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Abstract

This study offers a simultaneous equations model of the birth process with seven endogenous

variables: four birth inputs [maternal smoking (S), maternal drinking (D), first trimester prenatal

care (PC), and maternal weight gain (WG)], and three birth outputs [gestational age (G), birth

length (BL), and birth weight (BW)]. Our analysis conditions on twenty-four exogenous variables.

The data are taken from the NLSY. Separate analyses are performed on five different groups: Whites

(both the Main and the Supplemental samples), Blacks, Hispanics, and Native Americans. Across all

groups, we find sizeable correlation between the disturbances in the four input and three output

equations and among output disturbances. Ceteris Paribus, the effect of maternal smoking on BL and

BW is negative, the effect of weight gain on BL and BW is positive, long gestation has a favorable

effect on both BL and BW, a male infant is longer and heavier than a female infant, and maternal

height and weight have a positive effect on BL and BW, respectively. Surprisingly, we find that the

widely-cited group differences in birth outputs can be accommodated in our framework with simple

group dummies. Our framework also sheds some light on the High/Low Risk Birth Weight Puzzle

discussed in the literature. Finally, our results are robust with respect to different model and prior

specifications. 

Key words: Bayesian, birth length, birth weight, gestation, NLSY, simultaneity

1. Introduction

1.1 Background

This paper and its detailed companions, Li and Poirier (1999, 2000), draw on two disparate

literatures on birth weight (BW): economics and biomedical. The primary distinguishing feature

between the two is that the economics literature, unlike the biomedical, views many aspects of

maternal behavior, together with BW and related birth outputs, as endogenous to the birth process,
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i.e., they are determined within the system under analysis.

BW is probably the single most important indicator of infant health [Institute of Medicine

(1985)]. It is also a significant predictor of infant mortality, morbidity, coronary heart disease,

neurodevelopmental handicaps, and learning disabilities [e.g., Illsley and Mitchell (1984) and Poirier

(1998)]. Infants weighing less than 2,500 grams (g) (5 pounds, 8 ounces) are commonly referred to

as low birth weight (LBW) infants. LBW infants are almost 40 times more likely to die during their

first 4 weeks of life than normal BW infants. Very low birth weight (VLBW) infants are defined as

infants with BW < 1,500g (3 pounds, 5 ounces). Risk of neonatal death is 200 times greater for

VLBW infants than for normal BW infants.

BW is the result of two processes: (i) the gestational age (G), and (ii) the intrauterine growth

rate of the fetus. LBW is the result of short gestation (prematurity) and/or intrauterine growth

retardation (IUGR). Gestational age is hard to measure. The mother’s recollection of her last normal

menstrual period (LNMP) is recommended by the World Health Organization to determine

pregnancy duration. We assume G is two weeks shorter than the period elapsed since LNMP.

IUGR is usually defined to occur when BW is less than the tenth percentile for the given

gestational age. Most LBW infants and nearly all VLBW infants are preterm. Preterm birth and IUGR

appear to have different determinants and different impacts on infant mortality rates [Kramer (1987,

p. 718), Miller and Merritt (1979), and Paneth (1995)]. Therefore, combining BW and prematurity

simply into LBW or VLBW is potentially misleading. In this paper we treat both BW and G as

endogenous in the birth process.

More is known about the determinants of fetal growth and IUGR than about those of G

[Kramer (1987)]. Kramer (1990, p. 383) argues that the three main risk factors of IUGR (maternal

smoking, low caloric intake or gestational weight gain, and low prepregnancy weight) are all
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modifiable. Unfortunately, this is not the case for preterm birth. Lieberman et al. (1987), McCormick

(1991, p. 4) and Verloove-Vanhorick et al. (1986) conclude that neonatal outcome is better predicted

by gestational age than by BW.

Miller and Merritt (1979) forcefully argue that measurements of crown-heel length, head

circumference, mid-arm circumference, and skinfolds or other indices of body fat are also important

data that should be recorded together with BW and G for purpose of predicting future morbidity

outcomes. In this paper we work with three birth outputs: BW, G, and birth length (BL).

1.2 The View of Economists

Economists view BW in the context of a process in which the mother acts as a decision-

maker striving to achieve goals subject to constraints. Maternal behavior provides a variety of inputs

into the production of birth outcomes. This empowerment of the mother as a decision-maker may take

on a highly formal framework in which the mother, say, sequentially maximizes discounted expected

utility (assumed to be a function of the health of her children and herself, her labor supply, and

standard commodities), given the realization of birth outcomes of previous children, and subject to

feasibility and informational constraints reflecting the socioeconomic/cultural environment in which

she lives. Hotz, Klerman and Willis (1997) provide an excellent recent survey of this view.

Such extreme formalism is not the goal here, but it does motivate two crucial points. Firstly,

BW is but one of many endogenous outcomes of the birth process. Secondly, the purposeful behavior

of the mother in striving for a healthy infant creates demands for health inputs (e.g., whether to

smoke, drink, use drugs, obtain prenatal care, etc.) into a three-output birth production function

(BPF). The BPF represents the technical (biological/physiological) relationship between the birth

outputs G, BL, and BW and the birth inputs discussed below. The inputs are determined by health

input demand functions which describe input choices subject to the constraints the mother faces. The
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essence of economists’ views is that the mother is attempting to do the best that she can for herself

and her child subject to the multiple constraints she faces.

The endogeneity of inputs in the BPF is the important distinguishing statistical feature

between the economists’ models and those of other social scientists and epidemiologists. The primary

statistical implication of the economists’ viewpoint is that regressing BW on measures of smoking

(S), drinking alcohol (D), seeking prenatal care in the first trimester (PC), and proper maternal

nutrition as measured by weight gain (WG) net of BW, is has little relevance for policy analysis.

Instead it is necessary to consider simultaneous modeling of the many endogenous aspects of the

birth process, in order to place BW in its proper context as a useful indicator of health outcomes of

more primary importance (e.g., infant mortality).

1.3 Racial/Ethnic Differences in Birth Outputs

The racial/ethnic differences in the univariate distributions of BW are striking [Poirier

(1998)]. The rates of LBW and VLBW for Blacks are more than twice those of Whites and Asians.

Similarly, Blacks have much higher rates of preterm births [Rowley and Tosteson (1993)]. There has

been relatively little change in the U.S. BW distribution. The frequency of VLBW infants has not

declined since 1970, especially for births below 500g [Kleinman (1990) and Wilson, Fenton and

Munson (1986)]. In fact, there has been an increase of VLBW infants among Blacks.

Paradoxically, the excess risk for LBW among Black as compared with White women is

greater among low-risk mothers than among high-risk mothers [e.g., Gates-Williams et al. (1995),

Kleinman and Kessel (1987), Lieberman (1995, p. 117)]. According to Ventura et al. (1995, p. 20),

Black college-educated mothers with the recommended weight gain, timely prenatal care, and at least

18 months since their last live birth are 2½ times as likely to have a term LBW infant as White

women with similar pregnancy-risk characteristics. We refer to this as the High/Low Risk Birth
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Weight Puzzle. Section 4.8 investigates its applicability to other groups vis-a-via Whites.

Since relatively little is understood from the clinical/epidemiological side regarding what

affects G, BL, and BW, it is difficult to trace the roots of racial/ethnic differences. See Kempe et al.

(1992, p. 972) and Lieberman (1995, p. 117) for discussions of the conflicting evidence. It is difficult

to find variables to condition upon so that the Black-White discrepancy in BW disappears [e.g.,

Institute of Medicine (1985, p. 56)]. We will return to this point in Section 4.8.

In summary, for policy purposes the socioeconomic and cultural aspects of race/ethnicity

are more important than the genetic and biological aspects. We initially treat Whites, Blacks,

Hispanics, and Native Americans separately, and then we investigate whether pooling is appropriate.

We judge the number of Asian births in our data set, thirty-three, as too small for meaningful

analysis.

2. Data

The statistical window to be described in Section 3.2 is quite ambitious compared to

counterparts in the biomedical literature on BW, and so it requires a very rich data set for

implementation. Fortunately, the data set commonly used by social scientists, the National

Longitudinal Survey of Youth (NLSY) is up to the task. The NLSY is an ongoing study of 12,686

young men and women aged 14 to 21 as of January 1, 1979. Over 90% of these respondents have

participated in an annual personal interview, approximately one hour in length, since 1979.

Individuals are followed after leaving their baseline household. There is relatively little attrition.

Racial/ethnic groups are defined by the mother’s self-reported identification. NLSY data

comprise both random cross-sectional sampling and supplemental sampling of individuals. We begin

by analyzing each group separately for both types of samples, and we test the legitimacy of pooling

the main cross-sectional and supplemental samples in the case of Blacks and of Hispanics. The
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supplemental sample for Whites is expected to differ from the Main White sample: by design it

contains "disadvantaged" White individuals. The supplemental sampling of Blacks and Hispanics is

intended to obtain adequate sample sizes for these groups. In anticipation of the pooling tests that are

done in Section 4.2, the Main and Supplemental samples are combined for Blacks and Hispanics in

all tables that follow. Hereafter we refer to these five subsets (Main White, Supplemental White,

Black, Hispanic and Native American) as groups. Further pooling of groups is also investigated in

Section 4.2.

