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Abstract

In this paper we propose a simple time series model of the number of transactions made

in intervals of length � seconds. We call this model the BIN model. The properties of the

BIN model are evaluated while we explore connections between this model and Cox processes

| that is Poisson processes with random intensities. We apply the modelling framework to

data on trades in IBM shares.
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1 INTRODUCTION

1.1 Background

In a recent paper, stimulated by the advent of trade-by-trade datasets recorded on commonly

traded stocks, futures and derivatives, Rydberg and Shephard (2000) proposed to model an asset

price p(u) at time u using a compound Poisson process

p(u) = p(0) +

N(u)X
t=1

Zt; (1)

where fN(u)gu�0 is the number of trades recorded up until time u and Zt is the price movement
or change associated with the t � th trade. Rydberg and Shephard (2000) speci�ed N(u) to

be a counting process1, modelled as a Cox process | that is a Poisson process with a random

1There are many equivalent de�nitions of a counting process. The one which is most helpful in our context

states that if fN(u)g
u�0

is a process with state space Z[f+1g and non{decreasing right continuous paths, then

fN(u)g
u�0

is a counting process. Since the paths are non{decreasing and right continuous we automatically get

that fN(u)g
u�0

is c�adl�ag (continu �a droit { limite �a gauche).
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intensity. In general, the dynamics of the Cox and price movements processes can be jointly

adapted to a wide class of �ltrations involving just their own past or more extensive information

sets (e.g. volume of transaction and an indicator of whether the initiator of the transaction is a

buyer or a seller). This is purely an issue of combining both the empirical evidence and a priori

economic theory, reecting both the purpose of the modelling exercise and the data generating

mechanism.

From an economic viewpoint we are typically interested in comparing the rate of return on

holding the asset with that obtainable by other risky investments or riskless interest rate bearing

accounts. In order to do this we have to compute the return over a �xed length of time, which

we write as � > 0. Then these returns will be based around the di�erence

pn = p f(n+ 1)��g � p(n�)

=

Nf(n+1)��gX
t=1

Zt �
N(n��)X
t=1

Zt

=

Nf(n+1)��gX
t=N(n��)+1

Zt:

This shows that the number of trades in the interval [n�; (n+ 1)�) plays a crucial role. To

reect this we will work with

Nn = N f(n+ 1)��g �N(n�); (2)

the number of trades in that time interval. This binning operation is illustrated in Figure 1,

which displays the value of the N(u) process against u. Binning partitions time into sections

and we count the number of trades in that interval. We have to take care in dealing with the

open and closed aspects of the interval, but this is straightforward to do. The important point

to remember here is that if Nn = 0 then pn = 0 immediately, while for Nn > 0 the prices can

change. Hence Nn plays a vital role in determining the activity in the changes in the price level.

For small values of � there will be a negligible loss in information in doing this compared to

studying the complete record of the fN(u)g process. Indeed if � equals one second, for the

NYSE data there is no loss at all.

Example 1 The very simplest example of this is where we suppose that the fNng and fZtg
processes are stochastically independent and covariance stationary. Further assume that the

fZtg are independent and identically distributed. Then, writing Fn�� as the information about

the fNng sequence available in�nitesimally before time n�, assuming the moments exist

V ar(pnjFn��) = E fV ar(pnjNn)jFn��g+ V ar fE(pnjNn)jFn��g
= V ar(Zt)E(NnjFn��) +E(Zt)

2
V ar (NnjFn��)

Hence predicting the variance of the price over the next period of length � requires us to model

the mean and variance of the future number of trades. Of course in practice E(Zt) will be

tiny and so what matters in the above setup is really only E(NnjFn��). If we additionally set

E(Zt) = 0 then

Cov(p2n; p
2
n+s) = E

�
Cov

�
p
2
n+s; p

2
njNn+s; Nn

�	
+Cov fVar (pn+sjNn+s);Var(pnjNn)g

= V ar(Zt)
2Cov (Nn; Nn+s) :

Hence we can obtain volatility clustering, with the autocorrelation of squared price changes being

proportional to that of counts.

2



� 2� 3� 4� 5� 6� 7�

N(u)

u
bin no.0 1 2 3 4 5 6

Figure 1: Example of a counting process and bins of size �. Notice that with the de�nition of

Nn given in (2) we have N0 = 0; N1 = 1; N2 = 1; N3 = 1; N4 = 1; N5 = 2; N6 = 0. A \�"
denotes a point where the value is not obtained, where as \�" signi�es that the value is obtained.
This is important as the N(u) process has discrete jumps.

Example 2 We suppose that the fNng and fZtg processes are stochastically independent and

covariance stationary processes. Also assume that fZtg has a zero mean and we write �(s) =

Cor(Zt; Zt+s). Then
2

V ar(pnjFn��) = V ar(Zt)

8<
:E (NnjFn��) + 2

1X
k=1

Pr(Nn = kjFn��)
kX
j=1

(k � j) �(j)

9=
; :

If � is very small then Pr(Nn = 1jFn��) ' E (NnjFn��) and

V ar(pnjFn��) ' V ar(Zt)E (NnjFn��) ;

which is the same results we achieved when the fZtg were uncorrelated. A more speci�c result is

obtained if we assume the fZtg have a �rst order moving average representation (Rydberg and

Shephard (2000) for evidence of the empirical support for this) for then

V ar(pnjFn��) = V ar(Zt) [E (NnjFn��) f1 + 2�(1)g � 2�(1) Pr(Nn > 0jFn��)] :

For large values of � this is going to behave like

V ar(pnjFn��) ' V ar(Zt)E (NnjFn��) f1 + 2�(1)g :

In applied work �(1) ' �0:24 for IBM stocks on the NYSE in 1995 (Rydberg and Shephard

(2000)). Hence we would not expect V ar(pnjFn��)=E (NnjFn��) to be a constant as � changes,

although it will have an asymptote of V ar(Zt) f1 + 2�(1)g for large values of �.

These two examples are, of course, only illustrative for they impose empirically unattractive

constraints on the model. In particular, detailed empirical modelling would require us to move

2This uses the result that

V ar(pnjNn) = V ar(Zt)

(
Nn + 2

NnX
j=1

(Nn � j) �(j)

)
:
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away from the assumption that the fNng and fZtg processes are stochastically independent

(see, for example, Russell and Engle (1998) and Rydberg and Shephard (1998a)). However,

with careful thought it may be possible to do this without loss of mathematical tractability.

The examples demonstrate, we believe, that if our goal is to model price changes in calander

time then we should focus on building models of fNng.

1.2 BIN models

In order to model the sequence fNng we suggest using BIN models. A direct link between BIN

models and Cox processes will be provided in Section 3, but for now the BIN model speci�es

the one-step ahead forecast distribution of the fNng series using a counting distribution. There
is a large existing literature on time series models of counts (see, for example, the reviews

by MacDonald and Zucchini (1997), Grunwald, Hyndman, Tedesco, and Tweedie (1997) and

Cameron and Trivedi (1998, Ch. 7)), however the particular form of model we choose is inspired

by the econometric literature on ARCH models, see Bollerslev, Engle, and Nelson (1994) for a

review. In particular we will write NnjFn�� � Po(�n), allowing �n to depend upon Fn��, the
information available in�nitesimally before time n�, in a particular way. Here Po(�), denotes a

Poisson distribution with mean �. This time series setup is a special case of models put forward

by Zeger and Qaqish (1988) and Shephard (1994).

