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Abstract

While the classical framework has a rich set of limited information procedures such as
GMM and other related methods, the situation is not so in the Bayesian framework.
We develop a limited information procedure in the Bayesian framework that does not
require the knowledge of the full likelihood. The developed procedure is a Bayesian
counterpart of the classical GMM but has advantages over the classical GMM for
practical applications. The necessary limited information for our approach is a set
of moment conditions, instead of the likelihood function, which has a counterpart
in the classical GMM. Such moment conditions in the Bayesian framework are ob-
tained from the equality condition of the Bayes' estimator and the GMM estimator.
From such moment conditions, a posterior probability measure is derived that forms
the basis of our limited information Bayesian procedure. This limited information
posterior has some desirable properties for small and large sample analyses. An al-
ternative approach is also provided in this paper for deriving a limited information
posterior based on a variant of the empirical likelihood method where an empirical
likelihood is obtained from the moment conditions of the classical GMM. This al-
ternative approach yields asymptotically the same result as the approach explained
above. Based on our limited information method, we develop a procedure for select-
ing the moment for GMM. This moment selection procedure is an extension of the
Bayesian information criterion to the Bayesian semi-parametric, limited information
framework. It is shown that under some conditions the proposed moment selection
procedure is a consistent decision rule.
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1 Introduction

In most cases of econometric practice, the researcher has only limited information

on the data generating mechanism. While the classical framework has a rich set

of inference methods based on limited information such as GMM and other related

methods, the situation is not so in the Bayesian framework. The traditional Bayesian

approach requires the knowledge of the full likelihood or the full information on the

data generating mechanism. This aspect of the Bayesian approach is an important

drawback for practical applications. Also, sometimes the full model or the full like-

lihood may involve nuisance parts that are not of interest. In this case, some type

of semi-parametric procedure might be more appropriate for practical applications.

In this paper we develop a semi-parametric, limited information procedure in the

Bayesian framework that does not require the knowledge of the likelihood function.

The developed procedure is a Bayesian counterpart of the classical GMM but has

advantages over the classical GMM for practical applications. We also develop a

moment selection method in GMM based on our limited information procedure. This

moment selection method is a generalization of the traditional Bayesian information

criterion to the Bayesian semi-parametric, limited information framework.

The literature on the semi-parametric, limited information Bayesian procedure is

relatively small. There was an earlier literature on the limited information Bayesian

analysis of simultanaous equations systems. See Zellner (1971), Zellner et al. (1988),

and Dreze and Richard (1983). In this literature, `limited information' refers to the

classical LIML situation. However, the analysis is based on the traditional Bayesian

approach with a known likelihood function. Innovative work is done by Zellner

(1996,1997,1998) who developed a Bayesian method of moments based on the prin-

ciple of maximum entropy that is discussed by Jaynes (1982a,b), Shore and Johnson

(1980), Zellner and High¯eld (1988), Cover and Thomas (1991), Zellner (1993), and

Soo¯ (1994). In a linear regression (Zellner (1996)) or in a linear simultaneous equa-

tions system (Zellner (1995)) the procedure goes by making assumptions on the

realized error terms from which posterior moments of parameters are derived. The

principle of maximum entropy is applied to the given moment conditions to get a
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posterior density. Although Zellner's work is an important input in the literature,

the analysis is limited to the case when parameters are linear. Even for a linear

model we have nonlinearity in parameters in some inference methods such as two-

stage least square in the Bayesian framework. Also, Zellner's analysis is based on

orthonality assumptions on the expected realized errors and the regressors (predeter-

mined variables), which is restrictive in many cases of practice. On the other hand,

Kwan (1999) shows that under certain regularity conditions sampling distribution of

an estimator can be reversed to the distribution of parameters conditional on the es-

timator. Based on this result Kwan (1999) argues that a classical limited information

estimator can be given a Bayesian interpretation. However, Kwan's (1999) analysis

is limited in that it requires a condition of uniform convergence in ditribution or

uniform asymptotic normality of an estimator. This requirement obviously rules out

the case of possible nonstationarity in time series models which has been one of the

hottest issues in econometrics literature in recent years. Also, it is unclear in Kwan

(1999) in what sense the reversion of the distribution of an estimator conditioned on

the estimator is conceivable as a posterior.2

In this paper we study Bayesian limited information procedures for a general

situation of GMM with a possibly dynamic, nonlinear, full simultaneous equations

system. We provide two separate approaches in this paper for developing Bayesian

limited information procedures. The two approaches are di®erent in nature, utilizing

given limited information in di®erent ways. However, the two approaches yield the

same result asymptotically whenever both are feasible.

The ¯rst approach studied in Section 3 is based on a set of moment conditions

in the Bayesian framework instead of likelihood functions, prior densities and Bayes'
2It is stated in Kwan (1999), without justi¯cation, that this `reversion' is a posterior. The

common notion of a posterior density, on the other hand, is a probability density in the parameter

space conditional on data. Therefore, in order for the `reversion' conditioned on an estimator to be a

posterior the estimator should be a su±cient statistic for the posterior. However, it is not possible to

show the su±ciency before the posterior is known. Kwan's (1999) result of the asymptotic normality

of the reversed distribution implies that the estimator and its second moment are asymptotically

su±cient for the reversed distribution. However, this result does not imply the su±ciency of the

statistics for a posterior.
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Theorem. Based on a formal design of a Bayesian framework where a Bayes' esti-

mator is de¯ned, we obtain a set of moments from their counterparts in the classical

GMM with the equality condition of the GMM estimator and the Bayes' estimator.3

The moment conditions are described with respect to the (unknown) true poste-

rior probability measure. We derive a limited information posterior that satis¯es the

same moment conditions as the true posterior by the principle of maximum entropy.4

By its nature, our limited information posterior is the closest to the true posterior

in the entropy distance in a set of posteriors that satisfy the same posterior mo-

ment conditions as the true posterior. Also, since the derived posterior probability

is de¯ned in the parameter space, nonstationarity in the sampling process does not

matter for Bayesian inference. This fact implies that Sims' (1988) point applies to

our limited information framework as well as to the traditional Bayesian framework

that Bayesian approach is more sensible and easier to handle analytically than the

classical con¯dence statements in the presence of possible nonstationarity.