We analyze only singleton first-born live births, leaving aside sample selection problems

arising from parity considerations and abortions. There were 3,648 live singleton first births to White,

Black, Hispanic, and Native American women between 1979 and 1994 in the NLSY. We dropped

221 births to women in the military and 28 to women no longer living in the U.S.A. This left 3,399

observations for our target sample. Missing observations [described in Li and Poirier (2000, Table

1)] further reduced our sample to 1,962 observations with complete data (57.7% of our target

sample).

Table 1 contains the sample means of the endogenous variables together with the sample

standard deviations of the mean in parentheses and the sample standard deviation of the variable itself

in square brackets. Table 2 contains the sample means of all twenty-four exogenous variables together

with the sample standard deviations of the mean in parentheses. Li and Poirier (2000) contains a

detailed description of the variables involved. Our Black mothers have favorable birth outcomes

compared to Blacks at large [Ventura et al. (1999)]. Figures 1-3 contain univariate histograms of the

three outputs (G, BL, and BW) for each group.

Our choice of the exogenous (conditioning) variables in Table 2 is guided by the existing

literature. Variables x2 - x6 cover basic physical characteristics (the gender of the infant, the age and
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size of the mother) which we expect to be very important in the birth output equations. We are not

trying to explain fertility, and so we are not trying to explain the mother’s pregnancy. Hence, variables

like maternal age (x6) are properly treated as exogenous in our analysis. Following biomedical

tradition, physical characteristics of the father are omitted [Basso, Olsen, and Christensen (1999)].

Variables x7 - x12 capture regional and temporal effects plus the intelligence and family income of the

mother. Variables x13 - x25 capture health insurance status and a variety of socioeconomic measures

of the mother’s family background. Variables x7 - x25 are risk factors that causally are quite far

removed from the biological event of LBW. We expect these variables to be important in the input

equations, but not in the biologically based output equations.

We have centered the variables in Table 2 in such a way to impart a meaningful

interpretation to the intercepts in our model. The case in which all elements of xi other than xi1 are

zero describes generically a mother we will refer to as our reference mother. This reference mother

is twenty-three years old, lives in the north-central region, gives birth to a female infant in January

1985, has access to health insurance, lives with another adult, has a household income of $25,000,

has a body mass index (BMI = weight in kg / [height in meters] 2 ) of 24 based on a height of 162cm

and a weight of 63kg, who worked three of the four quarters in the year before giving birth, has four

siblings, has the mean AFQT score of other twenty-three-year-old women in the NLSY, was on-time

in school (within one grade) in an urban household with an employed male at age 14, whose mother

(the maternal grandmother) completed twelve years of education and the prices for cigarette, alcohol,

medical services and food are at the 1984 level. Our reference mother is someone for whom we

expect favorable birth outcomes.  We put great effort into eliciting prior beliefs about such a mother.

3. Modeling

3.1 Modeling Strategy
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Our distribution of interest, for singleton first-born live births, is the joint distribution of four

birth inputs (S, D, PC, and WG) and three birth outputs (G, BL, and BW), given the exogenous

variables x. We choose a fairly large 155-dimensional parametric window to model this seven-

dimensional conditional distribution of endogenous variables z.

A priority for us is addressing simultaneity of the seven variables in z. When simultaneity

issues are ignored, questions regarding the effects on endogenous variables z of changing exogenous

variables x, assume an unresponsive mother who does not respond intelligently to changes in her

environment. For example, suppose a component in x measures access to prenatal care. The

meaningful answer to what is the effect on BW of changing this access should allow the mother to

adjust the prenatal care she employs. The standard BW regression, which contains measures of both

prenatal care and access variables, is not designed to answer such a question.

While we draw upon the economics literature, we do not invoke a formal optimization

approach. We specify reduced forms for the four inputs, and then a triangular specification in which

G depends on the four inputs, and BL, BW together have a bivariate relationship depending on the

four inputs and G. Our model is over-identified and yields a fairly simple specification for all three

output equations. In our preferred maintained specification H* the three output equations are

distinguishable (i.e., identified) by 54 exclusion restrictions on coefficients of x7 - x25 in the G, BL,

and BW equations. The three output equations are identified by zero restrictions on maternal weight

(x6) in the BL equation, and on maternal height (x5) in the BW equation.

Following the strategy outlined in Poirier (1995, Chapter 10), we choose our initial window

in anticipation that a larger, more complicated one is not required. Of course there are many ways we

could expand our initial window. One obvious way is to test some of the overidentifying restrictions

that are a prerequisite for interpreting our model structurally. Specifically, we permit the 18
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z�

i1 
 û
1
1xi � 0i1 , (1)

zi21+2 
 zi11+1 � xi1û2 � 0i21 , (2)

+1 


�S,G �S,BL �S,BW

�D,G �D,BL �D,BW

�PC,G �PC,BL �PC,BW

�WG,G �WG,BL �WG,BW


 �G | �BL | �BW , (3)

coefficients of x7 - x12 in the G, BL, and BW equations to be nonzero under the alternative

specification HA. If our birth outcome production function reflects a biological transformation from

birth inputs into birth outputs, then it should remain invariant over time and not differ according to

mothers’ geographical region, AFQT score, or family income. Our prior in Section 3.3 reflects this

viewpoint. In Section 4.3 we test these 18 overidentifying restrictions.

3.2 An Econometric Window

Consider a sample of T independent singleton first-born live births indexed by the subscript

i. Let [S i
*, D i

*, PC i
*]1 (i = 1, 2, ..., T) denote latent variables underlying the binary birth inputs [Si ,

Di , PCi]1 = [1(S i
*), 1(D i

*), 1(PC i
*)]1 (i = 1, 2, ..., T), where 1(&) denotes an indicator function which

equals unity if the argument is positive and equals zero otherwise. We partition the endogenous

variables into inputs zi1 and outputs zi2 : zi1
* = [S i

*, D i
*, PC i

*, WGi]1, zi1 = [Si , Di, PCi, WGi ]1, zi2 =

[Gi, BLi , BWi ]1 (i = 1, 2, ..., T). Let xi (i = 1, 2, ..., T) denote K×1 vectors of exogenous variables.

Suppose the four inputs are generated from the following specification

where û1 = [ûS , ûD , ûPC , ûWG ] is K×4. Also suppose the three birth outputs are related to zi1 = [Si ,

Di , PCi, WGi ]1 as follows:

where 0i = [0i1, 0i2]1xi � i.i.d. N7(07, �) (i = 1, 2, ..., T), +2 is nonsingular,
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+2 


1 	�G,BL 	�G,BW

0 1 0

0 0 1

, (4)

û2 


/G /BL /BW

/5,G /5,BL 0

/6,G 0 /6,BW

û
� ,G û

� ,BL û
� ,BW

013 013 013

, (5)

� 


1 1S,D 1S,PC 1S,WG 7 1S,G 1S,BL 1S,BW

1S,D 1 1D,PC 1D,WG 7 1D,G 1D,BL 1D,BW

1S,PC 1D,WG 1 1PC,WG 7 1PC,G 1PC,BL 1PC,BW

1S,WG 1D,WG 1PC,WG 1
2
WG 7 1WG,G 1WG,BL 1WG,BW

� � � � � � � � � � � � � � � �

1S,G 1D,G 1PC,G 1WG,G 7 1
2
G 1G,BL 1G,BW

1S,BL 1D,BL 1PC,BL 1WG,BL 7 1G,BL 1
2
BL 1BL,BW

1S,BW 1D,BW 1PC,BW 1WG,BW 7 1G,BW 1BL,BW 1
2
BW




�11 �12

�121 �22

. (6)

where (j = G, BL, BW), andû
�, j 
 [ /7, j , . . . , /12, j]1 ,

The coefficients in û*, j (j = G, BL, BW) are set to zero under our maintained specification. For added

clarity, we let xi
¼ = [1, xi2 , xi3 , xi4]1 and write out the transpose of output equations in (2):
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Gi 
 z 1
i1�G � x ¼

i 1/G � xi5/5,G � xi6/6,G � 0i,G,

BLi 
 Gi �G,BL � z 1
i1�BL � x ¼

i 1/BL � xi5/5,BL � 0i,BL ,

BWi 
 Gi �G,BW � z 1
i1�BW � x ¼

i 1/BW � xi6/6,BW � 0i,BW .

The specification in (1) - (6) warrants a few comments. It reflects a view of the world in

which reduced form (1) is postulated for the four inputs (S, D, PC, and WG), and then a triangular

view (2) and (4) of the three outputs (G, BL, and BW) is postulated in which G is determined based

on the four inputs, and then BL and BW are jointly determined as functions of the four inputs and G.

The model is not recursive because � is permitted to be non-diagonal. The model is nonlinear because

of the jointly determined dummy endogenous variables (S, D, and PC). The specification of numerous

zero restrictions on û2 in (5) ensures that the order condition for identification is satisfied.

Let � denote the unique unknown elements in +1, +2, û, and �. Also let , denote the

permissible parameter space. Appendix A.1 contains the derivation of the joint density for the four

observed inputs and three outputs of our BPF. The resulting likelihood function, m(�; Z, X), is given

by (A.12).

