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1 Introduction

Over the past decade, the censored regression model, known to economists as the Tobit

model (after Tobin 1958), has been the object of much attention in the econometric lit-

erature on semiparametric estimation. Relaxing the traditional parametric restrictions on

the form of the distribution of the underlying error terms, a number of consistent esti-

mators have been proposed which require only weak conditions on these distributions, in-

cluding: constant conditional quantiles (Powell(1984,1986a); Nawata (1990); Newey and

Powell(1990), conditional symmetry (Powell(1986b), Lee(1993a,b), Newey(1991)), and inde-

pendence of the errors and regressors (Duncan(1986); Fernandez(1986); Honor¶e and Pow-

ell(1993); Horowitz(1986, 1988); and Moon(1989)). These proposed estimators all exploit

an assumption that the censoring values for the dependent variable are known for all obser-

vations, even those that are not censored; while the typical estimator is constructed under

the presumption that the dependent variable is censored to the left at zero, it is generally

straightforward to modify it for either right or left censored data (or both) with variable

censoring values. Hereafter, in a loose analogy to panel data modelling, we refer to such

models as ¯xed censoring models, since the censoring values, though possibly variable, may

not be distributed independently from the regressors.

A parallel literature in the statistics and biometrics literature has been concerned with

estimation of the parameters of a related model, the regression model with random censoring.

In this model the dependent variable typically represents the logarithm of a survival time

(in which case the regression model corresponds to an accelerated failure time duration

model), which is right-censored at varying censoring points which are observed only when

the observation is censored. In addition, the censoring times are generally (but not always)

assumed to be independently distributed of the regressors and error terms. Studies which

propose semiparametric methods under random (right) censorship include Miller (1976),

Prentice (1978), Buckley and James (1979), Koul, Suslara, and Van Ryzin (1981), Leurgans

(1987), and Ritov (1990), among others. These estimation methods typically impose an

assumption of independence of the error terms and covariates; those that do not impose

independence instead require strong conditions on the censoring distribution which generally

rule out censoring at a constant value, as is typical in econometrics.

In this paper we describe a method for adapting estimators proposed for ¯xed censoring

to sampling with random right censorship. We apply this method to the censored least abso-

lute deviations and quantile estimators of Powell (1984; 1986a) to obtain an estimator of the
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regression coe±cients which will be consistent under a relatively-weak quantile restriction

on the error terms, and which is equally applicable to samples with constant or random

censoring. The following section describes this estimation approach, and compares the mod-

i¯ed form of the censored regression quantile estimator to other quantile-based estimators

for random censoring that have appeared in the statistics literature. Section 3 gives su±-

cient conditions to ensure the root n-consistency and asymptotic normality of the proposed

estimator, and section 4 analyzes its performance using a simulation study and an empirical

example. The ¯nal section discusses application of the general estimation method to other

censored regression estimators in the econometric literature, and considers whether the as-

sumption of independence of the censoring times and covariates could be relaxed. Proofs of

the large-sample results of section 3 are available in a mathematical appendix.

2 The Model and Estimation Method

The object of estimation is the p-dimensional vector of regression coe±cients ¯0 in a linear

latent variable model

y¤i = x
0
i¯0 + "i; i = 1; : : : ; n; (2.1)

where y¤i is the (uncensored and scalar) dependent variable of interest, xi is an observable

p-vector of covariates, and "i is an unobserved error term. With right censorship, the latent

variable y¤i is observed only when it is less than some scalar censoring variable ci; that is,

the observed dependent variable yi is

yi = minfy¤i ; cig = minfx0i¯0 + "i; cig: (2.2)

In a random sample with ¯xed censoring, n independently-distributed observations on the

triple (yi; ci; xi) are assumed to be available; with random censoring, the observations are of

the form (yi; di; xi), where di is a binary variable indicating whether the dependent variable

is uncensored:

di = 1fy¤i < cig = 1fx0i¯0 + "i < cig; (2.3)

for \1fAg" the indicator function for the set A.
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For samples with ¯xed censoring, the estimators of ¯0 cited in the preceding section often

are de¯ned as solutions to minimization problems and/or estimating equations constructed

using sample averages of functions of the observable data and unknown parameters, i.e.,

^̄ = argmin¯
1

n

nX

i=1

½(yi; ci; xi; ¯) (2.4)

or

0 »= 1

n

nX

i=1

Ã(yi; ci; xi; ^̄) (2.5)

for certain functions ½(¢) or Ã(¢). Of course, some estimators involve more complicated min-
imands / estimating equations, de¯ned using higher-order U-statistics or involving prelimi-

nary (nonparametric) estimators of unknown functions, but the analysis of their large sample

behavior, though more di±cult, follows the same lines as in this simple case. Consistency of

^̄ is demonstrated after imposing appropriate conditions on the error terms, covariates, and

censoring values; one important step in the proof is to show that the true parameter value

¯0 is a unique solution to the population versions of the minimization problem or estimating

equations,

¯0 = argmin¯E[½(yi; ci; xi; ¯)] (2.6)

or

0 = E[Ã(yi; ci; xi; ¯)] i® ¯ = ¯0: (2.7)

Given such an identi¯cation condition, application of a uniform law of large numbers to the

sample average de¯ning ^̄ ensures its consistency.

Under random censorship, it is no longer possible to de¯ne an estimator of ¯0 in the

same fashion as above, since the censoring variables fcig are not known for all i. However, if
the censoring variables fcig are assumed to be independent of f(yi; xi)g, and if the marginal
c.d.f. G(t) ´ Prfci · tg of the censoring values were known, a simple modi¯cation of the
estimation approach above would replace the functions ½(yi; xi; ci; ¯) or Ã(yi; xi; ci; ¯) by their

conditional expectations given the observable variables (yi; di; xi). That is, an M-estimator

of ¯0 corresponding to the foregoing minimization problem would be
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^̄ = argmin¯
1

n

nX

i=1

E[½(yi; ci; xi; ¯) j (yi; di; xi)] (2.8)

= argmin¯
1

n

nX

i=1

½
(1¡ di) ¢ ½(yi; yi; xi; ¯) + di ¢ [S(yi)]¡1 ¢

Z
1(yi < c)½(yi; c; xi; ¯)dG(c)

¾
;

where S(t) ´ 1¡G(c) is the survivor function for the censoring value ci. Similarly, ^̄ might
be de¯ned as solutions to estimating equations of the form

0 »= 1

n

nX

i=1

½
(1¡ di) ¢ Ã(yi; yi; xi; ^̄) + di ¢ [S(yi)]¡1 ¢

Z
1(yi < c)Ã(yi; c; xi; ^̄)dG(c)

¾
:(2.9)

By iterated expectations, the population analogues to the sample averages de¯ning ^̄ will

be the same moment functions, E[½(yi; ci; xi; ¯)] or E[Ã(yi; ci; xi; ¯)], as appear in the ¯xed

censorship case, so the same identi¯cation conditions imposed for ¯xed censoring will apply

under random censoring.

Unfortunately, when the censoring values fcig have a non-degenerate distribution it is
unlikely that the censoring distribution function G(t) will be known a priori. Nevertheless,

because of the assumed independence of the censoring value ci and the latent variable y¤i ,

this distribution function G(t) can be consistently estimated using the Kaplan-Meier product

limit estimator (Kaplan and Meier, 1958); this estimator Ĝ(t) uses only the pairs f(yi; di)g
of dependent and indicator variables, and does not involve the covariates fxig or param-
eter vector ¯. By substitution of the Kaplan-Meier estimator Ĝ(t) and survivor function

Ŝ(t) = 1 ¡ Ĝ(t) into the previous minimization problem or estimating equations, feasible

estimators of ¯0 can be constructed, and consistency will follow from a demonstration of

uniform convergence of these sample moment functions to their limiting values.

The estimation approach here is similar in spirit to that adopted by Buckley and James

(1979), which adapted the \EM algorithm" (Dempster, Laird, and Rubin 1977) for max-

imization of a parametric censored-data likelihood to the semiparametric setting with un-

known error distribution. However, the Buckley-James estimator treats the latent dependent

variable y¤i as \missing data" when the observed dependent variable is uncensored (using the

Kaplan-Meier estimator for the error distribution, applied to residuals b" ´ y¡x0 ^̄ and their
censoring points u ¡ x0 ^̄, to estimate the conditional distribution of y¤i given di = 0); in

contrast, the present approach views the censoring value ci as \missing" when the latent

dependent variable is uncensored. While the Buckley-James estimator does not require that
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the censoring values be independent of the regressors, it does impose that requirement for

the error distribution; in contrast, the present approach assumes independence of the cen-

soring points and regressors, but may permit dependence of, say, the scale of the errors on

the covariates.

To apply this general approach to a speci¯c estimation problem, we consider the re-

striction of a constant conditional ¼'th quantile on the distribution of the errors. That is,

maintaining the assumption of independence of fcig and f("i; xi)g, we impose the additional
restriction that the conditional distribution of the error terms "i given the covariates xi

satis¯es

Prf"i · 0 j xig = ¼ (2.10)

for some known value of ¼ in the interior of the unit interval. Under this condition, the

conditional ¼'th quantile of the dependent variable yi given xi and ci is equal to minfx0¯0; cig,
as noted by Powell (1984, 1986a) and Newey and Powell (1990); that is,

Prfyi · minfx0i¯0; cig j xig ¸ ¼ and Prfyi · minfx0i¯0; cig j xig ¸ 1¡ ¼:(2.11)

Under ¯xed censorship, a quantile estimator of ¯0 under this restriction was de¯ned by

Newey and Powell (1990) as

^̄ = argmin¯
1

n

nX

i=1

½¼(yi ¡minfx0i¯; cig); (2.12)

where

½¼(u) ´ [¼ ¡ 1fu < 0g] ¢ u; (2.13)

this estimator is the censored-data analogue to the regression quantile estimator proposed

by Koenker and Bassett (1978) for the linear model. Under regularity conditions, it was

shown that the estimator ^̄ solves a set of estimating equations obtained as approximate

¯rst-order conditions from this minimization problem:

op(n
¡1=2) =

1

n

nX

i=1

[¼ ¡ 1fyi · x0i ^̄g] ¢ 1fx0i ^̄ < cig ¢ xi: (2.14)
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For the special case ¼ = 1=2; corresponding to a linear model for the conditional median of

y¤i given xi, an equivalent representation would replace \½¼" with an absolute value function

in the minimization problem, and \[¼¡1fyi · x0i¯g]" with \signfyi¡x0i¯g" in the estimating
equations.