We study asymptotic properties of the posterior derived in Section 3. The ob-

tained asymptotic results imply an important fact on the relationship between the

Bayesian approach and the classical approach. The obtained asymptotic results also

provide a basis for Bayesian analysis in the case when a closed form posterior in a

¯nite-sample is not available. Under some regularity conditions, it is shown that the

derived posterior is asymptotically normal with the ¯rst and the second moments,

respectively, equal to the GMM estimator and its second moment. This result implies

that the GMM estimator and its second moment are asymptotically su±cient for the

derived posterior. This result also implies that the derived posterior is asymptoti-
3An estimator obtained in the classical framework can be also obtained within the Bayesian

framework. That is, under mild conditions the same estimator is obtained from minimization of

average risk and from minimization of expected posterior loss. See, for example, Judge et al. (1985)
4In this sense, the approach in Section 3 is a generalization of Zellner (1996,1997) to the situation

of GMM and other related methods. However, our analysis in Section 3 goes farther than the

generalization in the dimension of models: We provide a formal approach for deriving moments for

Bayesian GMM; We provide a method of obtaining a limited information posterior for a nonlinear

models; Also, we study asymptotic properties of the posterior for the case when a closed-form

posterior is not available in a ¯nite sample.
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cally equivalent to the true posterior if the true posterior is asymptotically quadratic

in the parameter. The regularity conditions require equicontinuity of some statistic

plus some relatively minor properties of the domain of the posterior. The conditions

are general enough to cover a wide variety of models. The regularity conditions do

not require the uniform convergence in Kwan (1999) and, therefore, allow the case of

possible nonstationarity. Kwan's (1999) counter examples that violate the uniform

convergence condition, in fact, violate our equicontinuity condition. As can be easily

recognized, those examples in Kwan (1999) are of little importance in practice.

The second approach studied in Section 4 for developing a limited information

procedure is based on a limited information likelihood that is derived from some mo-

ments of sampling characteristics. The idea of the limited information likelihood is

similar to that of the empirical likelihood method studied in Owen (1988,1991), Chen

(1993,1994), and Kitamura (1997), among others. That is, given some moments of

sampling characteristics it is to derive a probability density of the sampling process

satisfying the given moments by the principle of maximum entropy. However, while

the existing empirical likelihood method considers only the ¯rst order moment to

derive an empirical likelihood, our approach utilizes an (implicitly given) second or-

der moment as well. The posterior is, then, obtained from the limited information

likelihood and a prior by the Bayes' Theorem.5 The approach in Section 4, how-

ever, would be applicable only under some su±cient stationarity because the given

moments of sampling characteristics might not be valid otherwise.

We develop a moment selection method in GMM by applying the limited in-

formation Bayesian method studied in this paper. The moment selection procedure

derived in this paper is a generalization of the traditional Bayesian information crite-

rion to the Bayesian semi-parametric, limited information framework. This moment

selection rule can also be used for determining an econometric model since di®erent

moments in GMM imply di®erent models. It is shown that under some conditions the

proposed moment selection procedure is a consistent decision rule. In the classical
5It is shown in Kim (2000) that the maximum likelihood estimator for the likelihood obtained

from our approach matches the mean of a posterior from a °at prior and the likelihood while that

obtained from the empirical likelihood method matches the median of the posterior.
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GMM the Â2-test for testing the validity of moments often fails to detect a misspec-

i¯ed model (low power) as pointed by Newey (1985). We compare our method to

the Â2-test theoretically and by Monte Carlo simulation. It is shown that the power

of our method after size adjustment is higher than that of the Â2-test. Monte Carlo

study con¯rms this ¯nding. On the other hand, Andrews and Lu (1998) have pro-

posed a moment selection criterion in GMM by some ad hod manner. Our analysis

provides a formal basis of building the functional form of the criterion. We compare

our procedure with that of Andrews and Lu (1998).

The discussion of the paper goes as follows. Section 2 provides a summary of

some key elements of GMM as a preliminary step for our analysis. In Sections 3

and 4, respectively, the ¯rst and the second approaches for developing the limited

information Bayesian procedure are studied. Section 5 develops a moment selection

method in GMM.

2 Preliminaries

Let xt be an n £ 1 vector of stochastic processes de¯ned on a probability space

(;F ; P ). Denote by xT (¹!) = (x1(¹!); :::; xT (¹!)), for ¹! 2 , a T -segment of a

particular realization of fxtg. Let µ be a q £ 1 vector of parameters from £ ½ IRq.
Let G be the Borel ¾-algebra of £. Notice that (£;G) is a measurable space. In

this paper £ is a `grand' parameter space in which all the likelihoods, priors and

posteriors under consideration are de¯ned.

Let h(xt; µ) be an r £ 1 vector-valued function, h : (IRn £ IRq) ! IRr. Suppose

that the following r moment conditions are satis¯ed at µ0 2 £

(2:1) EP [h(xt; µ0)] = 0:

Let gT (xT ; µ) be the sample average of h(xt; µ):

gT (xT ; µ) ´ 1
T

TX

t=1

h(xt; µ):

Assumption 1 (a) h(x; ¢) is continuously di®erentiable in £ for each x 2 IRn.
(b) h(¢; µ) and @h(¢; µ)=@µ are Borel measurable for each µ 2 £.
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De¯nition 1 The GMM estimator fµ̂G;T (!) : T ¸ 1g, for some ! 2  is the value

of µ that minimizes the objective function

(2:2) gT (xT ; µ)0WGT gT (xT ; µ);

where fWGT g1T=1 is a sequence of (r£r) positive de¯nite weighting matrices that may

be a function of the data xT .

Assuming an interior optimum, the GMM estimate µ̂G is a solution to the follow-

ing system of nonlinear equations:

(2:3)
½
@gT (xT ; µ)
@µ

jµ=µ̂
¾0

£WGT £ [g(xT ; µ̂)] = 0:

Let wt = h(xt; µ0). Denote by S the long-run variance of wt = h(xt; µ0):

(2:4) S ´
1X

º=¡1
EP [h(xt; µ0)h(xt¡º; µ0)0]:

Notice that the conditions (2.1) and (2.4) form conditions on the ¯rst and second

moments of h(xt; µ0).

Consistent estimators of S are discussed in Newey and West (1987), Gallant

(1987), Andrews (1991), and Andrews and Monahan (1992). Let ŜT be a consistent

estimator of S based on a sample of size T . An optimal GMM estimator is obtained

with WGT = Ŝ¡1T :

(2:5) gT (xT ; µ)0Ŝ¡1T gT (xT ; µ):

Alternatively, the long-run variance S can be expressed in the following way:

(2:6) S = lim
T%1

EP [TgT (x; µ0)gT (x; µ0)0]

It is natural to have the following estimator for an estimator of S in (2.6):

(2:7) ŜT = TgT (x; µ0)gT (x; µ0)0:

Remark 1 (Nonstationarity and the Moment Conditions in GMM)

(a) The second moment or long-run variance of S in (2.4) can be de¯ned only
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when xt satis¯es certain su±cient stationarity conditions. In the case of xt being

nonstationary, however, the expression in (2.4) is invalid because the covariance

EP [h(xt; µ0)h(xt¡º; µ0)0] depends on t. On the other hand, the moment condition

(2.1), given from an econometric relation or from economic theory, is assumed to

hold regardless of the existence of nonstationarity.