3.3 Our Family of Prior Distributions

We strive to provide a public prior which captures other researchers’ interests and permits

them to reweight our Markov chain Monte Carlo (MCMC) simulations to obtain results correspon-

ding to more tightly articulated prior beliefs [Geweke (1999)]. For researchers who are interested in

reweighting using their own priors, our posterior simulation results can be downloaded at http://

finance.commerce.ubc.ca/research/abstracts/UBCFIN00-3.html. Our prior is proper, but

moderately diffuse. We use the same prior for all groups. Our reading of the existing literature
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suggests the following broad properties will capture a bevy of researchers’ professional opinions as

well as ours.

The vast majority of studies on BW, particularly in the biomedical literature, are single-

equation models that ignore simultaneity issues [a notable exception is Permutt and Hebel (1989)].

To reflect this fact we center our prior for � over a diagonal matrix.

Regarding the effects of birth inputs on birth outputs, there is substantial professional

support that smoking has negative consequences on birth outputs, particularly on G and BW [Shiono

and Behrman (1995)]. The effect of moderate drinking on birth outputs is less clear and may even be

positive. The effect of PC on birth outputs is even less obvious due to sample selection effects

[Shiono and Behrman (1995)], but we believe PC may be helpful for BW. We also believe WG and

G have positive effects on BL and BW. Our beliefs on the effects of remaining endogenous input

variables on endogenous output variables are fairly diffuse and centered over zero.

Among exogenous variables, we believe, ceteris paribus, male infants are slightly longer and

heavier than females; calender time has a slightly negative effect on smoking and drinking, a slightly

positive effect on PC, and a very uncertain positive effect on WG. AFQT has a moderately negative

effect on the probability of smoking and drinking, and a moderately positive effect on PC and WG.

The grandmother’s education has a slightly negative effect on smoking and drinking, and a positive

effect on PC and WG. Finally, not on time in school at age 14 has a positive effect on smoking and

drinking, and a negative effect on PC and WG. The effects of all other exogenous variables on the

remaining endogenous variables are centered over zero with fairly large standard deviations.

These general beliefs serve as guidelines for choosing a family of priors. We restrict our

sensitivity analysis to the priors on +1, +2, and û. We select normal prior distributions for all

parameters except the variances of the four continuous endogenous variables which are assigned
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s1 
 [ 1S,D, 1S,PC, 1D,PC]1 , (7)

s2 
 [ 1S,WG, 1S,G, 1S,BL, 1S,BW, 1D,WG, 1D,G]1 , (8)

s5 
 1
2
WG, s6 
 1

2
G, s7 
 1

2
BL , s8 
 1

2
BW . (11)

s4 
 [ 1WG,G, 1WG,BL, 1WG,BW, 1G,BL, 1G,BW, 1BL,BW]1 , (10)

s3 
 [ 1D,BL , 1D,BW, 1PC,WG, 1PC,G, 1PC,BL, 1PC,BW]1 , (9)

f(� ) 
 33(s10, 1) N
4

j
2
36(sj 06, 9 I6) f IG (s52.5, .01) fIG (s62.5, .08) fIG (s72.5, .08) fIG (s82.5,2), (12)

independent inverse gamma distributions. These normal priors are independent except for regional

effects and elements of � which are tied together through the positive definiteness of �.

Due to the presence of three probit regressions in our system, the standard Wishart prior on

the inverse of ( is not appropriate and the natural conjugacy between the prior and likelihood breaks

down. Our prior beliefs regarding ( are summarized in Table 3. Beliefs about across-equation

covariances are all centered over zero which favors using single-equation techniques. Beliefs about

the variances of WG, G, BL, and BW are represented by fairly diffuse (but proper) inverted gamma

distributions with means and standard deviations given in Table 3.

We partition the 25 unknown elements of � into eight blocks:

The joint prior specification for the eight blocks is [using the notation of Poirier (1995, p. 111, (e)]:

subject to the constraints that elements of s1 are in the interval [-1, 1], and the resulting variance-
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covariance matrix is positive definite.

The 130-dimensional prior for � defined by (A.4) and (A.6), which consists of elements from

+1, +2, and û, is parameterized in terms of three hyperparameters (�, &1 , and &2) that control the

tightness of the prior. We assign these hyperparameters default values and change them to see if

results change substantially. Our default prior specification is � = 1, &1 = .1936, &2 = 9. We divide

these default values by four to obtain the tight prior specification ! = .25, 71 = .0484, 72 = 2.25, and

we multiply them by two to obtain the loose prior specification � = 2, &1 = .3872, &2 = 18.

For the unknown elements of +1 in (3) and of +2 in (4), we assume independent univariate

normal priors with means and standard deviations given in Table 4, where � controls prior variances.

Under HA , for the unknown elements in û, we also assume normal priors with means and standard

deviations given in Table 5, where &1 and &2 control prior variances. The prior under H* is taken to

be the same as in Table 5 except that the elements in �j*  are dogmatically set equal to zero. The

components of these distributions are all independent except for the regional effects, which we

assume are exchangeable and assigned a common covariance 71.

The exogenous variables x7 , ..., x25 are instruments in subsequent birth output equations

where they are subject to dogmatic zero restrictions satisfying the order condition for over-

identification. Our priors reflect this instrument role. The nonzero prior means (-.2, -1, -.5, and .6; or

.2, .1, .5, and -.6) for the coefficients of x10, j , x11, j , x18, j , and x19,j imply substantial mass away from

the point 04 which fails the rank condition. The other variables among x7 - x25 also serve as

instruments in subsequent birth output equations, but we are less certain of their reliability as

instruments, and so their prior means of zero fail the rank condition.

As discussed in Section 3.1, we choose a highly over-identified specification for our

maintained hypothesis H*, and a less restricted specification HA as an alternative hypothesis that we
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expect will not lead to rejecting H*. Under both H* and HA, our priors for all other parameters are the

same. Given our 155-dimensional window there are ample opportunities for pretesting, but we do not

engage in it (exceptions are the diagnostic testing of H* and the pooling of samples). Instead we report

posterior means and standard deviations. To give a quick, visual indication of the posterior mass

around the means, we indicate the relative size of the posterior mean to the posterior standard

deviation by the border of the table cell as described in Table 6. While such crude measures may serve

to indicate whether interval estimates include points such as the origin, we do not intend for them to

be tests of sharp hypotheses. Our priors do not allocate point masses at zero for coefficients other than

û*, j (j = G, BL, BW). If they did and if we wanted to test the sharp hypotheses, then we could

calculate the appropriate Bayes factor.

4. Empirical Results

4.1 Introductory Comments

Because all our priors are proper, we can compute the marginal data density under each prior

for both specifications. Thus, not only can we compare posterior means and standard deviations of

parameters and predictions across priors and specifications, we can also assess which prior the data

favor. It turns out that the data never favor the loose prior for any of our groups, and almost always

mildly favor our tight prior over our default choice. We do not intend to “test” our default prior.

Rather we report results for the posterior corresponding to the default prior specification � = 1, &1 =

.1936, &2 = 9, and discuss interesting departures where appropriate. These departures always involve

the posterior corresponding to the tight prior because the data favor the tight specification. We

emphasize the default prior because we think its relative looseness will appeal to a wider audience.

4.2 Pooling of Groups

Formal comparison of our model across the Main and the Supplemental samples for Blacks
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and Hispanics yields logarithmic Bayes factors favoring pooling ranging from 159 to 347 [Li and

Poirier (2000, Table 9)] across the three priors and two model specifications. This confirms our prior

beliefs, and so all results are presented in terms of pooled Black and pooled Hispanic samples.

The literature is filled with attempts to account for the differences in the marginal

distributions of birth outcomes like BW across racial/ethnic groups. We begin our analyses with a

common window and prior, but we deal with each group separately.  As we progressively pool the

groups, the logarithmic Bayes factors favoring pooling range from 183 to 950 under the preferred

specification, and from 221 to 874 under the alternative specification. We have investigated many

different poolings of groups and in all instances the data favor pooling. We present results for our

preferred case in which all five groups are pooled, and four group dummies are entered into all seven

birth equations. We center our prior beliefs on all group dummies over zero and choose prior

variances equal to those of other binary variables in each equation as shown in Table 5. Jointly testing

that all 28 = 4×7 coefficients are zero yields the logarithmic Bayes factors in favor of pooling under

our default prior of 628 under H* and 1,702 under HA.

Despite these strong indications for pooling, our prior probability of finding a window free

of any group-specific factors is sufficiently low that we choose the less extreme specification in which

the 28 dummies are included. Another reason for doing so (from an estimation standpoint), is that the

posterior mean Main White-Black differential is often many times its posterior standard deviation.

The separate results for each group involve a 4×155 + 151 = 771 dimensional view of the world. The

pooled results in this section reduce it to a 183-dimensional view.

4.3 Evidence of Structure

We investigate whether our output equations reflects a biological structure in three related

ways. For brevity, we report results only for our default prior. Firstly, the logarithmic Bayes factor
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in favor of our maintained specification H*: �*,G = �*,BL = �*,BW = 06 versus the alternative HA: �*,G

g 06 or �*,BL g 06 or �*,BW g 06 is overwhelming: 1,107. Secondly, the predictive densities for all

endogenous variables for our reference mother in each group differ little across H* and HA, and across

prior specifications (Table 7). Thirdly, under HA the six additional variables x7 - x12 add relatively

little to the three output equations. Table 8 contains the posterior means and standard deviations of

the coefficients of these variables and the group dummies. Because of these results, subsequent

results are  conditioned upon H*. Complete results under the HA are available from the authors upon

request.