In our treatment we will assume �n is a linear function of past data | the linearity is the

vital part of this development. The simplest example3 of this is where, for �;  > 0,

NnjFn�� � Po(�n); �n = �+ Nn�1:

This very simple model has been suggested by Grunwald, Hyndman, Tedesco, and Tweedie

(1997, p. 11, example 2) in the context of checking regularity conditions required to prove

geometric ergodicity of generic �rst order autoregressions. Further, this model is observationally

identical to a compound model

Nn =

Nn�1X
j=1

Wn;j + Zn; where Wn;j
iid� Po(); Zn

iid� Po(�)

with the fWn;jg and fZng processes being independent4.
The BIN model is precisely the analog of the squares of an ARCH(1)5 model (due to Engle

(1982)). It is easy to see that unlike the squares of an ARCH, fNng is always covariance stationary
and geometrically ergodic if  < 1. No other condition is needed. In particular

E(Nn) =
�

1� 
; Cor(Nn; Nn�s) = 

jsj and V ar(Nn) =
E(Nn)

1� 2
:

3The most straightforward discrete time alternative to this model structure would be to write down a state

space model with

Nnj�n � Po(�n);

where log �n is a Gaussian ARMA model | see Gamerman (1992). Methods for carrying out likelihood inference

for this class of model (and a wider set of models) were developed in Shephard and Pitt (1997) and simpli�ed by

Durbin and Koopman (1997).
4This setup is close to those presented by McKenzie (1985) and McKenzie (1988) who work with Wn;j

iid
�

Bern() in order to ensure that the marginal distribution of the counts is always Poisson | this is not an aim

our modelling framework has. Estimation of this alternative process, which is harder than the BIN model, has

recently been studied by Freeland and McCabe (1998).
5In the ARCH(1) case the squares are

p
2

njFn�1 � �
2

1�
2

n; �
2

n = �+ p
2

n�1:

For this process
�
p2n
	
is covariance stationary if 2 < 1=3.
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This model easily generalises and can be directly linked into Cox processes in a natural way.

These points will be spelt out in the main sections of our paper.

One of the major advanges of using counts as the basis of modelling is that it is relatively

easy to extend to the multivariate case. This maybe necessary if we are modelling the joint

evolution of a vector of prices or we are modelling the number of trades and quote revisions in

a single stock. Let us write fN(u)gu�0 as a K � 1 vector which has as its j � th element the

number of trades recorded up until time u in the j�th stock. Then de�ne the vector di�erencing
operator

Nn = N f(n+ 1)��g �N(n�):

The simplest multivariate model would put

E (NnjFn��) = �n; where �n = �+ Nn�1:

Here all of the elements of the vector � and the matrix  have to be non-negative.

1.3 Related work

Papers which have previously just looked at the fN(u)g process include Engle and Russell (1998)
and, subsequently, Meddahi, Renault, and Werker (1998), and Ghysels, Jasiak, and Gourieroux

(1998). These papers model the time between trades. Let �t be the time of the t � th trade.

Then it is given by

�t = min
u
fN(u) = tg ; t = 1; 2; :::; N(S);

recalling that N(S) is the number of trades in the period of length S we are studying. Then the

length of time between trades6 is

Lt = �t � �t�1; t = 1; 2; :::

For our data a small number of these times are exactly zero.

In the econometric literature an inuential model of the durations is the autoregressive

conditional duration (ACD) model of Engle and Russell (1998). This puts

Lt = "t t; "t > 0; E("t) = 1

and the "t's are independent identical distributed (i:i:d:), with

 t = �+

pX
j=1

jLt�j +

qX
j=1

�j t�j :

Here  t = E(LtjFt�1), the conditional expected waiting time. The model has many similarities

with earlier work by Wold (1948) and Cox (1972). In practice Engle and Russell (1998) have

used an exponential or Weibull distribution on the f"tg. Straightforward alternative structures

would be to parameterise the log t instead of the  t.

A key feature of this model is that, conditional on  0; :::;  q+1; L0; :::; Lp+1, the likelihood

can be computed via a prediction decomposition. Further the number of terms that need to be

evaluated is only N(S), rather than the number of seconds. Hence this model is much faster to

�t than the BIN model above.

6From a statistical viewpoint we can think of fLtg as a time series of duration times. There is an enormous

literature on the analysis of durations, although most of it does not have a time series interpretation. We refer to

Lancaster (1990), Synder and Miller (1991) and Cox and Oakes (1984) for general discussions of this literature.
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The ACD model implies the following structure for the price level of the stock. It has the

evolution according to the process

p

 
nX
t=1

Lt

!
= p(0) +

nX
t=1

Zt;

which tells us the price after n irregularly space times of trades (i.e. it tells us the price at a

random point in time in the future). In continuous time this has a less elegant expression as

p(u) = p(0) +

N(u)X
t=1

Zt; where N(u) = argmax
n

(
nX
t=1

Lt � u

)
:

This implies

Nn = N f(n+ 1)��g �N(n�)

= argmax
r

(
rX
t=1

Lt < (n+ 1)�

)
� argmax

r

(
rX
t=1

Lt � n�

)
:

The complexity of the relationship between the fLtg and fNng implies studying the behaviour
of returns in calendar time fpng implied by ACD style models is di�cult even if we make very

simple assumptions on the fZtg process. This is not the case with BIN based models.

There are other papers which relate to our approach. Following Rydberg and Shephard

(2000), Rydberg and Shephard (1998a) have studied the dynamics of the fZtg process within

the context of our compound process framework, while not discussing the speci�cation of the

counting process fN(u)g. A multivariate generalisation of the model is given by Rydberg and

Shephard (1998b). An alternative attempt to model the dynamics of the fZtg has also been

previously proposed by Hausman, Lo, and MacKinlay (1992) and Russell and Engle (1998).

Our models are also related to stochastic volatility (SV) or time deformation models, see

e.g. Clark (1973), Hull and White (1988), Stein and Stein (1991), Ghysels, Harvey, and Renault

(1996) and Barndor�-Nielsen and Shephard (1999). In SV models Brownian motion is deformed,

while in the compound process the Cox process is a deformed Poisson process. Barndor�-Nielsen

and Shephard (1999) have studied the connection between the modelling framework given in (1)

and a SV model in a thickly traded market. Those results have been elaborated by Frey and

Runggaldier (1998).

1.4 Structure of the paper

The paper is organized as follows. In Section 2 we de�ne BINmodels and derive various properties

of the models. In Section 3 we derive the properties of fNng when the counting process fN(u)g
is modelled as a Cox process. We show that for certain types of intensity processes for the Cox

process, the properties of BIN models are similar to that of the Cox process. This allows us to

coherently move from continuous time to discrete time. In this section we also discuss the time

aggregation of BIN models. In Section 4 we look at an empirical implementation of our model

structure on IBM data, while section 5 concludes. The paper has a number of theorems. We

have collected the proofs of these theorems in an Appendix, which is given after the conclusions.

2 A BIN MODEL

2.1 Model structure

2.1.1 First order model

Our class of discrete time processes, which we label BIN models, are based on writing down a

structure with NnjFn�� � Po(�n), allowing �n to depend upon Fn��, the information available

6



at time n��, in a particular way. We assume �n is a linear function of past data. The simplest

example of this is where, for �;  > 0,

NnjFn�� � Po(�n); �n = �+ Nn�1: (3)

We call this a BIN model of order one (BIN(1)). This is precisely the analog of the squares of

an ARCH(1) model (due to Engle (1982)).

This model is of autoregressive type for

Nn = �n + un (4)

= �+ Nn�1 + un;

where un = Nn� �n is such that E(unjFn��) = 07. Many of the interesting features of the BIN

model follow from this structure.

2.1.2 Stochastic properties of BIN(1) models

The main stochastic features of the �rst order BIN model are remarkably simple. They are given

by the following theorem.

Theorem 2.1. If fNng is generated by (3) for n 2 Z with �;  > 0, then if  < 1 we have that

the second order8 properties of the model are

�1 =
�

1� 
; Cor(Nn; Nn�s) = 

jsj and �2 =
�1

1� 2
;

where �r denotes the r�th cumulant of fNng. Further, if we write k(�zNn) = log [E fexp (�Nn)g]
then

k(� zNn) = �

�
e
� � 1

�
+ k

n


�
e
� � 1

�
zNn

o
:

From this we have

�3 =
3�2

1� 3
and �4 =

�
1 + 53

�
�3 + 22�2

1� 4
:

Finally all of the moments of fNng are bounded if  < 1.

�

Proof of Theorem 2.1: See the Appendix.

Theorem 2.2. If fNng is generated by (3) for n 2 Z with �;  > 0, then fNng has an ergodic

distribution if  < 1. Further the convergence to the ergodic distribution is geometrically fast

when measured using a total variation norm.

