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Abstract

The paper proposes a method for construction, estimation, and testing the Ratio-
nal Beliefs (RB) models. RB models, due to Kurz (1994b), allow agents’ beliefs to differ
from the Rational Expectations (RE), but require that beliefs cannot be contradicted
by past data. By implication, RB and RE must agree in strictly stationary worlds,
while a disagreement is allowed in non-stationary setting. The estimation method in-
volves sample counterparts to the conditional and unconditional moment restrictions
formed from the Euler equations and rationality conditions. In essence, the method
deduces systems of conditional beliefs consistent with the conditional moment re-
striction posed by the Euler equations. Consistent test statistics then discriminates
the rationality from non-rationality. The attractive features are (i) the estimation and
testing procedures are implemented without solving explicitly for RB equilibria, (ii)
learning is permitted, and (iii) both the econometrician and the economic agents are
put on the “equal footing” in the sense of Muth (1961), and “down to earth”. Under
flexible regularity conditions, the test statistics are shown to converge in distribution
to the continuous functionals of generalized Brownian bridges, whose coordinates are
projections on the space of moment functions that are used to phrase the rationality
conditions. As a result, the limit distributions are non-standard or standard, depend-
ing on whether the test statistic is itself a function of finite-dimensional projection or
a functional of the whole process, respectively. The resampling and simulation meth-
ods allow for valid approximation of either distribution. A simple estimated model
of aggregate consumption and stock market behavior, populated by investors with
rational beliefs, points to the variation in agents” sentiments as a dominant source of
asset price volatility.
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1 Introduction

The Rational Beliefs (RB) models, introduced in Kurz (1994b), allow agents to hold beliefs
that differ from the Rational Expectations (RE). These beliefs, however, should satisfy the
key coherency condition, termed the Rationality condition: the beliefs can not be contra-
dicted with the past data. The principle does not imply Rational Expectations.

Precisely, non-stationarity of the world allows a Rational Belief and Rational Expecta-
tion to disagree. In RB models, RE represent an RB, as a special case. The principal sources
of non-stationarity of the economy can be either exogenous, such as technological shocks,
or endogenous, such as the perceived non-stationarity in the beliefs'.

The RE models were designed to represent the situation in which the knowledge of
economic agent is superior: the true probability law of motion is assumed to be known
or approximately known by the agents. Such requirement turns out to be highly prob-
lematic when the economies are significantly non-stationary. Non-stationarity, in principle,
precludes the very possibility of learning the true probability law of motion, even if the
infinite history is available.

Driven by the failure of RE to explain puzzling features of macroeconomic dynamics,
such as equity premium, consumption and stock price volatility, forward discount bias, to
name a few?, many attempts at rigor have been made to “drift” away from RE in various
ways. Models of learning, for example, recognized the approximate nature of Rational
Expectations Equilibrium (REE)®. In the limit of the learning dynamics, REE is typically
recovered. Analysis of investor behavior and patterns of stock price reaction to news such
as earnings announcements has lead some researchers to develop models of investor sen-
timent* which, coupled with Bayesian learning, were consistent with evidence of under-
reaction to news but overreaction to a series of good or bad news. In spirit, the literature on
investor sentiment is close to RB approach but for the motivation it is derived from: sen-
timent models are rooted in elements of psychology while the central requirement of RB

! An example due to Kurz (1994a) shows that even if the exogenous environment is completely station-
ary, if agents believe in non-stationarity, the resulting dynamics of prices is non-stationary. This implies a
history from which we can not learn the true probability law of motion.

2Long series of empirical papers have documented the issue. See, for example, Hansen and Singleton
(1982), Mehra and Prescott (1985), Hansen and Jagannathan (1991), Froot and Frankel (1989), Burnside
(1994), Geweke (1999).

3This includes Marcet and Sargent (1989), Anderson, Hansen, and Sargent (1999), Brock and LeBaron
(1996), Epstein and Wang (1994), Cochrane (1989), Hansen and Sargent (1993), Krusell and Smith (1996).
The list is by no means exhaustive. In Marcet and Sargent (1989), agents use the estimated transition laws
of correct functional forms which they mistakenly take as non-random and time-invariant. In Cochrane
(1989) and Krusell and Smith (1996), consumers use decision rules that are perturbed by small amounts in
arbitrary directions form optimal ones.

4See Barberis, Shleifer, and Vishny (1998).



theory is rationality with respect to the observed past. Another brand of literature deals
with the ‘robust’ decision-making approach®. In particular, Anderson, Hansen, and Sar-
gent (1999), suggested a “robust” version of the dynamic decision-making, in which the
decision-maker recognizes that the RE reference model is akin to an estimate provided by
econometrician, and he therefore guards against the estimation uncertainty by choosing
beliefs that are least-favorable to him in a neighborhood of the estimate. We argue later
on that such a paradigm, with additional reinterpretation could be fit into a very specific
class of the empirical RB models that we provide here. Indeed, ‘robust’ rules for choosing
the most pessimistic beliefs is only one special way of assigning beliefs to the agents. Such
beliefs could be rational in the sense of not being rejected by rationality specification tests
we pose here, but the imposition of pessimism seems unwarranted. We like to allow for
less gloomy worlds. Further, Anderson, Hansen, and Sargent explicitly prohibit learn-
ing to keep the misspecification error constant, in a sense®. The RB models, on the other
hand, that we consider here, expressly allow for agents to learn both in the long run and
short run (adaptation). Overall, deviating from RE formulations has allowed the models
to enjoy some success in explaining one or the other puzzle.

On the other hand, the RB modeling, representing a significant departure from the
RE framework, has been considerably successful. Omne unified and simple model of
economy, with agents having Rational Beliefs, is able to accurately explain such seem-
ingly unrelated and diverse phenomena as excessive volatility of prices (Kurz and Mo-
tolese, 1998; Kurz, 1998), risk and equity premia (Kurz and Beltratti, 1997), forward dis-
count bias (Kurz, 1997b; Black, 1997) , dynamic money non-neutrality (Motolese, 1998)

°A sample of other recent papers include Gilboa and Schmeidler (1989), Hansen, Sargent, and Tallarini
(1999), Anderson, Hansen, and Sargent (1999), and Epstein and Wang (1994). Gilboa and Schmeidler, and
Epstein and Wang offer an axiomatic approach, in which the belief is represented by a family of probability
measures and the ‘minmax’ criterion is utilized in decision making. In the formulation of Hansen, Sargent,
and Tallarini, Epstein and Wang (1994), and Anderson, Hansen, and Sargent (1999), there is the “true” or
reference model, around which a family of permissible misspecifications is stated. The agents then use a
‘minmax’ criterion to select the decision rule that would reflects the most pessimistic ‘belief” in the class of
beliefs allowed by misspecification . The families of misspecifications are stemmed from the robust control
and information theory literature. In particular, these include H,, H2, and maximum entropy methods.
Equivalent formulations are derived from the risk-sensitive recursive formulation.

