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Abstract:  Lucas (1987) argues that the gain from eliminating aggregate fluctuations is trivial. 
Following Lucas, a number of researchers have altered assumptions on preferences and found that the 
gain from eliminating business cycles are potentially very large. However, in these exercises little 
discipline is placed on preference parameters.  This paper estimates the welfare cost of business cycles, 
allowing for potential time-non-separabilities in preferences, where discipline is placed on the choice of 
preference parameters by requiring that the preferences be consistent with observed fluctuations in a 
model of business cycles. That is, a theoretical real business cycle world is constructed and the 
representative agent is then placed in this world. The agent responds optimally to exogenous shocks, 
given the frictions in the economy. The agent's preference parameters, along with other structural 
parameters, are estimated using a Bayesian procedure involving Markov Chain Monte Carlo methods. 
Two main results emerge from the paper. First, the form for the time-non-separability estimated in this 
paper is very different than the forms suggested and used elsewhere in the literature. Second, the welfare 
cost of business cycles is close to Lucas's estimate.    

                                                                 
1 I would like to thank the members of my dissertation committee at the University of Iowa: Beth F. Ingram, B. 
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"Economic instability at the level we have experienced since the Second World War is a minor problem"  
"It is worth re-emphasizing that these calculations rest on assumptions about preferences only, and not 
about any particular mechanism--equilibrium or disequilibrium--assumed to generate business cycles" 
       Robert E. Lucas Jr., 1987 
 
"The more dimensions on which the model mimics the answers actual economies give to simple 
questions, the more we trust its answers to harder questions" 
       Robert E. Lucas Jr., 1981 
 

I Introduction 

Since 1930 much government policy has been aimed at reducing business cycle fluctuations, yet 

economists still are uncertain whether the magnitude of the potential gains from such a reduction are 

worth the effort. Lucas (1987) calculates that the welfare gain from eliminating all consumption 

fluctuations is less than one-hundreth of one percent of consumption when preferences are logarithmic.  

Clearly, in this estimate there is little room to increase welfare by designing policies to reduce or 

eliminate business cycles. In other calculations of the welfare cost of consumption volatility, most 

researchers have followed Lucas's (1987) approach. It is a simple procedure that only requires specifying 

a form for preferences and a time series representation for the fluctuating consumption process. Expected 

utility of the fluctuating consumption process is calculated and equated to the utility associated with a 

deterministic (non-fluctuating) consumption process. The welfare cost is the percent of consumption that 

the agent would pay, at every date and state, to move from the fluctuating economy to the non-fluctuating 

economy. 

As noted by several authors, Lucas’s result is sensitive to the assumption about the functional 

form for preferences and the exogenous process driving consumption. Lucas assumed standard constant 

relative risk aversion (CRRA) preferences and a trend-stationary iid consumption process. Other 

researchers have re-examined Lucas's welfare cost calculation under alternative assumptions for 

preferences and the consumption process. For example, Dolmas (1998), Obstfeld (1994), Pemberton 

(1995) and Tallarini (1998) estimate the potential welfare gains using non-expected utility and find gains 

ranging from one to twenty percent of consumption, depending on parameter choices. Van Wincoop 

(1994) finds that the gains from eliminating consumption fluctuations with habit formation preferences 

can be even larger, ranging from 1 to 25 percent. Campbell and Cochrane (1995) and Campbell (1998) 

argue that consumers with habit formation preferences consider consumption fluctuations as seriously as 

changes in growth, i.e., the cost is very large. Campbell argues more generally that any form of 

preferences that generates an equity premium as large as is observed in the U.S. implies a large welfare 

cost of fluctuations.2   

                                                                 
2 Atkeson and Phelan (1994) argue that it is not necessarily the case that a model that delivers large equity premia 
leads to a large gain from eliminating aggregate fluctuations. They construct an incomplete markets model in which 
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Should we believe any of these 'back-of-the-envelope' welfare cost estimates? One reason to be 

skeptical is that little discipline has been placed on the preferences. In Otrok (1999) I show that it is trivial 

to make the welfare cost of business cycles as large as one wants by simply choosing an appropriate form 

for preferences. Apparently reasonable settings of the parameters of time-non-separable preferences can 

produce welfare costs of U.S. consumption fluctuations as high as 40% of total consumption. Further, it is 

difficult to argue about such settings on a priori grounds since there is no straightforward economic 

interpretation of preference parameters in time-non-separable preferences.3 What is needed is a method to 

discipline the choice of preference parameters. The approach taken in this paper is to use business cycle 

theory, in the spirit of Kydland and Prescott (1982) and King, Plosser and Rebelo (1988) [KPR], to 

determine an appropriate form for time-non-separable preferences. The discipline is that the preferences 

should be able to reproduce the observed consumption process, along with other aggregate variables, in a 

model of business cycles.  

The approach in this paper to measuring welfare cost is closest to that of Tallarini (1998). 

Tallarini augments the standard KPR model with state-non-separable preferences, and calculates the 

welfare cost of business cycles (along with asset prices). His point is that he can raise the welfare cost of 

business cycles (and raise equity premium) by increasing risk aversion, holding constant intertemporal 

substitution, yet the implications for the second-moment properties of aggregate variables remain 

virtually unchanged from the predictions of the standard model. Here I take the discipline a step further in 

requiring that the model deliver fluctuations that mimic the type of persistent fluctuations we observe in 

the data, as the standard KPR model that Tallarini uses is known to miss many of these important features 

of the U.S. data. With non-separable preferences this discipline is of critical importance since welfare 

depends on not only the overall volatility of consumption, but also on the temporal nature of that 

volatility. Further, the choice of preference parameters with time-non-separable preferences dictates 

which types of volatility will be more costly (see Otrok 1999). The focus of this paper is time-non-

separabilities in preferences, yet since welfare cost with state-non-separabilities preferences also depends 

on the temporal nature of consumption fluctuations, the approach developed here is applicable to the 

state-non-separable class of preferences as well.  

As is well known from the work of Cogley and Nason (1995a) and Watson (1993) the standard 

business cycle model does not generate 'business cycle' fluctuations per se. The prototypical model is 

unable to generate what we observe in the data--volatility concentrated at business cycle frequencies. 

                                                                                                                                                                                                                 
eliminating aggregate fluctuations does not result in large welfare gains. However, in a complete markets, 
representative agent, preference-based asset pricing model it is the case that high equity premia and high welfare 
cost of fluctuations are tightly linked. 
3 In contrast, with time-separable preferences the only free parameter has the interpretation of measuring risk 
aversion, a parameter about which we can discuss what is reasonable and what is not. 
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However, an extensive literature has developed in recent years that adds realistic frictions to the standard 

model to explain the types of fluctuations we observe in the data. The approach here is to use this work to 

build a model of business cycles, and then ask what types of preferences would be consistent with 

aggregate fluctuations. Specifically, I construct a theoretical world using frictions that have been 

established elsewhere in the real business cycle literature to be useful in explaining features of the 

aggregate data. The representative agent is then placed in this world, and responds optimally to 

exogenous shocks, given the frictions in the economy. The agents' preference parameters, along with 

other structural parameters, are estimated using a full-information Bayesian procedure involving Markov 

Chain Monte Carlo methods.  The resulting welfare cost associated with this form is calculated. Two 

main results emerge. First, the form for the time-non-separability estimated in this paper is very different 

than the forms suggested and used elsewhere. Second, the welfare cost of business cycles is close to 

Lucas's estimate.  