(b) GMM in the Bayesian framework studied in this paper is also based on a set of

moment conditions (3.6) and (3.8) in Section 3.1, a counterpart of (2.1) and (2.4).

Not only the (¯rst order) moment condition (3.6) but also the second order moment

condition (3.8) are robust to the existence of the nonstationarity, contrary to the

condition (2.4) in the classical framework. It is because the conditions (3.6) (and

(3.8)) are made with respect to a probability measure in the ¾-¯eld G of the parameter

space £ while the conditions (2.4) (and (2.1)) are made with respect to a probability

measure in the ¾-¯eld F of the sample space .

3 The Bayes' Estimator, GMM and a Limited

Information Bayesian Framework

The GMM is a limited information procedure in the classical framework. That is,

the GMM estimate in De¯nition 1 or in (2.3) is based on the moment condition (2.1)

- a set of limited information on the data generation process (DGP), not based on

the full information on DGP. The main objective of this paper is to build a Bayesian

conterpart of the classical GMM. Two di®erent approaches are adopted in this paper

for this purpose.

The ¯rst approach, which is studied in this section, is based on a set of moment

conditions in the Bayesian framework instead of likelihood functions, prior densities

and Bayes' Theorem. Based on a formal design of a Bayesian framework where a

Bayes' estimator is de¯ned, we obtain a set of moments from their counterparts in

the classical GMM with the equality condition of the GMM estimator and the Bayes'

estimator. The moment conditions are described with respect to the (unknown) true

posterior probability measure. We derive a limited information posterior that satis¯es
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the same moment conditions as the true posterior by the principle of maximum

entropy.

The second approach, which is studied in the next section, is based on a lim-

ited information likelihood that is derived from the moment condition (2.1) of the

classical GMM. A limited information posterior is obtained from the derived limited

information likelihood through the Bayes' rule. As is shown in Section 4.2 the two

approaches of Sections 3 and 4 yield asymptotically the same result whenever both

approaches are feasible.

3.1 The Bayes' Estimator, GMM and Posterior Densities

A Bayesian framework is identi¯ed by a posterior probability measure or density

de¯ned in the measurable space (£;G) while a classical econometrics framework is

identi¯ed by a probability measure in (;F). In this paper we study how to get a

posterior density in the measurable space (£;G) based on some limited information

on the nature of the world. In general, some characteristics of the true posterior are

revealed in the set of such limited information, if the true posterior is unknown. We

discuss how to get a posterior probability density in (£;G) that is as close as possible
to the true posterior from the given limited information.

Let ¼T (µjxT (!)) be the `true' posterior of µ that may be unknown.6 Assume that

the posterior ¼T (¢jxT (¢)) is jointly measurable G £ F . De¯ning

PT (G;!) =
Z

G
¼T (µjxT (!))dµ

for any G 2 G and ! 2 , PT (¢; !) is a probability measure on £ for every ! 2 ,

and PT (G; ¢) is a random variable for each G 2 G.
Let `(µ; ±) be a loss function that re°ects the consequences of choosing ± when

µ is the real parameter value. The Bayes' estimator is an estimator that minimizes

the expected posterior loss:

(3:1) µ̂B = ±¤(xT ) = argmin±E
¼[`(µ; ±)]

6We can think of ¼T (µjxT ) as the posterior of µ obtained from the true likelihood of µ, if any.

Or, it is a posterior of µ containing a richer set of information on the true model than that in the

limited information posterior studied in this paper.
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where

(3:2) E¼[`(µ; ±)] =
Z

£
`(µ; ±)¼(µjxT )dµ:

We are interested in a loss function that yields an estimator equivalent to the

GMM estimator. Since our objective is to study a Bayesian conterpart of the classical

GMM, it is natural to adopt a loss function with this property. Thus, consider the

following loss function that is quadratic in gT :

(3:3) `(µ; ±) = L(gT (µ); gT (±)) = [gT (µ) ¡ gT (±)]0WT [gT (µ) ¡ gT (±)]

where fWTg1T=1 is a sequence of positive de¯nite weighting matrices. The loss func-

tion (3.3) can be transformed into a loss function quadratic in µ:

(3:4) `(µ; ±) = [µ ¡ ±]0 ~WT [µ ¡ ±]

where ~WT = f@g(~µ)=@µg0WTf@g(~µ)=@µg, where ~µ 2 (µ; ±).

The loss function (3.3) or (3.4) is such that it yields an estimator that is the same

as the GMM estimator under some conditions. (See Lemma 1 below.) The results

of this section would be robust to the choice of the loss function so far as the chosen

loss function has this property.

The ¯rst order condition for the minimization problem (3.1) with the loss function

(3.3) yields the following equation:

(3:5)
½
@gT (µ)
@µ

jµ=µ̂
¾0
WTgT (µ̂) = E¼

·½
@gT (µ)
@µ

jµ=µ̂
¾0
WTgT (µ)

¸
:

Then, the equality of the Bayes' estimator and the GMM estimator entails a moment

condition for gT (µ):

Lemma 1 Assume the second order conditions hold for the GMM estimate in De¯-

nition 1 and for the Bayes' estimate in (3.1). Then, under Assumption 1 the Bayes'

estimator µ̂B is equal to the GMM estimator µ̂G if and only if

(3:6) E¼[¥TgT (µ)] = 0

where

¥T =
½
@gT (µ)
@µ

jµ=µ̂
¾0

£WT

with fWTg = fWGT g.
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For notational convenience, let

(3:7) ´T (µ) = ¥TgT (µ):

The equation (3.6) describes a moment condition on ´T . We assume that ´T (µ) has

a second moment:

Assumption 2 Assume that there exists a sequence of q£q matrices fATg1T=1 such

that for T ¸ 1

(3:8) E¼[T´T (µ)´T (µ)0] = AT :

Conditions (3.6) and (3.8) are about the ¯rst and the second moments of ´T (xT ; µ),

forming a counterpart of the conditions (2.1) and (2.4) or (2.6) for h(xt; µ0) in the

classical framework. Notice that we only assume the existence of the second moment

in Assumption 2 while we have a speci¯c value for the ¯rst moment in (3.6). This

feature is similar to that in the classical GMM in the conditions (2.1) and (2.4).

Remark 2 (Nonstationarity and the Moment Conditions (3.6) and (3.8))

The conditions (3.6) and (3.8) are made with respect to a probability measure de¯ned

in the ¾-¯eld G of £, not . Therefore, nonstationarity in xt(!) for ! 2  does not

matter for the conditions (3.6) and (3.8).

