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Abstract

In dynamic regression models the least-squares coe±cient estimators are
biased in ¯nite samples, and so are the usual estimators for the disturbance
variance and for the variance of the coe±cient estimators. By deriving the ex-
pectation of the initial terms in an expansion of the usual expression for the
asymptotic coe±cient variance estimator and by comparing these with an ap-
proximation to the true variance we ¯nd an approximation to the bias in variance
estimation from which a bias corrected estimator for the variance readily fol-
lows. This is also achieved for a bias corrected coe±cient estimator and allows
to compare analytically the second-order approximation to the mean squared
error of the least-squares estimator and its counterpart for the ¯rst-order bias
corrected coe±cient estimator. Two rather strong results on e±ciency gains
through bias correction for AR(1) models follow. Illustrative simulation results
on the magnitude of bias in coe±cient and variance estimation and on the scope
for e®ective bias correction and e±ciency improvement are presented for some
relevant particular cases of the ARX(1) class of models.

1. Introduction

In a recent paper, Kiviet and Phillips (1998a), we (henceforth referred to by KP) have
obtained a higher-order approximation to the bias in the least-squares estimator of the
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coe±cients of normal stable ARX(1) models. In another recent paper, KP (1998b),
we obtained a higher-order approximation to the bias in estimators of the disturbance
variance based on the sum of squared least-squares residuals divided by alternative
measures for the degrees of freedom. A natural extension to this work is to examine the
bias in estimators for the variance of the coe±cients. In this paper we have a closer look
at the second moment of the least-squares estimator for the full vector of coe±cients.
In addition, we also examine the variance and mean squared error of a bias corrected
estimator. From the results various conclusions can be drawn on the e®ectiveness
of bias correction and on appropriate variance estimation of (bias corrected) least-
squares estimators in the ¯rst-order stable dynamic regression model. In this class of
models the dependent variable is explained linearly by an arbitrary number of strongly
exogenous regressor variables and by the one period lagged dependent variable, and
it depends on additive normally distributed (i.i.d.) disturbances.
In the stable model the coe±cient of the lagged dependent variable is smaller than

one in absolute value (we have analyzed the ¯nite sample characteristics of the ¯rst
two moments of the least-squares coe±cient estimators in dynamic models with a unit
root in KP 1999). We obtain our approximations to ¯nite sample moments by ex-
tending the approach followed by Nagar (1959) in such a way that the approximation
errors of the results are of order T¡1 or T¡2 or even smaller, where T is the sample
size. This requires the development of a Taylor-type expansion and then the analytical
evaluation of the expectation of expressions which involve terms consisting of products
of up to four quadratic forms in standard normal vectors. The approximation of the
moments of statistical estimators in stable autoregressive models by use of asymptotic
expansions has been undertaken for about half a century. Most early work is particu-
larly concerned with the estimator of the serial correlation coe±cient in a ¯rst order
autoregressive Gaussian process, see Bartlett (1946), Hurwicz (1950), Kendall (1954),
Marriott and Pope (1954) and White (1961). In the latter study, which focuses on the
AR(1) model with no (or a known) intercept, an analysis is also given of the bias in
the variance estimator of the coe±cients, but generally speaking very little work has
been done to ¯nd out how well the usual standard deviation estimator estimates the
true standard errors in dynamic econometric models.
Our results concern a more general model than the AR(1), because we allow for

any number of arbitrary exogenous regressors in the autoregressive model and any
form of pre-sample initial condition of the dependent variable of this dynamic system.
As in KP (1998a, 1998b), for related work see also KP (1993, 1994) and Kiviet et
al. (1995), the focus of attention is here the bias of ordinary least-squares (OLS)
estimation (i.e. Maximum Likelihood conditional on y0 and X) of all the regression
coe±cients in the ¯rst-order normal linear dynamic regression model

y = ¸y¡1 +X¯ + u; (1.1)

where y = (y1; :::; yT )
0 is a T £ 1 vector of observations on a dependent variable,

y¡1 is the y vector lagged one period, i.e. y¡1 = (y0; :::; yT¡1)0, and X is a full
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column-rank T £ k matrix of observations on k ¯xed or strongly exogenous regressors
(such as a constant, a linear trend, step/impulse/seasonal dummy variables or any
other covariates not a®ected by feedbacks from the dependent variable). The scalar
coe±cient ¸ (with j¸j < 1) and k£1 coe±cient vector ¯ are unknown, and u is a T £1
vector of independent Gaussian disturbances with zero mean and constant variance
¾2. Below we shall give further attention to the precise assumptions made on the
initial conditions, i.e. concerning y0.
We ¯rst focus on an examination of the ¯nite sample bias of the usual estimator

of the (asymptotic) variance of the OLS estimator ®̂ of the full coe±cient vector
® = (¸; ¯0)0; and we shall develop a bias corrected variance estimator. We shall
also consider a bias corrected estimator �® of ® and examine its relative e±ciency
analytically and also experimentally in simulations. Rewriting (1.1) as

y = Z®+ u; (1.2)

where Z = [y¡1
...X]; the OLS estimator of the (k + 1)£ 1 vector ® is

®̂ = (Z 0Z)¡1Z 0y; (1.3)

and, based on regularity conditions and some asymptotic and ¯nite sample arguments,
its variance V (®̂) = E[®̂¡E(®̂)][®̂¡ E(®̂)]0 is usually estimated by

V̂ (®̂) = s2 (Z 0Z)¡1 ; (1.4)

where

s2 =
(y ¡ Z®̂)0(y ¡ Z®̂)

T ¡ k ¡ 1 : (1.5)

Occasionally the degrees of freedom correction is omitted and ¾2 is estimated by the
ML estimator

¾̂2 =
(y ¡ Z®̂)0(y ¡ Z®̂)

T
: (1.6)

The coe±cient variance estimator ¾̂2(Z 0Z)¡1 disregards any ¯nite sample considera-
tions.
Note that the derivation of moments such as E (®̂) ; V (®̂) and E[V̂ (®̂)] is non-

trivial, because Z is stochastic and depends linearly on u; whereas ®̂ depends nonlin-
early on Z; so these are moments of expressions which are all highly nonlinear in u.
Below in Section 2 we ¯rst rewrite Z in such a way that its dependence on u becomes
fully explicit, and next we produce for the various moments of interest expansions con-
sisting of individual terms whose expectations can be obtained analytically upon using
some basic results which are collected in Appendix A. From these we obtain approx-
imations to the MSE (mean squared error) and the true variance of ®̂ in the general
ARX(1) model, and also to the expectation of estimators of this variance. Even
though we do not have a representation for the true variance (but only an asymptotic
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approximation), these results can be used to develop a bias correction to the standard
asymptotic variance estimator. In Section 3 we examine the ¯rst and second moments
of an implementation of a bias corrected estimator, which is unbiased to order T¡1:
In Section 4 we specialize the general results and examine their implications for the
speci¯c case of a simple AR(1) model with an unknown intercept. Some remarkably
simple analytic results on the scope for e±ciency gains are obtained. In Section 5
we verify the numerical magnitude of the bias of alternative variance estimators by
Monte Carlo simulation. Finally, in Section 6, we summarize our main conclusions.
Proofs of our ¯ndings can be found in a series of Appendices.

2. Bias of variance estimators in ARX(1) models

The starting point for our analysis is summarized as follows.

Assumption 2.1: In the ¯rst-order dynamic regression model y = ¸y¡1 + X¯ + u,
where the scalar ¸ and the k £ 1 vector ¯ are unknown coe±cients, we have: (i)
stability, i.e. j¸j < 1; (ii) stationarity, i.e. the matrix Z = [y¡1 : X] is such that
Z 0Z = Op(T ); (iii) the T £ (k + 1) matrix Z has rank(Z) = k + 1 with probability
one; (iv) the regressors in X are strongly exogenous; (v) the disturbances follow u »
N(0; ¾2IT ), with 0 < ¾2 < 1; (vi) the start-up value has y0 » N(¹y0; !

2¾2), with
0 � ! < 1; (vii) y0 and u are mutually independent.

Note that ! = 0 represents the ¯xed start-up case. For any ! > 0 the start-
up is random, and if !2 = (1 ¡ ¸2)¡1 then fytg is a covariance stationary process
(but possibly with a non-constant mean). Also note that (ii) excludes a linear trend
or any I(1) regressors. However, the presence of such variables will not change our
approximation formulas as such, as is shown in KP (1998a), but will only render them
more accurate, because it reduces their order of magnitude and also the order of the
remainder terms.
In order to distinguish the ¯xed and stochastic elements of the regressor matrix Z,

we decompose Z = ¹Z + ~Z, where ¹Z is de¯ned as the mathematical expectation of Z
conditional on X and y0 , i.e.

¹Z = E(Z) = [E(y¡1)
...X] = [¹y¡1

...X] (2.1)

and
~Z = Z ¡ ¹Z = [y¡1 ¡ ¹y¡1

...X ¡X] = [~y¡1
...O] = ~y¡1e

0
1; (2.2)

where e1 = (1; 0; :::; 0)0 is a unit vector of k + 1 elements. It follows directly from
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model (1.1) that

¹y¡1 =

2
666666664

1 0 ¢ ¢ ¢ 0
¸ 1 ¢ ¢
¸2 ¸ 1 ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ 0

¸T¡1 ¢ ¢ ¢ ¸ 1

3
777777775

0
BBBBBBBB@

¹y0
x01¯
x02¯
¢
¢

x0T¡1¯

1
CCCCCCCCA

; (2.3)

where X 0 = [x1
... ¢ ¢ ¢ ...xT ], and hence we ¯nd that ¹Z is determined by: X; ¹y0, ¯ and ¸.

Also de¯ning v = (u0; u1; :::; uT )
0 such that

v » N [0; ¾2IT+1] with y0 = ¹y0 + !u0; (2.4)

and de¯ning the T £ (T + 1) matrix G such that

G = [!F
...C]; with F =

0
BBBBBBBB@

1
¸
¸2

¢
¢

¸T¡1

1
CCCCCCCCA

; C =

2
666666664

0 ¢ ¢ ¢ ¢ 0
1 0 ¢
¸ 1 0 ¢
¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢

¸T¡2 ¢ ¢ ¸ 1 0

3
777777775

; (2.5)

one can easily verify that
~y¡1 = Gv and ~Z = Gve

0
1: (2.6)

Note, that in the ¯xed start-up case (! = 0), we simply have ~Z = Cue01. However, in
the derivations to follow we shall stick to the more general case where the value of !
is arbitrary.
We ¯nd

E(Z 0Z) = E( ¹Z +Gve01)
0( ¹Z +Gve01) (2.7)

= ¹Z 0 ¹Z + ¾2tr(G0G)e1e
0
1

and we shall denote the inverse of E(Z 0Z) by Q, whereas q1 denotes the ¯rst column
of Q, and q11 the ¯rst element of q1, hence:

Q = [E(Z 0Z)]¡1; q1 = Qe1; q11 = e
0
1Qe1: (2.8)

Using the same notation the following result has been proved in KP (1998a).

