1% -2.5659 (0.0006) -2.19 -3.6 26. 0.00843
5% -1.9408 (0.0003) —0.35 0.6 —17. 0.00430
10% -1.6167 (0.0003) 023 -1.0 —6.  0.00339
2 1% -3.2106 (0.0006) -4.69 -10.5 48. 0.00845
5% —2.5937 (0.0003) -1.53 0.8 —24. 0.00439
10% -2.2643 (0.0003) -0.41 -1.5 -9.  0.00350
3 1% -3.6215 (0.0006) -6.14 -53 -67. 0.00892
5% —3.0048 (0.0003) —2.11 2.1 —61. 0.00468
10% -2.6744 (0.0003) -0.57 1.2 —44. 0.00372
4 1% -3.9433 (0.0006) -7.15 -3.1  -69. 0.00929
5% -3.3268 (0.0003) —2.04 6.4 19. 0.00455
10% -2.9942 (0.0003) -0.21 -5.1 13. 0.00377
5 1% -4.2168 (0.0005) -7.66 2.1 -87. 0.00920
5% -3.5978 (0.0003) -1.92 3.6 —17. 0.00502
10% -3.2637 (0.0003) 0.25 4.2 -15. 0.00405
6 1% -4.4585 (0.0006) -7.72 7.2 -57. 0.01034
5% -3.8373 (0.0003) -1.38 7.7 —6. 0.00519
10% 3.5022 (0.0002) 1.5 111 12, 0.00397
7 1% -4.6763 (0.0005) -7.78 5.1 -73. 0.01122
5% —4.0535 (0.0003) —-0.76 —10.0 —7. 0.00567
10% -3.7165 (0.0002) 2.04 -14.7 15.  0.00421
8 1% -4.8772 (0.0006) -7.64 24 -116. 0.01035
5% —4.2513 (0.0003) —-0.03 -12.0 —19. 0.00543
10% -3.9135 (0.0002) 3.10 —20.3 25.  0.00420
9 1% -5.0634 (0.0006) -7.13 6.9 -113. 0.01009
5% —4.4363 (0.0003) 1.00 -18.4 8. 0.00534
10% —4.0974 (0.0003) 4.46 -32.1 74.  0.00422
10 1% -5.2381 (0.0006) -6.68 4.7 -149. 0.01035
5% —4.6093 (0.0003) 2.11 -25.4 10. 0.00552
10% -4.2693 (0.0003) 5.76 —38.2 72. 0.00419
11 1% -5.4039 (0.0006) -6.05 -7.1 -163. 0.01038
5% —4.7734  (0.0004) 3.37 -35.4 48. 0.00556
10% —4.4324 (0.0003) 7.33 -53.3  145. 0.00426
12 1% -5.5598 (0.0006) -5.10 -19.4  -75. 0.01040
5% —4.9279  (0.0004) 4.77 -48.8 109. 0.00579
10% -4.5864 (0.0003) 8.96 -68.0 204. 0.00439
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Table 3. Response Surface Estimates for Critical Values
of the ECM Test of Cointegration k. (k)

(with a constant term).