�

Proof of Theorem 2.2: Given by Grunwald, Hyndman, Tedesco, and Tweedie (1997, Case II

of Proposition 3).

�

Remark 1 Theorem 2.1 is a very simple result for it says that only  < 1 is required for

covariance stationarity. This is a much simpler result than the parallel results for the squares of

an ARCH(1) and for an ACD(1) model for both of these processes impose additional constraints

on the dynamics in order for the variance to exist.

Remark 2 The autocorrelation function of fNng has to be non-negative. This feature is also

present in ARCH and ACD models.

Remark 3 Theorems 2.1 and 2.2 show that the condition  < 1 implies both covariance and

strict stationarity.

7In fact un is a Martingale since �n is the compensator of Nn.
8Second order properties, in this context, are the mean, variance and autocovariance function of the process.
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2.1.3 Inference for BIN(1) models

A major advantage of the BIN style models is that we can use a conditional likelihood function

to estimate the parameters. Recall the prediction decomposition writes

log f(N2; :::; NT jN1) =

TX
n=2

log f(NnjNn�1)

=

TX
n=2

��n +Nn log �n � logNn!:

The score vector has the form, for a parameter vector  ,

@ log f(N2; :::; NT jN1)

@ 
=

TX
n=2

@�n

@ 

�
Nn

�n
� 1

�
; where

@�n

@ 
=

�
1

Nn�1

�
:

Importantly E (NnjFn��) = �n and so
n
@�n
@ 

�
Nn

�n
� 1
�o

n>0
is a bivariate Martingale di�erence

sequence. Likewise the observed information is

�@
2 log f(N2; :::; NT jN1)

@ @ 0
= �

TX
n=2

@
2
�n

@ @ 0

�
Nn

�n
� 1

�
+

TX
n=2

@�n

@ 

@�n

@ 0

Nn

�2n

=

TX
n=2

@�n

@ 

@�n

@ 0

Nn

�2n

;

due to the linearity of �n. Hence, unlike ARCH(1) models, BIN(1) models have globally concave

likelihood functions. It is sometimes convenient to approximate the observed information by

IT =

TX
n=2

@�n

@ 

@�n

@ 0

1

�n
;

which is a term by term conditional expected information measure.

We typically �nd the maximum likelihood estimator by iteration. A convenient way of

carrying this out is to compute

e i+1 = e i +
 

TX
n=2

@�n

@ 

@�n

@ 0

1

�n

!�1 TX
n=2

@�n

@ 

�
Nn

�n
� 1

�
; (5)

for the change in the parameters at each iteration is simply a regression with

Xn =
@�n

@ 

1p
�n

; Yn =
p
�n

�
Nn

�n
� 1

�
; n = 2; :::; T:

As the likelihood function is globally concave this algorithm should perform reliably. Further we

can test for serial dependence using likelihood ratio, score or Wald principles. All are straight-

forward in this context.

A major theoretical advantage of BIN models is that inference is, in a sense, robust to

misspeci�cation in the Poisson assumption. This is a result of the score equation continuing

to be a sum of martingale di�erences so long as �n = E(NnjFn��), that is we correctly model

the one-step ahead conditional mean. So long as  < 1 the maximum likelihood estimator

will be consistent, although a sandwich estimator would have to be used to correctly model its

asymptotic distribution.
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2.1.4 General order model

Naturally all of the above results extend to the BIN(p) model where

�n = �+

pX
s=1

sNn�s;

with the constraints that � > 0 and fs > 0g. In particular if
Pp

s=1 s < 1 then the fNng are
covariance stationary with second order properties

�1 =
�

1�Pp
s=1 s

; �2 =
�1

1�Pp
s=1 s�s

;

where �s = Cor(Nn; Nn�s). In turn the f�sg can be found by solving the usual Yule-Walker

equations

�s = 1�s�1 + :::+ s�0, for s = 1; 2; :::; p.

It is important to note that the feature that the fs > 0g means that the autocorrelation function
has to be non-negative. In particular we can write

�s =

pX
j=1

bj'
jsj
j ; where f'jg are the roots to

pX
j=0

z
p�j

j = 0;

where 0 = 1 and
Pp

j=1 bj = 1. As all the fsg are positive, the roots f'jg and weights fbjg
must be real and positive.

The conditional likelihood function of this model is again easy to work with. In particular

log f(Np+1; :::; NT jN1; :::; Np) =

TX
n=p+1

log f(NnjNn�1; :::; Nn�p)

=

TX
n=p+1

��n +Nn log �n � logNn!;

is concave in the parameters of the model, while the score and observed information is straight-

forward to compute iteratively.

2.2 Moving average models

An alternative generalisation of the BIN(1) model is to set

NnjFn�� � Po(�n); �n = �+ Nn�1 + ��n�1; (6)

which we will label a BIN(1,1) model. Su�cient conditions for �n to be almost-surely non-

negative is that �; ; � � 0.

This model is inspired by the GARCH model due to Bollerslev (1986) and Taylor (1986).

This model is of autoregressive moving average (ARMA) type for

Nn = �n + un (7)

= �+ Nn�1 + ��n�1 + un

= �+ Nn�1 + � (Nn�1 � un�1) + un (8)

= �+ ( + �)Nn�1 + un � �un�1; (9)

where un = Nn � �n is such that E(unjFn��) = 0. Theorem 2.3 collects the main features of

this model.
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Theorem 2.3 If fNng is generated by (6) for n 2 Z with �; ; � > 0, then if + � < 1, we have

that

�1 =
�

1� (� + )
; �2 = �1

1� �
2 � 2�

1� (� + )2
= �1 + �1


2

1� (� + )2
;

and

�1 =
 f1� � ( + �)g
1 + �2 � 2� ( + �)

; �s = �1 ( + �)s�1 ; s = 2; 3; ::::

Further, the joint cumulant generating function of Nn and �n is, for an index � = (�1; �2)
0,

k(� zNn; �n) = �

�
�2 + e

�1 � 1
�
+ k

n


�
�2 + e

�1 � 1
�
; �

�
�2 + e

�1 � 1
�
zNn; �n

o
:

�

Proof of Theorem 2.3: See the Appendix.

Remark 4 The constraints require the ARMA representation to have an autoregressive para-

meter which is positive and the moving average being negative. In addition the autoregressive

parameter has to be at least as big as the absolute value of the moving average parameter.

Remark 5 The autocorrelation function is non-negative at all lags.

Remark 6 The properties of f�ng are sometimes helpful. In particular E (�n) = �1 and

V ar(�n) = �2 � �1

= �1

2

1� (� + )2

=
�

2

f1� (� + )g
n
1� (� + )2

o :
The conditional likelihood function for the BIN(1,1) model is not immediately available to

us, instead we work with

log f(N1; N2; :::; NT j�1) =

TX
n=1

log f(NnjFn��)

=

TX
n=1

��n +Nn log �n � logNn!;

which depends upon the unknown (random) �1 as well as the unknown parameters �; ; �.

In the GARCH literature a similar dependence on the unknown initial conditional variance

is present in the conditional likelihood function. A number of approaches have been used: (i)

treat �1 as an unknown parameter to be estimated along with the other parameters, (ii) set �1
to equal �1, (iii) set �1 equal to the variance of a group of initial datapoints. All of these are

asymptotically negligible and can be justi�ed in a variety of ways.

The score function of this model is more complicated than that of its BIN(1) cousin. This is

because

@ log f(N1; N2; :::; NT j�1)
@ 

=

TX
n=1

@�n

@ 

�
Nn

�n
� 1

�
; where

@�n

@ 
=

0
@ 1

Nn�1

�n�1

1
A+ �

@�n�1

@ 
:
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The complication is that the third element of @�n=@ has an extra term which means we have

to compute these terms recursively starting at @�1=@ . This seemingly marginal change in the

score has some important implications. In particular

@
2 log f(N1; N2; :::; NT j�1)

@ @ 0
=

TX
n=1

@
2
�n

@ @ 0

�
Nn

�n
� 1

�
�

TX
n=1

@�n

@ 

@�n

@ 0

Nn

�2n

:

We can compute

@
2
�n

@ @ 0
=

0
@ 0 0 0

0 0 0
@�n�1
@ 0

1
A+

0
@ 0

0

0

0

0

0

@�n�1
@ 

1
A+ �

@
2
�n�1

@ @ 0
starting at

@
2
�1

@ @ 0
:

Suppose that �1 is parameter free, then @2�1=@ @ 
0 is zero and the upper left hand block of

four elements of @2�n=@ @ 
0 are exactly zero. Hence if we know � the log-likelihood function is

concave in � and . However, in general this is not the case and the log-likelihood function is

only asymptotically concave with respect to all three parameters.