Theorem 2.1: Under Assumption 2.1 the bias of the least-squares estimator (1.3)
can be approximated to ¯rst order as

E(®̂¡ ®) = ¡¾2[tr(Q ¹Z 0C ¹Z)q1 +Q ¹Z 0C ¹Zq1 + 2¾2q11tr (GG0C) q1] + o(T¡1):
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In fact, KP (1998a) presents a more accurate and complicated approximation to the
bias of ®̂; which gives the bias to second order. However, for our present purposes
the O(T¡1) bias approximation of Theorem 2.1 su±ces. In order to obtain such an
approximation one has to ¯nd an expansion (in this particular case of the estimation
error) in such a form that successive terms are of decreasing order so that the order
of the remainder term is known, whereas the individual terms in the expansion have
an expectation which can be derived analytically. Irrespective of whether one wants
to approximate (the bias in) the ¯rst or the second moment of estimators for the
coe±cients (or for the disturbance variance), the typical expansion will involve terms
in which particular types of expressions occur frequently. For some of these typical
expressions Appendix A provides their expectation.
We shall present results now that are relevant in order to obtain further insight

into matters of interest regarding (the estimation of) the second moment of the full
vector of least-squares coe±cient estimators. In Appendix B we derive:

Theorem 2.2: Under Assumption 2.1 we ¯nd for the variance of the estimator ®̂ the
approximation:

V (®̂) = Ef[®̂¡E(®̂)][®̂¡E(®̂)]0g =
¾2Q

+¾4f[tr(Q ¹Z 0GG0 ¹Z)¡ 2tr(Q ¹Z 0CC ¹Z) + tr(Q ¹Z 0C ¹ZQ ¹Z 0C ¹Z)]q1q01
+Q ¹Z 0(GG0 ¡ CC ¡ 2C 0C ¡ C 0C 0) ¹Zq1q01
+q1q

0
1
¹Z 0(GG0 ¡ CC ¡ 2C 0C ¡ C 0C 0) ¹ZQ

+Q ¹Z 0C ¹Zq1q
0
1
¹Z 0C ¹ZQ+Q ¹Z 0C ¹Zq1q

0
1
¹Z 0C 0 ¹ZQ+Q ¹Z 0C 0 ¹Zq1q

0
1
¹Z 0C 0 ¹ZQ

+q1q
0
1
¹Z 0C 0 ¹ZQ ¹Z 0(C + C 0) ¹ZQ+Q ¹Z 0(C + C 0) ¹ZQ ¹Z 0C ¹Zq1q

0
1

+q1q
0
1
¹Z 0(C + C 0) ¹ZQ ¹Z 0C ¹ZQ+Q ¹Z 0C 0 ¹ZQ ¹Z 0(C + C 0) ¹Zq1q

0
1

+tr(Q ¹Z 0C ¹Z)[q1q
0
1
¹Z 0C ¹ZQ+Q ¹Z 0C 0 ¹Zq1q

0
1] + (q

0
1
¹Z 0C ¹Zq1)Q ¹Z

0(C + C 0) ¹ZQ

+q11[tr(Q ¹Z
0C ¹Z)Q ¹Z 0(C + C 0) ¹ZQ+Q ¹Z 0(GG0 ¡ CC ¡ C 0C 0) ¹ZQ

+Q ¹Z 0C ¹ZQ ¹Z 0C ¹ZQ+Q ¹Z 0C 0 ¹ZQ ¹Z 0C 0 ¹ZQ]g
+¾6f12tr(GG0C)(q01 ¹Z 0C ¹Zq1)q1q01

+q11[2tr(G
0GG0G)¡ 8tr(G0GCC)¡ 4tr(G0C 0CG)

+4tr(GG0C)tr(Q ¹Z 0C ¹Z)]q1q
0
1

+q11tr(GG
0C)[4Q ¹Z 0C ¹Zq1q

0
1 + 4q1q

0
1
¹Z 0C 0 ¹ZQ)

+6Q ¹Z 0C 0 ¹Zq1q
0
1 + 6q1q

0
1
¹Z 0C ¹ZQ)]

+2q211tr(GG
0C)Q ¹Z 0(C + C 0) ¹ZQg

+20¾8q211[tr(GG
0C)]2q1q

0
1

+o(T¡2):

6



Next we shall examine how closely the above rather complex approximation to the
actual variance of the coe±cient estimator corresponds to the expectation of the usual
estimator for this actual variance. In Appendix C we prove:

Theorem 2.3: Under Assumption 2.1 we ¯nd for the expectation of the usual esti-
mator of V (®̂) given in (1.4) the approximation

E[V̂ (®̂)] = E[s2(Z 0Z)¡1] =

¾2Q

+¾4f[tr(Q ¹Z 0GG0 ¹Z)¡ 2

T
tr(C 0C)]q1q

0
1

+Q ¹Z 0GG0 ¹Zq1q
0
1 + q1q

0
1
¹Z 0GG0 ¹ZQ+ q11Q ¹Z

0GG0 ¹ZQg
+2¾6q11tr(G

0GG0G)q1q
0
1 + o(T

¡2):

Note that the approximation to order T¡1 (the leading term) of both V (®̂) and
E[V̂ (®̂)] is simply ¾2Q+ o(T¡1): However, the second-order approximations of V (®̂)
and E[V̂ (®̂)] di®er a lot with respect to contributions of order T¡2. Note that The-
orem 2.3 implies that the ¯rst-order approximation to E[¾̂2(Z 0Z)¡1]; the estimator
which omits a degrees of freedom correction, is given by ¾2Q + o(T¡1) too; so, the
degrees of freedom correction does not a®ect the leading term. Since the second-order
approximation to E[¾̂2(Z 0Z)¡1] equals the expression given in Theorem 2.3 plus the
term ¡k+1

T
¾2Q we ¯nd that this di®ers from both the expressions given in Theorems

2.2 and 2.3. Whether or not these di®erences have an actual magnitude that is worth
bothering about has to be found out by numerical evaluation of these expressions
for given values of X; y0; ® and ¾

2 at relevant sample sizes T; and by comparing
these approximative expressions with estimates of the true variance. The latter can
be obtained from Monte Carlo experiments.
If these di®erences can be substantial it would seem interesting to develop a cor-

rected estimator of V (®̂); say �V (®̂); which adds particular terms to the standard
estimator V̂ (®̂); such that E[�V (®̂)] is equivalent to second order to V (®̂): We return
to the issue of bias reduction of variance (and coe±cient) estimators later.
A more focussed comparison of the above analytical results on variance matrices

is possible if we limit ourselves to the simpler scalar results for the single lagged
dependent variable coe±cient ¸. From Theorem 2.1 one easily obtains:

Corollary 2.1: Under Assumption 2.1 the bias of the least-squares estimator ^̧ can
be approximated as:

E(^̧ ¡ ¸) = ¡¾2[q11tr(Q ¹Z 0C ¹Z) + q01 ¹Z 0C ¹Zq1 + 2¾2q211tr(GG0C)] + o(T¡1):
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From Theorem 2.2 we obtain after pre- and postmultiplication by e1:

Corollary 2.2: Under Assumption 2.1 we ¯nd for the variance of the estimator ^̧

the approximation:

V (^̧) = E[^̧ ¡ E(^̧)]2 =
¾2q11

+¾4f5(q01 ¹Z 0C ¹Zq1)2
+q11[6(q

0
1
¹Z 0C ¹ZQ ¹Z 0C ¹Zq1) + 4(q1 ¹Z

0C 0 ¹ZQ ¹Z 0C ¹Zq1)

+(q01 ¹Z
0[3GG0 ¡ 6CC ¡ 4C 0C] ¹Zq1) + 4tr(Q ¹Z 0C ¹Z)(q01 ¹Z 0C ¹Zq1)]

+q211[tr(Q ¹Z
0GG0 ¹Z)¡ 2tr(Q ¹Z 0CC ¹Z) + tr(Q ¹Z 0C ¹ZQ ¹Z 0C ¹Z)]g

+¾6f36q211tr(GG0C)(q01 ¹Z 0C ¹Zq1)]
+q311[2tr(G

0GG0G)¡ 8tr(G0GCC)¡ 4tr(G0C 0CG)
+4tr(GG0C)tr(Q ¹Z 0C ¹Z)]g

+20¾8q411[tr(GG
0C)]2

+o(T¡2):

From Theorem 2.3 we obtain:

Corollary 2.3: Under Assumption 2.1 we ¯nd for the expectation of the usual
estimator of the variance of the estimator ^̧ the approximation:

E[V̂ (^̧)] = E[s2e01(Z
0Z)¡1e1] =

¾2q11

+¾4f3q11(q01 ¹Z 0GG0 ¹Zq1) + q211[tr(Q ¹Z 0GG0 ¹Z)¡
2

T
tr(C 0C)]g

+2¾6q311tr(G
0GG0G) + o(T¡2):

Again we note that the two approximations given in Corollaries 2.2 and 2.3 di®er
substantially with respect to their order T¡2 terms, which may be an indication that
there is some scope for developing a second-order unbiased estimator �V (^̧) for V (^̧).

3. The e±ciency of bias corrected coe±cient estimators

The approach layed out in the foregoing section consists of three stages: (i) assess
the second moment of a coe±cient estimator to second order and next (ii) obtain to
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second order the expectation of a variance estimator of that coe±cient estimator, in
order (iii) to exploit these results to correct the variance estimator such that it will
become unbiased to second order. This can also be applied to a bias corrected least-
squares estimator in which the result of Theorem 2.1 has been exploited such that the
corrected estimator is unbiased to order T¡1: For the expression

®̂+ ¾2[tr(Q ¹Z 0C ¹Z)q1 +Q ¹Z
0C ¹Zq1 + 2¾

2q11tr (GG
0C) q1]

it is obvious that this has expectation ®+o(T¡2); but it is not an operational estimator,
because ¾2; C; G and Q are, or depend on, unknown parameters. However, consider
the operational corrected least-squares (COLS) estimator

�® = ®̂+ s2tr(PẐ 0ĈẐ)p1 + s
2PẐ 0ĈẐp1 + 2s

4p11tr(ĈĈ
0Ĉ)p1; (3.1)

where ®̂ and s2 are the usual least-squares estimators, P = (Z 0Z)¡1; which has ¯rst

column p1 with ¯rst element p11; Ẑ = [F̂ y0+ ĈX ^̄
...X] and Ĉ equals C (also F̂ equals

F ) with the unknown ¸ replaced by ^̧. In Appendix D we prove:

Theorem 3.1: Under Assumption 2.1 the COLS estimator �® given in (3.1) is unbi-
ased to order T¡1; i.e.

E(�®) = ®+ o(T¡1):

For this bias corrected estimator we obtain in Appendix E:

Theorem 3.2: Under Assumption 2.1 we ¯nd for the variance of the bias corrected
estimator �® given in (3.1) the approximation:

V (�®) = Ef[�®¡ E(�®)][�®¡ E(�®)]0g =
¾2Q

+¾4f[tr(Q ¹Z 0GG0 ¹Z) + tr(Q ¹Z 0C ¹ZQ ¹Z 0C ¹Z)]q1q01
+Q ¹Z 0GG0 ¹Zq1q

0
1 + q1q

0
1
¹Z 0GG0 ¹ZQ+Q ¹Z 0C ¹Zq1q

0
1
¹Z 0C 0 ¹ZQ

+q1q
0
1
¹Z 0C 0 ¹ZQ ¹Z 0C 0 ¹ZQ+Q ¹Z 0C ¹ZQ ¹Z 0C ¹Zq1q

0
1 + q11Q ¹Z

0GG0 ¹ZQg
+2¾6f[2tr(GG0C)(q01 ¹Z 0C ¹Zq1) + q11tr(G0GG0G)]q1q01

+q11tr(GG
0C)[Q ¹Z 0C ¹Zq1q

0
1 + q1q

0
1
¹Z 0C 0 ¹ZQ)]g

+4¾8q211[tr(GG
0C)]2q1q

0
1

+o(T¡2):

It is noteworthy that the expression for the second order contribution to the variance of
the corrected estimator is in fact much simpler than for the uncorrected least-squares
estimator.
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From Theorems 2.3 and 3.2 we ¯nd (proof in Appendix F):

Theorem 3.3: Under Assumption 2.1 the estimator �V (�®) of the variance of the bias
corrected estimator �® given in (3.1) has E[�V (�®)¡ V (�®)] = o(T¡2) if we de¯ne:

�V (�®) ´ V̂ (®̂)

+s4f[tr(PẐ 0ĈẐP Ẑ 0ĈẐ) + 2

T
tr(Ĉ 0Ĉ)]p1p

0
1

+PẐ 0ĈẐp1p
0
1Ẑ

0Ĉ 0ẐP + p1p
0
1Ẑ

0Ĉ 0ẐP Ẑ 0Ĉ 0ẐP + PẐ 0ĈẐP Ẑ 0ĈẐp1p
0
1g

+2s6tr(ĈĈ 0Ĉ)f2(p01Ẑ 0ĈẐp1)p1p01 + p11[PẐ 0ĈẐp1p01 + p1p01Ẑ 0Ĉ 0ẐP )]g
+4s8p211[tr(ĈĈ

0Ĉ)]2p1p
0
1:

Specializing the above results to the variance of the ¯rst element of �® yields:

Corollary 3.2: Under Assumption 2.1 we ¯nd

V (�̧) = E[�̧¡ E(�̧)]2
= ¾2q11 +

+¾4f(q01 ¹Z 0C ¹Zq1)2 + q11[2(q01 ¹Z 0C ¹ZQ ¹Z 0C ¹Zq1) + 3(q01 ¹Z 0GG0 ¹Zq1)]
+q211[tr(Q ¹Z

0GG0 ¹Z) + tr(Q ¹Z 0C ¹ZQ ¹Z 0C ¹Z)]g
+4¾6f2q211tr(GG0C)(q01 ¹Z 0C ¹Zq1) + q311tr (G0GG0G)g
+4¾8q411[tr(GG

0C)]2 + o(T¡2):

and

Corollary 3.3: Under Assumption 2.1 �V (�̧) is unbiased to second order for V (^̧)
when de¯ning:

�V (�̧) ´ V̂ (^̧) +

+s4f(p01Ẑ 0ĈẐp1)2 + 2p11(p01Ẑ 0ĈẐP Ẑ 0ĈẐp1)
+p211[

2

T
tr(Ĉ 0Ĉ) + tr(PẐ 0ĈĈ 0Ẑ) + tr(PẐ 0ĈẐP Ẑ 0ĈẐ)]g

+8s6p211tr(ĈĈ
0Ĉ)(p01Ẑ

0ĈẐp1)

+4s8p411[tr(ĈĈ
0Ĉ)]2:

In deriving Theorem 3.2 and its Corollary 3.2 we have also obtained an approxi-
mation for the MSE of the corrected estimator, because these are equivalent up to the
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order of the approximation. Comparison of these with the MSE of the uncorrected
estimator, which is of course di®erent from its variance in the O(T¡2) terms due to
the O(T¡1) coe±cient bias, yields information on any e±ciency gains or losses by
coe±cient bias correction.