4.4 System Results

Our treatment of simultaneity, in contrast to the biomedical literature, is a distinguishing

feature of our model. While our window imposes triangularity, it does not impose a full recursive

specification. The posterior results provide strong support for the model not being fully recursive.

Although our prior for � is centered over a diagonal matrix (supporting the use of single-

equation methods), the need for simultaneous equations techniques is apparent in our posterior results

in Table 9. Briefly, the connection between the unexplained parts of our seven endogenous variables

is as follows. There is evidence of strong correlation between S* and D*, little correlation between

PC*, S*, and D*, and small in absolute value (but greater than posterior standard deviations)

correlations between WG and all other inputs. All three birth outputs exhibit substantial positive

correlations among themselves which are large in size and relative to their standard deviations. Of

particular interest is the off-diagonal block of correlations between inputs and outputs. G has

noticeable correlation with all birth inputs, BL only with PC* where it is negative, and BW with S*

and PC*. WG has surprisingly small correlation with birth outputs.

4.5 Input Equations
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Our interest in the parameters of the input equations is minimal compared to the output

equations, and so we devote less attention to them. Table 10 contains the posterior and prior means

and standard deviations for the elements of û1 under our default prior. The price indices are not good

instruments in any of the input equations. But most other variables among x7 - x25 have substantial

posterior mass away from zero in some equations suggesting they satisfy at least one requirement of

a legitimate instrumental variable for the output equations. Finally, we note that our loose and tight

priors yield qualitatively similar results for the input equations. Complete results are available from

the authors upon request.

4.6 Output Equations 

The output equations are of prime importance. They describe how birth inputs together with

the biological size of the mother are transformed into birth outputs describing the physical

characteristics of the infant. 

Table 11 contains the posterior birth output results. The effect of smoking appears negative

in all output equations, and particularly so in the BW equation where smoking translates into an

expected BW reduction of .4016kg. PC has a consistent sizeable positive effect on all birth outputs.

Obtaining prenatal care in the first trimester translates into an increase of 2.356 weeks in gestation,

2.186cm in BL, and .5051kg in BW. D has a mixed effect across outputs, but is noticeably negative

for G where its posterior mean effect is to reduce gestational age by 1.238 weeks. Maternal nutrition

has a positive effect in all birth output equations and is sizeable for BL. G has the expected positive

effects on BL and BW, but their size is not large. Maternal size has reasonable positive effects on all

birth outputs although the posterior mean effects are not large. The posterior mean effect of a male

infant on BL is .7886cm and on BW is .0958kg. The posterior mean effects of maternal age are

negative (but small) on all birth outputs.
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Regarding the group effects, relative to the Main White group the picture that emerges from

Tables 10 and 11 is as follows. The posterior mean of the Black effect is consistently negative and

more than twice its posterior standard deviation in all equations except the PC equation. Similarly,

the Hispanic effect is negative (except in the WG equation) and usually not as large as the Black

effect in absolute value nor relative to its posterior standard deviation. The posterior mean of the

Supplemental White effect is positive in the input equations and negative in the output equations, but

not large relative to its posterior standard deviation. Finally, the posterior means of the Native

American effect are of mixed signs and small in absolute values and relative to their posterior

standard deviations.

In summary, our analysis of group differences is as follows. If prior beliefs are centered over

zero for group effects, then the Bayes factors suggest pooling. This “testing” conclusion is contrasted

in our estimation results largely due to the Black and to a lesser degree Hispanic differences from the

Main White group. Our results suggest that birth outcomes on average are similar for Main Whites

and Native Americans, slightly better than for Supplemental Whites, noticeably better than for

Hispanics, and substantially better than for Blacks. Even after controlling for all the exogenous

variables in the model, the posterior mean difference between Blacks and Main Whites is -.5038

weeks for gestational age, -.7762cm for BL, and -.2072kg for BW. Furthermore, these effects are all

more than twice their posterior standard deviations.

4.7 Prediction

Given out-of-sample values of x˜, the predictive density for the out-of-sample of

isz̃�

 [ z̃�

1 , z̃2 ]1 
 [ S̃�, D̃ �, P̃C� , W̃G, G̃, B̃L, ˜BW]1
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 µ̃2( z̃1, G̃ , x̃ , �) 
 W̃2� , �21 
 �22	 �
1
12�

	1
11 �12,

w i t h T h ex̃ t
i 
 [x̃i1 , x̃i2 , x̃i3 , x̃i4], and z̃1 
 [ S̃ ,D̃ , P̃C,W̃G]1
 [1( z̃�

1 ), 1(z̃�

2 ), 1( z̃�

3 ), W̃G]1.

predictive distribution for birth outputs, obtained from (13) by integrating out the inputs is:

Corresponding to our reference mother, the univariate predictive output densities shown in

Figures 4-6 (for G, BL, and BW, respectively) can be derived from (15). These figures depict the

univariate predictive output densities for each group and the very diffuse prior predictive density

embodying only the informative prior and no data. 
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4.8 High/Low Risk Birth Weight Puzzle

In this section we investigate the High/Low Risk Birth Weight Puzzle mentioned in Section

1.3 and its applicability to other groups as well as Blacks versus Whites. Figure 7 provides the

predictive distributions of BW for the five groups when evaluated for a mother characterized by

different risk levels. The different risk levels correspond to shifting particular exogenous variables

from their zero values for the reference mother in Figure 6 to the following new values for very high

risk (VHR), high risk (HR), low risk (LR), and very low risk (VLR) mothers, respectively:

x VHR
11 
	1.2556, xVHR

12 
 	20, xVHR
13 
 1, x VHR

15 
 	2, x VHR
17 
 2, x VHR

18 
 	4, x VHR
19 
 1, x VHR

21 
 1,

x HR
11 
 	.6278, xHR

12 
 	10, x HR
13 
 1, x HR

15 
 	1, x HR
17 
 1, x HR

18 
 	2, x HR
19 
 1, x HR

21 
 1,

x LR
11 
 .6278, xLR

12 
 10, xLR
15 
 1, x LR

17 
 	1, x LR
18 
 2,

x VLR
11 
1.2556, xVLR

12 
 20, x VLR
15 
 2, x VLR

17 
 	2, x VLR
18 
 4.

In other words, we define the various risk levels by moving AFQT score ±1 and ±2 Main White stan-

dard deviations (.6278), moving household income in one or two steps of ±$10,000, adding or sub-

tracting one or two adults from the household and one or two maternal siblings, adding or subtracting

two or four years to the grandmother’s education, and turning on the binary indicators for not on time

in school and no male present in the household at age 14. Table 12 gives predictive probabilities of

VLBW and LBW, the predictive means of BW, and the predictive standard deviations in BW of the

distributions shown in Figure 7. Table 12 confirms our expectation that these different assignments
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of exogenous variables lead to improved BW outcomes moving from VHR to VLR values.

The High/Low Risk Birth Weight Puzzle is apparent for Blacks, Hispanics, and Native

Americans. In all three cases, high-risk mothers are more comparable to high-risk Main Whites than

low- risk mothers are to low-risk Main Whites. This can also be seen in Table 13 which expresses the

ratio of the probability of LBW, the mean of BW, and the standard deviation in BW to their Main

White counterparts. The puzzle is not evident for Supplemental Whites.

The interpretation of the puzzles is up for grabs. It seems to work through the following

channels. Table 14 contains the predictive means of the four birth inputs and G corresponding to

mothers of varying risk. Clearly, moving from VHR to VLR (left to right in Table 14) mothers smoke

less (except for Hispanics), are more likely to seek prenatal care in the first trimester, and have better

(except for Main and Supplemental Whites) maternal nutrition (i.e., increased WG). All of these

behaviors contribute to higher BW (Table 11). Also, moving from VHR to VLR, mothers are more

likely to drink, but this has relatively little impact on BW (Table 11). What hurts Hispanics is the

increased probability of smoking when moving from VHR to VLR. For Blacks and Native Americans,

gestational ages are lower as we move from VHR to VLR (although the changes are small), and this

hurts BW (Table 11).

4.9 Convergence Diagnostics

We use a plot of all MCMC draws and the Convergence Diagnostic and Output Analysis

(CODA) software [Cowles and Carlin (1996) for an introduction] to check for convergence. Results

of the convergence diagnostics are available from the authors upon request. 

5. Discussion

It is well acknowledged that BW is probably the single most important indicator of infant

health. In this paper, we focus on explaining the birth outcomes such as gestation, BL, and BW using
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µi2 
 µi2 [zi1 , Gi , xi , � ] 


0
�G,BL Gi

�G,BW Gi

� +11zi1 � û21xi


 Wi2�2 ,

(A.2)

a simultaneous equations approach. On the other hand, the more interesting and ultimately relevant

question to ask, from a society viewpoint, is what factors affect children’s attainment later in life. Our

modeling framework turns out to be quite useful in answering questions like this. We conjecture that

BW and related birth measurements are the intervening variables in explaining children’s

development later in life, and we plan to investigate further in future work.