~

k  size 0o (s.e.) 01 0 03 &
1 1% -3.4307 (0.0006) -6.52 4.7 -10. 0.00790
5% —2.8617 (0.0003) —2.81 3.2 37. 0.00431
10% -2.5668 (0.0003) —1.56 2.1 -29. 0.00332
2 1% -3.7948 (0.0006) -7.87 3.6 -28. 0.00847
5% -3.2145 (0.0003) -3.21 2.0 17. 0.00438
10% -2.9083 (0.0002) -1.55 1.9 -25. 0.00338
3 1% -4.0947 (0.0005) -859 2.0 -65. 0.00857
5% —3.5057 (0.0003) —3.27 1.1 -34. 0.00462
10% -3.1924 (0.0002) -1.23 2.1 -39. 0.00364
4 1% -4.3555 (0.0006) -8.90 -6.7 -31. 0.00959
5% -3.7592 (0.0003) —2.92 3.7 5. 0.00484
10% -3.4412 (0.0002) -0.53 -4.5 4. 0.00388
5 1% -4.5859 (0.0005) -9.14 -2.5 -78. 0.00970
5% -3.9856 (0.0003) -2.50 1.7 —35. 0.00493
10% -3.6635 (0.0002) 0.21 6.0 -8.  0.00407
6 1% -4.7970 (0.0005) -9.04 -5.6 -66. 0.01100
5% —4.1922 (0.0003) -1.73 7.8 -9. 0.00514
10% -3.8670 (0.0002) 1.26 -12.7 14. 0.00402
7 1% -4.9912 (0.0005) -8.85 5.1 -72. 0.01222
5% —4.3831 (0.0003) —-0.90 -12.2 1. 0.00606
10% -4.0556 (0.0002) 2.39 -18.8 27. 0.00437
8 1% -5.1723 (0.0006) -8.58 2.0 -113. 0.01149
5% —4.5608 (0.0003) 0.02 -15.4 -2. 0.00571
10% -4.2310 (0.0002) 3.59 -25.6 44. 0.00427
9 1% -5.3437 (0.0006) -7.86 7.8 -101. 0.01045
5% —4.7287 (0.0003) 1.25 -26.0 42. 0.00531
10% -4.3975 (0.0002) 511 -39.2 104. 0.00399
10 1% -5.5048 (0.0006) -7.19 -9.8 -102. 0.01059
5% —4.8876  (0.0003) 2.46 -31.7 43. 0.00545
10% -4.5543 (0.0002) 6.53 -47.2 116. 0.00438
11 1% -5.6588 (0.0006) -6.39 -13.7 -105. 0.01038
5% —5.0394 (0.0004) 3.88 457 117. 0.00579
10% —4.7055 (0.0003) 8.31 -66.5 222. 0.00443
12 1% -5.8068 (0.0006) -5.13 -29.2 -15. 0.01060
5% —5.1836  (0.0003) 5.33 -55.9 134. 0.00555
10% —4.8480 (0.0003) 9.94 -78.0 240. 0.00431
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Table 4. Response Surface Estimates for Critical Values
of the ECM Test of Cointegration k¢ (k)

(with a constant term and a linear trend).

~

k  size 0o (s.e.) 01 09 03 b
1 1% -3.9593 (0.0005) -8.99 4.9 39. 0.00805
5% —3.4108 (0.0003)  —4.38 4.5 -21. 0.00412
10% -3.1272 (0.0002)  —2.57 3.5 7. 0.00324
2 1% -4.2488 (0.0005) -10.04 4.1 -1. 0.00845
5% —3.6873 (0.0003) —4.56 2.2 1. 0.00442
10% -3.3927 (0.0002) —2.41 3.4 —-14. 0.00339
3 1% -4.4981 (0.0006) -10.69 0.6 —58. 0.00931
5% —-3.9263 (0.0003)  —4.47 5.2 -38. 0.00474
10% -3.6249 (0.0002) —1.86 1.1 -10. 0.00356
4 1% -4.7214 (0.0006) -10.94 1.6  —77. 0.00949
5% —4.1421 (0.0003)  —3.99 2.8 -35. 0.00496
10% -3.8342 (0.0002) —1.16 0.4 —-23. 0.00368
5 1% -4.9255 (0.0005) -10.86 1.2 -94. 0.01018
5% —4.3392 (0.0003) -3.37 1.6 —47. 0.00510
10% —4.0271 (0.0002) -0.17 44 -14. 0.00406
6 1% -5.1137 (0.0005) -10.72 1.4 -96. 0.01145
5% —4.5227 (0.0003) -2.52 2.8 -32. 0.00536
10% —4.2067 (0.0002) 094 9.9 0. 0.00415
7 1% -5.2923 (0.0005) -10.11 4.0 -75. 0.01397
5% —4.6952 (0.0003) -1.43 -10.6 -5.  0.00625
10% —4.3751 (0.0002) 2.18 -16.9 18. 0.00468
8 1% -5.4565 (0.0006) -9.77 -1.5 -106. 0.01202
5% —4.8569 (0.0003) -0.43 -14.4 -3.  0.00593
10% —4.5344 (0.0002) 3.52 -24.9 40. 0.00453
9 1% -5.6149 (0.0006) -9.11 -2.0 -126. 0.01050
5% —5.0108 (0.0003) 0.78 -21.2 12.  0.00554
10% —4.6864 (0.0003) 5.08 -37.2 88. 0.00430
10 1% -5.7657 (0.0006) -8.28 5.3 -121. 0.01180
5% —5.1582  (0.0003) 2.12 -28.6 26. 0.00558
10% —4.8311 (0.0002) 6.62 —46.2 103. 0.00438
11 1% -5.9099 (0.0006) -7.41 6.2 -160. 0.01088
5% —5.2992 (0.0003) 3.57 —-40.0 69. 0.00552
10% —4.9707 (0.0003) 8.41 -64.7 199. 0.00461
12 1% -6.0478 (0.0006) -6.17 -20.6 -74. 0.01111
5% —5.4346 (0.0003) 5.22 -54.5 121. 0.00605
10% -5.1046 (0.0003) 10.20 -78.3  231. 0.00451
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Table 5. Response Surface Estimates for Critical Values
of the ECM Test of Cointegration (k)
(with a constant term, linear trend, and quadratic trend).