To adapt the quantile estimator for ¯xed censoring to a sample subject to random cen-

sorship, then, we de¯ne the estimator as

^̄ = argmin¯
1

n

nX

i=1

Ê[½¼(yi ¡minfx0i¯; cig) j (yi; di; xi)] (2.15)

= argmin¯
1

n

nX

i=1

f(1¡ di) ¢ ½¼(yi ¡minfx0i¯; yig)

+di ¢ [Ŝ(yi)]¡1 ¢
Z
1(yi < c)½¼(yi ¡minfx0i¯; cg)dĜ(c)

¾
;

where \Ê[¢]" denotes an expectation calculated using the product-limit estimator of G(t).
For this minimization problem, the estimating equations obtained from the approximate

¯rst-order condition take a particularly simple form:

op(n
¡1=2) =

1

n

nX

i=1

³
¼ ¢ 1fyi > x0i ^̄g ¡ (1¡ ¼) ¢ 1fyi · x

0
i
^̄g ¢ di ¢ Ŝ(x0i¯)=Ŝ(yi)

´
¢xi:(2.16)

To verify that the limiting form of these estimating equations (replacing the sample average

and estimated survivor functions with their population analogues) has a solution at the true

value ¯0, note that

1fyi > x0i¯0g ´ 1f"i > 0g ¢ 1fci > x0i¯0g

so that

E[1fyi > x0i¯0g j xi] = Prf"i > 0 j xig ¢ S(x0i¯0) = (1¡ ¼) ¢ S(x0i¯0);

also,

1fyi · x0i¯0g ¢ di ¢ S(x0i¯0)=S(yi) ´ 1f"i · 0g ¢ 1fy¤i < cig ¢ S(x0i¯0)=S(y¤i );

implying

E [1fyi · x0i¯0g ¢ di ¢ S(x0i¯0)=S(yi) j xi; "i] = 1f"i · 0g ¢ S(y¤i ) ¢ S(x0i¯0)=S(y¤i )
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and thus

E [1fyi · x0i¯0g ¢ di ¢ S(x0i¯0)=S(yi) j xi] = Prf"i · 0 j xig ¢ S(x0i¯0) = ¼ ¢ S(x0i¯0):

Therefore, the limiting estimating equations hold when evaluated at the true value ¯0 :

E
h³
¼ ¢ 1fyi > x0i¯g ¡ (1¡ ¼) ¢ 1fyi · x0i¯g ¢ di ¢ Ŝ(x0i¯)=Ŝ(yi)

´
¢ xi

i
(2.17)

= E[(¼ ¢ (1¡ ¼) ¢ S(x0i¯0)¡ (1¡ ¼) ¢ ¼ ¢ S(x0i¯0)) ¢ xi] = 0:

Nevertheless, as noted by Powell (1984, 1986a), it is important that the estimator be

de¯ned as the minimizer of the quantile objective function rather than the solution to these

estimating equations, since multiple inconsistent roots to these equations may exist.

Two other estimators under random censorship which exploit only a quantile restriction

have previously been proposed; these approaches require stronger restrictions on the support

of the censoring distribution G(t) than are needed for the present estimator. For example,

an extension of the approach of Koul, Suslara, and Van Ryzin (1981) to quantile regression

was proposed by ????, which de¯ned the estimator of the regression coe±cients as

^̄ = argmin¯
1

n

nX

i=1

di ¢ [Ŝ(yi)]¡1 ¢ ½¼(yi ¡ x0i¯); (2.18)

which can equivalently be written as the solution to the estimating equations

op(n
¡1=2) =

1

n

nX

i=1

di ¢ [Ŝ(yi)]¡1 ¢ [¼ ¡ 1fyi · x0i ^̄g] ¢ xi; (2.19)

this estimator exploits the fact that

E
£
di ¢ [S(yi)]¡1¢[¼ ¡ 1fyi · x0i¯0g] ¢ xi

¤
(2.20)

= E
£
1fy¤i < ci) ¢ [S(y¤i )]¡1 ¢ [¼ ¡ 1f"i · 0g] ¢ xi

¤

= E [[¼ ¡ 1f"i · 0g] ¢ xi]
= 0

provided S(y¤i ) > 0 with probability one. Since Ŝ(t) = S(t) = 1ft < c0g when the censoring
points ci = c0 with probability one, this estimation approach is not applicable for ¯xed
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(and constant) censoring except in the special cases Prfyi · c±g ´ 1 (i.e., no censored

observations). Also, as noted by Halpern and Miller (1982), this estimator may be sensitive

to the particular realizations of the dependent variable yi(and corresponding regressors xi)

which are large and uncensored, since the estimated survivor function for such observations

will be close to zero and imprecisely measured; however, this robustness problem may be

more pronounced for the original estimator proposed by Koul, et al., which is based upon

squared error loss, than for its quantile variant.

More recently, Ying, Jung, and Wei (1991) proposed a quantile estimator for ¯0 under

the restriction Prf² · 0 j xg ´ ¼ 2 (0; 1) using the implied relation

Pr fyi > x0i¯0 j xig = Pr fx0i¯0 < ci and "i > 0jxig (2.21)

= Pr fx0i¯0 < cijxig ¢ Pr f"i > 0jxig
= S (x0¯0) ¢ (1¡ ¼); (2.22)

which yields an estimator ^̄ as a solution to estimating equations of the form

0 »= 1

N

NX

i=1

h
[Ŝ(x0i ^̄)]

¡1 ¢ 1fyi > x0i ^̄g ¡ (1¡ ¼)
i

¢ xi: (2.23)

Like the ????? estimator, this estimator will be well-de¯ned and consistent only when Ŝ(x0i ^̄)

and S(x0i¯0) are strictly positive with probability one, which would require Prfx0¯0 · c0g ´ 1

when the censoring values have a degenerate distribution. In contrast, the present approach

is equally amenable to constant or random censoring; indeed, if the censoring points are

degenerate, so that S(t) = 1ft < c0g, then this estimator will be identical to the censored
quantile estimator proposed by Powell (1986a) for samples consisting of at least one censored

observation, since S(t) = Ŝ(t) in this case.

3 Large Sample Behavior of the Quantile Estimator

In order to demonstrate the (root¡n) consistency and asymptotic normality of the randomly-
censored quantile regression estimator proposed above, it will be necessary to augment the

regularity conditions imposed for its ¯xed-censoring counterpart to ensure, for example,

that the Kaplan-Meier estimator of the censoring survivor function is su±ciently precise.

Rather than searching for the most general conditions on the errors, covariates, and censoring

times, we will impose stronger conditions (like compact support of the regressors) which will
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be straightforward to verify and simplify the derivations of the asymptotic theory for the

estimator.

We rewrite the estimator de¯ned in (2.15) here as

^̄ ´ argmin¯2BRn(¯; Ŝ); (3.1)

where

Rn(¯; Ŝ) ´ 1

n

nX

i=1

f(1¡ di) ¢ ½¼(yi ¡minfx0i¯; yig) (3.2)

+di ¢ [Ŝ(yi)]¡1 ¢
Z
1(yi < c)½¼(yi ¡minfx0i¯; cg)dĜ(c)

¾

and B is the space of possible values of the parameter vector ¯0. In Newey and Powell

(1990), a number of regularity conditions were imposed for the analysis of the estimator

with ¯xed censoring, de¯ned in (2.12) above. The following assumptions are a superset of

the conditions imposed in that paper to ensure root¡n consistency and asymptotic normality
in that case.

Assumption P: The true parameter vector ¯0 is an interior point of the parameter space

B, which is compact.

Assumption M: The observations f(yi; di; xi); i = 1; : : : ; ng are a random sample for

which yi and di are generated according to (2.2) and (2.3), for some random variables "i; xi,

and ci satisfying the remaining conditions below.

Assumption E: The error terms f"ig are absolutely continuously distributed with con-
ditional density function f(² j x) given the regressors xi = x which has ¼'th quantile equal
to zero, is bounded above, Lipschitz continuous in ², and is bounded away from zero in a

neighborhood of zero, uniformly in xi. That is,

Z
1f² · 0g ¢ f(² j x)d² = ¼;

and for some positive constants Á0;©0, and ´0,

f(² j x) · Á0; jf(²1 j x)¡ f (²2 j x)j · ©0¢ j ²1 ¡ ²2 j; and

f(² j x) ¸ ´0 if j ² j· ´0:
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Assumption R: The regressors fxig have compact support, i.e., Prfkxik · Â0g = 1 for
some constant Â0.

Assumption C: The censoring values fcig are distributed independently of f("i; x0i)g,
with c.d.f. G(t) ´ Prfci · tg which has G(¿0) = Prfci · ¿0) = 1 and G(¿0) ¡ G(¿0¡) =
Prfci = ¿0g > 0:

Assumption RC: The regressors fxig and censoring values fcig satisfy

(i) Prfj ci ¡ x0i¯ j· dg = O(d) if k¯ ¡ ¯0k < ´0; some ´0 > 0; and

(ii) E[1fci ¡ x0i¯ > ´0g ¢ xix0i] = E [S(x0i¯ + ´0g ¢ xix0i] is nonsingular for some ´0 > 0:

Many of these conditions have been discussed in Powell (1984, 1986a) and Newey and

Powell (1990), so we will only brie°y motivate them here. The compactness condition on the

parameter space is needed because the minimand Rn(¯) is not a convex function of ¯, and

¯0 must be an interior point to guarantee validity of the usual Taylor's series expansions.