Appendices

A.1 Likelihood Function

Let 3m(&&, &) denote an m-dimensional normal density with given mean vector and variance-

covariance matrix. Because the density of 0i2 given 0i1 is f(0i20i1, �) = 33(0i2�121�11
-10i1, �21), where

�21 = �22 - �12 �11
-1 �12, it follows using change-of-variable techniques, and noting from (2) and (4)

that the Jacobian of the transformation from 0i2 to zi2 is unity due to the triangularity of +2 , the

distribution of the outputs zi2 given the inputs zi1
* is

where under the maintained hypothesis H*:

Wi2 is the 3×30 matrix
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Wi2 


zi11 x t
i 1 xi5 xi6 0 041 041 0 0 041 041 0

041 041 0 0 Gi zi11 x t
i 1 xi5 0 041 041 0

041 041 0 0 0 041 04 0 Gi zi11 x t
i 1 xi6

, (A.3)

�2 
 [ �G1 , /G1 , /5,G, /6,G, �G,BL,�BL1 , /BL1 , /5,BL, �G,BW, �BW1 , /BW1 , /6,BW] 1 . (A.4)
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� 
 [ �11 , �21 ]1 , �1 
 vec(û1) , (A.6)

Wi 


I4Txi1 04×30

03×100 Wi2

(A.7)

andx t
i 
 [xi1 , xi2 , xi3 , xi4 ]1 ,

Combining conditional density (A.1) with the marginal density of zi1
*, and using34(z�

i1 û11xi , �11)

properties of the multivariate normal density, it follows that the joint density of zi1
* and zi2 is

where µi = Wi �,

and



26

a
Di




	� , if D i 
 0

	x 1
i ûD, if D i 
 1

, āDi
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is 7×130. Note that (A.5) does not imply zi1
* and zi2 are multivariate normal because µi2 depends on

elements in zi1
* (through zi1) and in zi2. Under the alternative hypothesis HA , 18 additional columns

are added to Wi2 , and �*,j  (j = G, BL, BW) are added to �2 .

Given the observed [Si, Di, PCi]1, define the lower and upper integration limits

Then the joint density for all seven observed endogenous variables is

Stack observations to obtain the data matrices: Z1
* = [z11

*, z21
*, ..., zT1

*]1, Z1 = [z11, z21, ...,

zT1]1, Z2 = [z12 , z22, ..., zT2]1, Z = [Z1 , Z2 ]1, and X = [x1, x2, ..., xT]1. Assuming independent sampling,

we choose to view the observed data, under H*, through a 130 + 25 (unknown elements in �) = 155-

dimensional parametric window given by the likelihood function
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m (� ; Z, X) 
 N
T

i
1
f (zi1 , zi2xi , � ) . (A.12)

f ( � , �Z, X) � f ( � , � ) m (� , � ; Z, X) , for � � C, (A.13)

f ( � , � , Y �

1 Z, X) � f ( � , � ) f (Y �

1 � , � , Z, X) m (� , � ; Z, X) . (A.14)

Given z estimation and testing in this framework is well developed in both classical and

Bayesian literatures. The observability of only discretized versions of the endogenous variables in z1,

introduces some complications, but these can be overcome, as can any other nonlinearities in

specification of the structural equations [Li (1998) and the references cited therein].

A.2 Computation

Given the triangular structure of our model, our posterior analysis proceeds in the following

ways. Since there are three probit equations, it is computationally intensive to evaluate likelihood

function (A.12) due to the trivariate integral required for each observation. The posterior density of

the parameters � = [�1,vech(�)1]1 satisfies

where C is the region in which the variance-covariance matrix � is positive definite.

We employ a Bayesian approach for estimating simultaneous equations models with multiple

probit regressions [similar to Chib and Greenberg (1998)]. We employ data augmentation to augment

the observed data in order to simplify the posterior analysis. Specifically, we will obtain the joint

posterior distribution of both the parameters and the latent data Y1
* conditional on the observed data.

According to Bayes theorem, this augmented posterior is

Hence, the new posterior can be written as the product of the prior for the unknown parameters � and
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z 
 W� � 0 , (A.15)

the augmented likelihood function m*(�, �; Z, X) = f(Y1
*�, �, Z, X) m(�, �; Z, X) based on both

the latent dependent variables Y1
* and the observed dependent variables Z. The former is the products

of multivariate normal distributions, in which evaluation of high dimension integrals is not required.

Once the data is augmented, the posterior analysis of our simultaneous equations model with

multiple probits is greatly simplified. Our Markov chain sampling scheme is constructed by iterating

through the three distributions with densities: f(Y1
*�, �, Z, X), f(��, Y1

*, Z, X), and f(��, Y1
*, Z,

X). Each of these distributions can be sampled either directly or by Markov chain methods.

We begin with sampling the latent data Y1
* from the conditional distribution Y1

*�, �, Z, X.

This is a multivariate normal density truncated to the region associated with the observed Y1 = (S, D,

PC). For instance, if [Si, Di, PCi]1 = [1, 1, 1]1, then the normal distribution is truncated to the positive

orthant. To sample this distribution, we can first obtain univariate conditional normals derived from

the joint distribution and then apply the method developed in Geweke (1991) to generate univariate

truncated normals through the components.

To describe the sampling scheme for the unknown parameters, we rewrite the augmented

simultaneous equations model as

where z = vec( [Z1
*, Z2] ) and 0 � N7T(07T , �TIT). Assuming prior independence between the

regression parameter vector � and the variance-covariance matrix �, and we adopt the prior outlined

in Section 3.3. Order the elements of � as indicated in (A.4) and (A.6), and similarly construct its

prior mean b and variance-covariance matrix Q according to Tables 3-5. Then � � N130(b, Q). By

combining this prior for � with the augmented likelihood function, and noting that the two quadratic

forms are linear in � given W = W(Y1
*, Z), we obtain the standard linear regression result
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f ( �� , Y �

1 , Z, X) 
 3130(� b̄ , Q̄ ), (A.16)

Q̄ 
 [ Q	1
� W1 ( �	1T IT )W ]	1, (A.17)

b̄ 
 Q̄ [ Q	1b � W1 ( �	1T IT )z ] . (A.18)

p(� , �†) 
 min
f(�†) f (Y �

1 � , �†, Z, X) m(� , �†; Z, X) 1(�†� C)/q(� , �†� , Y �

1 , Z, X)

f(� ) f (Y �

1 � , � , Z, X) m(� , � ; Z, X) 1(� � C)/q(�†, �� , Y �

1 , Z, X)
, 1 , (A.19)

where

Simulation from ��, Y1
*, Z, X is straightforward using (A.16).

Finally, we consider the sampling of the variance-covariance matrix � from ��, Y1
*, Z, X.

We sample the elements of the variance-covariance matrix � using the Metropolis-Hastings algorithm

[Chib and Greenberg (1995) for an overview]. Let q(�, �†�, Y1
*, Z, X) denote a proposal density that

generates candidate draw �† given the current value �. The choice of the proposal density is given

later. The Metropolis-Hastings algorithm works in the following two steps.

(i) Sample a draw �† given � from the proposal density q(�, �†�, Y1
*, Z, X).

(ii) Move to �† with probability

and stay at � with probability 1 - p(�, �†). Note that 1(�† � C) is an indicator function which

equals unity if �† is positive definite and equals zero otherwise.

Given the 25 unknown elements in �, it can be a challenging task to search for a suitable

candidate-generating density. Therefore, we apply the Metropolis-Hastings algorithm in sequence
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p(YM) � P
,

p(�M) p(Y � , M) d�
(A.20)

through these eight blocks defined in (7) - (11). We adopt the random walk chain to generate proposal

values for the elements of the variance-covariance matrix. In particular, we use a multivariate normal

candidate-generating density (draws outside the support C are discarded) for the first four blocks sj

(j = 1, 2, 3, 4) and a univariate normal density for the four diagonal elements sj (j = 5, 6, 7, 8) (draws

outside the support C are also discarded). The mean of the normal is given by the previous draw and

the variance is calibrated so that the acceptance probability is reasonable. Chib and Greenberg (1995)

provide some rough guidelines on our choices of the variance matrices used in the random walk

chains. In particular, the variances for the normal proposal densities are chosen such that for the 3-

dimension s1 vector, the acceptance rate is around .3; for the 6-dimension sj (j = 2, 3, 4) vectors, the

acceptance rate is around .25; and for the univariate sj (j = 5, 6, 7, 8) the acceptance rate is around .45.

In our empirical application, we take a run of 5,000 replications from our MCMC algorithm

and discard the initial 1,000 to mitigate the startup effect. Preliminary runs are used to calibrate the

variance matrices for our normal candidate generating densities used in the Metropolis-Hastings

algorithm. To compute the marginal likelihood of a model, we follow the method developed by

Gelfand and Dey (1994) and modified by Chib and Geweke (1998). Let p(�|M) denote the properly

normalized prior density in model M, p(Y|�, M) denote the properly normalized data density in model

M, and let

denote the marginal likelihood of model M. For any p.d.f. f(�) whose support is contained in ,,
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We approximate (A.21) using simulation output from the MCMC algorithm. More specifically, define

and

where N is the total number of iterations and there are n burn-in iterations. The dimension of � is �.