6In Anderson, Hansen, and Sargent (1999), the size of misspecification is interpreted as the preference
for robustness parameter. On the other hand, in the stationary world with infinite data, learning can recover
the true law of motion, and misspecification cannot arise. Hence, alternative view of the misspecification
size in the context of Anderson, Hansen, and Sargent is to relate it primarily to the data size. To accom-
modate the size of misspecification varying with the size of the data, future developments would need to
augment the model by some learning mechanism, perhaps at the expense of mathematically elegant recur-
sive formulation. The econometric “empiricist” model developed below already incorporates the above
model as a special case, but does not impute to the agents the “minmax” rules for the choice of their beliefs.
Our econometric modeling avoids explicit solutions and thus avoids technicalities.



and other “puzzles” (see Kurz (1997a)). In simulation studies, simple models of RB
Economies perform better than the models of RE Economies by the order of magnitudes.

To date, however, all of the above studies employed simulation, or simulation com-
bined with calibration, as a main tool. Simulation approaches require explicit solution for
RB equilibria and the computational and informational burden of doing so can be exces-
sive. This limits the computational complexity of implementable models much beyond
the finite state Markovian specification, put together by M. Kurz and his colleagues . The
approach requires the modeler to have knowledge of the true probability law and of the
agent’s beliefs on the infinite sequences. In the present work, we supply simple economet-
ric weaponry to RB modelers in an effort to help better reveal the empirical content of RB
models. This methodology can be applied to highly complex models, as the methodology
avoids explicit solutions for RB equilibria. Importantly, it does not require the knowledge
of the true law of motion and the beliefs on the infinite sequences. This is plausible,
because, in the general nonstationary settings, the econometrician, even armed with the
infinite data, can not deduce the true law of motion, as it requires of him to know the
number of parameters at least of the order of cardinality of the data. Henceforth, in man-
ufacturing the econometric methods, we pose the following principles, that the proposed
econometric method must have.

The method should represent a joint economic and econometric paradigm in which:

(i) Agents and the econometrician do not know the true probability law, and they rec-
ognize this.

(ii) An agent has access to finite but increasing data. As an econometrician himself, he
is allowed to draw inferences and accumulate knowledge, i.e. learn.

(iii) Beliefs of agents should to be rational, i.e. they should imply the same quantification
of history as the history itself. The rationality conditions should be simply phrased.

(iv) The method should avoid the closed form solutions of stochastic equilibria, since
these can only be obtained in special simple cases and with a knowledge of the true
probability law of motion.

The proposed qualities (i) — (iv) agree with the principles of modeling advocated by
Kurz (1994a) in requiring the above notion of rationality, and by Muth (1961), which states
that the econometrician and the agents should be put on “equal footing” in the sense that
both should have the same data and structural knowledge. Furthermore, the principle

“For the finite state Markov specification, the Kurz group has successfully harnessed the supercomputer
power by adopting some advanced parallel computing techniques that allow their simulation studies to
run on more than 50 Unix workstations simultaneously.



(ii) strips both the agents and econometrician of other god-like qualities, such as access to
the infinite data.

It should be said, however, that the theoretical model suggested by Kurz implicitly
postulates that the data is infinite by requiring the agents to know the stationary measure®
(the learnable part of true law) and to coordinate their beliefs with it. In practice this
translates into regarding the estimated stationary measure as the true stationary measure,
and ignoring the estimation uncertainty (as irrelevant or very small). We shall refer to
this model as to the canonical RB model, and this model will receive the priority in the
empirical implementation and discussion. Explicitly built into our construct is, however,
another model that incorporates and accounts for the additional estimation uncertainty
resulting from the finiteness of the data. Importantly, it manifests itself in the asymptotic
approximations to the distribution of the test statistics that checks the rationality of the
agents. We shall refer to the second model as to the empiricist RB model. Aside minor
subtleties, at the heart of both econometric models is the principle of compatibility with
the data, the rationality principle proposed by Kurz (Kurz, 1997a).

Of course, we, the econometrician, always have to make some prior simplifications
and assumptions about the structure of the economy and beliefs, e.g. allow ergodicity
(to be able to conduct estimation and inference), assume bounded heterogeneity when
characterizing non-stationarity (to enable derivation of the stochastic limit results for es-
timators and test statistics), assume some functional forms for relevant functions and en-
vironments. These sacrifices ought to be made to extract something intelligible from em-
pirical data and make the theory generate testable implications. Apart from such general
a priori assumptions, the methodology proposed here agrees with the described earlier
principles.

Overview
The paper is organized as follows. The discussion of Rational Beliefs Models and its
translation to finite (but increasing data) is given in section 2. The canonical and the
empiricist RB models are phrased there in econometric terms. The section also presents
the key basic building blocks of the empirical RB models.

Section 3 describes the novel econometric estimation and modeling methodology. This
is the first methodology, to our knowledge, that offers ways of empirical investigation of
RB models (other than the simulation methods). The approach avoids explicit solutions
for the equilibria.

Section 4 is an application to a representative agent economy with a rational belief.
The choice of representative agent situation is motivated by the availability of data, ease
of implementation, and the resulting multitude of applications, such as security pricing,

8See definition in the next section.



decomposition of uncertainty, and the market price of risk.

To wit, subsection 4.1 formulates the modeling approach as applied to the standard
consumption and asset pricing model. Furthermore, we develop a quantitative decom-
position of uncertainty (“market price of risk”) into two parts: one arising from varia-
tion in the intertemporal rates of substitution, as in the usual case, and the second due
to “endogenous” uncertainty, arising from the inability to learn the true law of motion
and having to use a Rational Belief in lieu of the true probability measure. This offers
the quantitative and qualitative explanation of the “equity premium”. The econometric
methodology then applies to propose estimates of market price of risk and facilitate the
comparisons with the observed empirical values. A particularly simple “log-normal” ref-
erence example is worked out in subsection 4.2, with two following subsections, 4.3 and
4.4, implementing prototypical empirical evaluation of RB using U.S. economy data. Sec-
tion 5 offers concluding remarks. Appendix covers various technicalities that are glossed
over to ease the exposition. In particular, it contains all formal definitions and techni-
calities related to the presence of learning in the data. It defines all estimators and test
statistics. The null hypothesis of rationality is formalized, and the test statistics are of-
fered. These test statistics are continuous functionals (with respect to the uniform metric)
of the rationality score processes that represent the empirical processes whose finite di-
mensional projections form moment conditions for checking rationality. The resulting test
statistic is either a “sup” statistics, in the spirit of Kolmogorov-Smirnov statistic, over all
moment functions or a quadratic form of any finite-dimensional projection on the space of
moment functions. The asymptotic distributions of such test statistics are derived under
the null and the alternative, and the resulting test decisions have been demonstrated to
be asymptotically consistent in discriminating the rationality vs. non-rationality of a de-
duced system of beliefs. The corresponding asymptotic distributions can be viewed either
as the “sup” of a generalized Brownian bridge to which the rationality score converges or
the quadratic form of the finite-dimensional projection of the above process.