We typically approximate the observed information to produce

IT =

TX
n=2

@�n

@ 

@�n

@ 0

1

�n
;

which for large T is likely to behave well. This allows us to again produce a regression inter-

pretation of the iterative updating of approximations to the maximum likelihood estimator via

(5). In this case we are not guaranteed to converge to a unique maximum of the likelihood

function, although for large samples this should be satisfactory. Alternatively we could use a

more sophisticated quasi-Newton optimisation routine which can perform helpful line searches.

2.3 Generalised version

2.3.1 General case

This model structure generalises straightforwardly to a BIN model of order p; q (BIN(p; q)) where

NnjFn�� � Po(�n); �n = �+

pX
j=1

jNn�j +

qX
j=1

�j�n�j :

Notice that we are following standard ARMA notation here and using p to denote the number

of autoregressive terms in the model and q to denote the number of moving average ones.

Although imposing the constraints � > 0, fj > 0g and f�j > 0g seems natural in this

context, these constraints are not necessary in order to impose that, with probability one,

�n is a non-negative sequence when q � 1. The following theorem gives the result for the

BIN(p,1) model. More general results were developed, within the context of GARCH models

but applicable to all positive processes, by Nelson and Cao (1992).

Theorem 2.4 In the BIN(p,1) model the f�ng sequence will be non-negative with probability

one i�

� � 0; �1 � 0;

kX
j=0

j+1�
k�j
1 � 0 for k = 0; :::; p � 1.

Proof of Theorem 2.4: This result follows immediately from the results on non-negative

processes studied in the context of GARCH models by Nelson and Cao (1992).
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As before this model has an ARMA representation,

Nn = �n + un (10)

= �+

pX
j=1

jNn�j +

qX
j=1

�j (Nn�j � un�j) + un

= �+

max(p;q)X
j=1

�jNn�j + un �
qX
j=1

�jun�j;

where un = Nn � �n is again a MD sequence and �j = j + �j . This model is covariance

stationary when
Pmax(p;q)

j=1 �j < 1. Under this condition

�1 =
�

1�Pmax(p;q)
j=1 �j

; Cov(Nn; �n) = V ar(�n) = �2 � �1;

and

V ar(un) = V ar(Nn) + V ar(�n)� 2Cov(Nn; �n)

= �1:

Then �2 and the autocorrelation function of fNng can be computed using results on variances

and autocorrelations of stationary linear ARMAfmax(p; q); qg process (e.g. Brockwell and Davis

(1987, Ch. 3)). In particular various numerical routines are available which can compute these

terms for any value of p and q.

2.3.2 Special case

The special case of q = 1 is noteworthy when p � 1. In this case

Nn = �+

pX
j=1

(j + �j)Nn�j + un � �un�1

= �+

pX
j=1

�jNn�j + un � �un�1: (11)

As a result the Yule-Walker equations are, for s > 1,

Cov(Nn; Nn�s) =

pX
j=1

�jCov(Nn�j; Nn�s):

Hence the damping down behaviour is determined by the autoregressive roots of the model,

while the moving average just inuences the initial conditions.

2.3.3 Component based parametrisations

The use of high frequency data means we will typically use BIN models on very long time

series and be interested in forecasting future counts many time periods ahead. In the context of

GARCH models Engle and Lee (1999) have suggested the use of a component parameterisation

in order to focus on multistep forecasting. We will show that their arguments carry over to BIN

models.
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A basic BIN(1,1) model can be written with

�n = (1�  � �)�+ Nn�1 + ��n�1; where � = �=(1 �  � �):

= �+  (Nn�1 � �) + � (�n�1 � �) :

This can be extended by allowing

�n = �n +  (Nn�1 � �n�1) + � (�n�1 � �n�1)

�n = �
� + ��n�1 + � (Nn�1 � �n�1) :

Here, if � >  + �, we can think of �n as the longer term component of the conditional mean.

We will call this model the component BIN model and require that all of its parameters to be

non-negative. Further, we will need that � < 1 and  + � < 1 for covariance stationarity.

Remark 7 The component BIN model has �ve parameters, the same number as its correspond-

ing \reduced form" BIN(2,2) model which puts

�n = (1�  � �) �� + (� + �� �) �n�1 + f� ( + �)� ��g �n�2
+(�+ )Nn�1 � f� + � ( + �)gNn�2:

Note that the constant in front of the Nn�2 has to be negative, while the sign of the reduced

form parameters for �n�1 and �n�2 are uncertain.

Remark 8 A potential problem with this type of model is the possibility that �n may become

negative. In the Appendix to their paper Engle and Lee (1999) studied, using generic results

of Nelson and Cao (1992), exactly this problem in the context of component GARCH models,

noting that their results \are true for any dependent variable in the same dynamic structure as

long as the dependent variables are non-negative". The precise su�cient conditions they showed

were that

1 � � >  + � > 0

� > � > 0

�
�

> 0;  > 0:

The �rst and third of these constraints seem natural and desirable in any case. The second is

easy to impose numerically.

2.4 Other issues

2.4.1 Negative dependence

All of the models we have so far introduced imply the non-negative serial correlation amongst

the fNng series. Empirically it maybe helpful to broaden this framework. One possible approach
is to write, for example

NnjFn�� � Po f�n exp (�n)g ; �n = �+ Nn�1;

where �n is a linear function of past pieces of information. The simplest case is where

�n = �Nn�1;

requiring that � be negative. We call this e�ect \cooling", as it reduces the conditional mean of

the process. Again fNng is a Markov chain. If Pr(Nn > 1) is small we have that

exp (�n) '
�

1 if Nn�1 = 0

exp(�) if Nn�1 = 1
:

13



implying

�n exp (�n) '
�

�; if Nn�1 = 0

(�+ ) exp(�); if Nn�1 = 1
:

Hence the model can induce negative dependence as long as � < log(� + ). If � > 0 then this

model can become nonstationary and so some care should be taken.

This model generalises to allow

�n =

rX
j=1

�jNn�j ; and �n = �+

pX
j=1

jNn�j +

qX
j=1

�j�n�j;

which we write as a generalised BIN, GBIN(p; q; r), model. It is important to note that �n is

only inuenced by the last r values of fNng and so has quite short memory compared to �n.

Hence if we use this model on empirical data we would expect the role of �n will be to deal with

the short term dynamics of the process, while �n can model the longer term e�ects.

2.4.2 Weak BIN models

So far we have used a Poisson assumption for the distribution of NnjFn��. When we later study

the e�ect of changing � we will not be able to maintain the Poisson assumption for di�erent

values of �. The same issues appear in the literature on the temporal aggregation of GARCH

processes (see Drost and Nijman (1993)). In order to have the appropriate vocabulary to deal

with this issue we here de�ne three di�erent types of BIN models, each with

�n = �+

pX
j=1

jNn�j +

qX
j=1

�j�n�j:

The three de�nitions of the BIN models are:

� Strong BIN models have NnjFn�� � Po(�n).

� Semi-strong BIN models have E(NnjFn��) = �n. This model is more exible than the

Strong BIN model for it could allow, for example, the conditional variance of the process

to depend on the �ltration not only through �n.

� Weak BIN models have �n being the best linear predictor of Nn in terms of lagged versions

of fNng. This means that the Wold representation of the covariance stationary process

fNng can be exactly represented in terms of a parameterised BIN model. Further, so long

as the moments exist, weak BIN models have the same second order properties as strong

BIN models.

We can think of the these three di�erent speci�cations as representing, respectively, (i)

parametric models of the counts, (ii) a Martingale di�erence decompositions for Nn��n, (iii) a
covariance representations of the counts. In terms of inference these three modelling frameworks

allow: likelihood inference, quasi-likelihood inference and method of moment based inference,

respectively.