Then for some p � (0, 1), define

and take

For a wide range of regular problems, the above function ensures

is uniformly bounded and (A.21) is well-defined.
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Table 1: Descriptive Statistics: Mean (Std. Dev. in Mean) [Std. Dev.] of Endogenous

Variables and Additional Descriptive Statistics on G and BW

Variables
White

Black Hisp.
Native

Main Supp. Amer.

z1 S = 1  if mother smoked

during

           pregnancy

   = 0  otherwise

.3384

(.0156)

[.4734]

.4674

(.0309)

[.4999]

.2253

(.0210)

[.4183]

.1667

(.0213)

[.3733]

.4198

(.0552)

[.4966]

z2 D = 1  if mother drank

alcohol

           during pregnancy

    = 0 otherwise

.5974

(.0162)

[.4907]

.5747

(.0307)

[.4953]

.3342

(.0238)

[.4723]

.3987

(.0280)

[.4904]

.4198

(.0552)

[.4966]

z3 PC = 1  if prenatal care

started

              in first trimester

      = 0  otherwise

.8466

(.0119)

[.3606]

.8582

(.0216)

[.3495]

.7772

(.0210)

[.4166]

.7418

(.0251)

[.4383]

.8395

(.0410)

[.3694]

z4 Weight gain net of BW in kg

(WG)

12.08

(.1965)

[5.957]

12.56

(.4002)

[6.465]

11.47

(.3531)

[7.019]

11.86

(.3799)

[6.645]

12.06

(.8188)

[7.369]

z5 Gestation in weeks (G) 38.80

(.0721)

[2.185]

38.92

(.1476)

[2.384]

38.71

(.1085)

[2.157]

38.70

(.1348)

[2.358]

39.11

(.2908)

[2.617]

     Proportion Preterm 

     (< 37 wks.)
.1251 .1226 .1215 .1046 .0988
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     Proportion Very Preterm 

     (< 32 wks.)
.0087 .0153 .0203 .0196 .0247

z6 Birth length in cm (BL) 51.18

(.1146)

[3.473]

50.98

(.2331)

[3.766]

50.15

(.2534)

[5.037]

50.62

(.2713)

[4.745]

51.33

(.3270)

[2.943]

z7 Birth weight in kg (BW) 3.367

(.0185)

[.5598]

3.274

(.0348)

[.5615]

3.189

(.0285)

[.5655]

3.224

(.0333)

[.5820]

3.347

(.0751)

[.6756]

     Proportion LBW .0620 .0766 .1063 .1013 .1111

     Proportion VLBW .0054 .0115 .0076 .0131 .0247

     Minimum BW in k g 1.106 1.191 .5670 .7938 1.276

     Maximum BW in kg 4.905 4.536 4.649 4.763 4.876
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Table 2: Descriptive Statistics: Mean (Std. Dev. in Mean) of Exogenous Variables

Variables
White

Black Hisp.
Native

Main Supp. Amer.

x2 Male child
.5092

(.0165)

.5326

(.0309)

.4861

(.0252)

.5261

(.0286)

.4815

(.0559)

x3 Mother’s age - 23yrs.
1.381

(.1383)

-.1724

(.2311)

-.7367

(.2111)

-.4542

(.2229)

-.4198

(.4749)

x4 Body mass index (weight in kg / [height in m] 2 ) - 24
-.3644

(.1442)

-1.158

(.2433)

.4669

(.2592)

-.1560

(.2384)

.3689

(.5572)

x5 Maternal height - 162cm
2.323

(.2084)

1.485

(.4149)

1.454

(.3728)

-2.030

(.3412)

.9363

(.7211)

x6 Maternal weight - 63kg
.8939

(.4196)

-1.861

(.7190)

2.354

(.7327)

-1.951

(.6497)

1.798

(1.591)

x7 Northeast
.1904

(.0130)

.2069

(.0251)

.1418

(.0176)

.1373

(.0197)

.0000

(.0000)

x8 South
.2775

(.0148)

.3640

(.0298)

.5949

(.0247)

.3170

(.0266)

.5926

(.0549)

x9 West
.1817

(.0127)

.1648

(.0230)

.0759

(.0133)

.4575

(.0285)

.1852

(.0434)

x10 Calendar Time - (19)85
.5190

(.1366)

-1.682

(.1730)

-1.139

(.2014)

-1.003

(.2080)

-1.210

(.4574)

x11

(AFQT score / mean of NLSY women of same age) -

1

.3599

(.0208)

.1210

(.0377)

-.3811

(.0232)

-.2293

(.0300)

.0361

(.0755)

x12 Household income in $1000 - 25
6.522

(.6889)

-4.462

(.9872)

-7.350

(.8127)

-2.897

(1.068)

-3.682

(1.951)

x13 No health insurance available
.5245

(.0165)

.6513

(.0296)

.6785

(.0235)

.6438

(.0274)

.6914

(.0516)

x14 Missing health insurance availability
.3798

(.0160)

.5364

(.0309)

.5797

(.0249)

.4935

(.0286)

.5309

(.0558)

x15 Number of adults in household - 2
.1643

(.0233)

.2375

(.0430)

.6658

(.0608)

.5621

(.0718)

.2716

(.1069)
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x16 Number of quarters worked during pregnancy - 3
.1382

(.0450)

-.2720

(.0981)

-.7595

(.0848)

-.3627

(.0922)

-.6296

(.1614)

x17 Number of maternal siblings - 4
-.9097

(.0628)

-.1724

(.1476)

.5544

(.1505)

.6634

(.1656)

-.3086

(.2610)

Table 2 (continued): Descriptive Statistics: Mean (Std. Dev. in Mean) of Exogenous Variables

x18 Grandmother’s education - 12yrs.
-.1143

(.0702)

-1.035

(.1638)

-.9975

(.1204)

-4.137

(.2287)

-1.222

(.2961)

x19 Not on time in school at age 14
.0555

(.0076)

.1494

(.0221)

.0937

(.0147)

.1928

(.0226)

.1605

(.0410)

x20 Non-urban at age 14
.2394

(.0141)

.2337

(.0262)

.1823

(.0195)

.1176

(.0184)

.2840

(.0504)

x21 No employed male in household at age 14
.1382

(.0114)

.3257

(.0291)

.4025

(.0247)

.2451

(.0246)

.2469

(.0482)

x22 Cigarette price index
.0851

(.0149)

-.1629

(.0150)

-.0792

(.0214)

-.0821

(.0213)

-.0856

(.0488)

x23 Alcohol price index
.0324

(.0064)

-.0688

(.0076)

-.0469

(.0093)

-.0345

(.0094)

-.0502

(.0203)

x24 Medical services price index
.0674

(.0121)

-.1277

(.0135)

-.0726

(.0176)

-.0664

(.0179)

-.0839

(.0394)

x25 Food price index
.0251

(.0060)

-.0702

(.0075)

-.0468

(.0089)

-.0415

(.0093)

-.0488

(.0200)
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Table 3: Prior Means (Standard Deviations) of Across-Equation Covariances and Variances

in � Under Both H* and HA

D* PC* WG G BL BW

S*
.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

D*
.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

PC*
.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

WG
66.67

(94.28)

.0000

(1.000)

.0000

(1.000)

.0000

(1.000)

G
8.333

(11.79)

.0000

(1.000)

.0000

(1.000)

BL
8.333

(11.79)

.0000

(1.000)

BW
.3333

(.4714)

           Note: Variances for S*, D* and PC* are normalized to unity. Off-

           diagonal elements are given as covariances. 
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Table 4: Prior Means (Standard Deviations) of 
1 and 
2 Under Both H* and HA

Endogenous Variable j �j,G �j,BL �j,BW

S
-1.000

(2!1/2)

.0000

(3!1/2)

-.3500

(!1/2)

D
.0000

(2!1/2)

.0000

(3!1/2)

.0000

(!1/2)

PC
.0000

(2!1/2)

.0000

(3!1/2)

.1000

(�1/2)

WG
.0000

(2�1/2)

.1000

(�1/2)

.1000

(�1/2)

G
-1.000

(.0000)

.0500

(�1/2)

.0100

(!1/2)
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Table 5: Prior Means (Standard Deviations) of �1 and �2 Under HA

Variables S D PC WG G BL BW

x1 Intercept
.0000

(71)
½

.0000

(71)
½

.0000

(71)
½

10.00

(671
½)

40.00

(471
½)

48.00

(471
½)

2.000

(271
½)

x2 Male child
.0000

(71)
½

.0000

(71)
½

.0000

(71)
½

.0000

(671
½)

.0000

(471
½)

.1000

(471
½)

.1000

(271
½)

x3 Mother’s age - 23yrs.
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672
½)

.0000

(472
½)

.0000

(472
½)

.0000

(272
½)

x4 Body mass index - 24
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672
½)

.0000

(472
½)

.0000

(472
½)

.0000

(272
½)

x5 Maternal height - 162cm
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672
½)

.0000

(472
½)

.0000

(472
½)

.0000

(.0000)

x6 Maternal weight - 63kg
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672
½)

.0000

(472
½)

.0000

(.0000)

.0000

(272
½)

x7 Northeast

.0000

(271)

½

.0000

(271)

½

.0000

(271)

½

.0000

(6[271]
½

)

.0000

(4[271]
½

)

.0000

(4[271]
½

)

.0000

(2[271]
½

)

x8 South

.0000

(271)

½

.0000

(271)

½

.0000

(271)

½

.0000

(6[271]
½

)

.0000

(4[271]
½

)

.0000

(4[271]
½

)

.0000

(2[271]
½

)

x9 West

.0000

(271)

½

.0000

(271)

½

.0000

(271)

½

.0000

(6[271]
½

)

.0000

(4[271]
½

)

.0000

(4[271]
½

)

.0000

(2[271]
½

)

x10 Calendar Time - (19)85

-

.2000

(72)
½

-

.2000

(72)
½

.2000

(72)
½

.2000

(672
½)

.0000

(472
½)

.0000

(472
½)

.0000

(272
½)

x11 (AFQT score / mean of same age) -1

-

1.000

(71)
½

-

1.000

(71)
½

1.000

(71)
½

1.000

(671
½)

.0000

(471
½)

.0000

(471
½)

.0000

(271
½)
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x12 Household income in $1000 - 25
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672
½)

.0000

(472
½)

.0000

(472
½)

.0000

(272
½)

x13 No health insurance available
.0000

(71)
½

.0000

(71)
½

.0000

(71)
½

.0000

(671
½)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x14 Missing health insurance availability

.0000

(271)

½

.0000

(271)

½

.0000

(271)

½

.0000

(6[271]
½

)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x15 Number of adults in household - 2
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672
½)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x16 No. of quarters worked last year - 3
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672
½)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x17 Number of maternal siblings - 4
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672
½)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x18 Grandmother’s education - 12yrs.