It should be noted that this paper is not the first to embed time-non-separable preferences in 

consumption into a RBC model. Habit formation preferences have been used in business cycle models by 

Boldrin, Christiano and Fisher (1995), Lettau and Uhlig (1997) and Jermann (1998).4 Lettau and Uhlig 

(1997) find that habit reduces consumption volatility to a counterfactually small fraction of output 

volatility.  Boldrin, Christiano and Fisher (1995) and Jermann (1998) focus on the ability of the RBC 

model to generate realistic asset pricing implications; e.g., to match the equity premium in the data. 

However, the models used by these authors cannot match the persistent fluctuations in growth rates 

observed in the data. The approach in these papers is to impose a parameterization of preferences in the 

model, then add frictions and calibrate the remaining model parameters to match the overall volatility of 

the data for some aggregate variables. In contrast, the approach here is first to find a form for preferences 

that is consistent with aggregate fluctuations, and only then to ask substantive questions of the model. 

 

II Time-Non-Separable Preferences and the Welfare Cost of Business Cycles 

The economic interpretation of preferences that are time-non-separable [TNS] is that the utility 

that an agent derives from a consumption bundle today depends not only upon the characteristics of that 

bundle, but also upon the consumption bundles consumed in previous periods. That is, the ordering of 

consumption bundles matters for lifetime utility, not just the discounted sum of those bundles. The effect 

of consumption in one period on utility in future periods depends on whether consumption bundles are 

complements, substitutes or some combination, across time periods. For example, in one popular 

formulation, known as habit formation, consumption in previous periods reduces the utility of a 

                                                                 
4 In the RBC literature non-separable preferences in leisure were introduced by Kydland and Prescott (1982). The 
focus in this paper is on non-separabilities in consumption. 
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consumption bundle in the current period because the agent has grown accustomed to the level of 

consumption in the previous period. In this case consumption levels in different periods are 

complementary.  

A more precise way to characterize TNS preferences is to note that an agent with such 

preferences cares not only about the overall amount of consumption volatility, but also about the temporal 

nature of that volatility. For example, an agent may have a stronger aversion to high frequency 

fluctuations then low frequency fluctuations?5 We can use this intuition to dramatically increase the 

welfare cost of U.S. business cycles by observing that U.S. consumption volatility is mostly a low 

frequency phenomena, and then we can write down a utility function that has an heightened aversion to 

this type of low frequency volatility. For example, we can use Heaton's (1995)6 form for time-non-

separable preferences and choose parameters such that the agent dislikes low frequency volatility- and we 

would find that the welfare cost of U.S. consumption fluctuations associated with these preferences is 40 

percent!7 Is this estimate believable? No, clearly the calculation was rigged to deliver such a welfare cost. 

But this 'rigged' calculation is in the same spirit as both the welfare cost and equity premium calculations 

presently made in the literature. The starting point was specifying the consumption process to characterize 

the U.S. consumption process. Next, preferences were specified which, by design, had an aversion to the 

observed consumption process. An alternative approach to measuring welfare cost is pursued in the next 

section, where I build a model that links preferences to the observed consumption process.  

 

III Building a Model of Business Cycles 

A key feature of welfare calculations with TNS preferences is the temporal nature of the 

consumption process; therefore it is important that the model exhibits the persistent fluctuations we 

observe in the data. Watson (1993) shows that the standard business cycle model is not able to generate 

fluctuations with hump shaped spectra for aggregate growth rates that we observe in the U.S. economy. 

Cogley and Nason (1995a), Rotemberg and Woodford (1996), and Wen (1996) show that the standard 

model lacks an internal mechanism to propagate shocks, which leads to trivial dynamics. There has been, 

however, a growing body of research aimed at improving the model's ability to match the data. The model 

presented here combines a number of these features in one place, in order to build a model that will be 

capable of matching the data on a number of dimensions.  The model has two sectors, each with its own 

capital stock that cannot be transferred to the other sector. Additional features are time-to-build capital, an 

aggregate dynamic complementarity and variable rates of capacity utilization. To this model I add time-

                                                                 
5 In Otrok (1999) I develop spectral utility and spectral welfare cost functions to illustrate this preference formally. 
6  Details of these preferences will be given in section III.  
7 The welfare cost was estimated using the U.S. consumption process, following Otrok (1999). Details are omitted 
here since the example is only illustrative. 
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non-separable preferences. I begin by explaining the mechanics of each feature, along with a brief 

summary of why the feature was originally proposed. The reader is referred to the original work for a 

more thorough explanation and justification of these features. 

 

Preferences 

Many ways of modeling non-separabilities in preferences have been suggested.8  The interest here 

is in a parametric form for the time-non-separability that is both flexible in the sense that it encompasses 

many forms for the non-separability, yet parsimonious in that the number of parameters to be estimated is 

relatively small. Such a form has been suggested by Heaton (1995), and will be used in this paper for 

preferences over consumption. Preferences over leisure are standard CRRA preferences and enter 

separably in the utility function.9  The preferences are defined as: 
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With δ and α equal to 0 we have CRRA time-separable utility. With δ = 0 and θ = 0 we have the popular 

one-lag formulation of 'habit preferences'. With  α = 0 preferences would be a form known as 'durability', 

used by Eichenbaum, Hansen and Singleton (1988). The powerful feature of these preferences, from the 

                                                                 
8 Different functional forms have been suggested by Constantinides (1990), Eichenbaum Hansen and Singleton 
(1988), Heaton (1995), Abel (1990, 1999), Campbell and Cochrane (1997), Boldrin, Christiano and Fisher (1997), 
Abel (1998) and  Carroll, Overland and Weil (1997). 
9 Heaton's (1995) study did not use leisure. 

10 The definition of st is a restriction on the parameters in the more general function ≡= ∑
∞

=
−

0j
jtjt cas A(L)Ct, 

where L is the lag operator. Heaton's restriction decreases the number of parameters that need to be estimated, while 
still allowing for the possibility of consumption complementarity or substitutability at long horizons. 
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viewpoint of this paper, is that with appropriately chosen parameter values, the preferences can deliver an 

heightened aversion to either low or high frequency volatility.  

 The total number of available hours is normalized to 1, so the agent faces the time constraint: nt + 

lt = 1, where nt is hours worked and lt is leisure hours. Also, in the empirical work below, the parameter ϕ 

is chosen so that steady-state labor hours represent 30 percent of total time. 

 

Production 

 Two goods are produced in the economy, an investment good and a consumption good; each is 

produced in a separate sector. The consumption good is produced by many identical firms with 

technology given by 

(2) c
1t

1
t,ct,ctt Yn)k(Ac

t,c

µ
−

νν−φ=  

where At is an aggregate technology shock, φc,t is the rate of capacity utilization, kc,t is the (consumption) 

capital stock, nc,t is labor in the consumption sector, and Yt-1 is the last period's aggregate production of 

both the consumption and investment goods. Lower-case variables denote firm-level variables, and upper 

case variables denotes aggregate variables. Each firm chooses a capital stock, rate of utilization, amount 

of labor, and treats the shock and aggregate output as exogenous. 

Investment goods are produced in a separate sector, with a similar technology: 

(3) i
1tt,i

1
t,it,itt,it Yn)k(AAi µ

−
νν−φ=  

where Ai,t is a technology shock that is specific to the investment sector. 

The production of the consumption and investment goods in separate sectors follows the recent 

work on multi-sector models by Huffman and Wynne (1998), DeJong, Ingram, Wen and Whiteman 

(1998), Benhabib, Perli and Sakellaris (1997) and others. These researchers have established that this type 

of production technology contributes to the model's ability to match the data. The two-sector model is 

particularly important in modeling consumption fluctuations: With concave preferences there is an 

incentive for the agent to smooth consumption, and with the one-sector economy, ample means to do so.  