4. Results for the AR(1) model with intercept

Here we focus on the variance of the OLS and COLS estimators for the lagged depen-
dent variable coe±cient ¸ in the model of Assumption 2.1 with an intercept as the
only exogenous regressor. Hence, we have here:

yt = ¸yt¡1 + ¯ + ut: (4.1)

For this model Corollary 2.1 reduces to the well-known Kendall (1954) approximation
restated here as:

Corollary 4.1: Under Assumption 2.1 the bias of the least-squares estimator ^̧ for
the special case of model (4.1) can be approximated as:

E(^̧ ¡ ¸) = ¡ 1
T
(1 + 3¸) + o(T¡1):

Hence, this approximation proves to be valid irrespective of the nature of the start-up
value y0: De¯ning for model (4.1) the standardized start-up value

¹y¤0 =
1

¾

Ã
¹y0 ¡ ¯

1¡ ¸

!
; (4.2)

we ¯nd the following approximative expression for the true variance, see Appendix G:

Corollary 4.2: Under Assumption 2.1 the variance of the least-squares estimator
^̧ for the special case of model (4.1) can be approximated as:

V (^̧) = E[^̧ ¡ E(^̧)]2

=
1¡ ¸2
T

¡ 1¡ 4¸¡ 14¸2
T 2

¡ 1¡ ¸2
T 2

³
¹y¤20 + !

2
´
+ o(T¡2):

Here the leading term 1¡¸2
T
is simply the asymptotic variance of ^̧: Notice that in the

mean-stationary case, where ¹y0 =
¯
1¡¸ ; the approximation does not involve ¾

2 nor ¯:
Also note that the variance decreases with the variance of the initial value y0:
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For the expectation of the standard variance estimator we ¯nd:

Corollary 4.3: Under Assumption 2.1 the expectation of the estimator for the
variance of the least-squares estimator ^̧ for the special case of model (4.1) can be
approximated as:

E[V̂ (^̧)] = E[s2e01(Z
0Z)¡1e1]

=
1¡ ¸2
T

+
2 + 2¸+ 5¸2

T 2
¡ 1¡ ¸2

T 2

³
¹y¤20 + !

2
´
+ o(T¡2):

It is obvious that this estimator is unbiased to order T¡1; but biased to order T¡2;
since one of its second order terms di®ers from the corresponding one of Corollary 4.2.
So, even though we do not know V (^̧) precisely, we ¯nd from its approximation that
the standard estimator is biased, viz.

E[V̂ (^̧)¡ V (^̧)] = 3¡ 2¸¡ 9¸2
T 2

+ o(T¡2): (4.3)

If we can modify V̂ (^̧) to have the same mean to order T¡2 as V (^̧), then an approx-
imately unbiased estimator of V (^̧) will result. Thus, for the case Z = [y¡1 : ¶] where
¶ = (1; :::; 1)0; the statistic

s2e01(Z
0Z)¡1e1 ¡ 3¡ 2¸¡ 9¸2

T 2

is unbiased to O(T¡2) for V (^̧) but in practice this estimator is not operational since
it depends on ¸: However, since E(^̧ ¡ ¸) = O(T¡1) we ¯nd:

Theorem 4.1: Under Assumption 2.1 the corrected estimator for the variance of the
least-squares estimator ^̧ for the special case of model (4.1) given by

�V (^̧) ´ V̂ (^̧)¡ 3¡ 2^̧ ¡ 9^̧2
T 2

is unbiased to order T¡2; i.e. E[�V (^̧)¡ V (^̧)] = o(T¡2):

For the simple model (4.1) our implementation of COLS leads to

�̧´ ^̧ +
1

T
(1 + 3^̧) =

T + 3

T
^̧ +

1

T
: (4.4)

Exploiting now the analytic results of Section 3 on the COLS estimator for the special
case of the AR(1) model with intercept we obtain:

Theorem 4.2: Under Assumption 2.1 the COLS estimator �̧ in the simple model
(4.1) has

V (�̧) = V (^̧) +
6¡ 6¸2
T 2

+ o(T¡2)
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and

MSE(�̧) =MSE(^̧) +
5¡ 6¸¡ 15¸2

T 2
+ o(T¡2);

so that, omitting terms of order o(T¡2); we ¯nd

MSE(�̧) < MSE(^̧) for ¡ 1 < ¸ < ¡0:811and for 0:411 < ¸ < 1:

The ¯rst result of this theorem shows that, to the order of the approximation, bias
correction will invariably lead to an increase in variance. However, the MSE result
indicates that, in the AR(1) model with intercept, bias correction is not bene¯cial
as far as e±ciency is concerned when ¡0:811 < ¸ < 0:411: In a similar way, it can
be derived that in the AR(1) model with no intercept bias correction yields no MSE
reduction when j¸j < 0:707: We conjecture that the greater the number of smooth
regressors that are included in an ARX(1) model, the more scope there is to improve
e±ciency through bias correction.
When bias correction has been employed an adequate estimator for the resulting

variance is still provided by V̂ (^̧), but an operational estimator which is even unbiased
to order T¡2; is then given by:

�V (�̧) ´ V̂ (^̧) +
3 + 2�̧+ 3�̧2

T 2
: (4.5)

Bias correction of AR(1) models has been entertained in the literature in many
studies, see Copas (1966), Orcutt and Winokur (1969), Rudebusch (1992) and MacK-
innon and Smith (1998). All these studies based their bias correction on the Kendall
(1954) approximation to the bias given in Corollary 4.1, although, instead of using
(4.4), in all the studies just referred to a bias corrected estimator _̧ has been used
which is obtained by solving

^̧ = _̧ ¡ 1

T
(1 + 3 _̧ );

yielding

_̧ ´ T

T ¡ 3
^̧ +

1

T ¡ 3 : (4.6)

For the bias of this corrected estimator we ¯nd

E( _̧ ¡ ¸) =
T

T ¡ 3E(
^̧)¡ ¸+ 1

T ¡ 3
= E(^̧ ¡ ¸) + 3

T ¡ 3E(
^̧) +

1

T ¡ 3
= ¡ 1

T
(1 + 3¸) +

3

T ¡ 3¸+
1

T ¡ 3 +O(T
¡2)
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= ¸
�
3

T ¡ 3 ¡ 3

T

¸
+

1

T ¡ 3 ¡ 1

T
+O(T¡2)

= ¸
9

T (T ¡ 3) +
3

T (T ¡ 3) +O(T
¡2)

= O(T¡2);

hence, both bias corrected estimators remove the O(T¡1) bias. In fact, however, _̧ is
a hybrid bias correction estimator, because the correction also involves a non-random
term of order O(T¡2); since 1

T¡3 =
1
T
+ 3

T 2
+ o(T¡2): We also ¯nd:

Theorem 4.3: In the simple model (4.1) the corrected estimators �̧ and _̧ are both
unbiased to order O(T¡1); but, omitting terms of order o(T¡2); �̧ is uniformly (for
any j¸j < 1) more e±cient than _̧ ; because

V (�̧) =
µ
T + 3

T

¶2
V (^̧) and V ( _̧ ) =

µ
T

T ¡ 3
¶2
V (^̧):

The superiority of our implementation of bias correction follows from T+3
T

¡ T
T¡3 =

¡ 9
T (T¡3) < 0:

5. Numerical results

We shall examine the estimators ^̧ and �̧, their e±ciency, the qualities of their respec-
tive (bias corrected) variance estimators and the accuracy of the various asymptotic
approximations for model (4.1) and also for the AR(1) model with intercept and lin-
ear trend. For that purpose we perform various numerical evaluations and execute
some series of Monte Carlo experiments. In what follows we write V [^̧] for what in
fact is the Monte Carlo estimate of V (^̧). Because we generate many replications the
Monte Carlo estimates will be very close to the actual population moments. In the
model with intercept only, we write AV1[^̧] for the (leading term) asymptotic variance
of ^̧; which is (1 ¡ ¸2)=T , and AV2[^̧] for the second-order asymptotic approxima-
tion to V (^̧); which is given by Corollary 4.2. For the mean over the Monte Carlo
replications of V̂ (^̧) we simply write E[V̂ [^̧]]; and similarly for �V [^̧] of Theorem 4.1
and for �V [�̧] of Corollary 3.3. In the tables we present results for various values of
j¸j < 1 and T; focussing on positive values of ¸ and 10 � T � 50 and the case ¯ = 0;
¹y0 = ¯=(1 ¡ ¸) = 0; ! = 0; ¾ = 1; i.e. the model with a ¯xed start-up and mean-
stationarity (note from the asymptotic approximations that these values often seem to
mitigate the magnitude of the second order terms). All results presented in the tables
are invariant with respect to ¯; and most are with respect to ¾. Often the results are
given as ratios. Then values of unity in the tables may indicate unbiasedness and val-
ues smaller (greater) than one negative (positive) bias. In order to compare the e®ect
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of bias correction on e±ciency we also present the ratio ofMSE[�̧] andMSE[^̧]; here
values smaller than one indicate an e±ciency gain due to bias correction.

Table 5.1:
Estimation in the AR(1) model with intercept; T = 10; 250,000 replications

¸ E[^̧] ¡ ¸ E[�̧]¡¸

E[^̧]¡¸
V [^̧] AV1[^̧]

V [^̧]

AV2[^̧]

V [^̧]

E[V̂ [^̧]]

V [^̧]

E[ �V [^̧]]

V [^̧]

E[ �V [�̧]]

V [�̧]

MSE[�̧]

MSE[^̧]

0.0 -0.111 0.401 0.095 1.058 0.952 1.374 1.135 1.026 1.513
0.1 -0.139 0.363 0.096 1.026 0.979 1.358 1.130 1.024 1.431
0.2 -0.167 0.343 0.098 0.980 1.016 1.335 1.126 1.022 1.341
0.3 -0.197 0.333 0.099 0.918 1.065 1.305 1.123 1.019 1.247
0.4 -0.227 0.332 0.100 0.841 1.125 1.269 1.120 1.015 1.152
0.5 -0.260 0.338 0.100 0.748 1.197 1.227 1.117 1.012 1.056
0.6 -0.294 0.348 0.100 0.640 1.284 1.179 1.114 1.008 0.962
0.7 -0.331 0.363 0.099 0.515 1.390 1.124 1.110 1.004 0.872
0.8 -0.368 0.377 0.097 0.370 1.516 1.056 1.099 0.997 0.789
0.9 -0.401 0.377 0.096 0.198 1.650 0.954 1.069 0.976 0.721
0.99 -0.413 0.338 0.097 0.021 1.742 0.815 1.024 0.932 0.686

Table 5.2:
Estimation in the AR(1) model with intercept; T = 20; 250,000 replications

¸ E[^̧] ¡ ¸ E[�̧]¡¸

E[^̧]¡¸
V [^̧] AV1[^̧]

V [^̧]

AV2[^̧]

V [^̧]

E[V̂ [^̧]]

V [^̧]

E[ �V [^̧]]

V [^̧]

E[ �V [�̧]]

V [�̧]

MSE[�̧]

MSE[^̧]

0.0 -0.053 0.200 0.048 1.043 0.991 1.169 1.031 1.009 1.252
0.1 -0.067 0.183 0.048 1.021 0.997 1.157 1.029 1.007 1.213
0.2 -0.082 0.176 0.049 0.989 1.007 1.141 1.028 1.006 1.165
0.3 -0.097 0.175 0.048 0.945 1.021 1.120 1.027 1.004 1.110
0.4 -0.113 0.180 0.047 0.888 1.038 1.092 1.026 1.001 1.047
0.5 -0.130 0.190 0.046 0.814 1.058 1.058 1.024 0.997 0.976
0.6 -0.148 0.207 0.044 0.720 1.082 1.015 1.022 0.992 0.898
0.7 -0.169 0.232 0.042 0.601 1.111 0.961 1.019 0.985 0.813
0.8 -0.193 0.268 0.040 0.451 1.149 0.898 1.016 0.979 0.720
0.9 -0.221 0.313 0.037 0.259 1.210 0.819 1.013 0.974 0.623
0.99 -0.236 0.307 0.034 0.030 1.274 0.682 0.975 0.938 0.557