Our objective is to construct a limited information posterior (LIP) of µ where

the `true' posterior is not available. We are interested in an LIP of µ having the

following properties: (1) It is consistent with the properties of the true posterior

described in (3.6) and (3.8), (2) It is the closest to the true posterior in the entropy

distance or the Kullback-Leibler information distance in a set of posteriors satisfying

(1). In addition, the limited information posterior has the following two properties

as is studied in Section 3.2: (1) It is asymptotically equivalent to the true posterior

as far as the true posterior is asymptotically quadratic in µ. (2) The classical GMM

estimator with its second moment is asymptotically su±cient for the derived posterior

density.

Let ~¦ be the family of posterior densities satisfying the same moment conditions

(3.6) and (3.8) as ¼:

(3:9) ~¦ =
©
~¼ : E~¼[´T (µ)] = 0

ª
\

©
~¼ : E~¼[T´T (µ)´T (µ)0] = AT

ª
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where

E~¼[(¢)] =
Z

(¢)~¼dµ:

For ~¼ 2 ~¦ we are interested in the one that is the closest to the true posterior ¼ in

the entropy distance or the Kullback-Leibler information distance:

(3:10) ~¼¤ = argmin~¼2~¦

Z
ln(~¼=¼)~¼dµ:

The density ~¼¤ is interpreted as the I-projection of ¼ on ~¦ . See Csiszar (1975). The

intuition is that ~¼¤ is the projection of ¼ on an information set `spanning' ~¦ which

has the closest distance from ¼ to the set ~¦ . We call ~¼¤ an I-projection posterior

or a limited information posterior. Following Csiszar (1975), we can show that the

density ~¼¤ is as in the following:

Theorem 1 Let ~¼¤ be the I-projection of ¼ on ~¦ . Then, ~¼¤ is of form

(3:11) ~¼¤T (µjxT ) = CT exp[c ¢ T´T (µ)0A¡1T ´T (µ)]

where c is a constant, and CT is a normalizing constant.

Although the posterior ~¼¤T (µjxT ) in (3.11) has desirable properties explained

above, it is sometimes not useful in practice since there is a function ´T (¢) `between'
µ and ~¼¤T (¢jxT ). For example, computation of a posterior probability ~PT (G;!) =
R
G ~¼¤T (µjxT (!))dµ for a G 2 G analytically or by some numerical method such as the

Gibbs sampler would not be easy unless gT (µ) or ´T (µ) is of a simple form such as a

linear function of µ.

The posterior ~¼¤T (µjxT ) in (3.11) can be transformed into an alternative that is a

direct function of µ. To get an alternative form of ~¼¤T (µjxT ), notice that by the mean

value theorem

´T (µ) = ´T (µ̂) +
µ
@´T (µ)
@µ

jµ=¹µ

¶0
(µ ¡ µ̂)

where ¹µ 2 (µ̂; µ) for µ̂ = µ̂B = µ̂G. But, since ´T (µ̂) = 0 from the ¯rst order condition

for the minimization problem of the Bayes' estimate we have

(3:12) (µ ¡ µ̂) = BT (¹µ)¡1´T (µ)

12



where

(3:13) BT (µ) =
@´T (µ)
@µ

:

Then, as a corollary of Theorem 1 we get the following result:

Corollary 1 Let ~¼¤ be the I-projection of ¼ on ~¦ . Then, ~¼¤ is such that

(3:14) ~¼¤T (µjxT ) / exp[° ¢ T (µ ¡ µ̂)0BT (¹µ)0A¡1T BT (¹µ)(µ ¡ µ̂)]

where ¹µ 2 (µ; µ̂), and ° is a constant.

It is appranent in (3.14) that µ is approximately normal with the ¯rst and second

`moments', respectively, equal to µ̂ and fBT (¹µ)0A¡1T BT (¹µ)g¡1. If the function h(xt; µ)
or gT (xT ; µ) is linear in µ, then BT (¢) does not depend on µ. In this case the I-

projection posterior of µ is normal with the ¯rst and second `moments', respectively,

equal to µ̂ and fB0TA¡1T BTg¡1, according to (3.14). However, if BT (¢) depends on µ
as in most cases of gT (xT ; µ) being nonlinear in µ, this is not true. In fact, in this

latter case the form of the posterior ~¼¤T (µjxT ) in (3.14) is of no use in practice since
¹µ and thus the second `moment' fBT (¹µ)0A¡1T BT (¹µ)g¡1 are not uniquely determined.

In this case, however, the second moment is uniquely determined in asymptotics, so

that asymptotically the I-projection posterior is normal with unique ¯rst and second

moments. See Section 3.2.

The Bayesian framework studied above is based on the condition of equality of

the Bayes' estimator and the GMM estimator. Now, let us consider the case of the

optimal Bayes' estimator and the optimal GMM estimator.

By the same reason as in Hansen (1982) the optimal Bayes' estimator, having

the shortest posterior probability interval of a given probability content, is obtained

by setting7

(3:15) WT = fE¼[TgT (µ)gT (µ)0]g¡1 :
7The result (3.16) in Lemma 2 or the result (3.23) in Lemma 4 implies that under (3.15) the

asymptotic posterior second moment of µ, §T (µ̂), in (3.19) is equal to fTAT g¡1 or fTBT (µ̂)g¡1. We

can show that the shortest posterior probability interval of a given probability content is obtained

in this case by the same reason as in Hansen (1982).
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Notice that from (3.7) and (3.8), we have

AT = E¼[T¥TgT (µ)gT (µ)0¥0T ];

and from (3.13) and from the de¯nitions of ¥T and ´T in Lemma 1 and in (3.7),

respectively, we have

BT (µ̂) = [¥TW¡1
T ¥0T ]:

Therefore, at the optimal Bayes' estimate withWT = fE¼[TgT (µ)gT (µ)0]g¡1, we have
the following result:

Lemma 2 Let WT = fE¼[TgT (µ)gT (µ)0]g¡1. Then, it is true that

(3:16) AT = BT (µ̂):

Now, consider the case when ¼T is such that the optimal weighting matrix WT
given in (3.15) is equal to the optimal GMM weighting matrix8:

(3:17) WT = fE¼[TgT (µ)gT (µ)0]g¡1 = Ŝ¡1:

where Ŝ is a consistent estimator of S in (2.4). The condition (3.17) implies the

following result:

Lemma 3 Let the true posterior ¼ be such that WT = fE¼[TgT (µ)gT (µ)0]g¡1 = Ŝ¡1:
Also, let A0