The random sampling assumption is imposed mostly for convenience, and can be relaxed for

the regressors fxig, although random sampling of the censoring values fcig is essential for
consistency of the Kaplan-Meier estimator of the censoring c.d.f. The boundedness and Lip-

schitz continuity of the conditional error density simplify the demonstration of convergence

of certain remainder terms to zero; the lower bound on the conditional density near zero

ensures uniqueness of the ¼'th quantile of the error distribution, and can be interpreted as

a \bounded heteroskedasticity" requirement (using the inverse of the conditional density at

zero as the relevant scale parameter for the conditional distribution). The bounded support

of the regressors ensures boundedness (and thus existence of all moments) for terms appear-

ing in Rn(¯; Ŝ) and its subgradient; this condition can be enforced without violating the

remaining assumptions by truncating any observations with xi outside a bounded set. The

upper bound on the censoring values, and the positive mass on the upper boundary of their

support, guarantee that terms of the form di=Ŝ(yi) will be well-behaved in large samples,

since then S(yi) will be bounded away from zero for all observations with di = 1; like the

boundedness condition on the regressors, this condition on the censoring distribution can be

ensured by arti¯cially censoring all observations at some point ¿0 in the observed support of

the fyig. Assumption RC(i) rules out ties between the censoring values and the regression
function, just as the continuity of the error distribution rules out ties between the censoring

values and the latent variable y¤i . Finally, condition RC(ii) is the key identi¯cation condition

which ensures that p limRn(¯; Ŝ)¡ Rn(¯0; Ŝ) > 0 when ¯ 6= ¯0; it is essentially a full rank
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condition for the cross product of the regressors corresponding to observations in which the

conditional median of the latent variable y¤i is uncensored, i.e., x
0
i¯0 < ci.

Under these conditions, it is straightforward to establish the strong consistency of the

estimator ^̄ for ¯±, using a direct modi¯cation of the arguments in Powell (1984; 1986a):

Theorem 3.1 Under conditions P;M;E;R;C, and RC, the estimator ^̄ de¯ned in (3.1) is

strongly consistent, i.e., ^̄! ¯0 with probability one.

Demonstration of the root¡n consistency and asymptotic normality of ^̄ is more delicate,
since it involves the asymptotic distribution associated with the empirical process Ŝ(t), the

Kaplan-Meier estimator of the censoring survivor function. If S(t) were known, so that an

estimator of ¯0 could be de¯ned as

~̄ ´ argmin
¯2B

Rn(¯;S); (3.3)

it would be relatively simple to derive the asymptotically-normal distribution of ~̄. Let

Ãi(¯; S) ´
¡
¼ ¢ 1fyi > x0i¯g ¡ (1¡ ¼) ¢ 1fyi · x0i¯g ¢ di ¢ S(x0i¯)=S(yi)

¢
¢ xi (3.4)

and

M0 ´M(¯0; S) ´ E[f(0 j xi) ¢ S(x0i¯0) ¢ xix0i] = E[f(0 j x0i) ¢ 1fx0i¯0 < cig ¢ xix0i]; (3.5)

then the same arguments used in Powell (1984) could be used to show that, under the

conditions imposed above, the estimator ~̄ would solve the estimating equations

op(n
¡1=2) =

1

n

nX

i=1

Ãi( ~̄; S); (3.6)

and would have asymptotic distribution given by

p
n( ^̄¡ ¯0) d¡! N (0;M¡1

0 V0M
¡1
0 ); (3.7)

where

V0 ´ E[Ãi(¯0; S) ¢ Ãi(¯0±; S)0]: (3.8)
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However, the feasible estimator ^̄ solves the estimating equations

op(n
¡1=2) =

1

n

nX

i=1

Ãi( ^̄; Ŝ); (3.9)

and since
p
n(Ŝ(t)¡S(t)) = Op(1), a \correction term" for the preliminary estimation of the

censoring survivor function S(t) is needed for the asymptotic distribution of ^̄. To obtain

the form of this correction term, we ¯rst de¯ne the following term:

Xn(t) ´ 1p
n

nX

i=1

[H(yi)]
¡1 ¢ 1fyi < tg ¢ (1¡ di)¡

Z t

¡1
[H(s)]¡1 ¢ 1fyi ¸ sg ¢ d¤(s);

for H(t) ´ Prfyi > tg, the survivor function for yi, and

¤(t) ´
Z t

¡1
[S(s)]¡1dG(s);

the cumulative hazard function for ci. The correction term for the estimation of the survivor

function S(t) in the construction of ^̄ involves the integral of X(t), with respect to the
measure

q(s) ´ limQn(s) a.s.; (3.10)

where

Qn(t) ´ 1

n

nX

i=1

(1fyi · minft; x0i¯0gg+ 1fmaxfyi; tg < x0i¯g ¢ S(x0i¯)=S(yi))¢di¢xi:(3.11)

De¯ning

»i ´ »i(¯0; S;H;¤; ¼) (3.12)

´ (1¡ ¼) ¢
Z 1

¡1

µ
[H(yi)]

¡1 ¢ 1fyi < tg ¢ (1¡ di)¡
Z t

¡1
[H(s)]¡1 ¢ 1fyi ¸ sg ¢ d¤(s)

¶
dq(s)

the asymptotic distribution of ^̄ depends on »i, as follows:

Theorem 3.2 Under Assumptions P;M;E;R;C;RC, the estimator ^̄ satis¯es the asymp-

totic linearity condition

p
n( ^̄¡ ¯0) =M¡1

0

1p
n

nX

i=1

[Ãi(¯0; S) + »i(¯0; S;H;¤; ¼)] + op(1)
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and is asymptotically normal,

p
n( ^̄¡ ¯0) d¡! N (0;M¡1

0 V1M
¡1
0 );

for

V1 ´ E[(Ãi + »i) ¢ (Ãi + »i)0]:

In order to use the asymptotic normality result of Theorem 4.2 to form asymptotic con¯dence

regions and hypothesis tests, a consistent estimator of the asymptotic covariance matrix of

^̄ is needed. Estimation of each of the matrices M0 and V1 poses technical problems, the

former because of its dependence on the error density (and thus requiring nonparametric

estimation techniques), and the latter due to the complicated form of the correction term for

preliminary estimation of the survivor function Ŝ(t). For estimation of the Hessian matrix

M0, the method proposed by Powell (1984), which replaces the unknown density with a

(uniform) kernel term in a sample analogue to the de¯nition of M0 in (3.5), can be easily

adapted to the present case. Another means to consistently estimate M0 was proposed by

Pakes and Pollard (1989), who suggested that the Hessian be estimated from a numerical

derivative of the function appearing in the estimating equations,

ªn(¯) ´ 1

n

nX

i=1

Ãi(¯; Ŝ); (3.13)

about the point ¯ = ^̄; they note that this estimator will be consistent if the perturbations

used to construct the numerical derivative are of larger order than
p
n, the rate of convergence

of ^̄. Consistent estimation of an asymptotic covariance matrix analoguous to V1(but with

a di®erent de¯nition of Ã(¢) and Qn(¢)) was considered by Ying, Jung, and Wei (1991), who
proposed an estimator of the form

V̂ ´ 1

n

nX

i=1

(Ã̂i + »̂i) ¢ (Ã̂i + »̂i)0; (3.14)

where, in this setting, Ã̂i and »̂i would be sample analogues of Ãi and »i. That is,

Ã̂i ´
³
¼ ¢ 1fyi > x0i ^̄g ¡ (1¡ ¼) ¢ 1fyi · x0i ^̄g ¢ di ¢ Ŝ(x0i¯)=Ŝ(yi)

´
¢ xi (3.15)
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and

»̂i ´ n¡1=2 ¢ (1¡ ¼) ¢
Z 1

¡1
º̂i(s)dQn(s); (3.16)

for Qn(s) de¯ned in (3.11),

º̂i(t) ´
µ
[Ĥ(yi)]

¡1 ¢ 1fyi < tg ¢ (1¡ di)¡
Z t

¡1
[Ĥ(s)]¡1 ¢ 1fyi ¸ sg ¢ d¤̂(s)

¶
(3.17)

and Ĥ(s) and ¤̂(s) are the sample analogues of the survivor function for yi and the cumulative

hazard for ci,

Ĥ(s) ´ 1

n

nX

i=1

1fyi > sg (3.18)

and

¤̂(s) ´ [Ĥ(s)]¡1 ¢ 1
n

nX

i=1

(1¡ di) ¢ 1fyi · sg: (3.19)

Veri¯cation of consistency of V̂ of (3.14) would require a tedious veri¯cation that maxi k
Ã̂i ¡ Ãi + »̂i ¡ »i k= op(1), and then routine application of a law of large numbers.

A simpler alternative to direct construction of a sample analogue toM¡1
0 V1M

¡1
0 , which we

adopt in the next section, is to use bootstrap methods to assess the sampling variability of ^̄.

Speci¯cally, a prespeci¯ed number R of random samples of size n, drawn from the empirical

distribution of the data set f(yi; di; xi): i = 1; : : : ; ng, can be used to calculate R simulated
replications of ^̄, and the empirical distribution of these replicated values can be used as

an estimator of the sampling distribution of ^̄. For the ¯xed censoring quantile estimator,

this bootstrap estimator of the asymptotic distribution was shown to be consistent by Hahn

(1993), and the simulation study by Buchinsky (1991) shows that this bootstrap method

works well for an empirically-based design. While the theoretical results of Hahn (1993) do

not directly apply to the randomly-censored regression quantile estimator considered here, we

think it likely that consistency of the bootstrap c.d.f. will hold under the conditions imposed

in this section, and, further, that the bootstrap method may give a better approximation

to the ¯nite-sample distribution of test statistics involving ^̄ than an asymptotic normal

approximation using the covariance matrix estimator described above.
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4 Finite Sample Performance

The theoretical results of the previous section give conditions under which the randomly-

censored regression quantile estimator will be well-behaved in large samples. In this section,

we investigate the small-sample performance of this estimator in two ways: results of a

small-scale Monte Carlo study are reported, and the method is applied to a much-studied

empirical example, the Stanford heart transplant data.