2 The Basic Building Blocks of RB models

Basic Notation

Let {z:} be a stochastic process, describing the economy, on probability space

((RM)™,B ((RY)>®),P). P is the true probability law. A proper belief of an agent is the
probability space ((RY)™,B ((RY)>),Q), or simply Q.

Generally, Q and [P can be taken as distinct from each other probability measures. The
measure [P is assumed to generate the so called stationary or ergodic measure, which is
defined by the limits of empirical distribution functions over all finite horizon events (see
definition below). Denote this measure by M. Throughout the paper we assume that the



IP is nonstationary and ergodic, in the usual sense employed in the literature. Sequence z;
is assumed to be stable, i.e. detrended etc.

Decision Making and the Optimality Conditions
Discrete time models of optimal behavior of economic agents often lead to the first order
conditions of the form

EQi“‘kh(iEt-I-k) 9) = O7 k = 1, 2, .. (21)

where z,.;, is a finite-dimensional vector of the variables observed by the agents and
econometrician as of date ¢ + k, 0 is finite-dimensional parameter unknown to econome-
trician, characterizing underlying preference or technology, h is a finite dimensional map-
ping and EQ§+1€ is an expectation operator with respect to probability measure Q:™*, which
is the belief of an agent about the events k periods forward from the date ¢, conditional
on his/her current information set I;. Equations of this type can emerge from the first or-
der necessary conditions of an agent’s utility maximization problem in an uncertain and
non-stationary dynamic environment. A detailed example is exhibited in the section 4.
Throughout we assume that the econometrician observes the actions of the agent within
last T, periods of history, whose total length is assumed to be H (in the canonical model
H = o0). T here is allowed to be less than or equal to H in the empiricist RB model,
whereas in the canonical RB model, it is negligible in relation to H.

Rationality: Compatibility with the Data
Kurz (1974; 1997a) has proposed to consider those beliefs Rational that are compatible
with data. The belief, Q, should not ignore the past history. In the theoretical and in the
simulation studies of RB models the past history is always assumed to be infinite, the
assumption we surely abandon here.

The notion of compatibility proposed by Kurz requires the observed empirical frequencies
to agree with the theoretical frequencies that the beliefs generate. Henceforth, this is the key
principle of our modeling. The rigorous definition given by Kurz is stated below.

Definition of Rationality — (Kurz, 1997a)

(I) Stability . A dynamic system is a pair of probability space and a shift transfor-
mation T (for z* = (2,241 ...), Tot = 2™, and T"'S = 2 : Tz € S). A dynamic
system, ((RV)*,B ((RN)*),],T), is stable if, for M,(B)(z) = n~' 31—} 15(T7x),
and any cylinder B

Mj(B) = lim M, (B)(z) exists J a.e. (2.2)

n—oo



M (B) can be uniquely extended to the stationary probability measure M; on all sets
B ((RY)%).

(IT) Compatibility with Infinite Data. Q is said to be compatible with the data generated
by (RY)™,B (RY)*®),J,T) if Mg = Mp = M

A belief Q is said to be Rational, in the sense of Kurz, if the above conditions are
satisfied together with the certain other technicalities. The reasons for conditions (I
-II) are appealing : real world economy appears to be generally stable (I); whenever

the limits in 2.2 are known, a rational believer forms his belief so as to not contradict
the Mp (II).

We do not employ directly the notion of compatibility posed, since it is very hard to
work with econometrically. Our modelling approach will avoid (i) specification of the
beliefs on the infinite sequences and (ii) specification of unconditional beliefs. It will only
model the conditinal beliefs Qi** and conditional stationary measure M!™*, and therefore
the rationality implications should be phrased in terms of restrictions on such systems:

Let H denote the length of history of the economy. As we take it to the limit, for a rich
class of functions § (called convergence-determining class), for any g € G,

H
. 1
f}l_rgo I Zl EQ§+kg(It+17 o Tyk) = B9 (Teg, - Togr)

(2.3)

H
) 1
= Hh_r)%oﬁtz_;g(a:t#—la”';xt-kk)a Pa.e.

The above roughly states that the data generated by the system of conditional beliefs
should yield the same averages as those historically observed. Under technical regularity
condition this condition is equivalent to that of Kurz. These technical regularity condi-
tions require G to be fairly broad, for example, G has to be a class of continuous or Lipshitz
bounded functions. In some practical applications it is possible to relax regularity con-
ditions and employ a narrower and even finite class of functions. For instance, in the
“log-normal” example of section 4.3, it is sufficient to consider a very narrow class of
functions that consists of all polynomials of the second order, i.e § = {g : z — g(z) =
zor g(z) = zz'}. In this example, therefore, only the long term means and covariances
have to agree with those generated by the the beliefs to guarantee that the above rational-
ity condition holds for all g in the class of continuous and bounded functions. In general
settings, however, G has to be very broad. This broadness makes the verification of the
rationality condition by the agents himself difficult or impossible, as we explain below.
There are two key difficulties that an agent (and also econometrician) encounter when
attempting to verify (2.3). First, consider an agent who has beliefs over the entire sequence
of historical events. If H, the length of history, is finite, it is possible to compute the

10



sample counterparts of the rationality condition (2.3) for any fixed g. This means that
the estimation uncertainty is present when characterizing the long term moments (the
learnable part of the history). In the canonical RB model, this estimation uncertainty is
required to be zero or negligible.

Therefore, the proposition, that the data is finite, large, and increasing, forces us to
phrase the asymptotic notions of the rationality condition (2.3). Furthermore, we have to
phrase such conditions from the point of view of econometrician who observes the agent
making choices in the last T, periods of time.

This rephrasing is rather simple if the convergence determining class G is finite. Com-
plications may arise when § is infinite. If the class is too broad, e.g. all continuous and
bounded functions, we may look at sample counterparts of the above rationality con-
ditions with many and possibly all functions g. It is then natural to use some metric
to make the key statistical decision of discrimination between rational and non-rational
belief systems. For example, take the “sup” over the difference between the sample av-
erages generated by the beliefs and the observed historical averages. Unfortunately, this
is useless econometrically even if the beliefs are rational, since such statistic, generically,
would not converge to zero (in probability, and hence not a.e.)” Y. Furthermore, sup-
pose we want to consider the above “sup” statistic and its asymptotic distributions so
as to employ the asymptotic statistical decision theory in discriminating rationality. The
class G of all bounded continuous functions is not Donsker (again see van der Vaart and
Wellner (1996) ) , therefore eliminating the very possibility of existence of the asymptotic
distribution™.

The “equal footing” postulate requires the agent to be an econometrician, just as us.
This principle and the above considerations lead us therefore to curb the class § and make
it finite or “small”, precisely, requiring G to be Glivenko-Cantelli or Donsker, depending

9This is because , the above class G of all bounded continuous functions is not Glivenko-Cantelli — see
van der Vaart and Wellner (1996).