A two-sector economy adds a realistic friction that frustrates the agent's ability to smooth consumption, 

and potentially results in more realistic predictions for consumption volatility. A friction on the 

movement of the capital stock is required in the model to prevent smoothing across sectors. In fact, 

without some type of friction, the two-sector model aggregates to a one-sector model (see Huffman and 

Wynne 1998). Here I require that the capital stocks be sector specific with no movement of capital across 
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sectors.  The idea of sector-specific irreversible capital is appealing, since empirically it appears that it is 

difficult to transform capital between sectors. 11  

The second important feature of the production technology is the aggregate dynamic 

complementarity. Cooper and Johri (1996) study the contribution of contemporaneous and dynamic 

complementarities to the propagation mechanism of the one sector RBC model. They find that dynamic 

complementarities significantly enhance the propagation of technology shocks in RBC models. The 

complementarity can be thought of as capturing learning-by-doing spillover effects, where the spillovers 

across sectors occur with a lag. Cooper and Haltiwanger (1996) provide an empirical study of aggregate 

dynamic complementarities. They examine microeconomic evidence of sectoral output along with the 

implications for aggregate data and find evidence in favor of dynamic complementarities.12 

The third feature of the production technology is the variable rate of capacity utilization. This 

feature was introduced into RBC models by Greenwood, Hurcowitz and Huffman (1988). Variable rates 

of utilization have been added to help the standard RBC model to match the cyclical properties of US 

business cycles by Burnside and Eichenbaum (1995), DeJong, Ingram, Wen and Whiteman (1998), and 

Wen (1998a,b). Additionally, as argued by King and Rebelo (1998), variables rates of capacity utilization 

overcome one of the most prominent objections to the RBC paradigm: the reliance on technology shocks. 

With variable utilization the standard deviation of the shocks is much smaller (variable rates of utilization 

amplify shocks), and the model predicts little 'technical regress'.  

 

Time-To-Build Capital 

 The importance of time-to-build capital in generating aggregate fluctuations dates back to the 

work of Kydland and Prescott (1982). Capital that takes multiple periods to build creates a persistent 

demand for investment, once a new investment project has been started. This demand can potentially 

drive persistent fluctuations in output. However as shown by Rouwenhorst (1991), the version of time-to-

build used by Kydland and Prescott cannot match the cyclical behavior of US investment, nor does it have 

a significant impact on output persistence. Wen (1998) remedies this deficiency by introducing a version 

of time-to-build where investments in adjacent periods are not perfect complements. The form is Cobb-

Douglas as follows: 

                                                                 
11 Huffman and Wynne (1998) develop a more complete and rigorous argument for sector-specific capital. In their 
work they introduce a cost of adjusting capital. 
12 A shortcoming of the standard two-sector model is that output of the two sectors is predicted to be negatively 
correlated, while in U.S. data output across sectors moves together. DeJong and Ingram (1998) and Benhabib, Perli 
and Sakellaris (1997) remedy the problem with a third sector, interpreted to be human capital or home production, 
which moves countercyclically. Huffman and Wynne (1998) remedy the problem with a cost of adjusting capital. 
Here I follow the suggestion of Cooper and Haltiwanger (1996) that an aggregate dynamic complementarity can 
explain the observed sectoral output comovement.  



 8 
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Where mc,t and mi,t is new capital put in place in period t in each sector. To add new productive capital in 

period t+1, an investment project is started in period t-1 (ic1,t -1), and additional investment (ic2,t) is added in 

period t. The final investment good (mc,t) is added to the capital stock in period t + 1. In conjunction with 

variable rates of capacity utilization and an employment externality, which provide an elastic supply side 

to the economy, Wen shows that this model for investment is capable of producing investment cycles 

with the same second moment properties, or spectrum, of those that we observe in the U.S. 

 

Capital Stock law of Motion 

The law of motion for the capital stock in the two sectors is: 
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The rate of depreciation depends on the level of utilization. The functional form, introduced by 

Greenwood, Hercowitz and Huffman (1988), captures the cost of increasing the rate of capacity 

utilization: the rate of depreciation also increases. 

 

Technology Shocks 

The log of the two shocks follow an AR(1) processes, as is standard in the RBC literature: 
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Model Solution 

 The competitive equilibrium of the model requires that the agent maximize utility and the firm 

maximize profits. Equilibrium allocations are found by solving the agent's optimization problem. The 

agent's problem is to maximize (1) subject to (2)-(9). The agent treats the shocks and the aggregate 

complementarity as exogenous (i.e. derivatives are not taken with respect to these variables). An 

approximate solution to the model is found by log-linearizing the agents' first order conditions around the 

steady state of the system. The system of linear expectational difference equations is then solved using the 
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methods described in Sims (1996) and Klein (1998). The approach in both papers is based on a QZ matrix 

decomposition. One advantage of this approach is that the solution algorithm is very fast, which will be 

important in the estimation stage since the model needs to be solved many times. The QZ approach is also 

useful since it is straightforward to handle technical problems related to singularities that naturally arise in 

multi-sector models. The presence of an externality poses no special difficulty to the solution algorithm 

provided that the solution is unique, i.e., that there are no indeterminacies in the model. While the 

presence of multiple sectors can potentially decrease the size of the externality parameter that will lead to 

indeterminacies (see Benhabib and Farmer 1996), the structure of this model is such that for no 

reasonable parameter setting will the solution contain multiple equilibria. In terms of generating multiple 

equilibria, the important difference between the model here and that of Benhabib and Farmer is that here 

the capital stock cannot be transferred across sectors, while in Benhabib and Farmer the capital stock can 

be transferred across sectors within the current period. It turns out that when the capital stock cannot be 

transferred across sectors (or there is some cost to doing so), a very large externaility parameter is needed 

to generate multiple equilibria.13 

 The solution to the model is written in terms of deviations from steady state values. The 

linearization procedure results in a first-order difference equation for the state variables: 

(10) ξt+1 = Fξt + Cε t,    

where  

ξt = [ ] ′−−−  ÂÂŝŝŶîîk̂k̂ t,it
h
t

d
t1t1t,1i1t,1ct,it,c , 

and ^ variables indicate percent deviation from steady state. The decision rules for the choice variables 

are linear functions of the states: 

(11)      zt = Hξt, 

where  

zt = [ ]′φφ  îîîîˆˆn̂n̂ĉ t,1it,2it,1ct,2ct,it,ct,it,ct,c . 

This vector can be augmented with other variables that are combinations of the choice and state variables. 

For example, we could add total investment, which is the sum of the individual investment series. 

 

IV Model Estimation 

 The parameters of the model are estimated using a Bayesian procedure. There are several 

practical advantages to the Bayesian approach to estimation. First, there are parameter restrictions that are 

                                                                 
13 I experimented with the externality parameters to see how large they would have to be to generate multiple 
equilibria, and found that they would have to be significantly larger than 1, which was very far away from the 
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difficult to enforce using Maximum Likelihood (ML) or the Generalized Method of Moments (GMM).  

Second, the model above has a number of boundaries, and it is likely that some of the estimated 

parameters will be on or near a boundary. In this case, the asymptotic distribution theory underlying 

GMM and ML estimators is of questionable value. Furthermore, Christiano and den Haan (1995) have 

shown that in a sample the size of U.S. post war quarterly data, GMM parameter estimates of dynamic 

macroeconomic models often do not have the distributions implied by asymptotic theory.  Model 

parameter restrictions, parameter estimates near boundaries, and sample size issues pose no special 

difficulties in the Bayesian framework.  