The Monte Carlo designs considered here are chosen to illustrate the method for simple

examples, and are not meant to mimic a design that would be encountered for a particular

data set. Nevertheless, some features of the designs - namely, the number of observations,

percentage of observations, small number of parameters, and uniform distribution of the

censoring points - are not too far from the corresponding characteristics of the empirical

example. The model used in this simulation study is

yi = minf®0 + xi¯0 + "i; cig; i = 1; : : : ; 200; (4.1)

where the scalar regressor xi has a standard normal distribution, the censoring variable ci

is uniformly distributed on the interval [-1.5, 1.5], and the true values ®0 and ¯0 of the

parameters are -1 and 1, respectively. Four homoskedastic distributions are considered for

the error term ¾i: the standard normal distribution and student¡t distributions with 1,
2, and 3 degrees of freedom (all normalized to have the same interquartile range as the

standard normal). In addition, two designs with heteroskedastic errors were considered:

"i = ¾(xi) ¢ ´i, with ´i having a standard normal distribution and either ¾2(xi) = exp(¡xi)
or ¾2(xi) = exp(xi). For these designs, the overall censoring probabilies vary between 25%

and 35%.

For each replication of the model, the following estimators were calculated:

a) The estimator proposed by Buckley and James (1979);

b) The randomly-censored least absolute deviations estimator ^̄ de¯ned in (3.1) above (with

¼ = 1=2); and

c) A modi¯cation of the symmetrically-censored least squares estimator derived by applying

(2.8) (with an estimated censoring survivor function) to the objective function for

Powell's (1986b) STLS estimator (as discussed in the concluding section).
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The randomly-censored least absolute deviations estimator was computed using the iter-

ative Barrodale-Roberts algorithm described by Buchinsky (1991); in the random censoring

setting, the objective function Rn(¯; Ŝ) of (3.2) can be transformed into a weighted version

of the objective function for the censored quantile estimator with ¯xed censoring, with the

quantile criterion function ½¼(¢) for each censored observation being evaluated at every sup-
port point of the product-limit estimator of the censoring distribution G(t), with weights

proportional to the estimated probabilities at each support point. The STLS estimator de-

scribed in c) was calculated using an obvious extension of the iteration scheme described in

Powell (1986b).

The results of 1000 replication of these estimators for each design are summarized in Table

1, which reports the true values of ® and ¯, the mean bias and root-mean-squared error of the

estimators, as well as robust measures of location scale, the median bias and median absolute

error. Theoretically, the randomly-censored least absolute deviations and symmetrically-

trimmed least squares estimators are consistent under all of the designs considered, whereas

the Buckley-James estimator is inconsistent when the errors are t(1)(i.e., Cauchy) distributed

or heteroskedastic. The results in Table 1 indicate that the estimation methods proposed

here perform almost as well as the Buckley-James estimator under normality, and that the

superiority of the latter disappears when the errors are nonnormal. As might be expected,

the procedures proposed here, which do not impose homoskedasticity of the error terms, are

superior to Buckley-James when the errors are heteroskedastic.

Turning now to the empirical example, we consider the well-known Stanford heart trans-

plant data set published in Miller and Halpern (1982). An earlier subset of these data were

analyzed using parametric methods (and the Cox 1972, 1975 proportional hazards model)

in the text by Kalb°eisch and Prentice (1980), while Miller and Halpern (1982) and Ying,

Jung, and Wei (1991) apply several semiparametric methods to the data available through

February 1980. Summarized in this data set are the survival times of 184 patients who re-

ceived heart transplants at the Stanford University Medical Center, as well as an indicator

variable which equals one if the patient was dead (uncensored) at the time the data were col-

lected, the age of the patient (in years) at the time of the transplant, and a tissue-mismatch

variable. In the analyses of Miller and Halpern (1982) and Ying, Jung, and Wei (1991), 27

observations with missing values of the tissue mismatch scores were dropped, even though

the main speci¯cation of the regression function in these papers was a quadratic function of

age, and excluded the mismatch variable. Following these earlier studies, we consider the

same data set of 157 observations (including 55 censored observations), and the same model
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of the survival times,

yi = minf®0 + ¯0xi + °0(xi)2 + "i; cig; (4.2)

where the dependent variable yi is the logarithm (base 10) of the observed survival time (in

days), and xi is the age of patient i. (For one observation, the survival time was listed as

zero days; this was recoded to one for the statistical analysis here.)

Table 2 reports the randomly-censored regression quantile coe±cient estimates at the

three quartiles | ¼ = 0:25; 0:50; and 0.75 | along with the Buckley-James estimator and

the Ying-Jung-Wei coe±cient estimator given in the aforementioned study. The standard

errors for Buckley-James and the three quartile estimators were calculated as the median

absolute deviation of the bootstrap c.d.f. (based upon R = 250 replications) divided by 0.67,

which would (approximately) equal one for a standard normal distribution. Our results for

Buckley-James di®er from those reported by Miller and Halpern (1982), which deleted 5

observations from the sample with survival times less than 10 days.

Looking across the various coe±cient estimates, the results appear fairly similar for all

methods, except that the slope coe±cients for the Ying, Jung, and Wei (1991) estimator are

of smaller magnitude than those for the other procedures. Also, for the quartile estimators

there appears to be a \°attening" of the inverted-U shape of the regression function estimates

as ¼ moves from 0.25 to 0.75. This °attening, if statistically signi¯cant, would indicate

heteroskedasticity of the error distribution (or, admittedly, some other misspeci¯cation of

the model), with the conditional distributions for younger and older patients being more

dispersed and skewed downward. To test for signi¯cance of the di®erence between the

estimated upper and lower quartile regression lines, a chi-squared statistic was constructed

using a quadratic form in these di®erences about the inverse of a bootstrap estimator of the

covariance matrix of the estimator, but the resulting test statistic was insigni¯cant at all

conventional levels of signi¯cance, so the hypothesis of independence of the error terms and

regressors would not be rejected using this test.

5 Concluding Remarks

Although the analysis of the preceding sections has concentrated on the properties of quantile

estimators of the slope coe±cients, other estimation methods developed for ¯xed censoring

are easily adapted to the present setting. For example, under the assumption of conditional
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symmetry of the error terms "i around zero given xi, Powell (1986b) proposed an estimator

which can be written as a minimizer of the form (2.4) above, with ¯rst-order condition of

the form (2.5) having

Ã(yi; ci; xi; ¯) ´ [maxfyi; 2x0i¯ ¡ cig ¡ x0i¯] ¢ xi; (5.1)

which has expectation zero when evaluated at the true value ¯0 under conditional symmetry.

Modi¯cation of this estimator, developed for ¯xed censoring, to random right censorship is

immediate using (2.8) and the Kaplan-Meier estimator, as described in section 2. The Monte

Carlo results of section 4 suggests this estimator may have similar behavior to the randomly-

censored quantile estimator with ¼ = 1=2; at least for symmetric error distributions like the

ones considered there. While conditional symmetry may not be an attractive assumption for

an accelerated failure time model (ruling out, for example, a Weibull model for durations),

it may be more reasonable for other randomly-censored regression models.

Another ¯xed-censoring estimation method which is easily adapted to random censoring

is the method proposed by Honor¶e (1992) for estimation of panel data models with censoring.

For the special case of T = 2 time periods, the model Honor¶e (1992) considers is

yit = minfx0it¯0 + ±i + "it; citg; i = 1; : : : ; n; t = 1; 2; (5.2)

where the term ±i is an unobservable \¯xed e®ect" which need not be independent of the

covariate vector xit. Under the assumption that "i2 ¡ "i1 is symmetrically distributed about
zero given the regressors, Honor¶e proposed an estimator which solves a ¯rst-order condition

of the form,

op(n
¡1=2) =

1

n

nX

i=1

³(ei;12( ^̄)¡ ei;21( ^̄)) ¢ (xi2 ¡ xi1); (5.3)

where ³(¢) is a nondecreasing and odd function of its argument and

ei;12(¯) ´ minfyi1 ¡ x0i1¯; ci1 ¡ x0i2¯g; (5.4)

with an analogous de¯nition of ei;21(¯). With an appropriate rede¯nition of the variables,

these estimating equations are obviously of the form (2.5), so the transformation (2.9) yields

estimating equations for random censoring when the censoring distribution G(t) is replaced

by its Kaplan-Meier estimator. When ³(¢) = sign(¢), this estimator is similar in structure to
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the randomly-censored regression quantile estimator studied above, and a simple extension

of the assumptions imposed in section 3 will su±ce to demonstrate the root¡n consistency
and asymptotic normality of this estimator and others based upon di®erent choices of ³(¢).

Under the assumption of independence of the error terms and regressors, Honor¶e and

Powell (1993) propose an estimator of ¯0 for model (2.3) which uses the same strategy

as Honor¶e's censored panel data estimator, but is based upon pairwise di®erences across

individuals rather than across time periods for each individual. That is, the estimator ^̄

solves estimating equations de¯ned in terms of a second-order U-statistic,

op(n
¡1=2) =

Ã
n

2

!¡1 X

i<j

»(eij( ^̄)¡ eji( ^̄)) ¢ (xi ¡ xj); (5.5)

with

eij(¯) ´ minfyi ¡ x0i¯; ci ¡ x0j¯g: (5.6)

The approach described in section 2 will also work here, but may be computationally di±cult;

since calculation of the empirical expectations over the unobserved values of ci using the

Kaplan-Meier c.d.f. estimator involves O(n) calculation, computing a random censoring

version of the estimating equations (5.5) will involve O(n4) summations, which may take

some time if n is large. It may be possible to reduce the number of calculations needed,

at some cost of statistical precision, by replacing the calculation of an expectation over

the censoring value by a single draw from its estimated conditional distribution given the

observed data. Whether such an approach would yield a root¡n consistent estimator is an
interesting question for additional research.