-

.5000

(71)
½

-

.5000

(71)
½

.5000

(71)
½

.5000

(671
½)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)
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Table 5 (continued): Prior Means (Standard Deviations) of �1 and �2 Under HA

x19 Not on time in school at age 14
.6000

(71)
½

.6000

(71)
½

-

.6000

(71)
½

-.6000

(671
½)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x20 Non-urban at age 14
.0000

(71)
½

.0000

(71)
½

.0000

(71)
½

.0000

(671
½)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x21

No employed males in household at age

14

.0000

(71)
½

.0000

(71)
½

.0000

(71)
½

.0000

(671
½)

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x22 Cigarette price index
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672)
½

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x23 Alcohol price index
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672)
½

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x24 Medical services price index
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672)
½

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)

x25

Food price index
.0000

(72)
½

.0000

(72)
½

.0000

(72)
½

.0000

(672)
½

.0000

(.0000)

.0000

(.0000)

.0000

(.0000)
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Table 6: Notational Conventions in Subsequent Tables

Absolute value of mean between one and two standard deviations

Absolute value of mean between two and three standard deviations

Absolute value of mean more than three standard deviations

bold Standard deviation equal to zero



47

Table 7: Predictive Means (Standard Deviations) of Reference Mother by Group, Under H*

and HA: Default Prior

H* HA H* HA H* HA

Main White Black Hispanic

S
.4310

(.4952)

.4270

(.4946)

.1710

(.3765)

.1830

(.3867)

.1610

(.3675)

.1720

(.3774)

D
.6070

(.4884)

.5930

(.4913)

.5220

(.4995)

.5070

(.5000)

.5750

(.4943)

.5590

(.4965)

PC
.8370

(.3694)

.8340

(.3721)

.8170

(.3867)

.8200

(.3842)

.7870

(.4094)

.7820

(.4129)

WG
11.50

(6.296)

11.52

(6.279)

10.37

(6.299)

10.43

(6.297)

11.78

(6.301)

11.78

(6.290)

G
38.96

(2.147)

38.83

(2.122)

38.59

(2.148)

38.55

(2.108)

38.74

(2.113)

38.55

(2.111)

BL
50.55

(4.230)

50.49

(4.123)

49.71

(4.205)

49.74

(4.093)

50.54

(4.217)

50.56

(4.115)

BW
3.305

(.5318)

3.279

(.5557)

3.166

(.5337)

3.158

(.5398)

3.258

(.5321)

3.227

(.5364)

Supplemental White Native American Prior

S
.4870

(.4998)

.4870

(.4998)

.4310

(.4952)

.4520

(.4977)

.4874

(.4998)

.4958

(.5000)

D
.6430

(.4791)

.6220

(.4849)

.5760

(.4942)

.5540

(.4971)

.4960

(.5000)

.4996

(.5000)

PC
.8730

(.3330)

.8740

(.3318)

.8810

(.3238)

.8720

(.3341)

.4964

(.5000)

.4996

(.5000)
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WG
12.13

(6.292)

12.17

(6.287)

11.54

(6.382)

11.51

(6.299)

9.758

(8.926)

9.856

(9.083)

G
38.96

(2.169)

38.81

(2.105)

39.04

(2.192)

38.93

(2.123)

40.11

(26.78)

39.82

(26.90)

BL
50.49

(4.211)

50.48

(4.128)

50.93

(4.245)

50.95

(4.149)

50.49

(50.29)

50.21

(49.72)

BW
3.247

(.5332)

3.220

(.5573)

3.315

(.5325)

3.289

(.5614)

3.161

(50.81)

4.136

(50.34)
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Table 8: Posterior Means (Standard Deviations) of û*j  and Group Dummy Coefficients

Under HA: Default Prior

xj G BL BW

Northeast
.1779

(.1788)

.2169

(.3114)

.0207

(.0422)

South
-.1312

(.1673)

.0458

(.2864)

.0174

(.0418)

West
.0862

(.1758)

-.1662

(.3016)

.0252

(.0407)

Cal. Time
-.0837

(.0334)

.0184

(.0515)

.0020

(.0074)

AFQT
-.0596

(.1411)

-.5700

(.2476)

.0025

(.0329)

Income
-.0011

(.0044)

-.0077

(.0072)

-.0006

(.0010)

Supplemental White
.0537

(.1858)

.0738

(.3048)

-.0553

(.0414)

Black
-.7287

(.1948)

-1.436

(.3187)

-.1910

(.0451)

Hispanic
-.6406

(.2264

-.8801

(.3517)

-.1245

(.0514)

Native American
.0380

(.2899)

.6015

(.4929)

.0085

(.0651)
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Table 9: Posterior Means (Standard Deviations) of Across-Equation Correlations and

Variances in � Under H* : Default Prior

D* PC* WG G BL BW

S*
.3785

(.0352)

-.0035

(.0440)

.0309

(.0303)

.1555

(.1324)

-.0230

(.1408)

.2356

(.1044)

D*
-.0005

(.0397)

.0525

(.0314)

.3352

(.1295)

-.1052

(.0926)

-.0263

(.1100)

PC*
.0341

(.0301)

-.5304

(.0607)

-.2723

(.0723)

-.4674

(.0665)

WG
40.54

(1.303)

.0422

(.0421)

-.0213

(.0329)

.0382

(.1012)

G
6.255

(.5185)

.3271

(.0498)

.4595

(.0681)

BL
16.24

(.6932)

.4824

(.0308)

BW
.2998

(.0292)

     Note: Variances for S*, D* and PC* are normalized to unity. Off-diagonal

     elements are given as correlations, not covariances. 
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Table 10: Birth Input Equations, Posterior Means (Standard Deviations) Under H*: Default

Prior

Variables S D PC WG

x1 Intercept
-.2236

(.0881)

.2798

(.0840)

.9890

(.0905)

11.58

(.4139)

x2 Male child
.0500

(.0605)

.0307

(.0596)

.0672

(.0640)

.2632

(.2753)

x3 Mother’s age - 23yrs.
-.0144

(.0158)

.0345

(.0151)

.0641

(.0152)

-.1448

(.0737)

x4

Body mass index (weight in kg

/ [height in m] 2 ) - 24

.0360

(.0786)

-.1005

(.0764)

.2033

(.0792)

.2342

(.3814)

x5 Maternal height - 162cm
.0151

(.0232)

-.0227

(.0227)

.0531

(.0236)

.1141

(.1141)

x6 Maternal weight - 63kg
-.0105

(.0291)

.0382

(.0284)

-.0765

(.0293)

-.0224

(.1420)

x7 Northeast
.1033

(.1040)

.0544

(.0976)

.1937

(.1081)

.8277

(.5043)

x8 South
-.1828

(.0822)

-.3933

(.0781)

-.0712

(.0845)

.1602

(.4040)

x9 West
-.0693

(.0905)

-.1188

(.0831)

-.0190

(.0935)

.4939

(.4398)

x10 Calendar Time - (19)85
.0330

(.0686)

.0334

(.0638)

.0031

(.0700)

-.4012

(.3427)

x11

(AFQT score / mean of NLSY

women of same age) - 1

-.3684

(.0623)

.2041

(.0529)

-.0728

(.0598)

-.6616

(.2826)
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x12 Household income in $1000 - 25
-.0053

(.0022)

.0040

(.0020)

.0073

(.0023)

-.0033

(.0103)

x13 No health insurance available
.0880

(.0931)

-.0826

(.0889)

-.3017

(.0921)

.2348

(.4531)

x14

Missing health insurance

availability

-.0614

(.0952)

.0446

(.0935)

.1885

(.0943)

.3009

(.4773)

x15

Number of adults in household -

2

.0136

(.0320)

-.0074

(.0303)

-.0534

(.0315)

-.0545

(.1626)

Table 10 (continued): Birth Input Equation, Posterior Means (Standard Deviations) Under

H*: Default Prior

x16

Number of quarters worked

 during pregnancy - 3

-.0307

(.0266)

.0249

(.0254)

.0043

(.0246)

.1886

(.1301)

x17 Number of maternal siblings - 4
.0112

(.0132)