We focus on the AR(1) model with intercept ¯rst. Table 5.1 contains results for
T = 10: We see from the second column that at such a small sample size the least-
squares estimator is badly and negatively biased (often -50%), especially for larger
values of ¸: The next column indicates that a ¯rst-order correction of this estimator
reduces the bias by about 60%. Only for small values of ¸ is the asymptotic vari-
ance of the least-squares estimator found to be a reasonable indicator of the actual
variance. Especially for ¸ values close to one, the asymptotic variance is much too
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Table 5.3:
Estimation in the AR(1) model with intercept; T = 50; 250,000 replications

¸ E[^̧] ¡ ¸ E[�̧]¡¸

E[^̧]¡¸
V [^̧] AV1[^̧]

V [^̧]

AV2[^̧]

V [^̧]

E[V̂ [^̧]]

V [^̧]

E[ �V [^̧]]

V [^̧]

E[ �V [�̧]]

V [�̧]

MSE[�̧]

MSE[^̧]

0.0 -0.021 0.103 0.020 1.020 0.999 1.063 1.005 1.002 1.099
0.1 -0.027 0.092 0.020 1.009 1.000 1.058 1.004 1.001 1.084
0.2 -0.033 0.087 0.019 0.994 1.001 1.050 1.004 1.001 1.064
0.3 -0.039 0.086 0.019 0.972 1.003 1.039 1.003 1.000 1.040
0.4 -0.045 0.088 0.018 0.941 1.005 1.025 1.002 0.998 1.009
0.5 -0.052 0.094 0.017 0.900 1.008 1.005 1.001 0.996 0.969
0.6 -0.059 0.104 0.015 0.841 1.010 0.977 0.999 0.993 0.919
0.7 -0.066 0.121 0.013 0.756 1.013 0.936 0.996 0.988 0.853
0.8 -0.075 0.152 0.012 0.624 1.011 0.876 0.990 0.979 0.763
0.9 -0.088 0.216 0.009 0.405 0.999 0.780 0.978 0.964 0.639
0.99 -0.103 0.291 0.007 0.056 1.003 0.620 0.956 0.942 0.498

small. A second-order asymptotic approximation to the variance proves to be more
accurate. Where the ¯rst-order approximation is much too small, the second-order ap-
proximation overshoots, and does so quite seriously for large values of ¸: The standard
estimator V̂ (^̧) of the variance of ^̧, however, is relatively good, although it can have
a bias of §30% or beyond. Also the corrected variance estimator �V (^̧) shows some
remaining bias, but generally this bias is mitigated and always the corrected estimator
produces a conservative estimator of the actual variance (it never has a negative bias).
Hence, we ¯nd that our analytical higher-order asymptotic results on second moments
can be used successfully already at a sample size as small as T = 10; which seems
quite remarkable. Assessing the variance of the bias corrected coe±cient estimator �̧

reasonably accurately is shown to be possible, according to the ¯ndings in the last but
one column. The ¯nal column shows the magnitude in e±ciency loss (or gain) due to
coe±cient bias correction. From the results we see that at this sample size the critical
point is actually not ¸ = 0:411; as our earlier analysis suggested, but slightly larger.
Apparently e®ects of third-order are sizeable at such a small sample size.
In Table 5.2 we present similar results for T = 20: The coe±cient bias is smaller

now, but still substantial (often -25%). Correcting for bias is more successful, because
it yields a reduction to 20 or 30% of the original bias. The accuracy of the asymptotic
variance is still appalling, but the second-order approximation seems acceptable now
as long as ¸ is not too close to unity. The standard variance estimator may show a bias
of some 20%, but the corrected estimator is really quite an accurate one. From the
¯nal column we see that, upon comparing with Table 5.1, the increased sample size
o®ers in fact more scope for relative e±ciency gains through coe±cient bias correction
(all ¯gures in the ¯nal column are smaller). The e±ciency of the corrected estimator
can be estimated very precisely, as is shown by the last but one column, and the value
for ¸ where correction starts to pay o® is just above 0:4 now, as was to be expected
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from the result in Theorem 4.2.
Increasing the sample size further to T = 50 yields results presented in Table 5.3

which show more or less the same pattern, apart from the following. We ¯nd that the
potential e±ciency gains from bias correction are much more substantial now than
the possible losses that occur in cases where ¸ is non-negative but small. Especially
for large values of ¸; say ¸ = 0:9 where the bias is only about -10%, e±ciency gains of
about 40% can be achieved (and for ¸ > 0 e±ciency losses never exceed 10%), whereas
a very accurate estimator of this improved e±ciency is available, as can be seen from
the last but one column. Note that a MSE reduction of 40% implies a reduction
of some 25% in terms of root mean squared errors (or standard errors). This seems
quite attractive against the risk of a possible increase by only 5%. Hence, these three
tables show that it is not necessarily the case that bias correction is called for only
when biases are huge. A better e®ect on e±ciency is obtained when we correct for
bias in cases where the bias is moderate, so that the bias approximation is reasonably
accurate and therefore more e®ective.

Table 5.4:
Estimation in the AR(1) model with intercept; 250,000 replications

T = 10 T = 20 T = 50

¸ E[ _̧ ]¡¸

E[^̧]¡¸

E[ �V [ _̧ ]]

V [ _̧ ]

MSE[ _̧ ]

MSE[^̧]

E[ _̧ ]¡¸

E[^̧]¡¸

E[ �V [ _̧ ]]

V [ _̧ ]

MSE[ _̧ ]

MSE[^̧]

E[ _̧ ]¡¸

E[^̧]¡¸

E[ �V [ _̧ ]]

V [ _̧ ]

MSE[ _̧ ]

MSE[^̧]

0.0 0.145 0.857 1.807 0.059 0.965 1.309 0.045 0.995 1.107
0.1 0.090 0.858 1.703 0.039 0.964 1.266 0.034 0.994 1.092
0.2 0.061 0.858 1.589 0.030 0.963 1.215 0.029 0.994 1.072
0.3 0.048 0.859 1.469 0.030 0.961 1.156 0.028 0.993 1.047
0.4 0.046 0.859 1.346 0.035 0.959 1.088 0.030 0.991 1.015
0.5 0.054 0.860 1.221 0.048 0.957 1.012 0.036 0.989 0.975
0.6 0.069 0.861 1.096 0.067 0.953 0.927 0.046 0.986 0.924
0.7 0.090 0.862 0.973 0.097 0.948 0.832 0.065 0.982 0.856
0.8 0.110 0.862 0.860 0.139 0.943 0.726 0.098 0.973 0.764
0.9 0.110 0.850 0.771 0.191 0.940 0.614 0.166 0.958 0.635
0.99 0.055 0.821 0.742 0.185 0.908 0.543 0.246 0.937 0.487

In Table 5.4 we present results for the alternative bias corrected estimator _̧ for all
three sample sizes examined. Surprisingly we ¯nd that the less e±cient estimator _̧ is
much less biased than �̧: It seems to be an artifact that the e®ect that the correction
in _̧ has on the order O(T¡2) term of the bias happens to be such that it mitigates
the magnitude of this term. It is easy to show that the estimator

�V ( _̧ ) ´ V̂ (^̧) +
3 + 2 _̧ + 3 _̧ 2

T 2
(5.1)

is unbiased to order O(T¡2) for V ( _̧ ): From the simulations we ¯nd, however, that this
estimator is less accurate than �V (�̧) is for V (�̧); especially so for the smaller sample
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sizes. For T = 10 the better e±ciency of �̧ is apparent, but the smaller ¯nite sample
bias of _̧ leads to satisfactory MSE results close to the unit circle.
Now we present a few results for the AR(1) model with intercept and trend. We

just examine the case where ¯ = 0 (both intercept and trend are redundant), ¹y0 = 0
and ! = 0 (¯xed, mean-stationary start-up), which imply that many characteristics
are invariant with respect to ¾: We have set ¾ = 0:1.

Table 5.5:
Estimation in the AR(1) model with intercept and trend; T = 20; 1,000 replications

¸ E[^̧] ¡ ¸ E[�̧]¡¸

E[^̧]¡¸
V [^̧] E[V̂ [^̧]]

V [^̧]
V [�̧] E[V̂ [^̧]]

V [�̧]

E[ �V [�̧]]

V [�̧]

MSE[�̧]

MSE[^̧]

0.0 -0.112 0.251 0.045 1.320 0.069 0.848 1.029 1.226
0.1 -0.134 0.227 0.046 1.294 0.071 0.839 1.030 1.124
0.2 -0.155 0.216 0.047 1.263 0.072 0.824 1.025 1.026
0.3 -0.178 0.215 0.047 1.225 0.072 0.806 1.019 0.929
0.4 -0.202 0.222 0.048 1.182 0.072 0.784 1.010 0.836
0.5 -0.227 0.238 0.048 1.133 0.071 0.759 1.001 0.748
0.6 -0.254 0.267 0.047 1.078 0.069 0.738 1.006 0.660
0.7 -0.284 0.311 0.047 1.016 0.066 0.723 1.036 0.578
0.8 -0.318 0.378 0.046 0.946 0.060 0.721 1.118 0.509
0.9 -0.361 0.467 0.046 0.865 0.054 0.732 1.213 0.469
0.99 -0.422 0.558 0.048 0.781 0.053 0.715 1.083 0.478

Table 5.6:
Estimation in the AR(1) model with intercept and trend; T = 50; 1,000 replications

¸ E[^̧] ¡ ¸ E[�̧]¡¸

E[^̧]¡¸
V [^̧] E[V̂ [^̧]]

V [^̧]
V [�̧] E[V̂ [^̧]]

V [�̧]

E[ �V [�̧]]

V [�̧]

MSE[�̧]

MSE[^̧]

0.0 -0.045 0.149 0.020 1.079 0.023 0.916 0.990 1.073
0.1 -00534 0.135 0.020 1.060 0.024 0.900 0.980 1.036
0.2 -0.061 0.126 0.020 1.042 0.024 0.886 0.972 0.994
0.3 -0.070 0.121 0.020 1.025 0.023 0.871 0.965 0.946
0.4 -0.078 0.121 0.019 1.006 0.022 0.856 0.960 0.892
0.5 -0.087 0.127 0.018 0.982 0.021 0.837 0.952 0.829
0.6 -0.097 0.141 0.017 0.949 0.020 0.809 0.939 0.759
0.7 -0.108 0.170 0.015 0.902 0.018 0.772 0.921 0.675
0.8 -0.123 0.229 0.014 0.842 0.016 0.738 0.918 0.571
0.9 -0.143 0.348 0.011 0.784 0.012 0.756 1.004 0.449
0.99 -0.182 0.526 0.011 0.685 0.009 0.771 1.140 0.424

Table 5.5 contains results for T = 20 and 5.6 for T = 50: Notice that the coe±cient
bias is more serious here, and that the reduction by correction is substantial, except
for ¸ close to the unit circle, where more than 50% of the bias remains. The standard
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degrees of freedom corrected estimator for the least-squares variance is overstating
the true variance when ¸ is small, and this is more serious the closer ¸ is to zero
and the sample size smaller. For large values of ¸ the standard expression grossly
understates the true variance. Bias correction of the coe±cient estimate makes its
variance larger. However, only for ¸ very close to zero it has a detrimental e®ect on
the e±ciency. For moderate values of ¸ an improvement of e±ciency can be obtained
by bias correction of the coe±cient estimator, and the larger ¸ is the higher the gains
will be. The standard expression for the least squares variance, although unbiased
to ¯rst-order, is not an appropriate estimator of the variance of the bias corrected
coe±cient estimator, because it is too optimistic (understates). However, the specially
designed variance estimator which is second-order unbiased, proves to be reasonably
accurate, and hence the results are rather positive about the potentials of �̧and �V (�̧)
to improve on standard ¯rst-order asymptotic inference. Note that it might be possible
to achieve still better results by slightly adapting the implementations of our versions
of �̧and �V (�̧): For instance, �̧and �V (�̧) could be made even less biased possibly, by
not taking Ĉ in the respective formulas, but by iterating at least once and using �C
(the same for Ẑ): Also ¾2 could be estimated on the basis of residuals obtained by
employing �̧; etc. We plan to examine the e®ects of these factors in simulations yet
to be executed.
The above examination should be extended to more general models including some

other exogenous explanatory variables. This will be undertaken in a next version of
the paper.