Of the regularity conditions imposed in section 3 above, some may be relaxed without af-

fecting the consistency or asymptotic normality of the estimator (for example, the assumption

of randomly-sampled regressors may be relaxed to permit deterministic regressors). How-

ever, the assumption of independence of the censoring values fcig and the regressors fxig
is crucial to the analysis above, and this assumption may be suspect in some settings. For

example, in the Stanford heart transplant data set, larger censoring times correspond to

earlier transplants; if transplants for younger or older patients were not typically performed

in the earlier years, this would induce a dependence between censorship and the covariate,

age. In general, if the regressors fxig have ¯nite support, then it should be possible to obtain
consistent estimators of the conditional censoring distribution G(t j x) ´ Prfci · t j xi = xg
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at each possible value of xi, which could then be substituted into the expectations in (2.8)

and (2.9). If some components of the regressors are continuously distributed, it should be

possible to nonparametrically estimate the conditional censoring distribution by grouping

observations with adjacent values of xi; whether substitution of a conditional version of the

product-limit estimator into (2.8) will yield a root¡n consistent estimator is an interesting
open question for additional study.
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A Proofs of Theorems in Text

A.1 Proof of Theorem 3.1

In this section, for any vector x, we let kxk denote its Euclidean norm. De¯ne:

R(¯) ´ E [½¼(yi ¡ min(x0
i¯; ci)) ¡ ½¼(yi ¡ min(x0

i¯0; ci))] (A.1)

then the key step in showing consistency of:

^̄ ´ argmin¯2BRn(¯; Ŝ) ´ argmin¯2B
³
Rn(¯; Ŝ) ¡ Rn(¯0; Ŝ)

´

is the demonstration of:

sup
¯2B

¯̄
¯
³
Rn(¯; Ŝ) ¡ Rn(¯0; Ŝ)

´
¡ R(¯)

¯̄
¯ = o(1) a.s. (A.2)

where

Rn(¯; Ŝ) ´ 1

n

nX

i=1

µ
(1 ¡ di)½¼(yi ¡ min(x0

i¯; yi)) + diŜ(yi)
¡1

Z
I[yi < c]½¼(yi ¡ min(x0

i¯; c))dĜ(c)

¶

as de¯ned in (3.2) above.

To show result (A.2), ¯rst note that for all ¯ 2 B,

Rn(¯; Ŝ) ¡ Rn(¯;S) =
1

n

nX

i=1

di

³
Ŝ(yi)

¡1 ¡ S(yi)
¡1

´Z
I [yi < c]½¼(yi ¡ min(x0

i¯; c))dĜ(c) (A.3)

+
1

n

nX

i=1

diS(yi)
¡1

Z
I [yi < c]½¼(yi ¡ min(x0

i¯; c))
³
dĜ(c) ¡ dG(c)

´

Since, for any c and ¯1; ¯2 2 B,

j½¼(yi ¡ min(x0
i¯1; c)) ¡ ½¼(yi ¡ min(x0

i¯2; c))j · kxikk¯1 ¡ ¯2k · Â0k¯1 ¡ ¯2k (A.4)

where Â0 is the upper bound for kxik given in assumption R, it follows that:

sup
¯2B

¯̄
¯Rn(¯; Ŝ) ¡ Rn(¯;S) ¡ Rn(¯0; Ŝ) + Rn(¯0; S)

¯̄
¯ (A.5)

· sup
y<¿0

¯̄
¯Ŝ(y)¡1 ¡ S(y)¡1

¯̄
¯ Â0(2b0)

+ sup
¯2B

¯̄
¯̄
Z

I[yi < c] (½¼(yi ¡ min(x0
i¯; c)) ¡ ½¼(yi ¡ min(x0

i¯0; c))) d
³
Ĝ(c) ¡ G(c)

´¯̄
¯̄
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where ¿0 is the upper support point for the censoring distribution and b0 is an upper bound for k¯k on the

compact set B. Now by the uniform convergence results of Shorack and Wellner(1986, Theorem 7.3.1 and

equation (3) of section 7.3) (see also Proposition 1 of Wang(1987)),

sup
y

¯̄
¯Ŝ(y) ¡ S(y)

¯̄
¯ = sup

y

¯̄
¯Ĝ(y) ¡ G(y)

¯̄
¯ = o(1) a.s. (A.6)

along with the condition that S(¿0¡) > 0 (from Assumption C), this implies that the ¯rst term on the right

hand side of inequality (A.5) converges to 0 alomost surely. Moreover, the almost sure consistency of the

Kaplan-Meier estimator Ĝ(y) for G(y) implies that, for each value of ¯ 2 B, the integral in the second term

of the right hand side of (A.5) converges to 0 almost surely, and this pointwise convergence can be easily

extended to uniform convergence over ¯ 2 B using the compactness of B, the Lipschitz condition in (A.4),

and a standard partitioning argument (e.g., in the proof of Theorem 4.2.1 of Amemiya(1985)).

This argument has established

sup
¯2B

¯̄
¯Rn(¯; Ŝ) ¡ Rn(¯;S) ¡ Rn(¯0; Ŝ) + Rn(¯0; S)

¯̄
¯ = o(1) a.s. (A.7)

Also,

Rn(¯;S) ¡ Rn(¯0; S) =
1

n

nX

i=1

E
£
½¼(yi ¡ min(x0

i¯; c)) ¡ ½¼(yi ¡ min(x0
i¯0; c))

¯̄
yi; di; xi

¤
(A.8)

is an empirical process satisfying the conditions for applicability of a uniform law of large numbers (e.g.,

Amemiya(1985), Theorem 4.2.1), so

sup
¯2B

j(Rn(¯;S) ¡ Rn(¯0; S)) ¡ R(¯)j = o(1) a.s. (A.9)

which together with (A.7), establishes (A.2).

A.2 Proof of Theorem 3.2

In this section, we derive the limiting distribution of the estimator, using the consistency result established in

the previous section. The argument is based on deriving a preliminary rate of convergence for the estimator

which is slower than the parametric rate, and then in turn establishing root-n consistency and asymptotic

normality. Throughout this section, for any matrix A, we let kAk denote (
P

i;j A2
ij)

1=2 where Aij denotes

the components of A. Also, all asymptotically negligible remainder terms will be denoted by Rn(¢).

The ¯rst lemma establishes a linear representation for an estimator which solves an infeasible ¯rst order

condition that assumes the distribution of the censoring variable is known:

Theorem A.1 If ^̄ p! ¯0, Âi ´ Â(yi; xi; di) is any mean 0 random vector with ¯nite variance, and ^̄ solves

the following relationship:

1

n

nX

i=1

Ãi( ^̄; S) + Âi = op(n
¡±) (A.10)
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where 0 < ± · 1=2, then:

^̄ ¡ ¯0 = M¡1
0

1

n

nX

i=1

(Ãi + Âi) + op(n¡±) (A.11)

Proof: Noting that E[Ãi(¯;S)jxi] = S(x0
i¯)(¼ ¡ F²jX(x0

i(¯ ¡ ¯0)) we ¯rst evaluate the expansion of

E[Ãi(¯; S)] for ¯ in a neighborhood of ¯0:

Lemma A.1 as k¯ ¡ ¯0k ! 0,

E[S(x0
i¯)(¼ ¡ F²jX(x0

i(¯ ¡ ¯0)))xi] = E[S(x0
i¯0)f²jX(0)xix

0
i](¯ ¡ ¯0) + o(k¯ ¡ ¯0k) (A.12)

Proof: We add and substract E[S(x0
i¯0)(¼ ¡F²jX(x0

i(¯ ¡¯0)))xi] from the left hand side of (A.12). We ¯rst

show that:

E[(S(x0
i¯) ¡ S(x0

i¯0))(¼ ¡ F²jX(x0
i(¯ ¡ ¯0)))xi] = o(k¯ ¡ ¯0k) (A.13)

Note that a mean value expansion of F²jX(x0
i(¯ ¡ ¯0)) around 0 implies by the bound on the conditional

density of ²i in a neighborhood of 0 of Assumption E, the bound on kxik in Assumption R, and the Cauchy

Schwartz inequality that the left hand side of (A.13) is bounded above by:

CE[jS(x0
i¯) ¡ S(x0

i¯0)j]k¯ ¡ ¯0k (A.14)

where C is a constant re°ecting the bounds in Assumptions E and R. By the dominated convergence theorem,

E[jS(x0
i¯) ¡ S(x0

i¯0)j] is o(1) as ¯ ! ¯0 since S(x0
i¯0) is discontinuous on a set of probability zero by

Assumption RC. This establishes (A.13). We next show that

E[S(x0
i¯0)(¼ ¡ F²jX(x0

i(¯ ¡ ¯0)))xi] = E[S(x0
i¯0)f²jX(0)xix

0
i](¯ ¡ ¯0) + O(k¯ ¡ ¯0k2) (A.15)

A mean value expansion of the left hand side of (A.15) yields:

E[S(x0
i¯0)f²jX(0)xix

0
i](¯ ¡ ¯0) + Rn (A.16)

where kRnk is bounded above by:

E[jf²jX(0) ¡ f²jX(x0
i(

~̄ ¡ ¯0))jkxik2]k¯ ¡ ¯0k

with ~̄ denoting the intermediate value in the mean value expansion. By the Lipschitz assumption on the

conditional density of ²i in a neighborhood of 0 (Assumption E), and the bound on kxik (Assumption R),

the above term is is O(k¯ ¡ ¯0k2), establishing (A.15). This shows (A.12). ¥
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Turning attention to the proof of the theorem, we let E[Ãi( ^̄; S)] denote E[Ãi(¯; S)]
¯̄
¯
¯=^̄

.

Express 1
n

Pn
i=1 Ãi( ^̄; S) as

1

n

nX

i=1

Ãi(¯0; S) +
1

n

nX

i=1

E[Ãi( ^̄; S)] +
1

n

nX

i=1

Ãi( ^̄; S) ¡ Ãi(¯0; S) ¡ E[Ãi( ^̄; S)] (A.17)

Turning attention to the second term in (A.17), we note that it immediately follows by Lemma A.1 and the

consistency of ^̄ that

1

n

nX

i=1

E[Ãi( ^̄; S)] = M0 + op(1)

We next show that the third term in (A.17) is op(n¡1=2). By the consistency of ^̄, it will su±ce to show

that for a sequence of numbers ±n converging to 0 slowly enough, we have:

sup
k¯¡¯0k·±n

°°°°°
1

n

nX

i=1

Ãi(¯;S) ¡ Ãi(¯0; S) ¡ E[Ãi(¯;S)]

°°°°° = op(n
¡1=2) (A.18)

To show (A.18), by applying Lemma 2.17 in Pakes and Pollard(1989), it will su±ce to show the following

two results:

I The class of functions (Ãi(¯; S) : ¯ 2 B) is Euclidean with respect to the envelope F , where E[F 2] < 1.

II lim¯!¯0 E[(Ãi(¯; S) ¡ Ãi(¯0; S)2] = 0.