9This observation suggests, that rationality notion of canonical model can not be obtained, generically,
in the limit of learning, i.e. through forcing the agent to construct the beliefs on the sequence that respect the
sample counterpart of rationality conditions by taking sup over the functions. See importantly Hoffmann-
Jorgensen (1994), van der Vaart and Wellner (1996), Hoffmann-Jergensen (1991) for treatments of conver-
gence, and generally the treatment of the probability “with a view towards statistics”, where probability
theory is built so that it can be always viewed as a limit of convergence of a statistical experiments. Similar
observations and certain theoretical results as pertains to RB are obtained in Nielsen (1997a) and Nielsen
(1997b). (Kurz, 1997a), p.10 responds to the critique, by saying that the class of sets over which the compat-
ibility is to be defined can be shrunk. This is equivalent to the above observation prompting to “shrink” the
class of functions. Furthermore, such the largest class obtains by considering exactly the Glivenko-Cantelli
class. Some sufficient conditions for a function to belong to this class under non-stationarity and serial
dependence are given in the appendix.

UThe statistic then is not measurable, and is not asymptotically measurable. It is then impossible to
assign distribution to it — see van der Vaart and Wellner (1996).

11



on the need'?.

Thus the econometric considerations lead us to the following much less general ratio-
nality requirements, which are phrased from the econometrcian’s point of view. Suppose
that the econometrician observes the agent’s decisions that respect optimality conditions
for T, periods and is able to deduce the sample counterpart to the average 'generated’ by
the beliefs (the lhs of (2.3)). If class § is finite, then the rationality requirement is

1
T. —k

H—k
Z EQi‘*‘kg(xt—i-la"')xt-i-k) %EMg(xt—l—la---)xt-i-k)) k= 192>;v9€ 9
t=H—-T.+1

. . 1 H—k : 13
Precisely, we only require that 7— > ;" 7, Egresg(e41, -, 14x) be consistent™ for

Emg(Ti41, ..., Tex). In terms of probability limits (as opposed to a.e. limits) we require
that updating of the conditional beliefs is done so that:

H—k
. 1
HJEO{ITT?_)OOTC s Z E@§+k9(xt+1a oy Tgk) = Eg(Tog, - Togr)
t=H—T.+1
(2.4)
T
= El_lglm ; 9(Teq1s s Tegr), k=1,2,...

For infinite class G, e.g. the class of all polynomials or class of smooth functions, we
require the Glivenko-Cantelli property to hold, that is, (2.4) to hold uniformly for Vg € G:
ie., foranye > 0" ":

H—k
H%CE%AOOIP’* (ilelg T 1_ - tZHZTEH EQ:Hg(:EtH, s Tpr) — Bmg(Tog1,y - Teyr)| > €,
| Hk
sup |Emg(®is1, -y Tig) — T Z 9( g1y )| > 6) =0
9€5 t=1
(2.5)

The assumption above is a bare minimum needed in order to obtain the key estimation and
testing (discrimination of rationality) consistency results. Note that if § is finite, the prop-

12Generally, if class G has finite entropy integral (a measure of “complexity”), then it is Donsker (and
therefore Glivenko-Cantelli), but the requirements are more stringent under dependence conditions (see
appendix and e.g. (Andrews, 1989; Andrews, 1993)).

13The econometric regularity conditions make further assumptions to derive limit distributions for test
statistics and estimators.

4To conduct asymptotic inference, we shall require the Donsker property to hold.

15p* is the outer probability measure (see (van der Vaart and Wellner, 1996)) (in case the event is measur-
able, P* is replaced by P). Using P* above is a measure-theoretic subtlety and should be ignored.

12



erty (2.5) holds from (2.4) automatically. The above condition applies to both the canon-
ical model and the empiricist model'®. We also stress that considering infinite classes is
highly practical, contrary to what it may seem: indeed, we may take the class of functions
parameterized by a parameter in a Euclidean space, e.g. g(z,d) = 2°,§ € [a,b], then the
check of the rationality condition would involve finding the least favorable solution §* in
an infinite class of possibilities. The resulting distribution is certainly non-standard, but
it can be approximated by bootstrap and simulation methods.

This section has introduced the basic building blocks of econometric RB models. The
essence of the proposed methodology is to explore both the optimality conditions (2.1)
and the rationality conditions (2.4) and (2.5) . In particular, by assuming parametric func-
tional forms of the conditional beliefs and the conditional stationary measure, the method
first explores the restrictions on the system of beliefs implied by the optimality conditions.
By identifying plausible sub-families, the method offers the test statistics that can be used
to test the rationality conditions (2.4) and/or (2.5). Further extensions are in section 4.

3 Structure of the Econometric Procedure

3.1 Specification of Conditional Beliefs and Conditional Stationary Mea-
sure

First of all, we shall only work with finite horizon events, meaning that only the Euler
equation up to K periods ahead are considered, and K is fixed'”.

Canonical RB modeling requires the agents to offer non-stationary probability belief
measure QQ over infinite sequences. Furthermore, similar requirement is imposed on P.

16The key issue distinguishing the two comes in when asymptotic distributions of the relevant test
statistics that check the rationality are considered. The key difference is whether the variation of terms

H
% > g(@y1,- .., Te4k) is considered as negligible or not. A careful reader would note that we omit an-
t=1

other serious technical issue that distinguishes the formulation of rationality condition from the econo-
metric point of view in the canonical vs. empiricist model. The correct form of the rationality condi-
tion in the empiricist model should in principle include additional index of H, i.e. the conditional beliefs
should have the structure of the form {Q'*,t = T.,..., H}. This, in principle, should be different from
what the econometrician can conclude by observing the actions of the agents in the empiricist model, i.e.
{Qif{k, (t,h) = (T.,T:),...,(H,H)}. Under additional assumptions, requiring the learning of the condi-
tional stationary measure to be weakly progressive in relation to T, all concepts become equivalent. These
technical issues are treated in the appendix.

17In principle, one can set K to grow logarithmically in the econometric sample size 7. One can go even
further and allow for polynomial growth, but this requires to work with concrete dependence settings. We
are not going to explore this direction.
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In our modeling we shall avoid such specification primarily to agree with the princi-
ples posed in the introduction. Instead, the approach involves specifying the conditional
beliefs and stationary measure over finite horizon events. Furthermore, this modeling
should allow non-stationarity. Therefore, the rationality conditions should be posed so
that to form a testable implication in terms of such conditional measures. This has al-
ready been accomplished in section 2.

In our approach, the conditional beliefs are modeled as deviations from the condi-
tional stationary measure. Such an approach is plausible, because, with availability of
large data set, an econometrician can deduce the conditional stationary measure, and
hence characterize an important part of the belief. Furthermore, we hope that the devia-
tions from the conditional stationary measure would then be deducible by econometrician
from the economic actions of agents. Even if deviations were not fully recoverable, cer-
tain more restricted systems of deviations could be deduced and used in the subsequent
check of rationality and further economic analysis.