An additional reason for employing a Bayesian estimation procedure is that economists have 

prior beliefs, often strong ones, about parameter values of structural macroeconomic models that should 

enter into the estimation. For example, we would want to rule out certain parameter values as 

unreasonable (e.g. a labor share parameter of 0.1 in the production function). A Bayesian procedure 

allows these beliefs to be incorporated formally. 

An alternative approach to formal estimation is to calibrate the model. Given the apparent 

complexity of the estimation procedure that follows, it might seem to be easier to perform a calibration 

exercise. However, formal estimation and the presence of the likelihood function place an important 

discipline on the choice of parameters by 'choosing' the parameters using a well known, explicit set of 

principles. A calibration exercise would be open to the criticism that the results were contrived, and a 

different set a parameters should have been used.   

 The estimation procedure is similar to the approach developed in DeJong, Ingram and Whiteman 

([DIW], 1998a,b). Begin by denoting the parameters of interest as: 

 ]  )(vecr  [ IA0ic ′′Σρρωδνµµηβαθδγ=Γ ,  

and the sample of data as Xt. The posterior density of the parameters, )X(P tΓ , can be written as the 

product of the likelihood function of the data given the parameters, L(Xt|Γ), and the prior, π(Γ): 

(12) )()X(L)XP( tt ΓπΓ∝Γ  

 The simple structure of the linear observer system (10)-(11) associated with the linearization of 

the model's equilibrium law of motion makes it possible to use the Kalman Filter to calculate the value of 

the likelihood function given the parameters. We are interested in posterior distributions of the parameters 

and functions of the parameters, such as model second moments. Thus, the fact that (12) is the product of 

the likelihood and prior complicates calculations. If we had a large sample of parameters drawn directly 

from the posterior in (12) it would be straightforward to find, say, the median of the posterior distribution 

                                                                                                                                                                                                                 
parameter values I ultimately estimated. In the estimation procedure that follows, if multiple equilibria would have 
arisen the computer program would have stopped. 
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of a parameter by simply calculating the median value of the parameters that we drew from (12). 

Similarly, we could calculate the median of the posterior distribution of a function of the parameters (for 

example, output growth volatility) by evaluating the function for each set of parameters we drew, and 

then calculating the median of these values. 

 Unfortunately we cannot directly simulate from the posterior in (12). However, we can calculate 

the value of the posterior given a set of parameters, and as in the work of DIW this fact will prove 

important in designing an algorithm to simulate from (12). DIW use importance sampling (see Geweke, 

1989) to simulate draws from the posterior. Here Markov Chain Monte Carlo (MCMC) methods are used 

to sample from the posterior (for surveys of MCMC methods see Chib and Greenberg 1996, Geweke 

1997, or Tierney 1994). The process for simulating from a distribution using MCMC methods begins with 

an initial arbitrary value for the parameter vector, Γ1 (from within the support of the distribution). The 

height of the posterior at this value, P(Γ1|Xt), is then calculated. Next, a drawing for the parameter vector, 

Γ*, is taken from a candidate-generating density, q(Γ*Γ1). (Specifically, this density generates a 

candidate vector  Γ* for the next step in the Markov Chain given the current draw Γ1.)   Next, the height 

of the posterior is calculated using the parameter vector Γ*, P(Γ*|Xt). Then Γ2 takes the value Γ* with 

probability: 

 α(Γ1,Γ*) = 












Γ

Γ
1  ,

)X|(P

)X|*(P 
   min

t
1

t .  

If Γ2 does not take the value Γ*, it is set equal to Γ1. The process is repeated many times and given 

regularity conditions, the set of draws converge to a set of draws from the posterior. To prevent the 

arbitrary starting point from affecting the results, the first 5000 draws are discarded. 

An important ingredient in the MCMC algorithm is the candidate-generating density, q(Γ*Γ1). 

There are two important issues when specifying this density. First, the density should be easy to simulate 

from (e.g. a normal distribution). Second, the density should be symmetric: that is q(Γ2Γ1) = q(Γ1Γ2). 

Chib and Greenberg (1996) show that if q(Γ*Γ1) is symmetric then the Markov Chain will be reversible, 

which can be verified by checking that the following condition holds: P(Γ1|Xt)q(Γ1Γ2)α(Γ1,Γ2) = 

P(Γ2|Xt)q(Γ2Γ1)α(Γ2,Γ1). If the Markov chain is reversible then the invariant distribution of the chain is 

P(Γ|Xt). That is, with a sufficiently long chain we will obtain a set of draws from the posterior of interest. 

Here the candidate-generating density is multivariate normal, with mean equal to the parameters from the 

last draw, and a diagonal covariance matrix with diagonal elements that are small rela tive to the 

dispersion in the support of the parameter distribution. This is a random-walk chain, which is particularly 

useful when we have little information on the shape of the distribution we are simulating from, as is the 
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case here.14 Note that the multivariate normal distribution is both easy to simulate from and satisfies the 

symmetry requirement. 

The MCMC algorithm relies on the ability to evaluate (12) for a given set of parameters.   

However, since the model is stochastically singular there are nontrivial implications for only two 

observable time series. When evaluating the likelihood, instead of the observation equation in (11) we use 

an alternative equation, which is the decision rule for these two observables, here consumption and total 

investment:  

(11') Λt = Hξt, 

where Λt = [ ]′tt,c IC , and It is total investment. Obtaining the value of the posterior simply requires 

multiplying the value of the likelihood (obtained from the Kalman filter) by the prior (which is evaluated 

at the current draw of the parameter vector). The data used in the estimation are quarterly observations 

from 1948:1 to 1997:4 on real nondurable and services consumption and non-residential private 

investment. Both time series were Hodrick-Prescott (HP) filtered before estimation with a smoothing 

parameter of 1600. The HP filtered data is compared directly with the output of the model. The model 

output is not HP filtered following the arguments presented in Cogley and Nason (1995b).  

The model has predictions for many other time series, each of which could be used to estimate the 

model in place of the consumption and investment data. It seems natural to use the consumption data 

since I am measuring the welfare cost of consumption volatility. Furthermore, all other studies of the 

welfare cost use consumption data, and for comparability consumption should be used here. The case for 

using investment data is not as strong as the case for consumption data. However, investment is a 

standard variable of interest to business cycle researchers so it is a natural selection. Moreover, I have 

estimated the model with other time series in place of the consumption and investment data to illustrate 

the insensitivity of the results to these changes; results of these robustness checks are reported below. 

 When using MCMC methods it is necessary to check for convergence. Two issues are relevant. 

First, the length of the chain matters. A chain must be sufficiently long to ensure convergence. In practice, 

convergence is assessed by running the chain multiple times, and checking to see if the results are the 

same, or are affected by chain length. Here, a chain length of 100,000 was used, and repeated runs 

resulted in the same parameter estimates. The second issue is the sensitivity to starting conditions. If the 

posterior is multi-modal and approaching disjointedness, then different starting points will lead to 

different results. This problem is checked by starting the chain from different points from within the 

                                                                 
14 If we had a reasonable idea of the shape of the posterior then we might be able to use that information to specify a 
candidate-generating distribution that was 'similar' to the posterior. The additional information could result in a 
chain that converged more rapidly (e.g. require fewer simulations). This type of procedure would be an 
independence Markov Chain, which is similar to the importance-sampling methods used by DIW. 
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support of the posterior and verifying that the results are the same.15 Computationally, one run of a 

Markov Chain of length of 100,000 took approximately 13 hours on a 300 Mhz pentium-pro desktop 

computer. 