~

k  size 0o (s.e.) 01 09 03 b
1 1% -4.3714 (0.0006) -11.57 7.4  —66. 0.00849
5% —3.8324 (0.0003)  —5.90 9.3  —-29. 0.00430
10% -3.5534 (0.0002) —3.63 6.6 7. 0.00341
2 1% -4.6190 (0.0005) -12.44 11.6 -130. 0.00855
5% —4.0683 (0.0003)  —5.90 9.3  —-39. 0.00445
10% -3.7800 (0.0002)  —3.28 7.8 -36. 0.00344
3 1% -4.8399 (0.0005) -12.71  10.7 -136. 0.00934
5% —4.2790 (0.0003)  —5.56 9.3 -55. 0.00481
10% -3.9833 (0.0002) —2.61 6.6 —42. 0.00367
4 1% -5.0396 (0.0005) -12.86 13.0 -149. 0.01000
5% —4.4716 (0.0003)  —4.95 6.9 -50. 0.00496
10% -4.1701 (0.0002) —1.72 3.8 -37. 0.00389
5 1% -5.2256 (0.0005) -12.61 8.3 -121. 0.01061
5% —4.6498 (0.0003) —4.23 5.7 -58. 0.00536
10% -4.3438 (0.0002) -0.64 -1.0 -27. 0.00401
6 1% -5.3998 (0.0005) -12.12 4.3 -105. 0.01270
5% —4.8177 (0.0003) -3.22 0.4 -36. 0.00590
10% —4.5073 (0.0002) 0.60 7.7 7. 0.00430
7 1% -5.5652 (0.0005) -11.31 4.0 -71. 0.01776
5% —4.9774 (0.0003) -1.96 9.3 -8.  0.00671
10% —4.6629 (0.0002) 2.02 -16.1 15.  0.00494
8 1% -5.7181 (0.0006) -10.97 0.8 -108. 0.01143
5% —5.1265 (0.0003) -0.96 -10.9 -17. 0.00584
10% —4.8098 (0.0002) 3.41 -23.3 31. 0.00457
9 1% -5.8656 (0.0006) -10.32 4.3 -151. 0.01103
5% —5.2703 (0.0003) 0.33 -16.2 —17. 0.00565
10% —4.9510 (0.0003) 5.04 -35.4 74.  0.00435
10 1% -6.0083 (0.0006) -9.26 4.0 -117. 0.01218
5% —5.4083 (0.0003) 1.80 -26.5 17.  0.00589
10% —5.0863 (0.0002) 6.63 —43.9 85. 0.00440
11 1% -6.1449 (0.0006) -8.26 —4.7 -158. 0.01155
5% —5.5415 (0.0003) 3.38 -39.0 60. 0.00587
10% —5.2176  (0.0003) 8.54 -63.7 179. 0.00467
12 1% -6.2746 (0.0006) -7.13 -13.5 -111. 0.01281
5% —5.6697 (0.0003) 512 -54.1 117. 0.00615
10% -5.3436  (0.0002) 10.36 -76.3  206. 0.00462
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Table 6. Empirical t-values, Critical Values, and p-values for the ECM Statistic:

Models of U.K. Narrow Money Demand.