Henceforth, we suppose that the conditional belief Qi** on all events that happen
in periods from ¢ + 1 to ¢ + K is given by or rather well approximated by a parametric
probability measure

§+K(') = ]B(, df{ + ZK(Itv /\z{{))v (36)

where B(-, ), for any 7, is a probability measure on the state space 2. For any given ¢, and
conditioning variables I; (length of which is assumed to be bounded by J, for practical
purposes'®), the belief of an agent is characterized by two components: & and (% (I;, ),
which we term here as the subjective and the objective components, or the sentiment and
the learning structures, respectively.

The conditional belief is assumed to be tied to the conditional stationary measure as
follows:

M?FK() = B(" lK(It7 AK))>

In the canonical model, A\F is equal to A\¥, and we distinguish the notation for the
sentiment by using o in place of & .

Note that the objective structure represents the estimator of the conditional station-
ary measure in the empiricist model. In that model (¥ (I;, \X) represents the parametric
learning and forecasting structure. A\ is the estimator that the agent uses to assess this
structure. The estimator is unobserved by the econometrician. To give an example, sup-
pose B is a normal family with unit variance. Take I*(I;, \[) = I;\[ as the estimate

8This is justified, for example, if we assume that structural break arrival time is bounded by some con-
stant J a.s.
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of the mean, where A\ is t—th iterate of the recursive least squares. Alternatively, the
estimator A\l used by the agent could be something else, e.g. an estimator derived by re-
cursive least absolute deviations schemes. By using these alternative schemes, the agent
could guard against misspecification errors (such as possibility of an e-contamination of
the Normal by the “witch” Cauchy distribution, which breaks down, for example, least
squares based learning mechanisms). In any case, the choice of estimator is a personal
matter, and it could be rationalizable by different rationality considerations: minimax,
invariance, equivariance, and robustness principles. Therefore, we must allow for subjec-
tive, but consistent choice of the estimator. That is, we only require an additional constraint
to hold:

AK By 2K
and also impose other technical assumptions, all delegated to the appendix. Thus, the aim
of long-term learning in the empiricist model is to characterize the conditional stationarity
measure.
The above considerations give also the precise interpretation of the “sentiment” pa-

rameter & : it represents the subjective correction to the history-based forecast, in partic-
ular it absorbs:

Model or Endogenous Uncertainty. This involves pessimism and also optimism,
relative to conditional stationary measure. Its source is a lack of knowledge of the
true conditional probability that generally is not equal to the conditional stationary
measure.

Adaptation. Short-term (non-convergent) learning, that we call adaptation is embed-
ded in G;*. In the settings where the economy is given by stationary environments,
perturbed by the structural breaks, adaptation leads to learning of the new parame-
ters. The structural breaks prevent the complete learning. This learning could have
classical or Bayesian flavors — we do not impose any particular structure on it.

Other effects may also reflect systematic pessimism and adaptation e.g. found by cer-
tain minimax (“robust”) rules in the neighborhood of the conditional stationary measure
or by imputing to the agent specific rules of learning. Our analysis does not impute such
rules®.

3.2 Construction of Econometric Estimators and Test Procedures

In this procedure, we, the econometrician, ultimately aim at describing the beliefs via
characterization of conditional stationary measure and also the sentiments through ob-

9In principle, it could be an interesting extension of the present paper to impute and test the plausibility
of such rules. At present, we leave this possibility unexplored.
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serving the agents making the economic choices according to the Euler equations. We
then want to examine the rationality of these beliefs by proposing a test statistic.

We first explore the conditional moment restriction, that the Euler equations represent.
For measurable functions m‘, we must have

Egeerh(Topr, 0)m' (2e45,5 € 1) =0, I={0,...,k—1} (1<k<K)
(i=1,...,M)
(t=H-T,,...,H)

This, together with the proposed in the previous section specifications of the func-

tional forms for conditional beliefs Q¢™*, gives the system of equations:

EB(&{<+1K(It,,\{<))h($t+k,e)mi(ﬂﬁtﬂ,j €l)=0, I={0,...,k—1} (1<k<K)
(i=1,...,M) (3.7)
(t=H-T1.,...,H)

This allows to form a large number of equations that put restrictions on the system
of conditional beliefs, implied by the optimality of the agent’s choices. We hope then to
identify a subfamily of beliefs that, with the additional restrictions, are fully described
by the above equations. The estimation procedure® substitutes § and A* in the above
equation in place of § and A[. Estimator AK depends usually on the specification of
the conditional stationary measure (see appendix). This allows to proxy consistently the
sentiment parameters &;*,t = H — T,,..., H,as T, — oo, H — oo for either the canonical
or empiricist model.

It should be noted that the class B can be made semi- and non-parametric. This would
amount to specifying a parametric family with growing (with 7;.) number of parameters,
e.g. B could be modeled through a composition of analytically convenient basis functions
that can recover B in any target class?!.

The second set of econometric restrictions is derived from the rationality conditions.
It is imposed then as a valid sample counterpart of restriction (2.4):

1 H

H
Z EQ§+K9(5Ut+1; e T K ) — H Zg(xtJrla o @) =0

1
e
t=H—T.+1 t=1

2Under regularity conditions imposed in the appendix, preference parameter 6 can be estimated by
the usual method of moment procedure, as that defined in Hansen and Singleton (1982). However, such
validity comes as a result of an unconditional moment restriction arising from rationality condition.

2IFor example, the class of smooth differentiable functions can be recovered via the use of orthogonal
polynomials.
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for g € G%, i.e. equivalently,

H
1 - 1
T Z / dZ,O[f{—Fl(It,/\f()) - E;g(xt+la"'7wt+lf) =0, ge€ g (38)

t=H—-T.+1

In summary, therefore we have two sets of conditions:

fim(@E + 151,09, 0)=0 Vte(H-T,,.., H)

R K (7, AK) (3.9)
T Z fog(&F + 15 (1, \F), wf) = Zgwt , meM, ge§
€ t=H-Te+1

where wf = (2441, ..., Ti1x), fim is the left hand side in (3.7), foy = [ g(2)B(dz, &l +
(1, \F)).

The procedure then involves formation of the test statistics based on the proposed
sample counterpart of the rationality conditions in a form of a metric over the moment
functions g. Indeed, substituting @, AX in the above rationality conditions, we then can
form the following two types of test statistics.

If G is finite, form a metric of the quadratic form:
'wr

where I' = {Ti Z fog(Gy + 1K (I, NE), wK) — %ig( K), g € 9}, and W is a

t=H T.+1 t=1
positive definite matrix.