 

Priors 

 Prior beliefs over the parameters of the model are imposed on the estimation. These priors are 

specified as independent Normal variables. The priors are normally distributed with means, where 

possible, set equal to values that these parameters take elsewhere in the RBC literature. The prior standard 

deviation is set to reflect the uncertainty over this value. For example, we have much more prior 

information about the labor share parameter in the Cobb-Douglas production function than we do for the 

parameters of the utility function.   

The priors for the preference non-separability parameters, α, θ, and δ were N(0.5, 0.42), truncated 

at 0 and 1.  The large standard deviation reflects the lack of prior information about these parameter 

values. The prior is disperse enough that it has negligible impact on the parameter estimates. The priors 

for the power parameters in the utility function, γ and η, are N(1.0, .152), truncated at 0. The mean of 1 

reflects the common assumption of logarithmic utility in the RBC literature. The discount factor prior was 

N(0.99, 0.022), truncated at 0 and 1. The mean of 0.99 implies a mean riskless interest rate of 4%, a 

common assumption in the RBC literature. On the production side, the prior for the labor share parameter 

is N(0.58, .052), again truncated at 0 and 1. The mean reflects the parameter value often used in 

calibration exercises in the RBC literature. The dynamic complementarity parameters, µc and µi, have a 

N(0.075, 0.152) prior, truncated at 0 and 0.5. The dispersion reflects the considerable uncertainty about 

this parameter while the mean reflects the belief that while there are complimentarities, they do not need 

to be very large to provide a significant propagation mechanism to the model. The upper bound of this 

truncation reflects a belief that the model has a determinate solution. With dynamic complementarities 

larger than 0.5, indeterminancies potentially arise. The prior for the investment share parameter in the 

time-to-build function was N(0.5, 0.32), truncated at 0 and 1. This prior is disperse enough to have a 

negligible impact on the results, reflecting the minimal prior information we have on this parameter. The 

mean was simply set at the middle of the support for parameter. The prior for the autoregressive 

parameter of both of the technology shocks is N(0.8, 0.32), truncated at -1 and 1. The mean is less than the 

commonly used parameter in the RBC literature; this reflects the argument in Cooper and Haltiwanger 

that dynamic complementarities decrease the reliance of RBC models on the serial correlation in shocks 

                                                                 
15 The analogous problem that arises with classical maximum likelihood estimation is determining whether the max 
that is obtained is a global or local max. The difference here is that we want to sample from all areas of the posterior 
since we are interested in the shape of the posterior. 
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to generate persistent fluctuations. Again, there is considerable uncertainty over this parameter, which is 

reflected in the variance of the prior. The prior for the innovation variance of the two shocks was 

N(0.006, 0.022), truncated at 0. Again, this prior is diffuse enough that it has negligible effect on the 

parameter estimates. The prior for the covariance of the shock innovations, N(0, 0.42), is also diffuse 

enough to have no impact on the results. Finally, the priors for the depreciation parameters, δ0 and ω, 

were N(0.05, 0.022), truncated at 0, and N(1.5, .252), truncated at 1. These prior means, in conjunction 

with the prior means of other model parameters, would result in a steady state level of capacity utilization 

of 80 percent, as we observe in the U.S. That is, although there is no explicit prior over the steady state 

level of capacity utilization, the implicit prior over the steady state level of capacity utilization is 

consistent with US data. 

 

A Loss Function 

The output of the estimation procedure is a posterior distribution for the parameter values. In 

order to investigate the welfare cost of business cycles it is helpful to focus on a single set of parameters. 

Some common choices for selecting a set of parameters from the posterior distribution are the median, 

mean, and the mode. These would correspond to absolute, quadratic and zero-one loss functions. Here I 

choose the parameter vector using a loss function that penalizes parameters that result in a poor spectral 

fit for the model. As argued in section II, the spectral nature of the consumption process can have a large 

impact on welfare cost calculations with TNS preferences. It is appropriate then, to place additional 

weight in choosing parameter values that deliver the type of spectra we observe in the data. 

In order to place a weight on the spectral fit of the model in the loss function it is necessary to 

have a measure of how close the model and data spectra are to each other. Watson (1993) has proposed 

such a metric for evaluating the fit of a dynamic model. Watson calculates the minimal amount of 

stochastic error that needs to be added to model variables so that the autocovariances of model variables 

are equal to the autocovariances of the data. The error that needs to be added is a stochastic process, and 

hence, using spectral methods, we can calculate the spectrum of the error and compare this to the 

spectrum of the data and the model. The ratio of the error spectrum to the data spectrum at each frequency 

can be interpreted as a 1-R2 measure in a standard regression model. To get a summary statistic to 

evaluate the fit at all frequencies we could integrate the error spectrum and divide this by the integral of 

the data spectrum. This summary statistic has an interpretation as a 1-R2 measure for the fit of the model 

at all frequencies.   

Here I incorporate Watson's 1-R2 measure of fit into a loss function. The loss function is: 

(13) l(Γ, Γ*) = *)))((W I()*( 17 Γ−ΓΓ×′Γ−Γ . 
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where I17 is an identity matrix of dimension 17, and W(Γ) is the (scalar) product of four Normal density 

functions evaluated at the 1-R2 measure of fit, for output, consumption, investment and labor growth. A 

N(0, 0.032) density is used for the fit of output, consumption and investment growth.16 A more disperse 

distribution, N(0, 0.132), is used for the labor growth fit since we know a priori that this model will not 

have the ability to match labor volatility very well.17, 18  

 To minimize expected loss find: 

(14) ΓΓπΓΓΓ=Γ ∫
Γ

d)()X(L*),(lminarg*ˆ
t

*
 

Substituting in the loss function (13) and taking derivatives we have: 

(15) ΓΓπΓΓΓ=Γ ∫ d)()X(L)(W*ˆ
t , 

where *Γ̂  is the set of parameters that minimizes expected loss. The expectation in (15) is calculated 

using the MCMC algorithm described above. The mean of the distribution from this simulation minimizes 

the loss function.19 In the empirical results that follow, I report moments of the posterior distribution for 

the parameters and the implied variances and covariances of the model. The minimum expected-loss 

parameter vector will also be reported.  

 

V  Parameter Estimates and  Properties of The Model 

 Table 1 gives the medians and 5 percent and 95 percent quantiles of the posterior distribution of 

the parameters, along with the parameters that minimize the loss function in (15). The effect of the loss 

function on the choice of parameters varies by parameter. For the leisure utility curvature parameter the 

value that minimizes the loss function is almost the median of the posterior, while for the Cobb-Douglas 

labor share parameter the value that minimizes expected loss is outside of the posterior 90% coverage 

interval. 

As can been seen from this table the parameter estimates appear to be relatively tight for the 

production parameters but with more uncertainty over the preference parameters. The estimate of the 

labor share parameter (ν) is somewhat higher than the 0.58 prior mean (and the value commonly used in 

the RBC literature following the assumptions of KPR). For comparison, Christiano and Eichenbaum 

                                                                 
16 Data on output is the sum of the consumption and investment data used in the estimation. 
17 The average weekly labor hours time series used here was not collected by the Bureau of Labor Statistics after 
1995, therefore the data spectra are estimated using 1948:1-1995:1 data. 