Statistic Empirical h Critical value p-value o F-statistic
Model or t-value 1% 5% 10%  finite asymp- versus the model
calculation sample totic for ke (4)
Hctt(4)

ADL —3.29 26 —5.21 —4.54 —4.19 0.3859 0.4140 1.313% —

ECM —-3.14 8 —5.18 —4.52 —4.19 0.4544 0.4819 1.326% -
Asymptotic —5.04 —4.47 —4.17

Crude -5.0 —-44 —-4.1

Ket(4)

ADL —5.14" 25 —4.87 —4.19 —3.85 0.0047 0.0024 1.306% F(1,74)=0.11 [0.74]
ECM —6.53** 7 —4.84 —4.18 —3.85 0.0000 0.0000 1.320% F(1,92) = 0.16 [0.69]
Asymptotic —-4.72 —4.14 —-3.83

Crude -4.7 —41 -3.8

Ke(4)

ADL =517 24 —447 —3.80 —3.45 0.0014 0.0006 1.301% F(2,74) = 0.28 [0.76]
ECM —7.78* 6 —4.45 —3.79 —3.45 0.0000 0.0000 1.317% F(2,92) =0.37 [0.69]
Asymptotic —-4.36 —3.76 —3.44

Crude —-44 =38 =35

Fne(4)

ADL —6.10" 23 —4.04 —3.35 —3.00 0.0000 0.0000 1.297% F(3,74) = 0.36 [0.78]
ECM —10.57** 5 —4.02 —3.35 —3.00 0.0000 0.0000 1.311% F(3,92) = 0.31 [0.82]
Asymptotic —-3.94 —3.33 —2.99

Crude -4.1 =35 -3.2
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Table 7. Empirical t-values, Critical Values, and p-values for the ECM Statistic:
Models of U.K. Consumers’ Expenditure.

Statistic Empirical A Critical value p-value o F-statistic
Model or t-value 1% 5% 10%  finite asymp- versus the model
calculation sample totic for ke (3)

Hctt(3)

ADL —2.11 20 —5.09 —4.38 —4.03 0.8107 0.8482 0.559% -
ECM —2.54 10 —=5.056 —4.37 —4.02 0.6570 0.6949 0.548% -
ADL+Q); —-1.99 23 —-5.10 —4.39 —4.04 0.8439 0.8796 0.508% -
ECM+Q); —-2.95 13 —5.06 —4.37 —4.03 0.4683 0.4999 0.537% -
Asymptotic —4.84 —4.28 —3.98
Crude —4.8 —-42 -39
/Qct(g)
ADL —2.83 19 —4.70 —4.01 —3.66 0.3542 0.3753 0.560% F(1,51) = 1.29 [0.26]
ECM —1.88 9 —4.67 —4.00 —3.65 0.7585 0.7870 0.581% F(1,61) = 8.70 [0.00]
ADL+Q); —2.77 22 —4.72 —4.02 —3.66 0.3787 0.4035 0.512% F(1,48) =1.72[0.20]
ECM+Q; -3.867 12 —4.68 —4.00 —3.66 0.0675 0.0593 0.544% F(1,58) = 2.63 [0.11]
Asymptotic —4.50 —3.93 —3.62
Crude —-45 -39 -36
Ke(3)
ADL —-1.51 18 —4.26 —-3.57 —3.22 0.7027 0.7299 0.586% F(2,51) = 3.60 [0.03]
ECM —1.59 8 —4.23 —3.56 —3.21 0.6760 0.6996 0.586% F(2,61) = 5.46 [0.01]
ADL+Q; —1.43 21 —-4.27 =357 —3.22 0.7275 0.7554 0.536% F(2,48) = 3.76 [0.03]
ECM+Q; —3.45% 11 —4.24 —3.56 —3.21 0.0629 0.0571 0.559% F'(2,58) = 3.57 [0.03]
Asymptotic —-4.09 —-3.51 —-3.19
Crude —-4.2 —-36 -3.3
Kne(3)
ADL —-2.31 17 —-3.74 —-3.04 —2.68 0.1846 0.1882 0.581% F(3,51) = 2.49 [0.07]
ECM —2.31 7 =372 —3.04 —2.68 0.1845 0.1875 0.591% F(3,61) = 4.42 [0.01]
ADL+Q); —-2.37 20 -3.74 =3.05 —2.69 0.1674 0.1700 0.531% F(3,48) = 2.56 [0.07]
ECM+Q; -3.90** 10 —-3.72 —3.04 —2.68 0.0062 0.0042 0.563% F(3,58) = 3.04 [0.04]
Asymptotic -3.62 —3.00 —2.67
Crude -39 -33 -3.0
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Table 8. Empirical t-values, Critical Values, and p-values for the ECM Statistic:

Models of U.S. Federal Government Debt.

Statistic Empirical A Critical value p-value o F-statistic
Model or t-value 1% 5% 10%  finite asymp- versus the model
calculation sample totic for ke (2)
Hctt(Q)

ADL+bubble  —1.36 6 —5.34 —4.39 —3.95 0.9247 0.9651 7.40 —

ADL —2.96 7 =538 —4.41 —-3.96 0.3688 0.4121 6.37 —
Asymptotic —4.62 —4.07 —3.78

Crude —4.6 —4.0 -=-3.7

Ket(2)

ADL+bubble —1.36 6 —4.85 —3.95 —3.53 0.8386 0.8947 7.40 —

ADL —1.38 6 —4.85 —3.95 —3.53 0.8308 0.8886 7.38 F(1,16) = 6.82[0.02]
Asymptotic —4.25 —3.69 —3.39

Crude -4.3 =37 —-34

Ke(2)

ADL+bubble -

ADL —1.50 5 —4.25 =340 —2.99 0.5944 0.6458 7.43 F(2,16) =4.26 [0.03]
Asymptotic -3.79 -3.21 -2.91

Crude -4.0 -34 -=-3.1

Fne(2)

ADL+bubble -

ADL +2.58 4 —3.48 —2.68 —2.29 0.9984 0.9992 7.94 F(3,16) = 4.52[0.02]
Asymptotic —-3.21 —2.59 —2.26

Crude -3.7 =31 =238
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Figure 2: CDFs of the ECM statistic: constant only.
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Figure 4: CDFs of the ECM statistic: constant, trend, and trend squared.
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Figure 6: Densities of the ECM statistic: constant only.
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Figure 8: Densities of the ECM statistic: constant, trend, and trend squared.
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Figure 10: CDFs of the ECM and EG statistics: constant only.
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Figure 11: CDFs of the ECM and EG statistics: constant and trend.
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Figure 12: CDFs of the ECM and EG statistics: constant, trend, and trend squared.
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Figure 13: Densities of the ECM and EG statistics: no constant.
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Figure 14: Densities of the ECM and EG statistics: constant only.
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Figure 15: Densities of the ECM and EG
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Figure 16: Densities of the ECM and EG statistics: constant, trend, and trend squared.
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Figure 17: Asymptotic and finite sample densities of the ECM statistic: k = 2.
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Figure 18: Asymptotic and finite sample densities of the ECM statistic: k = 12.
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Figure 19: Estimated finite sample 1%, 5%, and 10% quantiles ¢(T) for the ECM
statistic as a function of d, k, and T.
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Figure 20: Estimated asymptotic 1%, 5%, and 10% quantiles 0, for the ECM statistic
as a function of £ and d.
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