6. Conclusions

By adapting and extending techniques we employed in some recent papers to approx-
imate to an accuracy of order O(T¡2) the bias of the least-squares estimators for all
the parameters (both coe±cients and disturbance variance) in linear regression models
with a lagged dependent explanatory variable, we ¯nd here an approximation to the
same order for the mean squared error and for the true variance of the least-squares
coe±cient estimator. For the latter approximation we ¯nd that its algebraic expres-
sion di®ers substantially from an approximation to the same order of accuracy for the
expectation of the expression that is usually employed to estimate the variance on the
basis of standard asymptotic reasoning. This means that the usual estimator, although
asymptotically valid, has a bias in ¯nite samples that can be assessed by estimating
the expression derived in this paper. Its substraction from the standard expression
will yield a less biased variance estimator. In that way the analytic results presented
in this paper can be of use for producing new methods to improve the accuracy of
inference in ¯nite samples of dynamic regression models. Numerical analysis can be
undertaken to produce insight into the seriousness of the ¯nite sample inaccuracies
of ¯rst-order asymptotic expressions for second moments and also into the ability of
the higher-order asymptotic analytical approximations to assess and to correct such
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discrepancies.
In simple AR(1) models we ¯nd that there seems certainly scope for such improved

procedures, because the standard coe±cient variance estimator may understate the
true variance of the least-squares estimator by some 30 or 40%, whereas the bias
corrected variance estimator is almost unbiased.
The same techniques are also used to approximate the variance of bias corrected

coe±cient estimators and to develop accurate estimators for the variance of such cor-
rected estimators. Because the bias correction does not a®ect the leading term of the
asymptotic variance of the (corrected) coe±cient estimator, the standard formula can
still be used, because it is asymptotically valid. However, the higher-order asymptotic
approximations derived here enable the assessment of more accurate (bias corrected)
variance estimators, and also produce analytical insight into the potential e±ciency
gains or losses due to bias correction. We ¯nd a strong result for AR(1) models re-
garding the scope for e±ciency improvement. That scope seems to increase with the
number of exogenous regressors in the model. The relative magnitude of e±ciency
gains is shown to be non-monotonic in the sample size. Hence, bias correction may
be more e®ective from an e±ciency point of view when the sample size is moderate
than in smaller samples, where the coe±cient bias is usually larger, simply because
a moderate coe±cient bias can be assessed more accurately than a huge bias. We
also obtain a strong result for the e®ect on e±ciency of di®erent implementations of
coe±cient bias correction, and ¯nd that an approach adopted earlier by a good many
researchers is sub-optimal from a theoretical point of view.
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A. Some auxiliary results

To prove the results of this paper, we have to obtain the expectation of numerous
expressions of various forms, which involve products of up to four quadratic forms
in normal variables. In this appendix we state some basic results which are used
repeatedly in the subsequent analysis.
Let A be a symmetric T £T matrix and B1 and B2 arbitrary T £T matrices. Let

the T £ 1 random vector " be such that " » N(0; ¾2IT ), then the following results
hold:

E("0B1")("
0B2") = ¾

4[tr(B1)tr(B2) + tr(B1B2) + tr(B1B
0
2)]; (A.1)

E("0A"¡ ¾2trA)("0B1") = 2¾4tr(AB1); (A.2)

E(""0B1""
0) = E("0B1")""

0 = ¾4[tr(B1)IT +B1 +B
0
1]; (A.3)

E("0A")
Q2
j=1("

0Bj") = (A.4)

¾6[tr(A)tr(B1)tr(B2) + tr(A)tr(B1B2) + tr(A)tr(B1B
0
2)

+2tr(B1)tr(AB2) + 2tr(B2)tr(AB1) + 2tr(AB2B1)

+2tr(AB02B1) + 2tr(AB1B2) + 2tr(AB1B
0
2)];
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E("0A"¡ ¾2trA)Q2
j=1("

0Bj") = (A.5)

2¾6[tr(B1)tr(AB2) + tr(B2)tr(AB1) + tr(AB2B1)

+tr(AB02B1) + tr(AB1B2) + tr(AB1B
0
2)];

E("0A"¡ ¾2trA)(""0B1""0) = (A.6)

2¾6[tr(AB1)IT + tr(B1)A+AB1 +B1A+AB
0
1 +B

0
1A];

E("0A"¡ ¾2trA)2("0B1") = ¾6[2tr(B1)tr(AA) + 8tr(AAB1)]; (A.7)

E("0A"¡ ¾2trA)2""0 = ¾6[2tr(AA) + 8AA]; (A.8)

E(""0B1""
0B2""

0) = (A.9)

¾6f[tr(B1)tr(B2) + tr(B1B2) + tr(B1B02)]IT
+tr(B1)B2 + tr(B1)B

0
2 + tr(B2)B1 + tr(B2)B

0
1

+B1B2 +B
0
1B2 +B1B

0
2 +B

0
1B

0
2

+B2B1 +B
0
2B1 +B2B

0
1 +B

0
2B

0
1g;

E("0A")2("0B1")
2 = (A.10)

¾8f[tr(A)]2[tr(B1B1) + tr(B1B01)]
+[tr(B1)]

2[tr(A)tr(A) + 2tr(AA)]

+4tr(A)[2tr(AB1B1) + tr(AB1B
0
1) + tr(AB

0
1B1)]

+8tr(B1)[tr(A)tr(AB1) + 2tr(AAB1)]

+2tr(AA)[tr(B1B1) + tr(B
0
1B1)] + 8[tr(AB1)]

2

+16tr(AAB1B1) + 8tr(AAB
0
1B1) + 8tr(AAB1B

0
1)

+8tr(AB1AB1) + 8tr(AB1AB
0
1)g;

E("0A"¡ ¾2trA)2("0B1")2 = (A.11)

2¾8f8tr(B1)tr(AAB1)
+tr(AA)[tr(B1)tr(B1) + tr(B1B1) + tr(B

0
1B1)]

+4[tr(AB1)]
2 + 8tr(AAB1B1) + 4tr(AAB

0
1B1)

+4tr(AAB1B
0
1) + 4tr(AB1AB1) + 4tr(AB1AB

0
1)g:

Most of these results are also given in KP (1998a, 1998b). Result (A.1) is obtained
upon substituting "0B2" = "0[

1
2
(B2+B

0
2)]" = "

0A2"; where A2 is symmetric, in (A.1) of
KP (1998a). This substitution also enables one to prove (A.4) from KP (1998a, A.5),
and (A.9) from KP (1998a, A.8) and (A.10) from KP (1998a, A.11). Result (A.2)
follows from (A.1) and from E("0B1") = tr(B1). The proof of (A.3) is given in KP
(1998a). Result (A.5) follows easily from (A.4). Results (A.6), (A.7) and (A.8) can
be found in KP (1998a). Finally (A.11) follows easily from (A.10).
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B. An approximation to V (®̂)

For the variance V (®̂) of the least-squares estimator ®̂ we have

V (®̂) = E[®̂¡ E(®̂)][®̂¡E(®̂)]0 (B.1)

= E[®̂¡ ®¡E(®̂¡ ®)][®̂¡ ®¡ E(®̂¡ ®)]0
= E[®̂¡ ®][®̂¡ ®]0 ¡ [E(®̂)¡ ®][E(®̂)¡ ®]0:

We want to approximate this to the order of O(T¡2): We shall make use of

Z 0u = ¹Z 0u+ ~Z 0u (B.2)

= ¹Z 0[0
...IT ]v + e1v

0G0[0
...IT ]v

= ¹Z 0[0
...IT ]v + (v

0Hv)e1 = Op(T
1=2);

where H is the non-symmetric matrix

H = G0[0
...IT ]. (B.3)

For H we ¯nd the useful results

tr(H) = tr([0
...IT ]

0G) = tr(G[0
...IT ]

0) = tr(C) = 0 (B.4a)

tr(HH) = 0 (B.4b)

tr(H 0H) = tr(G0G) (B.4c)

G(H +H 0)[0
...IT ]

0 = GG0 + CC: (B.4d)

The ¯rst term of (B.1) is MSE(®̂): For this we ¯nd

E(®̂¡ ®)(®̂¡ ®)0 = E(Z 0Z)¡1Z 0uu0Z(Z 0Z)¡1: (B.5)

We ¯rst develop an expansion of (Z 0Z)¡1: Referring to (2.7) and (2.8) we have
E(Z 0Z) = Q¡1 = ¹Z 0 ¹Z + E( ~Z 0 ~Z) , and so

Z 0Z = ( ¹Z + ~Z)0( ¹Z + ~Z) (B.6)

= E(Z 0Z)¡ E( ~Z 0 ~Z) + ¹Z 0 ~Z + ~Z 0 ¹Z + ~Z 0 ~Z

=
h
Ik+1 + ( ¹Z

0 ~Z + ~Z 0 ¹Z)Q+ [ ~Z 0 ~Z ¡E( ~Z 0 ~Z)]Q
i
Q¡1:

Hence,

(Z 0Z)¡1 = Q
h
Ik+1 + ( ¹Z

0 ~Z + ~Z 0 ¹Z)Q+ [ ~Z 0 ~Z ¡E( ~Z 0 ~Z)]Q
i¡1
; (B.7)

where the stochastic terms ( ¹Z 0 ~Z + ~Z 0 ¹Z)Q and [ ~Z 0 ~Z ¡E( ~Z 0 ~Z)]Q are both Op(T¡1=2).
The inverse matrix of the form [In +A]

¡1, with A = Op(T¡1=2) an n£ n matrix, may
be expanded in [In ¡ A + A2 ¡ A3 + :::], whereby successive terms are of decreasing
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order in probability. The expansion retains terms up to a certain order and in this
way an expansion is obtained which includes terms up to any desired order. For an
expansion of (Z 0Z)¡1 to order T¡2 we require

(Z 0Z)¡1 = QfQ¡1 ¡ ( ¹Z 0 ~Z + ~Z 0 ¹Z) (B.8)

¡[ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)] + ( ¹Z 0 ~Z + ~Z 0 ¹Z)Q( ¹Z 0 ~Z + ~Z 0 ¹Z)

+( ¹Z 0 ~Z + ~Z 0 ¹Z)Q[ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)] + [ ~Z 0 ~Z ¡E( ~Z 0 ~Z)]Q( ¹Z 0 ~Z + ~Z 0 ¹Z)

+[ ~Z 0 ~Z ¡E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)]gQ+ op(T¡2);
whereas the expansion to order T¡3=2 amounts to

(Z 0Z)¡1 = Q¡Q( ¹Z 0 ~Z + ~Z 0 ¹Z)Q¡Q[ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)]Q+ op(T¡3=2); (B.9)

and to order T¡1 we simply have

(Z 0Z)¡1 = Q+ op(T
¡1): (B.10)

The expansion (B.8) for (Z 0Z)¡1 can be written as

(Z 0Z)¡1 = Q[Ik+1 ¡W1 ¡W2 +W1W1 +W1W2 +W2W1 +W2W2] + op(T
¡2) (B.11)

where we introduced some further shorthand notation, viz.