18 That is W(Γ) = 
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(1-R2) is the Watson measure of fit and o, c, i, and l stand for output, consumption, investment and labor growth.  
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(1992), who used Generalized Methods of Moments, estimate this parameter to be 0.64, McGrattan 

(1994) uses Maximum Likelihood and finds a value of 0.60, while DIW (1998a) estimate the parameter to 

be 0.71. Of interest, but perhaps not surprising, the serial correlation in the shocks is much less than 

generally assumed. It is standard in the literature to assume values for the ρ parameters in the range of  

0.95-1.00; here they are much lower, implying that the model has a reasonably strong internal mechanism 

to propagate shocks. The estimates here are similar and somewhat smaller than the 0.80 posterior means 

reported in DeJong and Ingram (1998). The variance of the shocks is significantly smaller than models 

that do not have variable rates of utilization, but on the same order of magnitude of models that do. The 

preference parameter estimates will be contrasted with Heaton's estimates after some predictions of the 

model have been established. 

 

Table 1: Quantiles of Parameter Posterior Distributions  

Parameter 5% Median 95% Loss Fnc Parameter 5% Median 95% Loss Fnc
µ

c 0.1316 0.2359 0.3526 0.2825 var(ε
I) 3.9E-05 5.1E-05 6.7E-05 3.9E-05

µ
i 0.0052 0.0395 0.1018 0.0266 cov(εA,εI) -4.6E-05 -2.4E-05 -8.1E-06 -7E-06

ν 0.5532 0.5916 0.6252 0.6749 β 0.9878 0.9882 0.9887 0.9876
r 0.6189 0.6581 0.6889 0.6877 θ 0.0178 0.1299 0.3039 0.1146
δ0 0.0440 0.0478 0.0519 0.0501 α 0.2618 0.4460 0.6113 0.2145
ω 1.5418 1.5513 1.5626 1.5651 δ 0.0223 0.1533 0.3428 0.0844
ρΙ 0.4859 0.5512 0.6109 0.5915 γ 0.5363 0.7228 0.9471 0.5503
ρ

A 0.5841 0.6415 0.7051 0.7413 η 0.8895 1.1206 1.3280 1.1223
var(εΑ) 3.69E-05 5.886E-05 8.76E-05 2.00E-05  

 

The second moments of the model variables, in both levels and growth rates, along with 

analogous data moments are given in Tables 2 and 3. The model is estimated using HP filtered log 

consumption and log investment data so Table 2 naturally compares the moments of the log-levels from 

the model with the moments of HP-filtered (logged) data. Table 3 compares predictions for growth rates- 

the first differences of the log-levels. Since the model log-levels correspond to HP filtered data the growth 

rates in Table 3 use the first difference of HP filtered logged U.S. data. The tables contain 5%, median 

and 95% quantiles of the posterior distributions for these moments, along with the moments associated 

with the parameters chosen with the loss function. The second moments seem to be consistent with the 

                                                                                                                                                                                                                 
19 An alternative interpretation of the parameter vector that results from evaluating (15) is that it is the mean of a 
posterior distribution with a data-dependent prior on the spectra of growth rates, i.e. the posterior distribution is now 
L(XtΓ)π(Γ)W(Γ).  
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data with the exception of labor volatility, which is too small relative to the data. This failure is common 

to business cycle models.20 

 

Table 2: Second Moments of Data and Model (Levels) 

Std DevR. Std Dev
5% Median 95% Loss Fnc 5% Median 95% Loss Fnc

Output 0.014 1.000 0.015 0.018 0.021 0.018 1.000 1.000 1.000 1.000
Consumption 0.009 0.659 0.009 0.010 0.012 0.013 0.523 0.570 0.621 0.686
Investment 0.050 3.562 0.043 0.049 0.057 0.050 2.520 2.745 2.987 2.742
Labor 0.015 1.070 0.007 0.009 0.010 0.008 0.435 0.485 0.548 0.441
Cons. Labor (NA) (NA) 0.003 0.005 0.006 0.003 0.194 0.258 0.351 0.139
Inv Labor (NA) (NA) 0.036 0.041 0.048 0.042 2.071 2.309 2.582 2.314

Data Model (quantiles of Posterior Distribution)
Std Dev R. Std Dev

 
 

Table 3: Second Moments of Data and Model (Growth) 

Std Dev R. Std Dev
5% Median 95% Loss Fnc 5% Median 95% Loss Fnc

Output 0.007 1.000 0.008 0.009 0.010 0.007 1.000 1.000 1.000 1.000
Consumption 0.005 0.759 0.005 0.006 0.006 0.005 0.564 0.622 0.682 0.717
Investment 0.027 3.800 0.025 0.027 0.030 0.026 2.749 2.948 3.181 3.422
Labor 0.009 1.241 0.005 0.006 0.008 0.004 0.571 0.664 0.793 0.579
Cons. Labor (NA) (NA) 0.002 0.003 0.005 0.001 0.229 0.369 0.554 0.169
Inv Labor (NA) (NA) 0.023 0.025 0.027 0.024 2.449 2.696 2.975 3.218

Data Model (quantiles of Posterior Distribution)
Std Dev R. Std Dev

 
 

The correlations in the tables in the Appendix indicate that the comovement of variables is 

reasonably close to U.S. data. One feature of multi-sector models is that often consumption and 

investment move (counterfactually) in opposite directions (see Huffman and Wynne 1998). Here the two 

sectors move together due to the aggregate complementarity (see Cooper and Haltiwanger 1996).21 

Overall, the correlations compare favorably with the correlations presented for other RBC models. Here, 

most of the data correlations lie in or close to the posterior distribution implied by the model. 

                                                                 
20 A literature has evolved to increase the volatility of labor hours in the standard model, Hansen (1985) and 
Rogerson (1986) suggest indivisible labor, DeJong and Ingram (1998) add a human capital sector, Benhabib, 
Rogerson and Wright (1991) add home production and Wen (1998) uses time-non-separabilities in leisure 
preferences in conjunction with an employment externality, all of which result in a better fit for labor volatility. 
21 Huffman and Wynne (1998) rectify this problem with adjustment costs for moving capital across sectors and 
adjusting the capital stock. The sector-specific capital stock here can be viewed as an infinite adjustment cost. The 
comovement of consumption and investment then, is probably due to both this feature and the aggregate dynamic 
complementarity. Another way to get the consumption and investment sectors to move together is too add a third 
sector that is countercyclical as in Benhabib, Perli and Sakellaris (1998) and DeJong and Ingram (1998). 
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The spectra of the model and data growth rates, along with the stochastic error needed to rectify 

the two are shown in Figure 1. These spectra were calculated using the parameters that minimized the loss 

function. Again, with the exception of labor hours, the model seems to be generally consistent with this 

aspect of the data. The error that needs to be added to the output spectrum is 9% of the total data 

spectrum. For consumption the error is 14%, and for investment the error is 4%. The error in the labor 

sector is 70%. This is a vast improvement over the standard model, which has error on the order of 

magnitude of 43% for output, 53% for consumption, 40% for investment and 73% for labor.22 

In summary, this model is a reasonably good model of business cycles. It is does not match the 

data on all dimensions, but it reflects the latest research in modeling business cycles. In doing so, it 

inherits the imperfections of these models.  

Before moving to the welfare cost calculations it is useful to contrast the estimates for the 

parameters of the utility function here with Heaton's (1995) estimates. Heaton estimated the parameters 

using consumption and asset return data in a model with an exogenously specified consumption process. 