If G is infinite, form the sup metric as follows:

H

So [ bl 150 = 23 gl

€ t=H-T,+1 t=1

sup | —
ge§

e.g. if g is a (well-behaved) parametric class g(+,d),d € A, the above test statistics is
computed as

H
1
sup | Z Fag (@ + 15 (L, ) = 2 > g(wf?) (3.10)
sealTe = o t=1

22K can be made to grow logarithmically or perhaps even polynomially. See Koenker and Machado
(1997), for the treatment of some estimation problems with the growing number of parameters/moment
restrictions. None of those results apply to our settings for several reasons: first, the estimation method
is more complicated than any usual method of moments estimator, further, these treatments concern i.i.d.
settings.
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The above statistic consistently (in the usual sense employed in the asymptotic statistical
decision theory) discriminates the rationality from non-rationality for either the canoni-
cal or empiricist model, as shown in the appendix. The full range of appropriate asymp-
totic results is derived for estimators and the test statistics, under the null of rationality
and the (fixed) alternative of non-rationality. The test statistics are shown to converge in
distribution to the continuous functionals of generalized Brownian bridges, whose finite
dimensional projections are viewed as projection on the space of moment functions that
are used to phrase the rationality conditions. As a result, the limit distributions of the test
statistic are either non-standard or standard, depending on whether the test statistic is it-
self a function of finite-dimensional projection (as in the quadratic form above) or a func-
tional of the whole process (as the sup statistics above). The resampling and simulation
methods allow for valid approximation of either distribution. The regularity conditions
are particularly flexible, making them amenable to any new LLN and CLT results should
these become available. The sufficient conditions for the estimators include near-epoch-
dependence and a-mixing. Near-epoch dependence is one of the most general concepts
of dependence.

The recovered time series of sentiments can be useful for further applied analysis.
Next section includes the quantitative decomposition of market uncertainty into the com-
ponents arising from variation in the intertemporal marginal rate of substitution and from
the model or endogenous uncertainty. Other potentially interesting issues may include
the analysis of sentiments as functions of socio-political environments.

4 Application to a Representative Agent RB Economy

This section considers a representative agent economy. Subsection 4.1 formulates the
modeling approach as applied to the standard consumption and asset pricing model.
Further, we develop a quantitative decomposition of uncertainty (“market price of risk”)
into two parts: one arising from variation in the intertemporal marginal rates of substitu-
tion, as in the usual case, and the second due to “endogenous” uncertainty, arising from
the inability to learn the true law of motion and having to use a Rational Belief in lieu of
the true probability measure. This offers the quantitative and qualitative explanation of
the “equity premium” by the RB models. A simple “log-normal” example is worked out
in subsection 4.2, and section 4.3 offers its empirical evaluation using U.S. economy data.

4.1 Designing RBE and Testable Restrictions

To interpret and motivate the developments of the previous sections, we construct the
representative agent economy along the lines of Hansen and Singleton (1982), Lucas
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(1978), Prescott and Mehra (1980) and Breeden (1979). Analysis of this model in RBE
framework can be found in Kurz (1994a).

Suppose that a representative infinitely lived consumer chooses consumption {c.},
and short-term investment plans {Z;} so as to maximize

Bo| Y7 u(e) (@11)
T=t
where subscript ¢ reflects conditioning on the current information set I;. Usual assump-
tions on the utility kernel and the discount factor are made throughout. @@; denotes the
conditional belief of an agent.
The feasible consumption and investment plans must satisfy the sequence of budget
constraints:

N N
cr + Z qj'ijT < Z RjTZjT—l + WT (4:12)
j=1 J=1

where Z;, are the purchases of the security j at the date 7, priced at ¢;,, with date 7 +
1 payoff of Rj;41, j = 1,...,N. W, is the agent’s endowment process. All prices are
denominated in units of consumption good.

Euler Equations

Given the representative agent environment above, the necessary first-order optimality
conditions (Euler equations) are as follows:

g u'(cry i) BRjtr i
t+K ;
o) g

=1 (4.13)

Conditional Beliefs and Stationary Measure

We give an example of the conditional belief and conditional stationary measure concern-
ing the logs of , the economic variables that enter the Euler equations above (we specify
them exactly in the empirical section). Let Q™" be characterized by normal c.d.f.:

N(pe +m™ (I, A5), B + ST, ) (4.14)
where I, contains current and J lagged values of the conditioning variables, m* is vector
s.t. dim(m®) = dim(uf) = dim(xiq1, - - . Ty i), dim(BE) = dim(SE) = dim(zi11, - - -, Tepx) ¥
dim(zey1, .. Ty i), BF + SE(I;, AF) is assumed to be positive semi-definite.
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Note that:
pi is the location sentiment vector variable,
¥ K is the volatility sentiment matrix variable,
m® (I, \) is the location learning vector variable,
SK(I;, \[) is the scale learning matrix variable.
K K([ \K
In earlier notation, therefore, aff = (Ve:(tE {()) and I¥(I;, \E) = (ve:(lslg (t(,Iit)\){()))
Note also that in the canonical model, \]* = A\¥. Finally, the conditional stationary mea-

sure is given by

N(mK(Itv )‘K)a S(Ita )‘K)) (415)

Rationality Restrictions
Given that M is stationary and ergodic by assumption, it follows that the unconditional
measure

M = By (ME*) is independent of t, i.e M'T* = M*

(a) Finite class G
Suppose that M* is defined by a c.d.f from a (log) normal family. Then the posed earlier
rationality condition can be reduced to:

H
1
P lim — K+ mB (1, \E)) = mX,
(T, H)=oo T | £~ i ('ut (0 A ))
h ‘ (4.16)
1
P lim S5+ SE(I, N)) = 8%
(Te,H)—o0 T¢ t—HZTe—i-l( t T (I, N ))
where
1 X
K _ ™l + K
mt =B i g 2
H
K __ s K K K . K\
S —lel_l;lgo ;(zt m™) (2 —m")
where 2/ = (Inzyyq, ..., Inz k)
(b) Infinite class G

If the unconditional measures are non-normal, the number of conditions put forward has
to be larger. We may consider infinite-dimensional Glivenko-Cantelli classes.
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4.2 Decomposition of Uncertainty

Let us go back to the Euler equations (4.13). For one period returns®, rewrite them in the
form:

d@?l u'(Cy1)
o dMETE ! (ey)

Ey BRjt11 =qjt, j=1,...,N (4.17)

d t+1

where =+ is a Radon-Nikodym derivative?*.
dMtt
t

dQy T W/ (ceq1)
dMEF ()

The random variable ¢, = in (4.17) has an interpretation of a one-period

stochastic discount factor. The multiplicative adjustment factor §; = ;lQ_i:l is due to the
“model” or “endogenous” uncertainty. It augments the usual measure of intertemporal
marginal rate of substitution, ol = % Intuitively, 4] creates a distortion in the con-
sumption decision. This distortion arises due to the model uncertainty, or, ultimately,
from the use of rational beliefs. Therefore, this factor increases the variability of the usual
stochastic discount factor and may help better explain relations between intertemporal
profiles of consumption and asset prices, i.e explain the risk premium.

From the one-period stochastic discount factor, one can easily compute the market price

of risk by®:

Vary,d

4.1
EMt(St ( 8)

Pt =

Indeed, as an approximation, one can view one period payoff of a security as a bun-
dle of the two attributes: conditional mean and conditional standard deviation. Hansen
and Jagannathan (1991) suggest the way how these attributes can be valued. To see this,
consider variance decomposition for the one-period security price ¢:

qr = EM%“ (5t)EM§+1 (5Rjt+1) - OOUM§+1 (5,5, ﬁRjH_l) (4.19)
which further yields the price bound:
q: > EM%“ (5t)EM§+1 (BRjt41) — Sthi“ ((515)5th§+1 (BRjt41), (4.20)

where Std denotes standard deviation operator.