W1 = ( ¹Z 0 ~Z + ~Z 0 ¹Z)Q (B.12)

= ¹Z 0Gvq01 + e1v
0G0 ¹ZQ = Op(T

¡1=2)

and

W2 = [ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)]Q (B.13)

= [v0G0Gv ¡ ¾2tr(G0G)]e1q01 = Op(T¡1=2):
Note that after premultiplication by Q we have seven terms in (B.11). Of these the
¯rst is O(T¡1); the second and the third are Op(T

¡3=2); and the remaining four are
all Op(T

¡2): This yields the following expansion:

(®̂¡ ®)(®̂¡ ®)0 = (Z 0Z)¡1Z 0uu0Z(Z 0Z)¡1 (B.14)

= QZ 0uu0ZQ

¡Q[W1 +W2 ¡ (W1 +W2)
2]Z 0uu0ZQ

¡QZ 0uu0Z[W 0
1 +W

0
2 ¡ (W 0

1 +W
0
2)
2]Q

+Q(W1 +W2)Z
0uu0Z(W 0

1 +W
0
2)Q+ op(T

¡2)

= QZ 0uu0ZQ¡QW1Z
0uu0ZQ¡QW2Z

0uu0ZQ

+Q(W1 +W2)
2Z 0uu0ZQ¡QZ 0uu0ZW 0

1Q

¡QZ 0uu0ZW 0
2Q+QZ

0uu0Z(W 0
1 +W

0
2)
2Q

+QW1Z
0uu0ZW 0

1Q+QW1Z
0uu0ZW 0

2Q

+QW2Z
0uu0ZW 0

1Q+QW2Z
0uu0ZW 0

2Q+ op(T
¡2):
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Note that

Z 0uu0Z = f ¹Z 0[0...IT ]v + (v0Hv)e1gfv0[0...IT ]0 ¹Z + (v0Hv)e01g (B.15)

= ¹Z 0[0
...IT ]vv

0[0
...IT ]

0 ¹Z + ¹Z 0[0
...IT ]v(v

0Hv)e01

+(v0Hv)e1v
0[0
...IT ]

0 ¹Z + (v0Hv)2e1e
0
1:

We now derive the expectation of the eleven terms of (B.14). For the ¯rst one we
obtain

E (QZ 0uu0ZQ) = EQ ¹Z 0[0
...IT ]vv

0[0
...IT ]

0 ¹ZQ+ EQ(v0Hv)2e1e
0
1Q

= ¾2Q ¹Z 0 ¹ZQ+ ¾2tr(G0G)Qe1e
0
1Q

= ¾2Q:

For the expectation of the second term of (B.14) we ¯nd:

E (QW1Z
0uu0ZQ) (B.16)

= EQ ¹Z 0Gvq01 ¹Z
0[0
...IT ]v(v

0Hv)q01 + EQ ¹Z
0Gvq01(v

0Hv)e1v
0[0
...IT ]

0 ¹ZQ

+Eq1v
0G0 ¹ZQ ¹Z 0[0

...IT ]v(v
0Hv)q01 + Eq1v

0G0 ¹ZQ(v0Hv)e1v
0[0
...IT ]

0 ¹ZQ

= Q ¹Z 0GE(vv0Hvv0)[0
...IT ]

0 ¹Zq1q
0
1 + q11Q ¹Z

0GE(vv0Hvv0)[0
...IT ]

0 ¹ZQ

+E(v0G0 ¹ZQ ¹Z 0[0
...IT ]v)(v

0Hv)q1q
0
1 + q1q

0
1
¹Z 0GE(vv0Hvv0)[0

...IT ]
0 ¹ZQ

= ¾4Q ¹Z 0G(H +H 0)[0
...IT ]

0 ¹Zq1q
0
1 + ¾

4q11Q ¹Z
0G(H +H 0)[0

...IT ]
0 ¹ZQ

+¾4q1q
0
1
¹Z 0G(H +H 0)[0

...IT ]
0 ¹ZQ+ ¾4tr(G0 ¹ZQ ¹Z 0[0

...IT ][H +H
0])q1q

0
1

= ¾4Q ¹Z 0 (GG0 + CC) ¹Zq1q
0
1 + ¾

4q11Q ¹Z
0 (GG0 + CC) ¹ZQ

+¾4q1q
0
1
¹Z 0 (GG0 + CC) ¹ZQ+ ¾4tr(Q ¹Z 0CC ¹Z)q1q

0
1 + ¾

4tr(Q ¹Z 0GG0 ¹Z)q1q
0
1:

The expectation of the third term of (B.14) is:

E (QW2Z
0uu0ZQ) (B.17)

= E[v0G0Gv ¡ ¾2tr(G0G)]q1q01 ¹Z 0[0
...IT ]vv

0[0
...IT ]

0 ¹ZQ

+E[v0G0Gv ¡ ¾2tr(G0G)]q1q01(v0Hv)2e1e01Q
= 2¾4q1q

0
1
¹Z 0[0

...IT ]G
0G[0

...IT ]
0 ¹ZQ

+2¾6q11 [2tr (G
0GHH) + tr (G0GH 0H) + tr (G0GHH 0)] q1q

0
1

= 2¾4q1q
0
1
¹Z 0C 0C ¹ZQ

+2¾6q11 [2tr (G
0GCC) + tr (G0C 0CG) + tr (G0GG0G)] q1q

0
1;

For the fourth term of (B.14) we have:

E[Q(W1 +W2)
2Z 0uu0ZQ] = (B.18)

E (QW1W1Z
0uu0ZQ) + E (QW1W2Z

0uu0ZQ)

+E (QW2W1Z
0uu0ZQ) + E (QW2W2Z

0uu0ZQ) :
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We examine these four terms separately. First we have

E (QW1W1Z
0uu0ZQ)

= E[Q( ¹Z 0Gvq01 + e1v
0G0 ¹ZQ)( ¹Z 0Gvq01 + e1v

0G0 ¹ZQ)Z 0uu0ZQ]

= EfQ ¹Z 0Gvv0G0 ¹Zq1q01 ¹Z 0[0
...IT ]vv

0[0
...IT ]

0 ¹ZQg+ q11E[Q ¹Z 0Gv(v0Hv)2v0G0 ¹Zq1q01]
+q11E[Q ¹Z

0Gvv0G0 ¹ZQ ¹Z 0[0
...IT ]vv

0[0
...IT ]

0 ¹ZQ] + q11E[Q ¹Z
0Gv(v0Hv)2v0G0 ¹Zq1q

0
1]

+E[q1v
0G0 ¹ZQ ¹Z 0Gvq01 ¹Z

0[0
...IT ]vv

0[0
...IT ]

0 ¹ZQ] + q11E[q1v
0G0 ¹ZQ ¹Z 0Gv(v0Hv)2q01]

+E[q1q
0
1
¹Z 0Gvv0G0 ¹ZQ ¹Z 0[0

...IT ]vv
0[0
...IT ]

0 ¹ZQ] + E[q1q
0
1
¹Z 0Gv(v0Hv)2v0G0 ¹Zq1q

0
1]

= ¾4(q01 ¹Z
0C ¹Zq1)Q ¹Z

0C ¹ZQ+ ¾4Q ¹Z 0GG0 ¹Zq1q
0
1
¹Z 0 ¹ZQ+ ¾4Q ¹Z 0C ¹Zq1q

0
1
¹Z 0C ¹ZQ

+2¾6q11tr (G
0G)Q ¹Z 0GG0 ¹Zq1q

0
1

+4¾6q11Q ¹Z
0GG0C 0C 0 ¹Zq1q

0
1 + 4¾

6q11Q ¹Z
0GCGC 0 ¹Zq1q

0
1

+4¾6q11Q ¹Z
0GG0GG0 ¹Zq1q

0
1 + 4¾

6q11Q ¹Z
0CCGG0 ¹Zq1q

0
1

+¾4q11tr(Q ¹Z
0C ¹Z)Q ¹Z 0C ¹ZQ

+¾4q11Q ¹Z
0GG0 ¹ZQ ¹Z 0 ¹ZQ+ ¾4q11Q ¹Z

0C ¹ZQ ¹Z 0C ¹ZQ

+¾4tr(Q ¹Z 0GG0 ¹Z)q1q
0
1
¹Z 0 ¹ZQ+ 2¾4q1q

0
1
¹Z 0C 0 ¹ZQ ¹Z 0C ¹ZQ

+¾6q11tr(Q ¹Z
0GG0 ¹Z)tr(G0G)q1q

0
1 + 4¾

6q11tr(Q ¹Z
0CCGG0 ¹Z)q1q

0
1

+2¾6q11tr(Q ¹Z
0GCGC 0 ¹Z)q1q

0
1 + 2¾

6q11tr(Q ¹Z
0GG0GG0 ¹Z)q1q

0
1

+¾4tr(Q ¹Z 0C ¹Z)q1q
0
1
¹Z 0C ¹ZQ

+¾4q1q
0
1
¹Z 0GG0 ¹ZQ ¹Z 0 ¹ZQ+ ¾4q1q

0
1
¹Z 0C ¹ZQ ¹Z 0C ¹ZQ

+¾6(q01 ¹Z
0GG0 ¹Zq1)tr (G

0G) q1q
0
1 + 4¾

6(q01 ¹Z
0CCGG0 ¹Zq1)q1q

0
1

+2¾6(q01 ¹Z
0GCGC 0 ¹Zq1)q1q

0
1 + 2¾

6(q01 ¹Z
0GG0GG0 ¹Zq1)q1q

0
1:

Various terms are o(T¡2) here. If we remove them, and also use ¹Z 0 ¹ZQ = I ¡
¾2tr(G0G)e1q

0
1 we obtain

E (QW1W1Z
0uu0ZQ) (B.19)

= ¾4(q01 ¹Z
0C ¹Zq1)Q ¹Z

0C ¹ZQ+ ¾4Q ¹Z 0GG0 ¹Zq1q
0
1 + ¾

4Q ¹Z 0C ¹Zq1q
0
1
¹Z 0C ¹ZQ

+¾4q11tr(Q ¹Z
0C ¹Z)Q ¹Z 0C ¹ZQ+ ¾4q11Q ¹Z

0GG0 ¹ZQ+ ¾4q11Q ¹Z
0C ¹ZQ ¹Z 0C ¹ZQ

+¾4tr(Q ¹Z 0GG0 ¹Z)q1q
0
1 + ¾

4tr(Q ¹Z 0C ¹Z)q1q
0
1
¹Z 0C ¹ZQ+ ¾4q1q

0
1
¹Z 0GG0 ¹ZQ

+2¾4q1q
0
1
¹Z 0C 0 ¹ZQ ¹Z 0C ¹ZQ+ ¾4q1q

0
1
¹Z 0C ¹ZQ ¹Z 0C ¹ZQ+ o(T¡2):

For the second term of (B.18) we ¯nd (we immediately remove terms of small order):

E (QW1W2Z
0uu0ZQ) (B.20)

= EfQ( ¹Z 0Gvq01 + e1v0G0 ¹ZQ)[v0G0Gv ¡ ¾2tr(G0G)]e1q01 ¹Z 0[0
...IT ]v(v

0Hv)q01g
+EfQ( ¹Z 0Gvq01 + e1v0G0 ¹ZQ)[v0G0Gv ¡ ¾2tr(G0G)]e1q01(v0Hv)e1v0[0

...IT ]
0 ¹ZQg

= q11EfQ ¹Z 0G[v0G0Gv ¡ ¾2tr(G0G)](v0Hv)vv0[0...IT ]0 ¹Zq1q01g
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+Efq1q01 ¹Z 0G[v0G0Gv ¡ ¾2tr(G0G)](v0Hv)vv0[0...IT ]0 ¹Zq1q01g
+q211EfQ ¹Z 0G[v0G0Gv ¡ ¾2tr(G0G)](v0Hv)vv0[0...IT ]0 ¹ZQg
+q11Efq1q01 ¹Z 0G[v0G0Gv ¡ ¾2tr(G0G)](v0Hv)vv0[0...IT ]0 ¹ZQg

= 2¾6q11tr(GG
0C)Q ¹Z 0C ¹Zq1q

0
1 + 2¾

6tr(GG0C)(q01 ¹Z
0C ¹Zq1)q1q

0
1

+2¾6q211tr(GG
0C)Q ¹Z 0C ¹ZQ+ 2¾6q11tr(GG

0C)q1q
0
1
¹Z 0C ¹ZQ+ o(T¡2)

Next we examine the third term of (B.18). We ¯nd

E (QW2W1Z
0uu0ZQ) (B.21)

= Ef[v0G0Gv ¡ ¾2tr(G0G)]q1q01( ¹Z 0Gvq01 + e1v0G0 ¹ZQ) ¹Z 0[0
...IT ]v(v

0Hv)q01g
+Ef[v0G0Gv ¡ ¾2tr(G0G)]q1q01( ¹Z 0Gvq01 + e1v0G0 ¹ZQ)(v0Hv)e1v0[0

...IT ]
0 ¹ZQg

= Ef[v0G0Gv ¡ ¾2tr(G0G)]q1q01 ¹Z 0Gvq01 ¹Z 0[0
...IT ]v(v

0Hv)q01g
+Ef[v0G0Gv ¡ ¾2tr(G0G)]q1q01e1v0G0 ¹ZQ ¹Z 0[0

...IT ]v(v
0Hv)q01g

+Ef[v0G0Gv ¡ ¾2tr(G0G)]q1q01 ¹Z 0Gvq01(v0Hv)e1v0[0
...IT ]

0 ¹ZQg
+Ef[v0G0Gv ¡ ¾2tr(G0G)]q1q01e1v0G0 ¹ZQ(v0Hv)e1v0[0

...IT ]
0 ¹ZQg

= Efq1q01 ¹Z 0G[v0G0Gv ¡ ¾2tr(G0G)](v0Hv)vv0[0...IT ]0 ¹Zq1q01g
+q11Ef[v0G0Gv ¡ ¾2tr(G0G)]v0G0 ¹ZQ ¹Z 0[0...IT ]v(v0Hv)q1q01g
+2q11Efq1q01 ¹Z 0G[v0G0Gv ¡ ¾2tr(G0G)](v0Hv)vv0[0...IT ]0 ¹ZQg

= 2¾6tr(GG0C)(q01 ¹Z
0C ¹Zq1)q1q

0
1 + 2¾

6q11tr(GG
0C)tr(Q ¹Z 0C ¹Z)q1q

0
1

+4¾6q11tr(GG
0C)q1q

0
1
¹Z 0C ¹ZQ+ o(T¡2):