T and B0
T be AT and BT at such ¼ and WT . Denote by VT (µ̂G) the

asymptotic variance-covariance matrix of the optimal GMM estimator. Then, it is

true that

(3:18) A0
T = B0

T (µ̂)

= D0
T Ŝ

¡1DT ´ [TVT (µ̂G)]¡1

where

DT =
½
@gT (µ)
@µ

jµ=µ̂
¾
:

8As is clear from (3.1) a di®erent posterior ¼T yields a di®erent Bayes' estimator. A di®erent

weighting matrix WT gives a di®erent Bayes' estimator as well.
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3.2 Asymptotic Approximations and Properties

We ¯rst introduce a neighborhood system in £ in which the posterior is de¯ned. Let

N(µ̂T ; ±T ), T = 1; :::;1, be such that

N(µ̂T ; ±T ) = fµ : jµ1 ¡ µ̂T1j2=±2T1 + ¢ ¢ ¢ + jµk ¡ µ̂Tkj2=±2Tk < 1g

where µ̂Ti is the ith element of µ̂T ; ±T = (±T1; :::; ±Tk)0 is a q-vector of real numbers;

j ¢ j denotes the usual Euclidean norm. We consider a sequence f±Tg such that ±T
becomes smaller and smaller as T % 1, so that N(µ̂T ; ±T ) shrinks as T gets larger.

Also, ±T may depend on ! 2 .

Denote by k ¢ k the matrix norm: For an m £m matrix A, kAk = sup jAxj=jxj,
where jAxj is the usual Euclidean norm on IRm. For notational convenience, de¯ne

(3:19) §T (µ) =
©
TBT (µ)0A¡1T BT (µ)

ª¡1 :

Notice that under the optimality condition (3.17) we have

(3:20) §0
T (µ̂) = fTB0

T (µ̂)g¡1 = fTA0
Tg¡1:

where §0
T (µ̂) denotes §T (µ̂) under the optimality condition (3.17).

Now, consider the following conditions (C1) and (C2).

(C1)(a) Let ¹T (µ̂T (!); ±T ) = supµ2N(µ̂T ;±T ) k[§T (µ̂T )]¡1[§T (µ) ¡ §T (µ̂T )]k. There

exists a positive sequence f±Tg1T=1 such that limT%1 P [¹T (µ̂T (!); ±T ) < ²] = 1 for

each ² > 0. (b) For ±T satisfying (C1)(a) the absolute value of each element of the

vector §T (µ̂T )¡1=2±T tends to in¯nity as T % 1 in P -probability.

Condition (C1)(a) is a smoothness or equicontinuity condition of §T (µ) inN(µ̂T ; ±T ).

This condition rules out the case with a suddern `jump' in §T (¢) in N(µ̂T ; ±T ). Condi-

tion (C1)(b) guarantees that the the neighborhood N(µ̂T ; ±T ) is wide enough to cover

the domain of the posterior. These two conditions (C1)(a) and (b) are not really

binding in many cases of practice.9 In fact, conditions (C1) and (C2) (below) cover
9We can ¯nd in Kwan (1999) examples of models that violate the smoothness condition (C1)(a).

Three examples are presented in Kwan (1999). Interpreting them in the model of our interest,
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a very wide variety of models including the case with possible nonstationarity.10

By (3.18) and (3.20) we know that the condition (C1)(b) can be stated in terms

of VT (µ̂G) under (3.17) or in terms of B0
T (µ̂) under (3.15). The condition (C1)(b)

stated in terms of B0
T (µ̂) or VT (µ̂G) is much easier to check for a given gT (xT ; µ) than

that stated in terms of §T (µ̂). Also, the following condition (C1)(a)0, which is much

easier to check for a given gT (xT ; µ), is su±cient for (C1)(a) under (3.17):

(C1)(a)0 Let B0
T (µ) = D0

T Ŝ¡1DT (µ) where DT (µ) = @gT (µ)=@µ. Let mT (µ̂T (!); ±T ) =

supµ2N(µ̂T ;±T ) k[B0
T (µ̂)]¡1[B0

T (µ) ¡ B0
T (µ̂)]k. There exists a positive sequence f±Tg1T=1

such that limT%1 P [mT (µ̂T (!); ±T ) < ²] = 1 for each ² > 0.

The following condition is about asymptotic concentration of µ 2 N(µ̂T ; ±T ) in

the sense of Berk (1970):

(C2) Let ~¼¤T (µjxT ) be the posterior as given in (3.11). For ±T satisfying (C1),
Z

£nN(µ̂T ;±T )
~¼¤T (µjxT )dµ ¡! 0

as T % 1, i.e., µ concentrates in N(µ̂T ; ±T ) as T % 1.

We can show that under the conditions (C1)-(C2) the posterior ~¼¤T (µjxT ) is

asymptotically normal. Thus, let Á(¢) denote the standard normal p.d.f. de¯ned

on IRq. Also, for a; b 2 IRq; a = (a1; :::; aq), etc., let (a; b) be a q-dimensional inter-

val, that is, (a; b) = fy = (y1; :::; yq) : ai < yi < bi; i = 1; :::; qg.

Theorem 2 Assume that (C1) and (C2) are satis¯ed. Then, for each (a; b),
Z

JTab
~¼¤T (µjxT )dµ ¡!

Z b

a
Á(z)dz

Example 2 and Example 4 of Kwan (1999) are `designed' such that the (long-run) variance of

wt = h(xt; µ0) or the variance of µ̂ has a sharp discontinuity point at some µ in the neighborhood

N(µ̂T ; ±T ) and can never be smooth in the sense of (C1)(a). Example 1 in Kwan (1999), on the

other hand, presents µ̂, an estimate of the mean, that depends on the sample mean. Anyone of

these examples, however, are of little interest in practice.
10See Kim (1998) for examples of models satisfying (C1) and (C2). Although the examples in

Kim (1998) are true likelihood functions satisfying conditions similar to (C1) and (C2), the same

method can be applied to ¯nd examples of h(xt; µ) satisfying (C1) and (C2).
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in P -probability where JTab = fµ : [§T (µ̂T )]¡1=2(µ ¡ µ̂T ) 2 (a; b)g.