To show I, we note by Lemmas 2.14(i) and 2.14(ii) of Pakes and Pollard(1989), it will su±ce to show the

Euclidean property for the three classes a)(I [yi > x0
i¯] : ¯ 2 B), b) (I[yi · x0

i¯] : ¯ 2 B) c) (S(x0
i¯) : ¯ 2 B).

The Euclidean property for all three classes for the envelope F ´ 1 follows directly from Lemma 22(ii) in

Nolan and Pollard(1987) since the functions I [¢] and S(¢) are of bounded variation. This establishes I.

To establish II, we note that it will su±ce to show that both E[jI [yi > x0
i¯] ¡ I [yi > x0

i¯0]j] and E[(I [²i ·
x0

i(¯ ¡ ¯0)]S(x0
i¯) ¡ I[²i · 0]S(x0

i¯0))2] converge to 0 as k¯ ¡ ¯0k ! 0. To show the former, we note that

jI[yi > x0
i¯] ¡ I[yi > x0

i¯0]j is bounded above by I [jyi ¡ x0
i¯0j · kxikk¯ ¡ ¯0k], and that:

P (jyi ¡ x0
i¯0j · kxikk¯ ¡ ¯0k) · P (j²ij · kxikk¯ ¡ ¯0k) + P (jci ¡ x0

i¯0j · kxikk¯ ¡ ¯0k)

By Assumption E, the ¯rst term on the right hand side of the above expression converges to 0 as ¯ ! ¯0 since

kxik is bounded by Assumption R. By Assumption RC, the second term converges to 0 as ¯ ! ¯0, again

using the assumption that kxik is bounded. To show that E[(I[²i · x0
i(¯ ¡ ¯0)]S(x0

i¯) ¡ I[²i · 0]S(x0
i¯0))2]

converges to 0, it will su±ce to show that both E[jI[²i · x0
i(¯ ¡ ¯0)] ¡ I[²i · 0]j] and E[(S(x0

i¯) ¡ S(x0
i¯0)2]

converge to 0 as ¯ ! ¯0. The ¯rst term is bounded above by E[I [j²ij · kxikk¯ ¡ ¯0k]] which converges to 0

by assumption E, and the second term converges to 0 by the dominated convergence theorem, as S(x0
i¯0) is

discontinuous on a set of probability 0 by Assumption RC. This establishes II and hence (A.18). Thus we

have shown that:

1

n

nX

i=1

Ãi( ^̄; S) =
1

n

nX

i=1

Ãi(¯0; S) + (M0 + op(1))( ^̄ ¡ ¯0) + op(n
¡1=2) (A.19)
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Combining this with (A.10), we have:

1

n

nX

i=1

Ãi(¯0; S) + Âi + (M0 + op(1))( ^̄ ¡ ¯0) = op(n
¡±) (A.20)

which by applying the Lindeberg-Levy central limit theorem and Slutsky's theorem, can be rearranged to

yield the conclusion of the theorem. ¥

Our next step is to establish a uniform linear representation for the Kaplan-Meier product limit estimator

used in the ¯rst stage.

Lemma A.2 Let H(x) denote P (yi ¸ x) and let ¤(¢) denote the cumulative hazard function of ci. Letting

¢¤(x) denote ¤(x) ¡ ¤(x¡) we have the following linear representation for the product limit estimator:

Ŝ(t) ¡ S(t) = S(t)
1

n

nX

i=1

H(yi)
¡1(1 ¡ ¢¤(yi))

¡1I [yi · t](1 ¡ di) (A.21)

¡
Z t

0

H(s)¡1(1 ¡ ¢¤(s))¡1I[yi ¸ s]d¤(s) + Rn(t)

where

sup
0·t<1

jRn(t)j = op(n
¡1=2) (A.22)

Proof: Note by the assumption that ¿0, the upper support point of ci, is mass point, we have Ŝ(t) ´ 0 = S(t)

for all t > ¿0. It will thus su±ce to show that the linear representation holds uniformly over the interval

[0; ¿0]. We ¯rst de¯ne the following processes:

N(t) =
nX

i=1

I [yi · t; di = 0]

Y (t) =
nX

i=1

I[yi ¸ t]

M(t) = N(t) ¡
Z t

0

Y (s)d¤(s)

From the proof of Theorem 4.2.2. in Gill(1980), we have

Ŝ(t) ¡ S(t) = S(t)
1

n

Z t

0

(1 ¡ ¢¤(s))¡1 Ŝ(s¡)

S(s¡)

nI[Y (s) > 0]

Y (s)
dM(s) (A.23)

for all t 2 [0; ¿0]. We thus have:

Ŝ(t) ¡ S(t) = S(t)
1

n

Z t

0

(1 ¡ ¢¤(s))¡1H(s)¡1dM(s) + Rn(t) (A.24)
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where

n1=2Rn(t) = S(t)

Z t

0

(1 ¡ ¢¤(s))¡1

Ã
n¡1=2H(s)¡1 ¡ Ŝ(s¡)

S(s¡)

n1=2I[Y (s) > 0]

Y (s)

!
dM(s) (A.25)

so note it will su±ce to show that:

sup
0·s·¿0

n1=2jRn(s)j = op(1) (A.26)

Let

H(s) = (1 ¡ ¢¤(s))¡1

Ã
n¡1=2H(s)¡1 ¡ Ŝ(s¡)

S(s¡)

n1=2I[Y (s) > 0]

Y (s)

!

The process (1¡¢¤(s))¡1 Ŝ(s¡)
S(s¡)

n1=2I[Y (s)>0]
Y (s) is bounded and predictable by the arguments used in the proof

of Theorem 4.2.2 in Gill(1980). It immediately follows that the process H(s) is bounded and predictable,

and note that H2(s)Y (s) is

(1 ¡ ¢¤(s))¡2n¡1H(s)¡2Y (s)+ (A.27)

(1 ¡ ¢¤(s))¡2 Ŝ2(s¡)

S2(s¡)

nI[Y (s) > 0]

Y (s)
¡ (A.28)

2(1 ¡ ¢¤(s))¡2H(s)¡1 Ŝ(s¡)

S(s¡)
(A.29)

By Theorem 3.1, we have:

sup
0·s·¿0

jŜ(s) ¡ S(s)j = op(1) (A.30)

and note that Y (s)=n converges in probability to H(s), uniformly in [0; ¿0]. Since H(s) is bounded away

from 0 on [0; ¿0], this implies that terms in (A.27)-(A.29) converge uniformly on [0; ¿0] to

(1 ¡ ¢¤(s))¡2H(s)¡1

(1 ¡ ¢¤(s))¡2H(s)¡1

and

2(1 ¡ ¢¤(s))¡2H(s)¡1

respectively. It thus follows that

sup
0·s·¿0

H2(s)Y (s)
p! 0 (A.31)
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So by Theorem 4.2.1 of Gill(1980)

n1=2Rn(¢) ) Z0 in D[0; ¿0] (A.32)

where D[0; ¿0] is the space of right continuous functions with left hand limits, and Z0 is a process degenerate

at 0. It immediately follows by Theorem 2.4.3 in Gill(1980) that

sup
0·s·¿0

n1=2jRn(s)j = op(1) (A.33)

This establishes (A.21). ¥

Implicit in the result of the uniform linear representation is a rate of uniform convergence of the Kaplan-

Meier estimator. To formally establish the uniform rate, we ¯rst show the Euclidean property of the class

of functions in the summation of the linear representation:

Lemma A.3 The class of functions

(H(yi)
¡1(1 ¡ ¢¤(yi))

¡1I [yi · t](1 ¡ di) ¡
Z t

0

H(s)¡1(1 ¡ ¢¤(s))¡1I[yi ¸ s]d¤(s) (A.34)

: t 2 [0; ¿0])

is Euclidean for a constant envelope.

Proof: Note that the class H(yi)¡1(1 ¡ ¢¤(yi))¡1(1 ¡ di) is trivially Euclidean for a constant envelope,

and the class I [yi · t] is Euclidean for the envelope F ´ 1 by Example 2.11 in Pakes and Pollard(1989). It

follows by Lemma 2.14(ii) of Pakes and Pollard(1989) that the class:

(H(yi)
¡1(1 ¡ ¢¤(yi))

¡1I [yi · t](1 ¡ di)

is Euclidean for a constant envelope. Next we show the Euclidean property for the class of functions of yi

and s, indexed by t:

H(s)¡1(1 ¡ ¢¤(s))¡1I[yi ¸ s]I [yi · t] (A.35)

The class of functions H(s)¡1(1 ¡ ¢¤(s))¡1I [yi ¸ s] is trivially Euclidean for a constant envelope, and the

class I [yi · t] is Euclidean for the envelope F ´ 1 by Example 2.11 in Pakes and Pollard(1989). It follows

that the class in (A.35) is Euclidean for a constant envelope by Lemma 2.14(ii) of Pakes and Pollard(1989).

Therefore, by Lemma 5 in Sherman(1994), the class of functions of yi, indexed by t:

Z t

0

H(s)¡1(1 ¡ ¢¤(s))¡1I[yi ¸ s]d¤(s) : t 2 [0; ¿0]

is Euclidean for a constant envelope. It follows by Lemma 2.14(i) in Pakes and Pollard(1989) that the class

in (A.34) is Euclidean for a constant envelope. ¥

We now have the following result:
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Lemma A.4 For any ± < 1=2:

sup
t2R+

jŜ(t) ¡ S(t)j = op(n
¡±) (A.36)

Proof: Note that for any t ¸ ¿0, we have Ŝ(t) ´ 0 = S(t), so it su±ces to show that:

sup
t2[0;¿0)

jŜ(t) ¡ S(t)j = op(n
¡±)

Working with the linear representation in (A.21), by the fact that the remainder term is op(n¡1=2) uniformly

over [0; ¿0], it remains to show that:

sup
t2[0;¿0)

¯̄
¯ 1

n

nX

i=1

(H(yi)
¡1(1 ¡ ¢¤(yi))

¡1I [yi · t](1 ¡ di) (A.37)

¡
Z t

0

H(s)¡1(1 ¡ ¢¤(s))¡1I[yi ¸ s]d¤(s)
¯̄
¯ = op(n

¡±)

By the Euclidean property of the class in (A.34) this follows directly by Corollary 9 in Sherman(1994). ¥

The uniform rate of convergence will su±ce to establish a preliminary rate of convergence for the estimator

^̄.