2.4.3 Diagnostic checking of count models

One use of BIN models is that we can use them as alternative hypotheses in formal testing

procedures. Think of the following setup. Let the current model of the conditional mean be

E (NnjFn��) = �n, while we wish to test for unmodelled serial dependence. An alternative

model could be that

E (NnjFn��) = �n + �Nn�1;
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while we have a null as � = 0. The score for � is

TX
n=1

Nn�1

�
Nn

�n + �Nn�1

� 1

�
;

while the second derivative of the log-likelihood is

TX
n=1

N
2
n�1

Nn

�n + �Nn�1
:

Hence a standard score statistic for the null hypothesis is

S = T

(
1

T

TX
n=1

1

�n
(Nn�1Nn �Nn�1�n)

)2

=

 
1

T

TX
n=1

N
2
n�1

Nn

�n

!

D!
H0

�
2
1:

If � is very small then Nn�1Nn = 0 unless both of the counts are one.

The important special case of where �n = � = E(Nn) = V ar(Nn), a constant, yields a

simpli�cation

S = T

(
1

T

TX
n=1

1

�
(Nn�1Nn � �Nn�1)

)2

=

 
1

T

TX
n=1

N
2
n�1

Nn

�

!

' T

(
1

T

TX
n=1

�
Nn�1Nn � �

2
�)2

=
�
�
3 (�+ 1)

	
' Tr

2
1= f� (�+ 1)g ;

where r1 is the �rst order serial correlation coe�cient. This test is very di�erent than that for

the Gaussian �rst order autoregression, which ignores the � (�+ 1) term. It suggests if � is

very small then even small serial correlation coe�cients would present grave evidence against

the null hypothesis of no serial dependence.

3 BIN AND COX PROCESSES

3.1 Background

BIN models specify the distribution of fNnjFn��g and so are inherently a discrete time model

�xed to some sampling interval �. If we wish to study how the properties of the number of

trades in intervals of length � change with � then it is useful to think of N(u) as a continuous

time process which is discretised to produce the fNng via
Nn = N f(n+ 1)��g �N(n�):

In this section we follow the suggestion of Rydberg and Shephard (2000) of using Cox processes

to model N(u). From this model we derive the implied second order properties of the fNng. We

will show that for a �xed value of � some con�gurations of Cox processes lead to second order

properties for fNng which are exactly the same as those implied by the BIN model. This allows

us to think of the BIN model as an approximation to the Cox process and to predict how the

weak BIN model will behave if applied to the same data record with a variety of values of �.

In order to start this study we will need some de�nitions. We �rst de�ne a stochastic process

�(u) such that:
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� �(0) = 0.

� �(u) <1 for all u <1.

� �(u) has non{decreasing realizations.

This process is said to be a random measure. With this de�nition we are able to recall the

formal de�nition of a Cox process.

De�nition 3 (e.g. Grandell (1997)). Let
n eN(u)

o
be a standard Poisson process and further

let �, a random measure, and eN be independent of each other. Then the point process N(u) =eN f�(u)g is called a Cox process.

A elegant discussion of Cox processes from the viewpoint of subordination is given in Cox and

Miller (1965, p. 154). The subordination interpretation of continuous time stochastic processes

is familiar in economics in the case of Brownian motion, for a subordinated Brownian motion

is a stochastic volatility model (e.g. Clark (1973) and Barndor�-Nielsen and Shephard (1999)).

The Cox process is the point process analogue of this.

3.2 Integrated intensity

The random measure � is linked to the intensity � via the integral equation9

�(u) =

Z u

0

�(s)ds;

where f�(u)g is a positive stochastic process. As a result, in the context of Cox processes we will
call f�(u)g the integrated intensity process, although in the probability literature it is usually

called the intensity measure.

Remark 9 Immediately

Nnj�n � Po(�n); where �n = � f(n+ 1)��g � �(n�): (12)

It is possible to work out the autocorrelation pattern of fNng simply under the condition

that f�(u)g is covariance stationary. This work follows some related ideas on stochastic volatility
due to Barndor�-Nielsen and Shephard (1999). These general results will be helpful in allowing

us to formally relate BIN models to Cox processes. First we need some notation.

De�nition 4 Let �, !2 and r denote, respectively, the mean, the variance and the autocorrel-

ation function of the process �(u). Further de�ne

r
��(s) =

Z s

0

Z v

0

r(u)dudv and }r��(s) = r
��(s+�)� 2r��(s) + r

��(s��):

The next Lemma will look at the variance of the integrated intensity and the autocovariance

function of the f�ng process.
Lemma 3.2.1 (Barndor�-Nielsen and Shephard (1999)). Assuming that �(u) is square integ-

rable and stationary, then

V arf�(u)g = 2!2r��(u) and Covf�n; �n+sg = !
2}r��(�s):

�

9This type of relation is familar in econometrics for integrated volatility is the integral of the instantaneous

volatility in a stochastic volatility model. See, for example, Barndor�-Nielsen and Shephard (1999).

16



3.3 Properties of counts

The Corollary given below will use the results in Lemma 3.2.1 to give us the variance of the

number of counts in intervals of length of �. Further, it gives the fundamental autocovariance

function, that is the second order properties, of the fNng process. The result is completely

general.

Corollary 3.3.1 Assuming f�(u)g is covariance stationary and square integrable, then

E fNng = E(�n) = ��;

V ar fNng = V ar f�ng+E(�n) = 2!2r��(�) +��;

and

CovfNn; Nn+sg = Covf�n; �n+sg = !
2}r��(�s): (13)

�

In turn the autocorrelation function is given in the following corollary.

Corollary 3.3.2 Assuming f�(u)g is covariance stationary and square integrable, then

CorfNn; Nn+sg = q}r��(�s), where q =
!
2

2!2r��(�) +��
:

�

Corollaries 3.3.1 and 3.3.2 give a complete discussion of the second order properties of the

fNng process for any Cox process. We now turn our attention to special cases which illustrate

the power of this analysis.

Example 5 Suppose that

r(s) = exp (��� jsj)
for some �� > 0. Then, for s > 0,

}r��(�s) = �
��2(1� e

����)2e��
��(s�1)

which falls exponentially with s. Hence

CorfNn; Nn+sg = !
2

2!2r��(�) +��
}r��(�s) = ce

����(s�1)
:

where

c =
!
2(1� e

����)2

2!2 (���+ e��
�� � 1) + ��2��

:

This is an interesting result for the correlogram for fNng is precisely the correlogram of a

weak BIN(1,1) model10. Then, when the moments exist,

E(Nn) =
1

1�  � �
; V ar(Nn) = E(Nn)

�
1 + �

2 � 2 ( + �) �

1� ( + �)2

�

and

Cor(Nn; Nn�s) = ( + �)s�1
f1� � ( + �)g 
1 + �2 � 2� ( + �)

; s > 0:

That is the model has the same second order properties as a BIN(1; 1), which is identical to that

derived for the Cox process with r(s) = exp (��� jsj). In particular we can relate,

10This style of result is similar to work on stochastic volatility and GARCH models put forward by Meddahi

and Renault (1996) and Barndor�-Nielsen and Shephard (1999).
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exp(����) to ( + �) ;

and

�� to
1

1�  � �

as well as other features in the model. The continuous time model thus predicts, for example,

how  + � will vary with di�erent values of �.

Remark 10 The autocorrelation r(s) = e
���jsj results from at least two interesting processes.

The simplest is the Ornstein-Uhlenbeck process

d�(u) = ����(u)dt+ dz(��u); (14)

with 0 < �
�
<1, where the process z is a homogeneous L�evy process with positive increments

with V ar(fz(1)g) existing. This class of processes is studied at length in Barndor�-Nielsen and

Shephard (1999). The same autocorrelation function results from the `constant elasticity of

variance' process

d�(u) = ��� f�(u)� �g dt+  f�(u)gd dW (u); d � 1=2, (15)

where W (u) is standard Brownian motion. This general structure, which is always covariance

(and strictly) stationary if 0 < �
�
<1, has been highlighted by Meddahi and Renault (1996).