Theorem 2 states that under some conditions the posterior distribution of the pa-

rameter µ is asymptotically normal with the ¯rst moment of the distribution equal

to µ̂T and the second moment §T (µ̂T ):

(3:21) µjxT a» N(µ̂T ;§T (µ̂T )):

The result of Theorem 2 further implies that the statistics (µ̂T ;§T (µ̂T )) are jointly

su±cient for µ in the posterior ~¼¤T (µjxT ) in asymptotics, where asymptotic su±cieny

is de¯ned in the following:

De¯nition 2 A statistic s(xT ) is asymptotically su±cient for µ in the posterior

~¼T (µjxT ) if for each (a; b),
¯̄
¯̄
Z

JTab
~¼T (µjxT )dµ ¡

Z

JTab
~¼T (µjs(xT ))dµ

¯̄
¯̄ ¡! 0:

Corollary 2 Assume that (C1) and (C2) are satis¯ed. Let s(xT ) = (µ̂T ;§T (µ̂T ))

Then, s(xT ) is asymptotically su±cient for µ in the posterior ~¼¤T (µjxT ).

The result of Corollary 2 implies that for large sample analysis we can construct a

posterior based on the statistics (µ̂T ;§T (µ̂T )) rather than based on the whole sample

xT and the full likelihood. The approximated posterior is normal with the ¯rst

moment of the distribution equal to µ̂T and the second moment §T (µ̂T ):

(3:22) µjs(xT ) a» N(µ̂T ;§T (µ̂T )):

Now, consider the case of the optimal Bayes' estimator either under the condition

(3.15) or under (3.17). In this case, we have the following results:

Lemma 4 Under condition (C2), if WT = fE¼[gT (µ)gT (µ)0]g¡1 it is true that

(3:23) limsupµ2N(µ̂T ;±T )kA
¡1
T BT (µ) ¡ Ik = 0:

In addition, if WT = fE¼[gT (µ)gT (µ)0]g¡1 = Ŝ¡1 it is true that

(3:24) limsupµ2N(µ̂T ;±T )k§
0
T (µ) ¡ VT (µ̂G)k = 0:
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By (3.24) the results of Theorem 2 and Corollary 2 imply the following important

fact in econometrics:

Proposition 1 Let s0(xT ) = (µ̂T ; VT (µ̂G)). Assume that the conditions in Theorem

2 hold. Then, for the optimal Bayes' estimator with WT = Ŝ¡1T it is true that

(3:25) µjs0(xT ) a» N(µ̂T ; VT (µ̂G)):

The result of Proposition 1 implies that the optimal I-projection posterior, which

is based on the optimal Bayes' estimator with WT = Ŝ¡1T , can be constructed given

the GMM estimator µ̂T and its asymptotic variance VT (µ̂G). The optimal I-projection

posterior of µ is asymptotically normal with the ¯rst moment equal to µ̂T and the

second moment VT (µ̂G).

4 Alternative Approach

In the previous section we directly derived a limited information posterior based on

a set of moment conditions in the Bayesian framework. In this section we derive a

limited information posterior based on moment conditions of GMM in the sampling

theory framework. We ¯rst derive a limited information likelihood and then get a

limited information posterior through the Bayes' rule. Later on in Section 4.2 we

show that the two approaches of Sections 3 and 4 yield asymptotically the same

result whenever both approaches are feasible.

4.1 GMM and a Limited Information Likelihood

From the moment condition (2.1) in Section 2, we have

(4:1) EP [gT (xT ; µ0)] = 0:

Also, we have the second moment condition on gT from (2.4) and (2.6):

(4:2) lim
T%1

EP [TgT (xT ; µ0)gT (xT ; µ0)0] = S
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where S is the long-run variance of wt = h(xt; µ0) explained in (2.4).11

Given the true probability measure P with the properties in the moment condi-

tions (4.1) and (4.2), we are interested in a probability measure Q that implies the

same moment conditions: Thus, let Q be a family of probability measures that is

absolutely continuous with respect to P such that for µ 2 £

(4:3) Q(µ) = fQ : EQ[gT (xT ; µ)] = 0g \
½
Q : lim

T%1
EQ[TgT (xT ; µ)gT (xT ; µ)0] = S

¾
:

For Q 2 Q we are interested in the one that is the closest to the true probability

measure P in the entropy distance or the Kullback-Leibler information distance:

(4:4) Q¤ = argminQ2QI(QkP ) ´
Z

ln(dQ=dP )dQ

where dQ=dP is the Radon-Nikodym derivative (or density) of Q with respect to P .

We denote by q¤P = dQ¤=dP the Radon-Nikodym derivative of Q¤ with respect to P .

We call q¤P (µ) a limited information likelihood or the I-projection likelihood following

the notion of Csiszar (1975).

The idea of the limited information likelihood q¤P (µ) is similar to that of the em-

pirical likelihood studied in Owen (1988,1991), Chen (1993,1994), Kolaczyk (1994),

Chen and Hall (1993), Quin (1993), Quin and Lawless (1994), DiCiccio, Hall and

Romano (1989,1991), DiCiccio and Romano (1989,1990), Hall (1990), and Kitamura

(1997). However, while the empirical likelihood method of these authors is based on

the ¯rst order moments such as (2.1), our approach utilizes the second order moment

(4.2) as well.12

Following Csiszar (1975), we can show that q¤P is as in the following:
11Since the conditions (4.1) and (4.2) are described with respect to the probability measure P

de¯ned on F , the existence of nonstationarity may matter for these conditions, di®erent from (3.6)

and (3.8).
12The likelihood obtained from the two approaches yield di®erent MLEs: The MLE for the

likelihood obtained in our approach is the same as the GMM estimator for each T while the MLE

for the likelihood obtained from the empirical likelihood method is not. As is shown in Kim (2000),

the MLE for the likelihood obtained from our approach matches the mean of a posterior from a

°at prior and the likelihood while that obtained from the empirical likelihood method matches the

median of the posterior.
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Theorem 3 Under the conditions on Q,

(4:5) q¤P (µ) = K exp
½

lim
T%1

· ¢ TgT (xT ; µ)0S¡1gT (xT ; µ)
¾

where · is a constant, and K is a normalizing constant.

A natural ¯nite-sample analogue of qP denoted by qP;T for a sample xT is

(4:6) q¤P;T (µ) = KT exp
n
· ¢ TgT (xT ; µ)0Ŝ¡1T gT (xT ; µ)

o

where KT is a normalizing constant.

It is easy to show that the maximum likelihood estimator (MLE) of the limited

information likelihood q¤P;T (µ) in (4.6), denoted by µ̂LM , is the same as the optimal

GMM estimator:

Lemma 5 Let · < 0. For a given T , it is true that

(4:7) argmaxµ2£ log q¤P;T (µ) = argminµ2£gT (xT ; µ)
0Ŝ¡1gT (xT ; µ):

Furthermore, the asymptotic variance of µ̂LM is the same as the asymptotic variance

of the GMM estimator, that is,

(4:8) lim
T%1

"
@2 ln q¤P;T (¹µ1)
@µ@µ

#¡1 "µ
@ ln q¤P;T (µ0)

@µ

¶µ
@ ln q¤P;T (µ0)

@µ

¶0#"
@2 ln q¤P;T (¹µ1)
@µ@µ0

#¡1

= lim
T%1

·µ
@gT (xT ; ¹µ2)
@µ

¶
Ŝ¡1T

µ
@gT (xT ; ¹µ2)
@µ

¶¸

where ¹µ1 2 (µ̂LM ; µ0) and ¹µ2 2 (µ̂G; µ0).