Lemma A.5 For any ± 2 (0; 1=2),

^̄ ¡ ¯0 = op(n
¡±) (A.38)

Proof: We rewrite the ¯rst order condition as:

1

n

nX

i=1

Ãi( ^̄; S) +
1

n

nX

i=1

Ãi( ^̄; Ŝ) ¡ Ãi( ^̄; S) = op(n
¡1=2) (A.39)

By linearizing the ratio
Ŝ(x0

i
^̄)

Ŝ(yi)
around

S(x0
i
^̄)

S(yi)
and the assumptions that di=S(yi) and kxik are bounded,

Lemma A.4 implies that:

°°°°°
1

n

nX

i=1

Ãi( ^̄; Ŝ) ¡ Ãi( ^̄; S)

°°°°° = op(n
¡±) (A.40)

for any ± 2 (0; 1=2). Thus we have:

1

n

nX

i=1

Ãi( ^̄; S) = op(n
¡±) (A.41)

to which we can apply Theorem A.1 with Âi ´ 0 to conclude that ^̄¡ ¯0 = op(n¡±) +Op(n¡1=2) = op(n¡±).

¥

We next show the following result:
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Lemma A.6 Let »i be de¯ned as in equation (3.12). Then

(1 ¡ ¼)
1

n

nX

i=1

I[yi · x0
i¯0]di

Ã
Ŝ(x0

i¯0)

Ŝ(yi)
¡ S(x0

i¯0)

S(yi)

!
xi (A.42)

has the representation:

1

n

nX

i=1

»i + op(n¡1=2) (A.43)

Proof: The proof is facilitated by decomposing »i as the sum of two components, which we denote by »1i; »2i,

and are de¯ned as :

»1i = ¼(1 ¡ ¼)

Z

X
I[x0

i¯0 · ¿0]
³
H(yi)

¡1I[yi · x0
i¯0](1 ¡ di) (A.44)

¡
Z x0

i¯0

0

H(s)¡1(1 ¡ ¢¤(s))¡1I[yi ¸ s]d¤(s)
´
xdFX(x)

»2i = ¡(1 ¡ ¼)

Z
I [² · 0]I[x0¯0 + ² < c]

S(x0¯0)

S(x0¯0 + ²)
(A.45)

£
Ã

H(yi)I[yi · x0¯0 + ²](1 ¡ di) ¡
Z x0¯0+²

0

H(s)¡1(1 ¡ ¢¤(s))¡1I[yi ¸ s]d¤(s)

!

£ xdFX;²(x; ²)dFC(c)

Linearizing the ratio Ŝ(x0
i
^̄)

Ŝ(yi)
around S(x0

i
^̄)

S(yi)
, we have by Lemma A.4 and the assumptions that kxik and

di=S(yi) are bounded that (A.42) can be written as:

1

n

nX

i=1

(1 ¡ ¼)I[yi · x0
i¯0]diS(yi)

¡1(Ŝ(x0
i¯0) ¡ S(x0

i¯0))xi+ (A.46)

1

n

nX

i=1

(1 ¡ ¼)I[yi · x0
i¯0]diS(x0

i¯0)S(yi)
¡2(Ŝ(yi) ¡ S(yi))xi + op(n¡1=2) (A.47)

We ¯rst establish a representation for (A.46). Here, we \plug in" the linear representation for Ŝ(¢) ¡ S(¢)
established in Lemma A.2. Noting that the \own observation" terms are asymptotically negligible, this

yields a U-statistic plus and asymptotically negligible term:

1

n(n ¡ 1)

X

i 6=j

(1 ¡ ¼)I [yi · x0
i¯0]diS(x0

i¯0)S(yi)
¡1£ (A.48)

³
H(yj)

¡1(1 ¡ ¢¤(yj))
¡1I [yj · x0

i¯0](1 ¡ dj)

¡
Z x0

i¯0

0

H(s)¡1(1 ¡ ¢¤(s))¡1I [yj ¸ s]d¤(s)
´
xi + op(n

¡1=2)
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The left hand side of the above expression is a second order U-statistic, and we denote its kernel function

by F(³i; ³j) where ³i = (yi; x
0
i; di)

0. It is straightforward to show that E[kF(³i; ³j)k2] < 1 by the assump-

tions that di=S(yi); H(¢)¡1 and kxik are bounded. We note that E[F(³i; ³j)] = E[F(³i; ³j)j³i] = 0 and
1
n

Pn
j=1 E[F(³i; ³j)j³j ] can be written as 1

n

Pn
i=1 »1i. Thus by a standard projection theorem for U-statistics

(see for example Ser°ing(1980)), (A.46) can be expressed as:

1

n

nX

i=1

»1i + op(n
¡1=2) (A.49)

The same arguments can be used to represent (A.47) as:

1

n

nX

i=1

»2i + op(n
¡1=2) (A.50)

This establishes the conclusion of the lemma. ¥

We next establish the following lemma:

Lemma A.7

1

n

nX

i=1

(1 ¡ ¼)di(I [yi · x0
i
^̄] ¡ I [yi · x0

i¯0])di

Ã
Ŝ(x0

i
^̄)

Ŝ(yi)
¡ S(x0

i
^̄)

S(yi)

!
xi = op(n¡1=2) (A.51)

Proof: Fix ± 2 (1=4; 1=2). By linearizing the ratio Ŝ(x0
i
^̄)

Ŝ(yi)
around S(x0

i
^̄)

S(yi)
, we have by Lemma A.4, and the

assumption that kxik and di=S(yi) are bounded, that it su±ces to show:

1

n

nX

i=1

jI [yi · x0
i
^̄] ¡ I [yi · x0

i¯0]jdi = op(n¡1=2+±) (A.52)

We note that the left hand side of the above expression is bounded above by:

1

n

nX

i=1

I[j²ij · kxikk ^̄ ¡ ¯0k] (A.53)

we can multiply this expression by I [k ^̄ ¡ ¯0k · n¡±] and the resulting remainder term is op(n¡1=2) by

Lemma A.5. Note that for any ¯, by Assumption E we have E[I[j²ij · kxikk¯ ¡¯0k]] is O(k¯ ¡¯0k). It will

thus su±ce to show that:

sup
k¯¡¯0k·n¡±

¯̄
¯̄
¯
1

n

nX

i=1

I[j²ij · kxikk¯ ¡ ¯0k] ¡ E[I[j²ij · kxikk¯ ¡ ¯0k]

¯̄
¯̄
¯ = op(n

¡1=2) (A.54)

This follows by Lemma 2.17 in Pakes and Pollard(1989), since the class of functions indexed by ¯ at hand is

Euclidean for the envelope F ´ 1 by example 2.11 in Pakes and Pollard(1989), and P (j²ij · kxikk¯ ¡ ¯0k) !
0 as ¯ ! ¯0 by Assumption E. ¥
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The ¯nal result which needs to be established before proving the main theorem is an equicontinuity condition

for the Kaplan-Meier estimator:

Lemma A.8

1

n

nX

i=1

I[yi · x0
i
^̄]di

Ã
Ŝ(x0

i
^̄)

Ŝ(yi)
¡ S(x0

i¯0)

S(yi)
¡ Ŝ(x0

i¯0)

Ŝ(yi)
+

S(x0
i¯0)

S(yi)

!
xi = op(n

¡1=2) (A.55)

Proof: Again, we linearize the ratios Ŝ(x0
i
^̄)

Ŝ(yi)
, and Ŝ(x0

i¯0)

Ŝ(yi)
, which by Lemma A.4, and the bounds on

kxik; di=S(yi) makes it su±ce to show that:

1

n

nX

i=1

I[yi · x0
i
^̄]diS(yi)

¡1
³
Ŝ(x0

i
^̄) ¡ S(x0

i
^̄) ¡ Ŝ(x0

i¯0) + S(x0
i¯0)

´
xi = op(n

¡1=2) (A.56)

and

1

n

nX

i=1

I[yi · x0
i
^̄]diS(yi)

¡2
³
S(x0

i
^̄) ¡ S(x0

i¯0)
´³

Ŝ(yi) ¡ S(yi)
´

xi = op(n¡1=2) (A.57)

We ¯rst show (A.57). We note by Lemma A.4 and the bound on I [yi · x0
i
^̄]diS(yi)

¡2xi that it will su±ce

to show:

1

n

nX

i=1

jS(x0
i
^̄) ¡ S(x0

i¯0)j = op(n
¡±) (A.58)

for ± 2 (1=4; 1=2). Assumption RC(i) implies that E[jS(x0
i
^̄)¡S(x0

i¯0)j] = Op(k ^̄¡¯0k), so by the consistency

of ^̄, it will su±ce to show that for a sequence of numbers ±n converging to 0 slowly enough that:

sup
k¯¡¯0k·±n

1

n

nX

i=1

jS(x0
i¯) ¡ S(x0

i¯0)j ¡ E [jS(x0
i¯) ¡ S(x0

i¯0)j] = op(n
¡1=2) (A.59)

Note that the class of functions (S(x0
i¯) : ¯ 2 B) is Euclidean for the envelope F ´ 1 by Lemma 22(ii) in

Nolan and Pollard(1987). It immediately follows that the class (jS(x0
i¯) ¡ S(x0

i¯0)j : ¯ 2 B) is Euclidean for

a constant envelope. Also, by Assumption RC(i) it follows that E
£
(S(x0

i¯) ¡ S(x0
i¯0))2

¤
! 0 as ¯ ! ¯0.

(A.59) follows from Lemma 2.17 in Pakes and Pollard(1989), showing (A.57)

We next show (A.56). Note that it can be shown as before that:

1

n

nX

i=1

di(I [yi · x0
i¯] ¡ I [yi · x0

i¯0]) = Op(k¯ ¡ ¯0k)

so I[yi · x0
i
^̄] can be replaced with I [yi · x0

i¯0] in (A.56) and the resulting remainder term is op(n¡1=2).