ZLong-lived securities are treated similarly
?Note that the existence of Radon-Nikodym derivative of conditional belief w.r.t. conditional stationary

t+k
measure (i.e. i%w), does not imply that 22 exists. See Kurz (1997a).

B Ey, 0; = 1, if risk-free bond is available.
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Along the efficient frontier, the ‘price of risk’, relative to expected return, is given
by (4.18). This ratio is one way to portray risk-aversion of representative agent at the
equilibrium consumption process.

In turn, Vary:1(6) =~ Varye+(6;) if Vaerﬂ((Sf ) is relatively small and vice versa.
Comparison of the two represents quantitative decomposition of the market price of risk
into components: one that is due to model or endogenous uncertainty and the other that
is due to variability of the marginal rate of substitution in consumption.

4.3 Implementation

The example of implementation will be of a simple kind. This is done so that the methods
offered above are easily understood.

For the purposes of the illustration of methodology we assume the preferences are of
the constant relative risk aversion type:

(ct)?

U(Ct) - ) Y < 1
Y

In this case, the marginal utility is given by:
() = (¢)*, a=v-1

If we consider the example of the section above and confine out attention to stocks, we
have the Euler equations:

EQ§+K (5($1t+k)aRjt+k) =1,
(forj=1,...,N) (4.21)
(fork=1,2,...,K)

where z144 is the ratio of consumption in time period ¢ + k to consumption in time
period t, the k-period real return, Rj;., is given by (gji+x + Dji+x)/q;t, and Dy, denotes
the dividend gain.
Appendix shows, according to the rationality conditions, that the preference param-
eters § = («, ) can be estimated by method of moments of Hansen and Singleton, by
considering the sample moment conditions:

H

Ti Z ((ﬁ(ﬂflwk)aRij - 1)Z(It)) =0 (4.22)

€ t=H-T.+1

for a fixed (or growing collection of functions) z of I;, i.e. “instruments”.
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6 is the minimizer of the quadratic metric of the sample moment conditions (4.22), i.e.
letting g7, (0) = & YLy 1,11 ((5($1t+k)aRjt+k - 1)Z(It))3

6 = argmin Qu7,(0) = argmin gr, (6)' Wigr. (6) (4.23)

where W, is a p.d. matrix. The estimator @ is consistent and asymptotically normal
under regularity conditions stated in the appendix (In particular, as T, — oo, H — oo,
T, = O(H — T.)), a result that is not seemingly surprising, but requires us to impose cer-
tain reqularity conditions on the learning mechanism the agent uses. Therefore, the regularity
conditions underlying the consistency and the limit distribution are an additional burden,
in particular the seemingly odd condition that the length of history since the beginning
of time, H, should grow large and the interval during which the agent is observed, T,
should also grow and that the rates of its growth should be curbed relative to H.

Next, define the stochastic process z; = (zy, R, ..., Ryt). Suppose that Inzf =
(Inzp, k = 1,..., K) is conditionally normally distributed according to the stationary
measure and the beliefs. That is the conditional stationary measure is normal, and the
beliefs are conditionally normal too. Reader may refer to the example of the previous sec-
tion. Further we suppose that the structure of the agent’s belief is such that the sentiments
are generated only about the mean growth rate of cum dividend asset price, whereas the
rest of the required parameters of beliefs is given purely by his assessment of the station-

ary measure, with no sentiments added. This means that Q:™* is defined by:

N (" +m™ (1, 1), S*(1, X)),

In what follows, for the sake of simplicity, we only look at one asset and K = 1. Then
in such case u; = (0, ua)'. Next, the equations (4.21) with unknown sentiments a; can be
reduced to a simple set of equations as follows. Since

E@§+1 In [ﬂ(xlt—i-l)aRh%l}

=Inf+pu, +a [m}([t, )\tl)} — [m%([t, )\i)} , and

VCLT'Qiﬂ In [ﬂ(x1t+1)aR1t+1}
= a®S01 (I, M) + Boo(Iy, M) + 2a815(1;, AL).
Equation (4.21) is then equivalent in this case to:
n B+ iy + [ mh (5, A + [mb(5, A

n a?B (I, \}) + Boa (I, Af) + 2a805(1, A})
2

(4.24)
=0
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Similarly, the analogous construct defines the system where all sentiments are gener-
ated only about the conditional mean of consumption growth rate. We shall refer to the
first specification as to the system of beliefs R, and the second as the system C.

Next step is clear: by substituting for )}, and (a, 3), our estimates, A\ and (&, B),
we obtain the estimates &;. Further, test statistics can be computed as outlined in the
appendix.

The following empirical example covers the U.S. monthly economy data for the post-
war period. This includes the total of 460 observations on aggregate consumption, SP500
prices and dividend rates (from Shiller and other sources).

The model implements the analysis of two sub-families of beliefs:

1 sub-family C, when the conditional beliefs are given almost entirely by the con-
ditional stationary measure, and the sentiments are generated only about the un-
known true conditional mean of consumption;

2 sub-family R, when the conditional beliefs are given almost entirely by the con-
ditional stationary measure, and the sentiments are generated only about the un-
known true conditional mean of returns;

Such systems, if the sentiments were all zero, by construction would be equal to con-
ditional stationary measure and therefore would be rational. We shall examine whether
the sentiments introduce non-rationality.

The estimate of the conditional stationary measure for real log-consumption per capita
growth and real log-return (deflated by cpi) was constructed by linear non-recursive least
squares, using the whole sample. Such non-recursivity is permitted by the regularity
conditions in the appendix. The conditional variances were also taken of linear form and
estimated non-recursively. In the canonical model, this estimate is then taken as the true
conditional stationary measure.

According to the regularity conditions, the estimates of the sentiments can only be
constructed based on the sample with the size comparable to the length of history size or
smaller. T, therefore has been set at H/7, the last seventh part of the whole history.

The sequence of figures (1) - (6) summarizes succinctly our findings. We discuss each
figure in turn.

Figure 1 plots the estimated mean of the real log-consumption growth according to the
conditional stationary measure (solid line with triangular vertices) and the sentiments o}
for consumption growth rate (dotted line with diamonds). Oftentimes, the two quantities
are moving in the opposite directions, inducing the relatively smooth forecast (by the
conditional belief) of the future consumption growth.
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Figure 2 displays the actual real log-consumption growth series (solid), the estimates
of the mean of the conditional stationary measure, and the (sentiment-corrected) mean of
the conditional belief, that is the sum of the estimated mean of the conditional stationary
measure and the estimated sentiment. Periods of pessimism and optimism, relative to the
conditional stationary measure, are present. This makes for interesting dynamics of the
conditional log-consumption growth forecast.

Turning to the family R of conditional beliefs, we report the following observations.