Example 6 The exponential damp down generalises to

r(s) =

PX
j=1

wj exp
����j jsj� ; such that

PX
j=1

wj = 1:

In particular if we write r��j (s) =
R s
0
r
�
j (u)du, then

}r��(s) =
PX
j=1

wj}r��j (s) =

PX
j=1

vj exp
����j�(s� 1)

	
;

where

vj = wj�
��2
j

�
1� exp

����j��	2 :
Remark 11 This is the autocorrelation function of a weighted sum of independent OU processes

and constant elasticity of variance models. This allows us to model processes with short and

longer term memory components in the intensity. This process has the same autocorrelation

function as a weak BIN(p,1) model.

Remark 12 An alternative structure is to write down a Gaussian OU process for the log of the

intensity process

d log �(t) = ��� flog �(t)� �g dt+ &db(t); �
�
> 0; (16)

where b(t) is a Brownian motion. This process has some advantages as it has a simple strong

solution, while

rlog(u) = cor flog �(t+ u); log �(t)g = exp (���juj) ; �
�
> 0:

However, it is not obvious how to work with � in this framework without making discretisation

errors.
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3.4 Temporal aggregation

By specifying a Cox process for fN(u)g we have been able to study the implied second order

properties of fNng at di�erent values of �. For some choices of stochastic model for the intensity
the second order properties of fNng are always of the form which would have been generated by

a weak BIN process. Hence we are able to study the e�ect of time aggregation, the lengthening

of �, on the dynamics of the BIN model.

Instead of working via a continuous time Cox process, we could study the e�ect of time

aggregation on the discrete time BIN models directly. This is perhaps less elegant and links less

well with our continuous time model of the price given in (1), but it does have the advantage of

being mathematically less demanding. In order to carry this out, let us de�ne for an integer �,

Nn as

Nn = N f(n+ 1)��g �N(n�) =

��1X
j=0

N
(1)

n�+j;

where

N
(1)
n = N f(n+ 1)�g �N(n);

the number of trades we observe during an interval of length one. The approach we follow is to

assume
n
N

(1)
n

o
is a weak BIN process and ask if we can derive the second order properties of

Nn.

The e�ect on the second order properties of time aggregation is a classic time series prob-

lem, with a large associated literature. A complete treatment for any covariance stationary BIN

model, in the frequency domain, is available by working with the spectrum of the ARMA rep-

resentation of the process (see, for example, the textbook exposition in Harvey (1989, p. 321)

of ow variables). In the special case of a BIN(1,1) model there are some very elegant results

pointed out, in the context of a GARCH process, by Drost and Nijman (1993) which carry over

to our setup. If we write the main parameters of the BIN(1,1) model as in (6), then N�
n has a

weak BIN(1,1) representation with autoregressive root of ( + �)�. This precisely matches the

previous prediction from the analysis of Cox processes.

4 EMPIRICAL WORK

THIS SECTION IS EXTREMELY PRELIMINARY.

4.1 Background

The intensity of trading on the NYSE varies considerably through time. In this subsection we

study the basic features of the observed sequence of fN(u)g for the IBM stock during the whole

of 1995, where the trades took place on the oor of the NYSE. The top graph of Figure 2 shows

an estimate of the average number of trades which occur at each second for each day of the week,

written fDjn; j = 1; :::; 5g. The estimate is generated using a natural cubic spline with a di�erent
bandwidth selected by generalised cross-validation for each day of the week (see, for example,

Green and Silverman (1994)). We can see that for each day trading is brisk in the morning

hours, slows down around lunch time and picks up again in the afternoon. In addition there are

changes in these patterns between the days of the week. In particular Monday mornings and

Friday afternoons are comparatively inactive, while the �rst 30 minutes of Friday mornings are

the most active trading period of the week during 1995 for the IBM stock. Finally, we can see

that the �rst ten minutes of each day are unlike most of the rest of the day | for the activity

rate changes very dramatically during this time.
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Figure 2: Top graph is the intensity of the trading per second. Estimated daily curves using a

spline with the smoothness penalty selected using generalised cross validation. Bottom graph is

the number of trades per day for each day the market is open during the year.

The bottom graph of Figure 2 shows the number of trades on each day that the NYSE was

open. We can see very signi�cant changes in the activity level during the year, with low levels at

the beginning of the year and high levels in September and October. Some of the variation of this

series arises due to a seasonal component. However, there is also important serial dependence

in the series.

4.2 Dynamics of fNjng

When we construct our counts, we can do this for each second of each day. In order to have a

notation for this we introduce an additional subscript, j to denote the j� th active day of 1995.

Throughout we will study the dynamics of the random �eld fNjng with � set to one second,

focusing on estimating very (perhaps overly) simple models which allow interpretation. Our

�rst analysis is to look at the daily time series generated by looking at the di�erence between

the fNjng sequence in each day and the corresponding daily seasonal pattern given in Figure 2.

For each day we computed the correlogram and plotted the average of these 251 correlograms

in Figure 3. This picture shows a negative correlation at lag one, followed by very signi�cant

(although quite small) correlations at longer lags. These die down quite slowly, but are mostly

irrelevant after 5000 seconds.

The negative correlation at small lags seem a consistent feature of this data when we take

� to be a second. The positive correlations at other lags are more important to the overall

dynamics of the counting process as they are sustained over a large number of lags.

4.3 Every day is di�erent (EDID): 4 Tuesdays in 1995

Our empirical analysis will be initially based on modelling each day separately, starting o� with

20



1 6 11 16 21 26 31 36 41 46 51

-.01

0

.01

.02

1 2500 5000 7500 10000 12500 15000 17500 20000 22500

-.015

-.01

-.005

0

Figure 3: Averaged correlogram for 251 active days. For each day we computed the correlogram

for the day using the 23,400 second by second data. Top correlogram shows �rst 50 lags, bottom

a thinned version of 23,400 lags.

the �rst four Tuesdays in 1995. We call this the \every day is di�erent" (EDID) model. We are

able to estimate models of this type, as we have a large amount of data for each day, so long as

the dynamics of the process is not very extensive nor long lived.

Table 1 looks at the dependence structure in the counts. We de�ne Mjn to be I(Njn > 0),

then the Table shows that for the second Tuesday there are 762 seconds in which there are

trades. However, there were only �ve seconds when there were consecutive trades | which is

massively under what we would expect from a heterogeneous Poisson process. This forces us

towards a Cox or BIN process of some type. At longer lags of time the dependence becomes

positive, rather than negative. The EDID model we initially analyse has the following form

NjnjFjn�� � Po f�jn + �xjng ;

where fxjng denotes the seasonal pattern of the process estimated using the splines described

above and

�jn = jNjn�1 + �j�jn�1; where �j0 = �jxj1
(1� �j)

(1� �j � j)
:

Inevitably the choice of this EDID model structure is arbitrary. We make the following points:

� The unconventional choice of the additive structure �jn + �jxjn, rather than the more

obvious �jn exp(�j log xjn), is motivated by a desire to calculate analytically temporal

aggregation features of this process. The lack of an intercept in the model is due to it

testing out in some initial empirical experiments.

� We ignore cooling e�ects (modelling the �rst few lags which have negative dependence),

although this will lead to empirical failures of the model, again in order to allow us to

understand temporal aggregation.
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Tuesdays in 1995

First Second Third FourthP
Mn 377 762 480 662P
MnMn�1 9 5 11 8P
MnMn�2 12 14 27 14P
MnMn�3 19 26 37 22P
MnMn�4 14 50 22 27P
MnMn�5 6 54 16 36P
MnMn�6 8 48 15 42

E Ind 6 25 10 19

SE Ind 2 5 3 4

Table 1: Mjn = I(Njn > 0), an indicator if there is a trade during the n-th time period of length

�. "Independence" �gure is the expected number of
P
MjnMjn�s for all s when N(u) is a time

heterogenous Poisson process with expected number of events over the 23400 seconds of
P
Mjn.