His parameter estimates were: γ = 1.762, δ = 0.934, θ = 0.921, and α = 0.672. His estimates fall well 

outside the 5% and 95% quantiles of the posterior estimated here. Heaton's estimates imply an aversion to 

low frequency volatility.23 For the estimates here, the agent dislikes high frequency volatility relative to 

low frequency volatility--the opposite of Heaton's estimates. The estimate for δ in table 1, which governs 

the amount of substitutability in consumption across periods, is close to zero. It appears then, that 

consumption is complementary across time periods, and this effect only lasts for a few periods. Another 

important difference in the estimates in table 1 relative to previous estimates of the non-separability 

parameter is that the degree of complementarity is much lower (e.g., Constantinides 1990, Heaton 1995, 

Jermann 1998, Abel 1990). In other words, while there is an aversion to high frequency volatility with the 

parameter estimates here, that aversion does not appear to be extreme. However, given a choice, if this 

agent is faced with a fluctuating consumption process she would still prefer that those fluctuations be 

concentrated at low frequencies. The strength, in quantitative terms, of the preference for low frequency 

and aversion to high frequency volatility is addressed in the next section. 

 

 

 

 

                                                                 
22 This is not to imply that this is the first or the only model that is an improvement over the standard model using 
Watson's measure of fit. For example in Wen (1998) the Watson error for Output, Consumption, Investment and 
labor growth is 0.09, 0.75, 0.09, 0.28, in Perli and Sakellaris (1998) the error is 0.17, 0.52, 0.55 and 0.46. 
23 Heaton's parameter estimates imply a welfare cost of 0.25%, the 40% welfare cost reported in section II used 
Heaton's parameters except α was set equal to 0.93.  
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Figure 1: Model and Data Spectra 
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0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

25
6.

0

19
.7

10
.2 6.
9

5.
2

4.
2

3.
5

3.
0

2.
6

2.
3

2.
1

periods/cycle

Model
Error
Data

b: Consumption Growth
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c: Investment Growth
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d: Labor Growth
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VI Welfare Cost Estimates 

 The welfare cost of consumption volatility in the model economy can be measured by comparing 

the expected utility of the representative agent in the fluctuating economy with expected utility in the 

steady state. I then calculate how much consumption in the steady state needs to be reduced to make the 

agent indifferent between the steady state and the fluctuating economy. Expected utility in the fluctuating 

economy can be found by simulating the economy described by (10)-(11), using the minimum expected 

loss parameter estimates, and calculating utility. This is repeated and the mean of utility across 

simulations is the expected utility of the agent in the fluctuating economy. Since utility is separable in 

consumption and leisure we can decompose the welfare cost into the fraction due to consumption 

volatility and the fraction due to leisure volatility. Since the focus here is on the cost of consumption 

volatility, and the model is not a good model of the labor sector, the cost of leisure volatility is not 

reported. 

 The welfare cost of all consumption volatility in the U.S. is only 0.0044 percent per year, or $3.52 

per person in 1997 dollars. This is  similar to the estimate made by Lucas with time separable preferences, 

which was 0.008 percent. The figure calculated here is strikingly different than the estimates presented 
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elsewhere with non-separable preferences. It is not the case, however, that this result was obvious ex-ante 

because we have an optimizing model in which the agent can choose the consumption that he or she likes, 

therefore minimizing the costliness of volatility. The agent is choosing the consumption process that we 

observe, but this does not necessarily imply that he is happy about this choice. The agent is only 

responding optimally to the exogenous shocks, given the frictions in the model. The small welfare cost 

found here is an empirical outcome of the model parameter estimates, not a reflection that the nature of 

the optimizing model necessarily predicts a low welfare cost. It is easy to imagine alternative parameters 

or an alternative hypothetical world with frictions and preferences such that consumption volatility is both 

high and unavoidable--leading to a high cost of fluctuations in an optimizing model. 

  

VII Sensitivity of Results 

 One feature of the welfare calculations presented above is that the preference parameter 

estimates, and hence the welfare estimates, depend on the model and the assumptions used in estimation. 

It is worthwhile to know how the results will change with alternative models, prior views over the 

parameters, and data used in the estimation. Of course, when altering the model it is important to note that 

the model 'fit' may be worse. Table 4 reports the preference parameter estimates obtained with the loss 

function, model fit using Watson's metric, and welfare cost estimates for alternative models, priors and 

data.24 The first column of the table indicates the alteration from the baseline model presented in section 

III. The first row contains the relevant information from the baseline model. 

 The technology of the model is the key ingredient in generating persistent business cycles. The 

features were chosen to work in concert; however, by removing some of the parts we can get an idea of 

the marginal contribution of some of the features of the model. Additionally, we will learn if the 

preference parameter estimates depend critically on any one feature of the model. In table 4 we see that 

removing the dynamic complementarity results in a small decline in model fit. However, the preference 

parameters have changed significantly. While there appears to be a stronger amount of 'habit' (larger α), 

the curvature parameter is closer to linear preferences. The result is a decline in the welfare cost estimate. 

Removing the time-to-build feature has almost no effect on the preference parameter estimates, but results 

in a substantial decline in model fit. The welfare cost estimate falls again.  

Next, the baseline model was estimated using investment and labor data.25 The non-separability 

preference parameter estimates were left virtually unchanged while the curvature parameter increased 

from 0.55 in the baseline model to 1. However, the fit of the model deteriorates significantly for the 

                                                                 
24 Full details of all parameter estimates and model moments and not reported due to space constraints. 
25 As noted previously, labor hours data is only available through 1995, so the sample period for this estimation is 
1948:1-1995:1. 
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consumption sector. In fact the model fit for the consumption sector is worse than the KPR model. Fit in 

the labor sector improved, but the error remains high at 0.5. The welfare cost estimate is left unchanged. 

Another issue is the treatment of the raw data before estimation. Here the seasonally adjusted data 

have been detrended using an HP filter. An alternative filtering procedure is to use a high-pass filter to 

eliminate the trend or low frequency movements.26 The consumption and investment data  were detrended 

using Baxter and King's (1993) band-pass filters, and the estimation exercise repeated. From Table 4 we 

see that this has no affect on the results.27 

 Table 4 also contains estimates of the model with alternative prior beliefs. The model was 

estimated with flat priors on all of the parameters. Results are reported with and without the loss function. 

For the case without the loss function, the parameters given in the table are the median of the posterior. In 

both cases, the estimate of the degree of 'habit' increased, though the model fit in the consumption sector 

deteriorated significantly without the loss function. Without the loss function the model fit in the labor 

sector deteriorates significantly. The welfare cost estimate remains trivially small. The utility function 

curvature prior in the baseline model is centered around 1 with a rather tight dispersion. When I increase 

the mean to 5 and loosen the dispersion to 1, the model parameter estimates are similar to the baseline 

model, and the welfare cost estimate declines.   