4.2 A Limited Information Posterior and Its Properties

For notational convenience, write q¤T (xT jµ) = q¤P;T (xT ; µ) the limited information

likelihood (4.6) based on the sample xT . Let '(µ) be a prior density of µ. Then, a

posterior can be derived from the Bayes' rule

(4:9) 'T (µjxT ) = q¤T (xT )¡1f'(µ) ¢ q¤T (xT jµ)g

where q¤T (xT ) =
R
£ '(µ)q

¤
T (xT jµ)dµ, a normalizing factor.
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As q¤T (xT jµ) is used as a ¯nite sample analogue of q¤P (µ) in (4.5), it is meaningful

to study the behavior of 'T (µjxT ) in the large-sample context. Also, as the GMM is

well justi¯ed for asymptotic inference, we are interested in the asymptotic properties

of 'T (µjxT ). As can be shown in the following, the posterior 'T (µjxT ) in (4.9) is

asymptotically equivalent to the limited information posterior ~¼¤T (µjxT ) from the

optimal GMM in (3.25).

Recall that we have a `grand' parameter space £ in which all the likelihoods

and posteriors considered in this paper are de¯ned. The likelihood qT (xT (¢)j¢) is

assumed to be jointly measurable F £ G. Also, 'T (µjxT (¢)) is jointly measurable

G £ F . De¯ne

P'T (G;!) =
Z

G
'T (µjXT (!))dµ

for any G 2 G and ! 2 . Then P'T (¢; !) is a probability measure on £ for every

! 2 , and P'T (G; ¢) is a random variable for each G 2 G.
Let LT (µ; !) = log qT (xT (!)jµ), the log-likelihood of µ. Let N(µ̂T ; ±T ), T =

1; :::;1, be a shrinking neighborhood as is de¯ned in Section 3. Assume that the log-

likelihood LT (µ) is twice di®erentiable with respect to µ in
S1
T=1N(µ̂T ; ±T ). Denote

by L00T (µ) the second derivative of the log-likelihood. Notice that

(4:10) [¡L00T (µ̂T )]¡1 =
"
T

Ã
@gT (xT ; µ̂)
@µ

!
Ŝ¡1T

Ã
@gT (xT ; µ̂)
@µ

!#¡1
´ VT (µ̂G):

Now, consider the following conditions (D1) and (D2).

(D1)(a) Let MT (µ̂T (!); ±T ) = supµ2N(µ̂T ;±T ) k[L00T (µ̂T )]¡1[L00T (µ) ¡ L00T (µ̂T )]k. There

exists a positive sequence f±Tg1T=1 such that limT%1 P [MT (µ̂T (!); ±T ) < ²] = 1 for

each ² > 0. (b) For ±T satisfying (a) the absolute value of each element of the vector

[¡L00T (µ̂T )]1=2±T tends to in¯nity as T % 1 in P -probability.

(D2) Let 'T (µjxT ) be the posterior as de¯ned in (4.9). For ±T satisfying (D1),
Z

£nN(µ̂T ;±T )
'T (µjYT )dµ ¡! 0

as T % 1, i.e., µ concentrates in N(µ̂T ; ±T ) as T % 1.

Notice that Conditions (D1) and (D2) are similar to Conditions (C1) and (C2) that

are applied to di®erent objects.
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(D3) The prior density ¼(µ) is continuous in £ and 0 < ¼(µ0) <1.

We can show that a posterior formed from an I-projection likelihood and a prior

satisfying (D3) is asymptotically normal:

Theorem 4 Assume that (D1) and (D2) are satis¯ed for q¤T (¢; ¢) and '(¢). Also,

assume that (D3) is satis¯ed. Then, for each (a; b),
Z

JTab
'T (µjxT )dµ ¡!

Z b

a
Á(z)dz

in P -probability where JTab = fµ : [¡L00T (µ̂T )]1=2(µ ¡ µ̂T ) 2 (a; b)g.

Theorem 4 states that under some conditions the posterior distribution of the pa-

rameter µ is asymptotically normal with the ¯rst moment of the distribution equal

to µ̂T and the second moment [¡L00T (µ̂T )]¡1:

µjxT a» N(µ̂T ; [¡L00T (µ̂T )]¡1):

Since from (4.10) [¡L00T (µ̂T )]¡1 = VT (µ̂G); the result in Theorem 4 shows that the

posterior 'T (µjxT ) in (4.9) is asymptotically equivalent to the limited information

posterior ~¼¤T (µjxT ) under the optimality condition (3.17):

Proposition 2 Assume that assumptions of Proposition 1 and Theorem 4 hold.

Then, under (3.17) it is true that
¯̄
¯̄
¯

Z

J1Tab

'T (µjxT )dµ ¡
Z

J2Tab

~¼¤T (µjxT )dµ
¯̄
¯̄
¯ ¡! 0

in P -probability where J1Tab = fµ : [L00T (µ̂T )]1=2(µ ¡ µ̂T ) 2 (a; b)g and J2Tab = fµ :

[VT (µ̂T )]¡1=2(µ ¡ µ̂T ) 2 (a; b)g.

Asymptotic equivalence of 'T (µjxT ) in (4.9) and ~¼¤T (µjxT ) in Section 3 proves

the validity of each of the two by the other. Asymptotic su±ciency of the statistic

s(xT ) = (µ̂T ; L00T (µ̂T )) for the posterior 'T (µjxT ) also follows by the same way as in

Corollary 2.
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5 Selection of Models and Moment Conditions

We begin with a general setup of a model selection problem. Let M be a family of

candidate models for xT . Denote by m0 2 M the true model for xT and pT (µ;xT )

the true p.d.f. of xT . A model mi 2 M is associated with a parameter space £i of

dimension qi for i 2 I where I = f1; :::; Ig, and £i ½ £ for i 2 I. Assume that

for each mi a family QiT (µi;xT ) of distribution functions, with a density qiT (µi;xT ),

is de¯ned on the measurable space (£;G) £ (;F). For our GMM framework, each

mi corresponds to a set of moment conditions as in (2.1). Also, each qiT (µi;xT ) is an

I-projection likelihood as is de¯ned in Section 5 corresponding to the set of moment

conditions. Notice that, di®erent from Section 4, we do not have the superscript

`¤' for the I-projection likelihood qiT (µi;xT ) for notational convenience. We assume

some regular conditions on the density qiT (µi;xT (!)) de¯ned on £ £ :

Assumption 3 (a) For each T ,
R
 log(pT )dPT exists and j log qiT (µi;xT )j · ¹i(xT )

for all µi 2 £i for i 2 I, where ¹ is integrable with respect to PT . (b) For each

T and mi
R
 log(pT=qiT )dPT has a unique maximum at µiT;0 2 £i. (c) For each T ,

R
£ log(pT )dPT exists and j log qiT (µi;xT )j · ·i(µ) a.e. in , where ·i is integrable

with respect to PT . (d) For each T
R
£ log(pT=qiT )dPT has a maximum at i = i¤(T )

for an i¤ 2 I.