� The choice of initial condition, which is arbitrary as Njn is non-stationary over n due

to the time varying regression e�ect, is taken as the unconditional expectation of the

approximating model which does have a stationary solution

NjnjFjn�� � Po f�jn + �jxj1g ; �jn = jNjn�1 + �j�jn�1:

Table 2 gives results for the estimation of this model, together with the corresponding result

when we take out all of the dynamics in the process. The Table also gives some summary

measures of �t through the use of the residuals

ujn = Njn � �jn � �jxjn;

computed for each second of each day. If the models were correct then they should indicate

white noise. To assess this we work with frsj; s = 1; 2; :::g, the serial correlation coe�cients, of

the residuals for the j-th day of the series fujng. To summarise these coe�cients we will use

conventional Box-Pierce statistics

BP (q)j = T

qX
s=1

r
2
sj :

In the context of models with estimated dynamics we refer this statistic to a �2q�2 distribution,

although this has yet to be theoretically justi�ed. Finally, we expect misspeci�cation in the

model for the �rst few lags and so we sometimes look at the di�erence of the Box-Pierce statistics

over various lags. In particular we favour looking at BP (100)j �BP (20)j , which only involves

correlations at longer than 20 seconds. This should be roughly a �280 if the model is well speci�ed

at those longer lags.

However, we have already noted that our model ignores cooling and so we would expect to

fail conventional Box-Pierce type measures of �t. In order to reinforce this point the Table also

gives the corresponding results for the cooled version of the model with 8 lags

NjnjFjn�� � Po f(�jn + �jxjn) exp (�n)g ; �n =

8X
j=1

�jNn�j:

22



Tuesdays in 1995

First Second Third Fourth

�j 0.313 0.242 0.459 0.504 0.424 0.324 0.636 0.467

j 0.00304 0 0.00458 0 0.00849 0 0.00406 0

�j 0.991 0 0.992 0 0.975 0 0.987 0

log � like -1904.7 -1913.6 -3304.9 -3332.1 -2261.7 -2282.7 -2945.3 -2954.7

BP (20) 40.4 54.6 111 151 92.9 132 62.0 72.7

BP (20; 100) 89.7 97.7 72.3 121 133 168 106 116

FULLY COOLED MODEL | EIGHT LAGS

j 0.00177 0.00339 0.00413 0.00160

�j 0.995 0.993 0.986 0.996

log � like -1893.7 -3258.8 -2240.0 -2923.6

BP (20) 8.0 14.6 13.0 11.4

BP (20; 100) 93.0 69.7 131 104

Table 2: Fitting of the BIN model using a EDID structure. Above the triple line the model is

estimated without any cooling | estimated BIN(1,1) model and a model with no dynamics (the

dynamic parameters are set to zero in the Table). Below the line the same model is estimated but

employing 8 lags of cooling. The eight parameters of the cooling structure plus the corresponding

�j are not reported here.

With this feature the �tted model generally does an adequate job at �tting the data. However,

the cooled model does not really change the longer term features of the model, which are the

ones which predominately interest us.

Overall the introduction of the time series modelling of fNjng has an important impact on

the log-likelihood function. However, the improvement in �t is not overwhelming. Further, the

modelling of the short-term dynamics via cooling is as important from a likelihood viewpoint.

4.4 Day-by-day dynamic (DBDD) model

The EDID model allows all of the parameters of the model to change every day and so it

is impossible to use this model structure to understand any aspect of the evolution of trading

activity over a number of days. In this subsection we constrain the EDID model to have common

features over the day. We call this approach a day-by-day dynamic (DBDD) model.

We will assume that the dynamic parameters of the model, the fj; �jg do not change over

time. We will provide an empirical assessment of the validity of this assumption. This provides

a link between the models for each day. For the moment we will allow the regression e�ect

f�jxjng to vary over days, freely estimating the f�jg parameters. As such this DBDD model

again provides no concrete link between the activity in one day and the next. We will also set

�j0 = �jxj1
(1� �)

(1� � � )
;

which varies because of the changing f�jg parameters.
The DBDD model structure has one parameter per day plus two dynamics parameters for

f�; g. To see the e�ectiveness of this model structure we have �tted it to the �rst 100 active

days of 1995. The results are given in Table 3 and Figure 4. The Table focuses mostly on the

likelihood ratio statistics for each day, looking at assessing the change in the likelihood caused

by the constraint of a common dynamic structure across days. To benchmark these results we
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also give the likelihood ratios for the case where there are no dynamics structure assumed at all

| for it is now possible that this model structure would provide a better �t than our common

dynamics model. The Table also gives some diagnostics for the model. This is based on an

Box-Pierce type statistic generated from the averaged correlogram for the residuals | that is

for each day we compute the residual and their corresponding correlogram. These are averaged

and we place them into the following Box-Pierce type statistic

BP (q) = TN

qX
s=1

r
2
s:; where r

2
s: =

1

N

NX
j=1

rsj:

This statistic should be approximately �
2
q, although we see this fails rather dramatically at

q = 20. The di�erenced version is more satisfactory, again because it is not so e�ected by the

cooling e�ect we have not modelled.

Figure 4 gives a detailed description of the �tted model. An important feature of the �gure

is that we give, in the top left hand time series graph, an estimate of the average level of activity

estimated by the model

�j = b�jxj (1� �)

(1� � � )
;

where xj is the average level of the series for that day of the week over the entire year. This

picture also gives the time series of N :j and it shows these two series are very close. Hence we

can see that a good approximation to

b�j = N j:

(1� � � )

xj(1� �)
:

This observation will become crucial later.

Figure 4 also gives the cumulative correlograms for the residual for the �rst six days of the

year for the DBDD model. This shows the scatter of this measure of memory in the residuals.

The bottom left graph draws
�
r
2
s:

	
for the DBDD model and the corresponding EDID model. It

is not possible to see the di�erence between these two graphs. Both correlograms look reasonable

outside the �rst few lags. The �gure also gives, as dots, the corresponding correlogram for the

non-dynamic model, which seems poor at all lags. The corresponding cumulative correlograms

are given in the bottom right hand side of the �gure. They show how poor the non-dynamic

model is, while the DBDD model seems as satisfactory as the EDID model. However, both of

these models seem to allow very small amounts of positive correlation at long lags. This is a

potentially serious problem with the model.

DBDD EDID No dynamics

 0.00578

� 0.987

LR (compared to DBDD) 933 -4356

BP (20) 5262 5563 8426

BP (20; 100) 268 190 3623

Table 3: Various models for the �rst 100 active days of 1995, with no cooling. LR is twice the

di�erence in the log-likelihood compared to the DBDD model. EDID has 198 more parameters

than DBDD. The "no dynamics" model has 2 less parameters than DBDD. BP(20) should be

less than 30, BP(100,20) less than 100.
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Figure 4: Top left: �j is graphed against day (j) with the sample daily average of the Njt.

Top right: cumulative correlograms for the residuals from the �tted model for the �rst three

days. Bottom left: averaged correlogram for residuals for �tted model, for EDID model (almost

identical) and for the no dynamics case. Bottom right: corresponding cumulative correlograms.

4.5 Modelling daily totals

We have seen the intimate connection between the best �tting parameters f�jg and the daily

totals of trades
�
N j:

	
. It thus becomes important to be able to predict this quantity if we are to

create a model which allows us to ow from one day to the next. An initial analysis of the daily

totals is give in Figure ?. This shows the distinct seasonal pattern in these totals (estimated

using a spline) and some serial dependence in the residuals, which is well approximated by a

�rst order autoregression with a parameter of around 0.55.

Our basic model for

N j: ' �0 + �1N j�1: + �2�Sj�1:

5 MULTIVARIATE MODELS

5.1 Framework

An advantage of our approach to dealing with the intensity of trading activity is that the exten-

sion to the multivariate case is straightforward. Here we will briey discuss this development,

leaving a full treatment to be carried out elsewhere.

Let us write fN(u)gu�0 as a K � 1 vector which has as its j � th element the number of

trades recorded up until time u in the j� th stock. Then de�ne the vector di�erencing operator

Nn = N f(n+ 1)��g �N(n�):
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Figure 5: Top left: LR to test, each day, the constraint that the dynamics are common. Values

larger than 6 are worrying. Top right: LR to test, for each day, the constraint that the dynamics

should be set to be zero. Values less than zero support the dynamic model. Bottom left: BP (20)j
for each day using residuals from the common dynamic model. Values much larger than 30 are

worrying. BP (100; 20)j for each day using residuals from the common dynamic model. Values

larger than 100 are worrying.