By Lemma A.4 and the fact that Ŝ(t) ¡ S(t) = 0 for t > ¿0, it will su±ce to show:

sup
k¯¡¯0k·n¡±

1

n

nX

i=1

I [yi · x0
i
^̄]diS(yi)

¡1I[x0
i¯ · ¿0](Ŝ(x0

i¯) ¡ S(x0
i¯)) (A.60)

¡ I[x0
i¯ · ¿0](Ŝ(x0

i¯0) ¡ S(x0
i¯0))xi = op(n

¡1=2)
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We next plug in the linear representation of Lemma A.2. Again, by noting that the own observation terms

are asymptotically negligible, the summation of the left hand side in (A.60) can be written as a U-statistic:

1

n(n ¡ 1)

X

i 6=j

I [yi · x0
i
^̄]diS(yi)

¡1(Qj(x
0
i¯) ¡ Qj(x

0
i¯0))xi (A.61)

where here we let Qi(t) denote the mean 0 process:

S(t)(H(yi)
¡1(1 ¡ ¢¤(yi))

¡1I [yi · t](1 ¡ di) ¡
Z t

0

H(s)¡1(1 ¡ ¢¤(s))¡1I [yi ¸ s]d¤(s))

Again, we let ³i ´ (yi; xi; di), and let F(³i; ³j ; ¯) denote the kernel of the U-process. Note to show (A.60),

it will su±ce to show that:

sup
k¯¡¯0k·n¡±

°°°°°°
1

n(n ¡ 1)

X

i6=j

F(³i; ³j; ¯) ¡ E[F(³i; ³j ; ¯)j³j]

°°°°°°
= op(n

¡1=2) (A.62)

sup
k¯¡¯0k·n¡±

°°°°°°
1

n

nX

j=1

E[F(³i; ³j ; ¯)j³j]

°°°°°°
= op(n¡1=2) (A.63)

We ¯rst show (A.63). Note that 1
n

Pn
j=1 E[F(³i; ³j; ¯)j³j ] can be written as:

1

n

nX

i=1

¼

Z

X
(Qi(x

0¯) ¡ Qi(x
0¯0))xdFX(x)

To which we can apply Lemma 2.17 in Pakes and Pollard(1989). We ¯rst show the class of functions of yi; di,

indexed by ¯ :

µZ

X
Qi(x

0¯)xdFX(x) : ¯ 2 B
¶

(A.64)

is Euclidean for a constant envelope. To do so, we ¯rst note the Euclidean property (for a constant envelope)

of the class of functions of yi; di; xi, indexed by ¯,

(Qi(x
0
i¯)xi : ¯ 2 B)

follows from the same arguments used in showing the Euclidean property for the class in (A.34). Thus the

class in (A.64) is Euclidean for a constant envelope by Lemma 5 in Sherman(1994). We next show that:

E

·°°°°
Z

X
(Qi(x

0¯) ¡ Qi(x
0¯0))

2xdFX(x)

°°°°
¸

! 0 (A.65)

as ¯ ! ¯0. For this it will su±ce to show that as ¯ ! ¯0:

E[jI [x0
i¯ · ¿0] ¡ I [x0

i¯0 · ¿0]j] ! 0 (A.66)

E[jI [ci · x0
i¯] ¡ I [ci · x0

i¯0]j] ! 0 (A.67)

E

2
4

ÃZ x0
i¯0

x0
i¯

H(s)¡1(1 ¡ ¢¤(s))¡1I[yi ¸ s]d¤(s)

!2
3
5 ! 0 (A.68)
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All three of these conditions follow from Assumption RC. This shows (A.64) and hence (A.63). To show

(A.62) we note the U-process with kernel F(³i; ³j ; ¯)¡E[F(³i; ³j; ¯)j³j] is degenerate. Similar arguments as

above can be used to establish the Euclidean property of this class of functions indexed by ¯ 2 B, as well

as an analogous L2-continuity condition. Thus (A.63) follows directly from Corollary 8 in Sherman(1994).

This shows (A.55). ¥

We can now proceed to the main theorem:

Theorem A.2 (Theorem 3.2 in text) The estimator ^̄ has the following asymptotic linear representation:

^̄ ¡ ¯0 =
1

n

nX

i=1

M¡1
0 (Ãi(¯0; S) + »i) + op(n

¡1=2) (A.69)

Proof: Write Ãi(¯;S) as

Ã1i(¯) ¡ Ã2i(¯)Ã3i(¯;S)

where

Ã1i(¯) = ¼I [yi > x0
i¯]xi (A.70)

Ã2i(¯) = (1 ¡ ¼)I[yi · x0
i¯]dixi (A.71)

Ã3i(¯; S) = S(x0
i¯)=S(yi) (A.72)

Rearrange the ¯rst order condition:

1

n

nX

i=1

Ãi( ^̄; Ŝ) = op(n
¡1=2) (A.73)

as:

1

n

nX

i=1

Ãi( ^̄; S) +

1

n

nX

i=1

Ã2i(¯0)(Ã3i(¯0; Ŝ) ¡ Ã3i(¯0; S) +

1

n

nX

i=1

(Ã2i( ^̄) ¡ Ã2i(¯0))(Ã3i(¯0; Ŝ) ¡ Ã3i(¯0; S)) +

1

n

nX

i=1

Ã2i( ^̄)(Ã3i( ^̄; S) ¡ Ã3i( ^̄; Ŝ) ¡ Ã3i(¯0; Ŝ) + Ã3i(¯0; S)) = op(n
¡1=2)

which by Lemmas 2-7 yields:

1

n

nX

i=1

Ãi( ^̄; S) + »i = op(n
¡1=2) (A.74)

so the desired result follows from Theorem A.1 with ± = 1=2 and Âi = »i. ¥

The limiting distribution in Theorem 3.2 follows by applying the Lindeberg-Levy central limit theorem to

the linear representation in Theorem A.2.
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Table 1: Monte Carlo Results

Student t(1)

Buckley-James CLAD (¼ = 0:50) STLS

® ¯ ® ¯ ® ¯

True Values -1.000 1.000 -1.000 1.000 -1.000 1.000

Mean Bias -1.6000 0.695 -0.005 -0.004 0.009 0.015

Median Bias -0.648 0.004 -0.011 -0.004 -0.000 0.007

RMSE 9.635 23.761 0.089 0.093 0.116 0.164

MAE 1.611 2.188 0.071 0.074 0.090 0.122

Student t(2)

Buckley-James CLAD (¼ ¡ 0:50) STLS

® ¯ ® ¯ ® ¯

True Values -1.000 1.000 -1.000 1.000 -1.000 1.000

Mean Bias -0.109 -0.000 -0.010 -0.002 0.001 0.008

Median Bias -0.095 -0.001 -0.017 -0.001 -0.000 0.002

RMSE 0.205 0.191 0.095 0.105 0.097 0.123

MAE 0.146 0.125 0.076 0.083 0.077 0.098

Student t(3)

Buckley-James CLAD (¼ ¡ 0:50) STLS

® ¯ ® ¯ ® ¯

True Values -1.000 1.000 -1.000 1.000 -1.000 1.000

Mean Bias -0.032 0.008 -0.001 0.000 0.010 0.010

Median Bias -0.035 0.004 -0.002 -0.006 0.007 0.0008

RMSE 0.115 0.005 0.096 0.109 0.095 0.115

MAE 0.091 0.089 0.076 0.087 0.075 0.091
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Table 1: Monte Carlo Results (continued)

Standard Normal

Buckley-James CLAD (¼ = 0:50) STLS

® ¯ ® ¯ ® ¯

True Values -1.000 1.000 -1.000 0.000 -1.000 1.000

Mean Bias 0.000 0.000 -0.002 -0.007 0.007 0.005

Median Bias 0.001 -0.003 -0.000 -0.009 0.008 0.005

RMSE 0.079 0.083 0.099 0.106 0.085 0.095

MAE 0.062 0.066 0.079 0.085 0.067 0.075

Heteroskedastic Normal, ¾2(x) = exp(¡x)
Buckley-James CLAD (¼ = 0:50) STLS

® ¯ ® ¯ ® ¯

True Values -1.000 1.000 -1.000 1.000 -1.000 1.000

Mean Bias 0.161 0.178 0.004 0.000 0.026 0.020

Median Bias 0.156 0.173 0.003 -0.016 0.021 0.002

RMSE 0.196 0.237 0.113 0.149 0.118 0.221

MAE 0.168 0.196 0.090 0.118 0.083 0.165

Heteroskedastic Normal, ¾2(x) = exp(x)

Buckley-James CLAD (¼ ¡ 0:50) STLS

® ¯ ® ¯ ® ¯

True Values -1.000 1.000 -1.000 1.000 -1.000 1.000

Mean Bias -0.150 -0.224 -0.005 -0.007 0.005 0.004

Median Bias -0.149 -0.224 -0.001 -0.006 0.007 0.005

RMSE 0.173 0.247 0.113 0.091 0.098 0.083

MAE 0.152 0.225 0.090 0.071 0.078 0.067
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Table 2: Estimation Results for Stanford Heart Transplant Data.

157 Observations with Complete Records (Unless Otherwise Noted)

Constant Age Age2

Ying-Jung Weia 2.731 0.034 -0.0007

(0.684) (0.011) (0.0110)

Buckley-James,b 1.35 0.107 -0.0017

152 Observation (0.71) (0.037) (0.0005)

Buckley-Jamesc 1.046 0.113 -0.007

(1.035) (0.057) (0.0007)

SCLSc 1.132 0.129 -0.0023

(1.129) (0.060) (0.0008)

CRQ, ¼ = 0:50c (CLAD) 1.460 0.123 -0.0021

(1.446) (0.078) (0.0011)

CRQ, ¼ = 0:25c -0.696 0.165 -0.0023

(1.894) (0.113) (0.0015)

CRE, ¼ = 0:75Hc 1.880 0.090 -0.0013

(1.028) (0.060) (0.0008)

a Reported by Ying, Jung, and Wei (1991); standard errors calculated as width of re-

ported 95% con¯dence intervals, divided by 2 £1:9
b Reported by Miller and Halpern (1982); sample excludes 5 observations with survival

times less than 10 days.

c Standard errors calculated from bootstrap distribution with R = 1000 replications,

using median absolute deviation divided by 0.67.
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