 

Table 4: Alternative Model Estimates 

Welfare
θ α δ γ Out Con Inv Lab Cost

Baseline  Model 0.10 0.21 0.07 0.55 0.09 0.14 0.04 0.72 0.0044
No Time-To-Build 0.02 0.21 0.01 0.43 0.20 0.22 0.11 0.77 0.0023
No Complementarity 0.16 0.70 0.16 0.14 0.12 0.15 0.07 0.72 0.0018
Estimate w/ Labor & Inv. data 0.12 0.21 0.03 1.03 0.27 0.59 0.06 0.50 0.0039
Estimate w/ BP Filtered data 0.06 0.27 0.03 0.50 0.15 0.22 0.08 0.70 0.0040
Estimate w/ Flat Prior (loss fnc) 0.13 0.44 0.12 0.45 0.08 0.12 0.03 0.90 0.0038
Estimate w/ Flat Prior (no loss fnc) 0.19 0.57 0.10 0.62 0.17 0.38 0.04 0.72 0.0058
Estimate w/ alt. Curvature Prior 0.15 0.31 0.07 0.42 0.10 0.13 0.04 0.73 0.0028

Preference Parmeters Spectral Fit 

 

 

 

 

                                                                 
26 Of course, an HP filter can be viewed as a type of high-pass filter. The high-pass filter used here eliminates 
fluctuations that are of 200-period cycles and lower. 
27 A caveat with using seasonally adjusted data is that if the seasonal adjustment procedure employed by the Bureau 
of Economic Analysis is flawed, and alters the spectral characteristics of the consumption at frequencies other than 
seasonal frequencies, then the welfare cost estimates may also be flawed. 
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VIII Alternative Views of the Welfare Cost of Business Cycles 

 The results presented above do not appear to be dramatically affected by assumptions on the 

technology, data or prior beliefs. However, an important caveat is that larger departures from framework 

above may lead to larger welfare cost estimates. First, the results are based on a complete markets rational 

expectations framework. One could relax the utility assumption and assume alternative forms for 

preferences. One prominent alternative for preferences is prospect theory. With prospect theory, people 

are more sensitive to losses than gains. Benartzi and Thaler (1995) show that these preferences can 

rationalize the observed equity premium. These preferences may potentially lead to large welfare costs 

associated with the losses experienced in recessions, losses that agents in the expected utility framework 

do not seem sensitive to.  

 Second, fluctuations may be very costly if they reduce the growth rate of consumption. That is, if 

in the process of eliminating fluctuations we raise the trend rate of growth, then the gains from 

eliminating fluctuations would be very large. The gains would be large with both time-separable and 

time-non-separable preferences. Ramey and Ramey (1995) provide empirical evidence of a link between 

growth and volatility. They argue that the uncertainty inherent in fluctuations lowers the mean rate of 

growth.  

 Third, many aspects of business cycles have been left out of this model. In particular, the 

labor/leisure implications are largely ignored. Recessions may force people who are laid off to accept jobs 

for which their human capital is not well matched, which may have significant long-term welfare 

consequences. Finally, only the cost of volatility in non-durables and services consumption is included in 

the analysis. There may be a cost to the volatility in durable goods consumption. Each of these issues 

could be investigated in future work.  

 Finally, even if one does not find credible the potentially large gains from the alternatives listed 

above, the results here should not be taken to imply that current efforts to smooth aggregate fluctuations 

are not worthwhile. The estimates provided here, and elsewhere, are aimed at measuring the gains from 

removing the residual risk. The gains to moving from a regime in which there are no efforts to smooth 

aggregate volatility to the current regime may be very large. 

 

IX  Conclusion 

 That people may have temporally-dependent preferences carries much intuitive appeal. Through 

introspection we can argue that, yes, we do care about the types of consumption volatility that we face. It 

does not seem reasonable that someone faced with choosing a consumption process with high-frequency 

volatility or one with equal variance but with volatility concentrated at low frequencies, would be 

indifferent to that choice. Yet this is what standard time-separable preferences imply. The idea that people 
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are not indifferent has spawned a large literature trying to develop the quantitative implications of 

temporally-dependent preferences. A problem, however, is the choice of the free parameters in the utility 

function. How do we choose these parameters so that results that we obtain are not merely due to a 

proliferation of  ‘free’ parameters?  

 The approach in this paper is to estimate preferences in the context of an optimizing business 

cycle model. The motivation was to find the form for preferences that would be capable of generating the 

type of consumption fluctuations we observe. There is a sizeable literature that has estimated the non-

separability parameters in the agent's utility function using asset return data and an exogenously specified 

consumption process. The results obtained here are very different than the results from those exercises, 

and cast some doubt as to whether the non-separabilities estimated in these papers are reasonable. The 

non-separability parameter estimates in this paper would not be able to reconcile consumption 

fluctuations with asset return data (i.e. solve the equity premium puzzle), however, I do not view this as a 

shortcoming of the measure of  welfare cost in this paper, but rather the result of a shortcoming in asset 

pricing models. The question of how non-separabilities in preferences resolve asset pricing puzzles, and 

whether or not this resolution is reasonable, is addressed in Otrok, Ravikumar and Whiteman (1998).  

 The focus of this paper has been on developing an approach to place some discipline on 

preference-based measures of the welfare cost of business cycles. The method was applied to a form of 

time-non-separable preferences that encompasses many of the most popular forms of non-separabilities. 

The result was an estimate for preferences that yielded a welfare cost on the same order of magnitude as 

that of Lucas (1987). However, this does not suggest that the welfare cost of business cycles is actually 

zero--and hence that we should abandon business cycle theory. Instead, it is a result that casts doubt that 

empirically plausible modifications to preferences alone could lead to large costs of consumption 

volatility.  
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Appendix: Model Correlations  

Table A1: Model and Data Correlation Matrix (Levels) 

Model Data Model Data Model Data Model Data Model Data
5% Med 95% Loss 5% Med 95% Loss 5% Med 95% Loss 5% Med 95% Loss 5% Med 95% Loss

Output 1.00 1.00 1.00 1.00 1.00
Cons. 0.72 0.78 0.84 0.90 0.89 1.00 1.00 1.00 1.00 1.00
Invest. 0.91 0.93 0.95 0.90 0.90 0.39 0.51 0.60 0.62 0.61 1.00 1.00 1.00 1.00 1.00
Labor 0.56 0.75 0.87 0.91 0.85 -0.06 0.22 0.44 0.63 0.75 0.79 0.91 0.97 0.99 0.78 1.00 1.00 1.00 1.00 1.00
C. Labor -0.91 -0.76 -0.45 0.10 NA -0.73 -0.42 0.04 0.50 NA -0.91 -0.80 -0.62 -0.30 NA -0.80 -0.52 -0.17 -0.23 NA 1.00 1.00 1.00 1.00 1.00
Inv Labor 0.79 0.83 0.86 0.81 NA 0.17 0.31 0.42 0.47 NA 0.96 0.97 0.98 0.98 NA 0.91 0.96 0.99 0.97 NA -0.89 -0.73 -0.53 0.81 NA

Cons. Labor Output Consumption Investment Labor

 
 

Table A2: Model and Data Correlation Matrix (Growth) 

Model Data Model Data Model Data Model Data Model Data
5% Med 95% Loss 5% Med 95% Loss 5% Med 95% Loss 5% Med 95% Loss 5% Med 95% Loss

Output 1.00 1.00 1.00 1.00 1.00
Cons. 0.59 0.67 0.73 0.72 0.83 1.00 1.00 1.00 1.00 1.00
Invest. 0.87 0.90 0.92 0.83 0.79 0.16 0.27 0.36 0.22 0.32 1.00 1.00 1.00 1.00 1.00
Labor 0.18 0.42 0.65 0.76 0.51 -0.57 -0.37 -0.13 0.11 0.32 0.58 0.76 0.91 0.98 0.51 1.00 1.00 1.00 1.00 1.00
C. Labor -0.93 -0.84 -0.72 -0.26 NA -0.90 -0.79 -0.44 0.34 NA -0.86 -0.62 -0.44 -0.65 NA -0.60 0.04 0.42 -0.58 NA 1.00 1.00 1.00 1.00 1.00
Inv Labor 0.64 0.71 0.77 0.71 NA -0.15 -0.05 0.06 0.03 NA 0.92 0.95 0.97 0.98 NA 0.84 0.92 0.98 0.99 NA -0.75 -0.35 -0.10 0.71 NA

Investment Labor Cons. Labor Output Consumption

 
 