5.1 BIC in the Limited Information Framework

A natural approach to model selection in the Bayesian framework is to choose a

model mi for which the posterior probability is the largest. Thus, let Pr(mijXT ) be
the posterior probability that mi is true. By the Bayes' rule

(5:1) Pr(mijxT ) =
qT (xT jmi)Pr(mi)P
j2I qT (xT jmj)Pr(mj)

where Pr(mi) is the prior probability that mi is true and qT (xT jmj) = qiT (xT ). If we
assume that Pr(mj) is the same for all j, the model selection rule is to choose mi for

which qT (xT jmj), or

(5:2) qT (xT jmj) =
Z
qT (xT jµj ;mj)'(µjjmj)dµi = Emj [qT (xT jµj)]
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is the largest, where '(µjjmj) is the prior density associated with the model mj .

Phillips (1996) provides another dimension of justi¯cation of Bayesian approach for

model selection based on the notion of a Bayesian model measure.

The criterion (5.2) involves computation of an integral of qT£' with respect to µi

in IRqi . Certainly this computation is not easy even with a very fast computer. Also,

the choice of the range of µ is another problem for the computation. Chib (1995),

among others, applies the Gibbs sampling method to compute the marginal likelihood

qT (XT jmj). The Gibbs sampling method is a powerful approach to computing a

density that can be written as a product of several conditional densities. Sometimes,

however, the result from the Gibbs sampler is sensitive to the setup of the simulation

or `sampling'. Also, it is necessary that all integrating constants of the full conditional

distributions in the Gibbs sampler be known (p.1314, Gibbs (1995)). On the other

hand, the marginal likelihood qT (XT jmj) itself depends on the prior density, so that

model selection based on a direct computation of qT (XT jmj) yields di®erent results
depending on the choice of the prior.

In the following we provide an approximation to the integral in (5.2) that is valid

for large sample analysis. It is computationally simple to handle and yet has sound

theoretical justi¯cation.

Lemma 6 Assume that the prior '(µ) is continuous in £ and bounded at µ0. Then,

under the assumptions (D1) and (D2)

(5:3) logEmj [qjT (xT jµj)]
= log(qT (xT jµ̂T )) ¡ (1=2) log(j[¡L00T (µ̂)]j) + (q=2) log(2¼) + log('(µ0)) +R0;

where R0 is of op(1).

From Lemma 6, an approximation of the criterion (5.2) is

Choose the model j that maximizes

(5:4) log(qT (xT jµ̂T )) ¡ (1=2) log(j[¡L00T (µ̂)]j):

Now, consider the criterion (5.4) for the optimal GMM estimate. From (4.6)

qT (µ) = KT exp
n
· ¢ TgT (xT ; µ)0Ŝ¡1T gT (xT ; µ)

o
:
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Also, from (4.10)

[¡L00T (µ̂T )]¡1 = VT (µ̂G)

Therefore, from (4.6), (3.23) and (4,10) the criterion (5.4) for the optimal GMM

estimate is such that

Choose the model j that maximizes

(5:5) · ¢ TgT (xT ; µ̂)0Ŝ¡1gT (xT ; µ̂) + logKT + (1=2) log(jVT (µ̂G)j):

Notice that the criterion (5.5) is for selecting the moment for GMM. The constants

· and KT and VT (µ̂G) can be obtained for a given gT (xT ; µ) and Ŝ.

As an example, consider the case of linear regression

(5:6) x1t = x02tµ + "t

with the following moment condition

(5:7) E[x2t"t] = 0:

In this case,

gT (xT ; µ) =
1
T

TX

t=1

x2t(x1t ¡ x02tµ):

Notice that

gT (xT ; µ̂) =
1
T

TX

t=1

x2t"̂t = 0

where "̂t = x1t ¡ x02tµ̂. Also, for the model (5.6)-(5.7) we can show that

VT (µ̂) = ¾̂2 [X 0
2X2]

¡1 ;

KT = ¾̂¡T

where ¾̂2 = T¡1
PT
t=1 "̂t and X2 = (x021; :::; x02T )0. Therefore, for the model (5.6)-(5.7)

the moment selection criterion (5.5) is as follows

Choose the model j that maximizes

(5:8) (T ¡ qj) log ¾̂2=T + log(jX(j)0
2 X

(j)
2 j)=T:

Notice that the criterion (5.8) is exactly the same as the Bayesian model selection

criterion for the regression (5.6) with "t » i:i:d:N(0; ¾2) instead of the moment

condition (5.7) which is derived in Kim (1998).
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5.2 Consistency

We can show that the above criterion (5.2) leads to the choice of the true model with

unit probability. Denote by pT (xT jµ) the true likelihood. Recall that ¼T (µjxT ) is the
true posterior density of µ from pT (xT jµ) and a prior ¼(µ). Denote by 'iT (µjxT ) the
posterior density of µ from the likelihood qiT and a prior 'i(µi).

The following theorem shows that the decision rule (5.2) chooses the true model

m0 in a set of alternatives under some condition:

Theorem 5 Assume that for i 2 I

(5:9)
Z

ln
¡
(pT¼)=(qiT'

i)
¢
¼Tdµ ¡

Z
ln

¡
¼T='iT

¢
¼Tdµ ¸ 0

with equality only if 'iT = ¼T . Then, for any i 2 I,

(5:10) Emi[qiT (xT jµi)] · Em0 [pT (xT jµ)];

with equality only if qiT'i = pT¼. That is, Pr[mijXT ] · Pr[m0jxT ] for all i 2 I with

equality only if mi = m0.

Notice that (5.10) implies that given xT (!) for a ! 2  the decision rule (5.2) chooses

the true model under the condition (5.9).

The condition (5.9) generally holds in some probabilistic sense for a su±ciently

large sample. For example, we can show that under (D1)-(D3) the condition (5.9)

holds asymptotically.

5.3 Size Adjustment and Power Comparison
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