For the fourth term of (B.18) we ¯nd

E (QW2W2Z
0uu0ZQ) (B.22)

= q11Efq1q01 ¹Z 0[0
...IT ][v

0G0Gv ¡ ¾2tr(G0G)]2vv0[0...IT ]0 ¹ZQg
+q211E

³
[v0G0Gv ¡ ¾2tr(G0G)]2(v0Hv)2

´
q1q

0
1

= 2¾6q11tr(G
0GG0G)q1q

0
1
¹Z 0 ¹ZQ+ 8¾6q11q1q

0
1
¹Z 0C 0GG0C ¹ZQ

+2¾8q211tr(G
0G)tr(G0GG0G)q1q

0
1 + 8¾

8q211tr(GG
0C)tr(GG0C)q1q

0
1 + o(T

¡2)

= 2¾6q11tr(G
0GG0G)q1q

0
1
¹Z 0 ¹ZQ+ 2¾8q211tr(G

0G)tr(G0GG0G)q1q
0
1

+8¾8q211tr(GG
0C)tr(GG0C)q1q

0
1 + o(T

¡2)

= 2¾6q11tr(G
0GG0G)q1q

0
1 + 8¾

8q211tr(GG
0C)tr(GG0C)q1q

0
1 + o(T

¡2):

Collecting the four terms we ¯nd for (B.18), which is the expectation of the fourth
term of (B.14):

E[Q(W1 +W2)
2Z 0uu0ZQ] (B.23)
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= ¾4(q01 ¹Z
0C ¹Zq1)Q ¹Z

0C ¹ZQ+ ¾4Q ¹Z 0GG0 ¹Zq1q
0
1 + ¾

4Q ¹Z 0C ¹Zq1q
0
1
¹Z 0C ¹ZQ

+¾4q11tr(Q ¹Z
0C ¹Z)Q ¹Z 0C ¹ZQ+ ¾4q11Q ¹Z

0GG0 ¹ZQ+ ¾4q11Q ¹Z
0C ¹ZQ ¹Z 0C ¹ZQ

+¾4tr(Q ¹Z 0GG0 ¹Z)q1q
0
1 + ¾

4tr(Q ¹Z 0C ¹Z)q1q
0
1
¹Z 0C ¹ZQ

+2¾4q1q
0
1
¹Z 0C 0 ¹ZQ ¹Z 0C ¹ZQ+ ¾4q1q

0
1
¹Z 0GG0 ¹ZQ+ ¾4q1q

0
1
¹Z 0C ¹ZQ ¹Z 0C ¹ZQ

+2¾6q11tr(GG
0C)Q ¹Z 0C ¹Zq1q

0
1 + 4¾

6tr(GG0C)(q01 ¹Z
0C ¹Zq1)q1q

0
1

+2¾6q211tr(GG
0C)Q ¹Z 0C ¹ZQ+ 6¾6q11tr(GG

0C)q1q
0
1
¹Z 0C ¹ZQ

+2¾6q11tr(GG
0C)tr(Q ¹Z 0C ¹Z)q1q

0
1 + 2¾

6q11tr(G
0GG0G)q1q

0
1

+8¾8q211tr(GG
0C)tr(GG0C)q1q

0
1 + o(T

¡2):

For the expectation of the ¯fth term of (B.14) we ¯nd:

E (QZ 0uu0ZW 0
1Q) = E (QW1Z

0uu0ZQ)
0
; (B.24)

which is just the transpose of the result for the second term (B.16). For the sixth
term of (B.14) we ¯nd:

E (QZ 0uu0ZW 0
2Q) = E (QW2Z

0uu0ZQ)
0
; (B.25)

which follows easily from (B.17). Likewise for the expectation of the seventh term of
(B.14) we have

E
h
QZ 0uu0Z(W 0

1 +W
0
2)
2Q

i
= E

h
Q(W1 +W2)

2Z 0uu0ZQ
i0
: (B.26)

The expectation of the eighth term of (B.14) is

E (QW1Z
0uu0ZW 0

1Q)

= EQ( ¹Z 0Gvq01 + e1v
0G0 ¹ZQ) ¹Z 0[0

...IT ]vv
0[0
...IT ]

0 ¹Z(q1v
0G0 ¹Z +Q ¹Z 0Gve01)Q

+EQ( ¹Z 0Gvq01 + e1v
0G0 ¹ZQ)(v0Hv)2e1e

0
1(q1v

0G0 ¹Z +Q ¹Z 0Gve01)Q

= EQ ¹Z 0Gvq01 ¹Z
0[0
...IT ]vv

0[0
...IT ]

0 ¹Zq1v
0G0 ¹ZQ

+EQ ¹Z 0Gvq01 ¹Z
0[0
...IT ]vv

0[0
...IT ]

0 ¹ZQ ¹Z 0Gvq01

+Eq1v
0G0 ¹ZQ ¹Z 0[0

...IT ]vv
0[0
...IT ]

0 ¹Zq1v
0G0 ¹ZQ

+Eq1v
0G0 ¹ZQ ¹Z 0[0

...IT ]vv
0[0
...IT ]

0 ¹ZQ ¹Z 0Gvq01
+q211EQ ¹Z

0Gv(v0Hv)2v0G0 ¹ZQ+ q11EQ ¹Z
0Gv(v0Hv)2q01 ¹Z

0Gvq01
+q11Eq1v

0G0 ¹Zq1(v
0Hv)2v0G0 ¹ZQ+ Eq1v

0G0 ¹Z(v0Hv)2q1q
0
1
¹Z 0Gvq01

= EQ ¹Z 0Gvv0[0
...IT ]

0 ¹Zq1q
0
1
¹Z 0[0

...IT ]vv
0G0 ¹ZQ

+EQ ¹Z 0Gvv0[0
...IT ]

0 ¹ZQ ¹Z 0Gvv0[0
...IT ]

0 ¹Zq1q
0
1

+Eq1q
0
1
¹Z 0[0

...IT ]vv
0G0 ¹ZQ ¹Z 0[0

...IT ]vv
0G0 ¹ZQ
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+Ev0G0 ¹ZQ ¹Z 0[0
...IT ]vv

0[0
...IT ]

0 ¹ZQ ¹Z 0Gvq1q
0
1

+q211EQ ¹Z
0Gv(v0Hv)2v0G0 ¹ZQ+ q11EQ ¹Z

0Gv(v0Hv)2v0G0 ¹Zq1q
0
1

+q11Eq1q
0
1
¹Z 0Gv(v0Hv)2v0G0 ¹ZQ+ Eq1q

0
1
¹Z 0Gv(v0Hv)2v0G0 ¹Zq1q

0
1

= ¾4(q01 ¹Z
0 ¹Zq1)Q ¹Z

0GG0 ¹ZQ+ 2¾4Q ¹Z 0C ¹Zq1q
0
1
¹Z 0C 0 ¹ZQ

+¾4tr(Q ¹Z 0C ¹Z)Q ¹Z 0C ¹Zq1q
0
1 + ¾

4Q ¹Z 0C ¹ZQ ¹Z 0C ¹Zq1q
0
1 + ¾

4Q ¹Z 0GG0 ¹ZQ ¹Z 0 ¹Zq1q
0
1

+¾4tr(Q ¹Z 0C ¹Z)q1q
0
1
¹Z 0C 0 ¹ZQ+ ¾4q1q

0
1
¹Z 0C 0 ¹ZQ ¹Z 0C 0 ¹ZQ

+¾4q1q
0
1
¹Z 0 ¹ZQ ¹Z 0GG0 ¹ZQ+ ¾4tr(Q ¹Z 0C ¹Z)tr(Q ¹Z 0C ¹Z)q1q

0
1

+¾4tr(Q ¹Z 0 ¹ZQ ¹Z 0GG0 ¹Z)q1q
0
1 + ¾

4tr(Q ¹Z 0C ¹ZQ ¹Z 0C ¹Z)q1q
0
1

+¾6q211tr(G
0G)Q ¹Z 0GG0 ¹ZQ+ ¾6q11tr(G

0G)Q ¹Z 0GG0 ¹Zq1q
0
1

+¾6q11tr(G
0G)q1q

0
1
¹Z 0GG0 ¹ZQ+ ¾6tr(G0G)(q01 ¹Z

0GG0 ¹Zq1)q1q
0
1 + o(T

¡2):

Substituting Q ¹Z 0 ¹Z = I ¡ ¾2tr(G0G)q1e01 and q01 ¹Z 0 ¹Zq1 = q11 ¡ ¾2q211tr(G0G) this yields
E (QW1Z

0uu0ZW 0
1Q) (B.27)

= ¾4q11Q ¹Z
0GG0 ¹ZQ+ 2¾4Q ¹Z 0C ¹Zq1q

0
1
¹Z 0C 0 ¹ZQ

+¾4tr(Q ¹Z 0C ¹Z)Q ¹Z 0C ¹Zq1q
0
1 + ¾

4Q ¹Z 0C ¹ZQ ¹Z 0C ¹Zq1q
0
1 + ¾

4Q ¹Z 0GG0 ¹Zq1q
0
1

+¾4tr(Q ¹Z 0C ¹Z)q1q
0
1
¹Z 0C 0 ¹ZQ+ ¾4q1q

0
1
¹Z 0C 0 ¹ZQ ¹Z 0C 0 ¹ZQ

+¾4q1q
0
1
¹Z 0GG0 ¹ZQ+ ¾4tr(Q ¹Z 0C ¹Z)tr(Q ¹Z 0C ¹Z)q1q

0
1

+¾4tr(Q ¹Z 0GG0 ¹Z)q1q
0
1 + ¾

4tr(Q ¹Z 0C ¹ZQ ¹Z 0C ¹Z)q1q
0
1 + o(T

¡2):

For the expectation of the ninth term of (B.14) we ¯nd

E (QW1Z
0uu0ZW 0

2Q) (B.28)

= EQ( ¹Z 0Gvq01 + e1v
0G0 ¹ZQ) ¹Z 0[0

...IT ]v(v
0Hv)e01[v

0G0Gv ¡ ¾2tr(G0G)]q1q01
+EQ( ¹Z 0Gvq01 + e1v

0G0 ¹ZQ)(v0Hv)e1v
0[0
...IT ]

0 ¹Z[v0G0Gv ¡ ¾2tr(G0G)]q1q01
= q11EQ ¹Z

0Gvq01 ¹Z
0[0
...IT ]v(v

0Hv)[v0G0Gv ¡ ¾2tr(G0G)]q01
+q11Ev

0G0 ¹ZQ ¹Z 0[0
...IT ]v(v

0Hv)[v0G0Gv ¡ ¾2tr(G0G)]q1q01
+q11EQ ¹Z

0Gv(v0Hv)v0[0
...IT ]

0 ¹Z[v0G0Gv ¡ ¾2tr(G0G)]q1q01
+Eq1v

0G0 ¹Zq1(v
0Hv)v0[0

...IT ]
0 ¹Z[v0G0Gv ¡ ¾2tr(G0G)]q1q01

= 2q11EQ ¹Z
0Gvv0(v0Hv)[v0G0Gv ¡ ¾2tr(G0G)][0...IT ]0 ¹Zq1q01

+q11Ev
0G0 ¹ZQ ¹Z 0[0

...IT ]v(v
0Hv)[v0G0Gv ¡ ¾2tr(G0G)]q1q01

+Eq1q
0
1
¹Z 0Gvv0(v0Hv)[v0G0Gv ¡ ¾2tr(G0G)][0...IT ]0 ¹Zq1q01

= 4¾6q11tr(GG
0C)Q ¹Z 0C ¹Zq1q

0
1 + 2¾

6q11tr(Q ¹Z
0C ¹Z)tr(GG0C)q1q

0
1

+2¾6tr(GG0C)(q01 ¹Z
0C ¹Zq1)q1q

0
1 + o(T

¡2):

We obtain for the expectation of the tenth term of (B.14)

E (QW2Z
0uu0ZW 0

1Q) = E (QW1Z
0uu0ZW 0

2Q)
0
; (B.29)
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which is just the transpose of the former term. The expectation of the eleventh and
¯nal term of (B.14) is

E (QW2Z
0uu0ZW 0

2Q) (B.30)

= Eq1q
0
1
¹Z 0[0

...IT ]v[v
0G0Gv ¡ ¾2tr(G0G)]2v0[0...IT ]0 ¹Zq1q01

+q211E[v
0G0Gv ¡ ¾2tr(G0G)]2(v0Hv)2q1q01

= 2¾6tr(G0GG0G)(q01 ¹Z
0 ¹Zq1)q1q

0
1 + 2¾

8q211tr(G
0GG0G)tr(G0G)q1q

0
1

+8¾8q211tr(GG
0C)tr(GG0C)q1q

0
1 + o(T

¡2)