It represents the number of trades occurring in a time interval of length �. A standard mul-

tivariate BIN(1) model would have the fNjnjFn��g being conditionally independent over j and
NjnjFn�� � Po(�jn);

where

�n = �+ Nn�1;

and Fn� is the information set available at time n� for predicting the vector of counts. Each

element of the K�1 vector � and the K�K matrix  needs to be non-negative. If  is diagonal

then the series will be independent. More generally  can be non-symmetric. We will assume

that the eigenvalues of , which can be complex, are less than one in absolute value. Of course

we could generalise this structure by using a multivariate Poisson type model which allowed

dependence between the fNjng even when  = 0 | see Johnson, Kotz, and Balakrishnan (1997,

Ch. 37).

In the BIN model we have that

Nn = �+ Nn�1 + un; where un = Nn � �n:

As a result, for s > 0,

E(Nn) = (I � )�1 �; Cov(Nn; Nn�s) = 
s
Cov(Nn)

and

Cov(Nn) = Cov(Nn)
0 + diag fE(Nn)g :
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Figure 6:

As a result

vec fCov(Nn)g = (I �  
 )�1vec [diag fE(Nn)g] :

This model structure clearly generalises to where

�n = �+ Nn�1 + ��n�1:

Again we will require that K � 1 vector � and the K �K matrices  and � to be non-negative.

This model has an ARMA(1,1) structure

Nn = �+ Nn�1 + ��n�1 + un

= �+ Nn�1 + � (Nn�1 � un�1) + un

= �+ ( + �)Nn�1 + un � �un�1;

which can be analysed using standard multivariate ARMA models with white noise error terms

(see, for example, Reinsel (1993, Ch. 2)). The extension to deal with more complicated dynamics

is immediate.

5.2 Cox processes

We can think about Nn as a discretisation of a multivariate Cox process. Let us de�ne a K � 1

vector stochastic process �(u) such that for each element �j(u), j = 1; :::;K:

� �j(0) = 0.

� �j(u) <1 for all u <1.

� �j(u) has non{decreasing realizations.
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Then we give a formal de�nition of a multivariate Cox process.

De�nition 7 Let
n eN(u)

o
be a standard vector Poisson process and further let �, a random

measure, and eN be independent of each other. Then the point process N(u) = eN f�(u)g is

called a multivariate Cox process.

Importantly, for i not equal to j

Nj(u) k Ni(u)j�(u)

implying any codependence between the marginal Cox processes can only be introduced via the

vector integrated intensity process �(u) which we setup via the integral equation

�(u) =

Z u

0

�(s)ds;

where the intensity process f�(s)gs�0 is a positive stochastic process. Further

Pr (Nn = 0j�n) =
KY
j=1

(1� �jn) + o(�); where �n = � f(n+ 1)�g � �(n�);

implying the probability of observing a trade in more than one asset in a very small period of

time is close to zero.

How do we construct a co-dependent intensity process f�(s)g? One way of carrying this out

is to work with a log-based OU process

d log

8>><
>>:

�1(t)

�2(t)

�K(t)

9>>=
>>; = ���

2
664log

8>><
>>:

�1(t)

�2(t)

�K(t)

9>>=
>>;� �

3
775 dt+ &db(t); �

�
> 0;

where b(t) is vector standard Brownian motion. An alternative is to work with a factor style

model of intensity. This will be based on P +K common latent non-negative intensities f�j(s)g,
which will be assumed independent of one another, with

�(s) = B

8>><
>>:

�1(t)

�2(t)

�P (t)

9>>=
>>;+

8>><
>>:

�P+1(t)

�P+2(t)

�P+K(t)

9>>=
>>; :

In this model each element of the B matrix will be constrained to be non-negative. This style

of model is easier to work with in terms of integrated intensity than the log-based vector OU

process.
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7 APPENDIX

Proof of Theorem 2.1 We can construct a Martingale di�erence (MD) error term fung by

writing

Nn = �n + (Nn � �n)

= �+ Nn�1 + un:

It follows immediately that �1 = �= (1� ). Further

�2 = E fV ar(NnjFn��)g+ V ar fE(NnjFn��)g
= E (�n) + V ar(�n)

= E(Nn) + 
2
V ar(Nn�1);

which gives the result for �2 immediately. The result on the autocorrelation follows as, for s > 0,

Cor(Nn; Nn�s) = Cor(Nn�1; Nn�s) +Cor(un; Nn�s)

= Cor(Nn�1; Nn�s)

= 
s
:

Now we turn to the cumulant generating function

m(� zNn) = E fm(� zNnjFn��)g
= E fexp ( �n)g ; where  =

�
e
� � 1

�
= m( z �n)
= e

� 
m(  zNn�1):

Under stationarity then

logm(� zNn) = k(� zNn)

= � + k(  zNn)

= �

�
e
� � 1

�
+ k

n


�
e
� � 1

�
zNn

o
:

We write, for r > 0,

Sr (�) = 
r
e
r�
@
r
k
�

�
e
� � 1

� zNn

	
@ f (e� � 1)gr :

A property of the Sr (�) is that

@Sr (�)

@�
= Sr+1 (�) + rSr (�) ; r = 1; 2; ::::

This allows us to compute

@k(� zNn)

@�
= �e

� + S1 (�) and
@
2
k(� zNn)

@�2
=
@k(� zNn)

@�
+ S2 (�) ;

and recursively

@
r
k(� zNn)

@�r
=
@k

r�1(� zNn)

@�r�1
+
@
r�2

S2 (�)

@�r�2
; r = 3; 4; ::::
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Finally, of course,

�r =
@
r
k(� zNn)

@�r

����
�=0

=
@
r
k
�

�
e
� � 1

� zNn

	
@ f (e� � 1)gr

�����
�=0

:

Then we note that

Sr (0) = 
r
e
r�
�r:

As a result, for example,

�1 = �+ �1; �2 = �1 + 
2
�2; �3 = 3�2 + 

3
�3;

and

�4 = �3 +
@
2
S2 (0)

@�2
= �3 +

@S3 (0)

@�
+ 2

@S2 (0)

@�

= �3 + fS4 (0) + 3S3 (0)g+ 2 fS3 (0) + 2S2 (0)g
=

�
1 + 53

�
�3 + 22�2 + 

4
�4:

Further, all higher order cumulants will be such that (1� 
r)�r is a function of cumulants of

order less than r and so all the moments of the marginal distribution of fNng exist if and only

if  < 1 by induction.

�

Proof of Theorem 2.3. Now

Nn = �n + (Nn � �n)

= �+ ( + �)Nn�1 + un � �un�1;

is a constrained ARMA(1,1) representation with a MD error term if  + � < 1. It follows

immediately that �1 = �= (1�  � �). Further as

Cov(Nn; �n) = E
�
�
2
n

�� fE(�n)g2 = V ar(�n);

so

�2 = E fV ar(NnjFn��)g+ V ar fE(NnjFn��)g
= E (�n) + V ar(�n)

= E(Nn) + 
2
V ar(Nn�1) + �

2
V ar(�n�1) + 2�Cov(Nn�1; �n�1)

= �1 + 
2
�2 +

�
�
2 + 2�

�
V ar(�n)

= �1 + 
2
�2 +

�
�
2 + 2�

�
(�2 � �1) :

implying the required result as V ar(�n) = �2 � �1. The autocorrelation function follows from

standard ARMA theory. The moment generating function of the model is most easily expressed

via the bivariate recursion

m(� zNn; �n) = E fexp (�1Nn + �2�n)g
= E [exp f( + �2)�ng] where  =

�
e
�1 � 1

�
= e

�( +�2)E [exp f( (�2 +  )Nn + � (�2 +  ) �n)g]
= e

�( +�2)m f (�2 +  ) ; � (�2 +  ) zNn; �ng ;

yielding the cumulant generating function stated in the theorem.

�
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