-.0125

(.0119)

-.0083

(.0133)

.0071

(.0626)

x18 Grandmother’s education - 12yrs.
.0370

(.0130)

.0397

(.0124)

.0033

(.0130)

.1819

(.0598)

x19 Not on time in school at age 14
.2666

(.1033)

-.0014

(.1018)

-.1438

(.0994)

.0971

(.5108)

x20 Non-urban at age 14
-.0933

(.0771)

-.1119

(.0704)

.0527

(.0753)

-.3862

(.3363)

x21

No employed male in household at age

14

-.0047

(.0723)

-.0822

(.0668)

-.0259

(.0709)

.2507

(.3573)

x22 Cigarette price index
-.5953

(.7093)

-.1846

(.6637)

-.6019

(.6716)

2.376

(3.330)
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x23 Alcohol price index
-1.481

(1.582)

.0609

(1.398)

.7065

(1.487)

.9987

(7.670)

x24 Medical services price index
.2980

(1.459)

-.4581

(1.354)

-.2460

(1.377)

-.0310

(6.826)

x25 Food price index
1.178

(1.423)

-.2855

(1.288)

-.1842

(1.404)

4.447

(7.268)

x26 Supplemental White
.1604

(.0959)

.1037

(.0937)

.1467

(.1090)

.6343

(.4649)

x27 Black
-.7413

(.0978)

-.2564

(.0922)

-.0384

(.0975)

-1.128

(.4669)

x28 Hispanic
-.7825

(.1086)

-.0866

(.0971)

-.1624

(.1124)

.2781

(.5068)

x29 Native American
.0372

(.1485)

-.0963

(.1451)

.2033

(.1742)

.0366

(.7542)
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Table 11: Birth Output Equations, Posterior Means (Standard Deviations) of 
1, 
2 and �2

Under H* : Default Prior

G BL BW

S
-.2922

(.5176)

-.6132

(.9041)

-.4016

(.0903)

D
-1.238

(.5218)

.7204

(.5879)

.0591

(.0935)

PC
2.356

(.3370)

2.186

(.5444)

.5051

(.0840)

WG
.0098

(.0180)

.0911

(.0237)

.0067

(.0088)

G
.0000

(.0000)

.0319

(.0452)

.0366

(.0208)

Intercept
37.65

(.4471)

46.30

(1.647)

1.492

(.7798)

Male child
-.0209

(.1139)

.7886

(.1834)

.0958

(.0259)

Mother’s age - 23yrs.
-.0913

(.0171)

-.0502

(.0294)

-.0168

(.0044)

Body mass index - 24
-.2109

(.1343)

.0446

(.0221)

-.0295

(.0068)

Maternal height -

162cm

-.0546

(.0391)

.0784

(.0141)

.0000

(.0000)
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Maternal weight -

63kg

.0953

(.0499)

.0000

(.0000)

.0179

(.0026)

Supplemental White
-.0216

(.1769

-.1850

(.3052)

-.0596

(.0379

Black
-.5038

(.2137)

-.7762

(.3153)

-.2072

(.0431)

Hispanic
-.2460

(.2235)

-.0698

(.3479)

-.1229

(.0468)

Table 11 (continued): Birth Output Equations, Posterior Means (Standard Deviations) of


1, 
2 and �2 Under H* : Default Prior

Native American
-.0592

(.3001)

.3188

(.4639)

-.0118

(.0648)

Height
.0079

(.0093)

.0652

(.0148)

.0087

(.0020)

Weight
.0149

(.0053)

.0170

(.0084)

.0067

(.0013)
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Table 12: Predictive Distributions of BW for Mothers of Varying Risk, Under H* : Default Prior

Group
Very

High Risk

High

Risk

Reference

Mother

Low

Risk

Very

Low

Risk

Main White

     Pr(VLBW) .0010 .0010 .0000 .0000 .0000

     Pr(LBW) .1330 .1200 .0760 .0710 .0630

     Mean (kg) 3.097 3.129 3.305 3.335 3.357

     St. Dev. (kg) .5209 .5280 .5318 .5375 .5320

Supplemental White

     Pr(VLBW) .0010 .0010 .0000 .0000 .0000

     Pr(LBW) .1560 .1430 .0990 .0900 .0800

     Mean (kg) 3.056 3.086 3.247 3.275 3.299

     St. Dev. (kg) .5260 .5267 .5332 .5318 .5343

Black

     Pr(VLBW) .0010 .0000 .0000 .0000 .0000

     Pr(LBW) .1980 .1850 .1120 .1060 .1030

     Mean (kg) 2.978 3.006 3.166 3.187 3.194

     St. Dev. (kg) .5346 .5317 .5337 .5331 .5304

Hispanic

     Pr(VLBW) .0010 .0010 .0000 .0000 .0000

     Pr(LBW) .1700 .1550 .0820 .0800 .0830

     Mean (kg) 3.052 3.089 3.258 3.271 3.276

     St. Dev. (kg) .5356 .5443 .5321 .5297 .5301

Native American

     Pr(VLBW) .0010 .0010 .0000 .0000 .0000

     Pr(LBW) .1230 .1140 .0760 .0670  .0560

     Mean (kg) 3.117 3.146 3.315 3.349 3.376

     St. Dev. (kg) .5220 .5267 .5325 .5321 .5320
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Table 13: High/Low Risk Birth Weight Puzzle, Group/Main White Ratios Under H* : Default Prior

Group/Main White
Very

High Risk

High

Risk

Reference

Mother

Low

Risk

Very

Low

Risk

Supplemental White

     Pr(LBW) 1.173 1.192 1.303 1.268 1.270

     Mean   .987   .986   .982   .982   .983

     St. Dev. 1.010   .998 1.003   .989 1.004

Black

     Pr(LBW) 1.489 1.542 1.474 1.493 1.635

     Mean   .962   .961   .958   .956   .951

     St. Dev. 1.026 1.007 1.004   .992   .997

Hispanic

     Pr(LBW) 1.278 1.292 1.079 1.127 1.317

     Mean   .985   .987   .986   .981   .976

     St. Dev. 1.028 1.031 1.001   .985   .996

Native American

     Pr(LBW)   .925   .950 1.000   .944   .889

     Mean 1.006 1.005 1.003 1.004 1.006

     St. Dev. 1.002   .998 1.001 .990 1.000
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Table 14: Predictive Means of Birth Inputs and G for Mothers of Varying Risk, Under H* : Default Prior

Group

Very

High

Risk

High

Risk

Reference

Mother

Low

Risk

Very

Low

Risk

Main White

     S .7250 .6480 .4310 .3450 .2780

     D .3640 .4460 .6070 .6920 .7840

     PC .6890 .6860 .8370 .8290 .8230

     WG (kg) 12.38 12.23 11.50 11.35 11.21

     G (wks) 38.83 38.75 38.96 38.87 38.75

Supplemental

White

     S .7790 .7100 .4870 .4100 .3330

     D .3970 .4970 .6430 .7320 .8150

     PC .7500 .7470 .8730 .8700 .8590

     WG (kg) 13.01 12.86 12.13 11.99 11.84

     G (wks) 38.90 38.80 38.96 38.86 38.75

Black

     S .4290 .3540 .1710 .1230 .0860

     D .2840 .3510 .5220 .6070 .6970

     PC .6810 .6740 .8170 .8190 .8080

     WG (kg) 11.25 11.10 10.37 10.23 10.08

     G (wks) 38.48 38.41 38.59 38.50 38.37

Hispanic

     S .4220 .3360 .1610 .1170 .0890

     D .3280 .4180 .5750 .6610 .7540

     PC .6270 .6240 .7870 .7820 .7730

     WG (kg) 12.66 12.51 11.78 11.63 11.48

     G (wks) 38.57 38.50 38.74 38.62 38.48
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Table 14 (continued): Predictive Means of Birth Inputs and G for Mothers of Varying Risk, Under H* :

Default Prior

Native American

     S .7420 .6660 .4310 .3490 .2840

     D .3360 .4130 .5760 .6590 .7540

     PC .7580 .7520 .8810 .8780 .8800

     WG (kg) 12.41 12.27 11.54 11.39 11.24

     G (wks) 38.96 38.88 39.04 38.96 38.86



 

 

 
Figure 1: Empirical Histogram for G 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

24 26 28 30 32 34 36 38 40 42 44 46 48

wk

R
el

. F
re

q.

 
(a) Main White



 

 

 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

24 26 28 30 32 34 36 38 40 42 44 46 48

wk

R
el

. F
re

q.

 
(b) Black
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(c) Supplemental White
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(d) Hispanic
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(e) Native American 



 

 

 
Figure 2: Empirical Histogram for BL 
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(b) Black 
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(c) Supplemental White
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(d) Hispanic 
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Figure 3: Empirical Histogram for BW 
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(a) Main White 
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(b) Black 
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(c) Supplemental White  
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(d) Hispanic 
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Figure 4: Posterior Predictive Distribution for G Under H*: Default Prior 
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Figure 5: Posterior Predictive Distribution for BL Under H*: Default Prior 
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Figure 6: Posterior Predictive Distribution for BW Under H*: Default Prior 
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Figure 7: Predictive Distributions of BW for Mothers of Varying Risk,  

Under H*: Default Prior 
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(a) VHR 
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(c) LR 
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(d) VLR 