= 2¾6q11tr(G
0GG0G)q1q

0
1 + 8¾

8q211tr(GG
0C)tr(GG0C)q1q

0
1 + o(T

¡2);

where we used q01 ¹Z
0 ¹Zq1 = q11 ¡ ¾2q211tr(G0G):

We may now assemble the various contributions to the mean squared error, and
obtain after some simpli¯cation:

MSE(®̂) = E(®̂¡ ®)(®̂¡ ®)0 (B.31)

= ¾2Q+

+¾4Q ¹Z 0 (GG0 ¡ CC ¡ 2C 0C ¡ C 0C 0) ¹Zq1q01
+¾4q1q

0
1
¹Z 0 (GG0 ¡ CC ¡ 2C 0C ¡ C 0C 0) ¹ZQ

+¾4q11Q ¹Z
0 (GG0 ¡ CC ¡ C 0C 0) ¹ZQ

+¾4tr(Q ¹Z 0GG0 ¹Z)q1q
0
1 + ¾

4tr(Q ¹Z 0C ¹Z)tr(Q ¹Z 0C ¹Z)q1q
0
1

+¾4tr(Q ¹Z 0C ¹ZQ ¹Z 0C ¹Z)q1q
0
1 ¡ 2¾4tr(Q ¹Z 0CC ¹Z)q1q01

+¾4q11tr(Q ¹Z
0C ¹Z)Q ¹Z 0[C + C 0] ¹ZQ+ ¾4(q01 ¹Z

0C ¹Zq1)Q ¹Z
0[C + C 0] ¹ZQ

+¾4Q ¹Z 0C ¹Zq1q
0
1
¹Z 0C ¹ZQ+ 2¾4Q ¹Z 0C ¹Zq1q

0
1
¹Z 0C 0 ¹ZQ+ ¾4Q ¹Z 0C 0 ¹Zq1q

0
1
¹Z 0C 0 ¹ZQ

+¾4q11Q ¹Z
0C ¹ZQ ¹Z 0C ¹ZQ+ ¾4q11Q ¹Z

0C 0 ¹ZQ ¹Z 0C 0 ¹ZQ

+¾4tr(Q ¹Z 0C ¹Z)q1q
0
1
¹Z 0[C + C 0] ¹ZQ+ ¾4tr(Q ¹Z 0C ¹Z)Q ¹Z 0[C + C 0] ¹Zq1q

0
1

+2¾4q1q
0
1
¹Z 0C 0 ¹ZQ ¹Z 0C ¹ZQ+ ¾4q1q

0
1
¹Z 0C ¹ZQ ¹Z 0C ¹ZQ

+2¾4Q ¹Z 0C 0 ¹ZQ ¹Z 0C ¹Zq1q
0
1 + ¾

4Q ¹Z 0C 0 ¹ZQ ¹Z 0C 0 ¹Zq1q
0
1

+¾4Q ¹Z 0C ¹ZQ ¹Z 0C ¹Zq1q
0
1 + ¾

4q1q
0
1
¹Z 0C 0 ¹ZQ ¹Z 0C 0 ¹ZQ

+6¾6q11tr(GG
0C)Q ¹Z 0[C + C 0] ¹Zq1q

0
1 + 6¾

6q11tr(GG
0C)q1q

0
1
¹Z 0[C + C 0] ¹ZQ

+2¾6q211tr(GG
0C)Q ¹Z 0[C + C 0] ¹ZQ

+12¾6(q01 ¹Z
0C ¹Zq1)tr(GG

0C)q1q
0
1 + 8¾

6q11tr(GG
0C)tr(Q ¹Z 0C ¹Z)q1q

0
1

+¾6q11 [2tr (G
0GG0G)¡ 8tr (G0GCC)¡ 4tr (G0C 0CG)] q1q01

+24¾8q211tr(GG
0C)tr(GG0C)q1q

0
1 + o(T

¡2):

From Theorem 2.1 we easily ¯nd for the squared bias, the second term of (B.1):

[E(®̂)¡ ®][E(®̂)¡ ®]0 (B.32)
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= ¾4[tr(Q ¹Z 0C ¹Z)q1 +Q ¹Z
0C ¹Zq1 + 2¾

2q11tr (GG
0C) q1]£

[tr(Q ¹Z 0C ¹Z)q1 +Q ¹Z
0C ¹Zq1 + 2¾

2q11tr (GG
0C) q1]

0 + o(T¡2)

= ¾4f[tr(Q ¹Z 0C ¹Z)]2q1q01 +Q ¹Z 0C ¹Zq1q01 ¹Z 0C 0 ¹ZQ
+tr(Q ¹Z 0C ¹Z)[Q ¹Z 0C ¹Zq1q

0
1 + q1q

0
1
¹Z 0C 0 ¹ZQ]g

+¾6f4q11tr (GG0C) tr(Q ¹Z 0C ¹Z)q1q01
+2q11tr (GG

0C) [Q ¹Z 0C ¹Zq1q
0
1 + q1q

0
1
¹Z 0C 0 ¹ZQ]g

+¾8f4q211[tr (GG0C)]2q1q01g+ o(T¡2):

This result has to be subtracted from the MSE approximation (B.31) to ¯nd the
required approximation to V (®̂):

C. An approximation to E[s2(Z 0Z)¡1]

We require an expansion for s2: For the numerator of this estimator, given in (1.5),
we have, upon using (B.10),

(y ¡ Z®̂)0(y ¡ Z®̂) = u0u¡ u0Z(Z 0Z)¡1Z 0u (C.1)

= u0u¡ u0( ¹Z + ~Z)Q( ¹Z + ~Z)0u+ op(1):

First we shall examine an approximation to the expectation of the coe±cient variance
estimator ¾̂2(Z 0Z)¡1: Note that (C.1) yields for (1.6) the approximation

¾̂2 =
1

T
[u0u¡ u0 ¹ZQ ¹Z 0u¡ u0 ¹ZQ ~Z 0u¡ u0 ~ZQ ¹Z 0u¡ u0 ~ZQ ~Z 0u] + op(T¡1): (C.2)

This can be exploited to obtain an order T¡2 approximation to

E[¾̂2(Z 0Z)¡1] = E[(¾̂2 ¡ ¾2)(Z 0Z)¡1] + ¾2E[(Z 0Z)¡1] (C.3)

by employing (C.2) and an appropriate expansion for (Z 0Z)¡1; see (B.9), and next
substituting ~Z = Gve01; ~Z

0 ~Z ¡ E( ~Z 0 ~Z) = [v0G0Gv ¡ ¾2tr(G0G)]e1e01 while making use
of u = [0

...IT ]v and v » N [0; ¾2IT+1] :
Note that the contribution of the ¯rst right-hand term of (C.3) stems from not

knowing ¾2 when estimating V (®̂): It amounts to:

E[(¾̂2 ¡ ¾2)(Z 0Z)¡1] (C.4)

= E[(
1

T
u0u¡ ¾2)(Z 0Z)¡1]

¡ 1
T
E[(u0 ¹ZQ ¹Z 0u+ u0 ¹ZQ ~Z 0u+ u0 ~ZQ ¹Z 0u+ u0 ~ZQ ~Z 0u)(Z 0Z)¡1] + o(T¡2)

= ¡E( 1
T
u0u¡ ¾2)Q[ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)]Q¡ 1

T
E(u0 ¹ZQ ¹Z 0u+ u0 ~ZQ ~Z 0u)Q+ o(T¡2)
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= ¡E( 1
T
u0u¡ ¾2)Q[v0G0Gv ¡ ¾2tr(G0G)]e1e01Q

¡ 1
T
E(u0 ¹ZQ ¹Z 0u+ u0Gve01Qe1v

0G0u)Q+ o(T¡2)

= ¡E( 1
T
u0u¡ ¾2)(v0G0Gv)q1q01 ¡ 1

T
E(u0 ¹ZQ ¹Z 0u+ q11u

0Gvv0G0u)Q+ o(T¡2)

= ¡ 2
T
¾4tr(C 0C)q1q

0
1 ¡ 1

T
¾2tr(Q ¹Z 0 ¹Z)Q¡ q11

1

T
¾4tr(G0G)Q+ o(T¡2)

= ¡ 2
T
¾4tr(C 0C)q1q

0
1 ¡ 1

T
¾2[k + 1¡ ¾2q11tr(G0G)]Q¡ q11

1

T
¾4tr(G0G)Q+ o(T¡2)

= ¡ 2
T
¾4tr(C 0C)q1q

0
1 ¡ k + 1

T
¾2Q+ o(T¡2):

An approximation for the second right-hand term of (C.3) can be obtained from
(B.8). Note that of the terms in curly brackets the second and the third term have zero
mean, while the ¯fth and sixth term involve factors with zero mean and products of
an odd number of zero-mean normal random variables. Hence, when expected values
are taken these terms may be ignored. We then have

E[(Z 0Z)¡1] = Q+ E[Q( ¹Z 0 ~Z + ~Z 0 ¹Z)Q( ¹Z 0 ~Z + ~Z 0 ¹Z)Q] (C.5)

+EfQ[ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)]Qg+ op(T¡2):

The second term of (C.5) is

E[Q( ¹Z 0 ~Z + ~Z 0 ¹Z)Q( ¹Z 0 ~Z + ~Z 0 ¹Z)Q] (C.6)

= E[Q( ¹Z 0Gve01 + e1v
0G0 ¹Z)Q( ¹Z 0Gve01 + e1v

0G0 ¹Z)Q]

= E[Q ¹Z 0Gve01Q ¹Z
0Gve01Q] + E[Q ¹Z

0Gve01Qe1v
0G0 ¹ZQ]

+E[Qe1v
0G0 ¹ZQ ¹Z 0Gve01Q] + E[Qe1v

0G0 ¹ZQe1v
0G0 ¹ZQ]

= E[Q ¹Z 0Gvv0G0 ¹ZQe1e
0
1Q] + q11E[Q ¹Z

0Gvv0G0 ¹ZQ]

+E[q1v
0G0 ¹ZQ ¹Z 0Gvq01] + E[q1e

0
1Q ¹Z

0Gvv0G0 ¹ZQ]

= ¾2[Q ¹Z 0GG0 ¹Zq1q
0
1 + q11Q ¹Z

0GG0 ¹ZQ

+tr(Q ¹Z 0GG0 ¹Z)q1q
0
1 + q1q

0
1
¹Z 0GG0 ¹ZQ]

= ¾2f[Q ¹Z 0GG0 ¹Z + tr(Q ¹Z 0GG0 ¹Z)Ik+1]q1q01 + [q11Q+ q1q01] ¹Z 0GG0 ¹ZQg:

The third term of (C.5) is

EfQ[ ~Z 0 ~Z ¡E( ~Z 0 ~Z)]Q[ ~Z 0 ~Z ¡ E( ~Z 0 ~Z)]Qg (C.7)

= EfQ[v0G0Gv ¡ ¾2tr(G0G)]e1e01Q[v0G0Gv ¡ ¾2tr(G0G)]e1e01Qg
= q11E[v

0G0Gv ¡ ¾2tr(G0G)]2q1q01
= q11[E(v

0G0Gvv0G0Gv)¡ 2¾2tr(G0G)E(v0G0Gv) + ¾4tr(G0G)tr(G0G)]q1q01
= 2¾4q11tr(G

0GG0G)q1q
0
1:
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Gathering terms yields the result

¾2E[(Z 0Z)¡1] = ¾2Q (C.8)

+¾4ftr(Q ¹Z 0GG0 ¹Z)q1q01
+Q ¹Z 0GG0 ¹Zq1q

0
1 + q1q

0
1
¹Z 0GG0 ¹ZQ+ q11Q ¹Z

0GG0 ¹ZQg
+2¾6q11tr(G

0GG0G)q1q
0
1 + op(T

¡2):

Adding up the terms (C.4) and (C.8) we obtain the approximation

T ¡ k ¡ 1
T

¾2Q

+¾4f[tr(Q ¹Z 0GG0 ¹Z)¡ 2

T
tr(C 0C)]q1q

0
1

+Q ¹Z 0GG0 ¹Zq1q
0
1 + q1q

0
1
¹Z 0GG0 ¹ZQ+ q11Q ¹Z

0GG0 ¹ZQg
+2¾6q11tr(G

0GG0G)q1q
0
1

for E[¾̂2(Z 0Z)¡1]: From this the result of Theorem 2.3 follows upon multiplying the
above by T=(T ¡ k ¡ 1): This a®ects the leading term, but not the remaining terms
to the order of T¡2:

D. The bias of the COLS estimator

Yet to be typed, and so are the appendices E, F, G.
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