According to the figure 3, which depicts the estimated conditional mean of the real
log-return to SP500 (cum dividend) under the conditional stationary measure, and the
estimated sentiments, variability of sentiments adds significantly to the volatility of the
estimated mean of the conditional stationary measure. On the other hand, the sentiment
tends to move inversely to the movements in the mean of the conditional stationary mea-
sure, so the overall effect is slight reduction in the volatility of the stock return forecasts.

Indeed, figure 4 shows that (sentiment-corrected) mean of the conditional belief is
relatively smooth, and tends to lie below the actual series. Overall, its dynamics exhibits
both periods of clear pessimism and optimism.

Notably, the interpretation of the mean of the conditional belief of the family C as a
forecast of the future log-consumption (In z1.41) allows to achieve good forecasting per-
formance relative to what is attained by using the conditional stationary measure. Indeed,
the mean squared error (MSE) of conditional belief based forecast of future consumption
(In 21441) is 0.003776, while MSE of the forecast based on the conditional stationary mea-
sure is 0.004111. On the other hand, forecasting of returns by the conditional belief in
the family R (MSE = 0.02567) is slightly worse compared to the results attained by the
conditional stationary measure based forecast (MSE = 0.02241).

In both systems of beliefs we were also able to conclude that endogenous or model
uncertainty arising from the inability to know the true law is the predominant component
of volatility®.

Finally, we get to the rationality.

It can be shown that the earlier posed statistics, under the assumption of the correct
specification of the conditional stationary measure, can be reduced under the further as-
sumptions posed in section 4.2 ( in the finite class § example) to the comparisons between:

(1) time average of the conditional means of the variables (real log-consumption growth
and log-return) implied by the conditional beliefs, and

(2) observed historical means.

This simplification is due to the nature of sub-families C and R, that ascribe no senti-
ments about volatility. This implies that if the model of the conditional stationary measure
is correctly specified, then by construction the conditional volatility should integrate to

26Simulation studies of Kurz (1997a) offer similar conclusions.
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the unconditional one.

What are the rationality evaluation results?

The historical mean of log-consumption growth is computed as 0.001121. The sam-
ple mean implied by the system of conditional beliefs C (i.e. time average of means of
conditional belief), computed from the last 7, observations, is 0.0003579, which is fairly
different. This suggests some pessimism “on the average” implied by the beliefs. Is this a
rational deviate in the statistical sense?

Similarly, for the system R the beliefs imply the average of 0.003474, while the true his-
torical average is 0.0056. The numbers perhaps reflect slight pessimism about the returns.
Again, is the system of beliefs R a rational sub-family?

The answer to both of these questions is given in figures 5 and 6. These figures plot es-
timates of the bootstrap distribution (densities” ) of the estimated long-run mean implied
by the beliefs and the historical means. The bootstrap distributions are valid asymptotic
approximations of the true asymptotic distributions of the estimators. The plotted densi-
ties characterize thus the estimation uncertainty.

It should be noted that in the canonical model, the historical mean is known and its
value is fixed and therefore the distribution of the estimator is degenerate. This is rep-
resented by Dirac density at the historical mean. This is shown in the figures as a large
shaded rhomb. If the historical mean would lie outside of the “reasonable” confidence in-
tervals for the estimated long-run mean from the conditional belief, the researcher would
be lead to conclude that implied sentiments about future stock returns are not rational.

The empiricist model differs by putting the band around the rhomb, thus accounting
for the present estimation uncertainty of the long-run mean 2.

In that respect, under the strict canonical interpretation of rationality, the result in fig-
ure 5 offers strong evidence in favor of rationality of the system of beliefs C. This is so since
the historical mean lies within confidence intervals of the usual significance levels. On the
other hand, the system of beliefs R is not rational under strict canonical interpretation of
rationality (see figure 6). The historical mean lies well outside the .98 confidence inter-
val for the estimated mean return generated by the beliefs. In the model of rationality,
that accounts for finite history, in contrast, both of the implied belief systems are rational
(figures 5 and 6 ). Note also that figures allow to construct confidence intervals of any
prespecified level. Accounting for the additional estimation uncertainty in the empiricist

¥The plotted are the Nadaraya- Watson kernel estimate (with a MISE-optimal bandwidth) of the den-
sities of the estimators (of mean generated by the beliefs and the limit of the historical mean) based on
the bootstrap scheme of Politis and Romano (1994). Validity of the scheme of Politis and Romano in the
non-stationary settings was recently establish by White et al.

2 Another part where finiteness of history matters is in the specification of the mean implied by the
beliefs, since it contains estimates of the conditional stationary measure. This second difference is ignored
in the current implementation.
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model makes the interpretation more involved, though, using Bonferroni bounds, we can
conclude that the significance levels at which hypothesis for systems C and R can not be
rejected include all commonly used levels. Such an interpretation is valid under the as-
sumption that 7,/H — 0, as T'e, H — oo. In our calculations, we made choice T, = H/7. If
such a choice is deemed not credible, the conclusions above are still valid, but the p-values
and the significance levels should be interpreted as in the test of rationality combined with
the contiguity of long-run learning ( by the agent) of the true stationary measure relative
to the econometrician’s estimate of it. That is, if the agent consistently learns the truth, she
asymptotically gets to the rationality (see discussion in the first section), however this rate
of learning can be so slow that approximating her estimates of the conditional stationary
measure with the econometrician’s estimate may invalidate the inference approach. If
her learning is comparable in rate to the rate of convergence of the econometrician’s esti-
mator (i.e. “contiguous”), then the p-values would be interpretable as both the degree of
adherence to asymptotic rationality condition as well as their contiguity to econometri-
cian’s estimate. The rest is up to the subjective interpretation of the reader, who should,
however, realize the implications of his or her discriminating decisions.

4.4 Figures
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5 Conclusion

Since Kurz (1997a) introduced his rationality concept, the RBE modeling has evolved as a
unified paradigm capable of explaining virtually all “puzzles” of the real macroeconomy
that the RE models could not successfully capture. A series of studies has been conducted
to assess plausibility and validity of RB models. Simulation was the main tool to comple-
ment intuitively appealing theoretical argument put forward to apprehend that part of
world that has to do with anticipating the uncertain, in the presence of long history.

The present work has attempted to find and then establish the validity of the econo-
metric tools to explore such a real world paradigm. This apparatus, apart from some
technical issues, provides methods for evaluation of the Kurz canonical model of Ratio-
nal Beliefs. At the same time, we seek to offer variations to the RB theory from statistical
and economic point of view. In particular, we attempted to evaluate the implications of
finiteness of large history for modeling perspective of both the economic agents, who
inhabit the model, and the outside observer (econometrician), both of whom perform sta-
tistical inference with the same finite data. This novel frame of reference has been termed
the empiricist one. Implications for tools of inference has been demonstrated, notably in
that the conditions have been established to distinguish when the interpretation of results
is equivalent or very similar to the canonical model, and when it is not.

With the general econometric framework in place, we have developed a simple but
suggestive model of consumption and aggregate stock market behavior. Remarkably,
it predicts that the primary source of asset price volatility is the variation in the market
participants’ beliefs, and is in this sense endogenous to the model. Furthermore, it suggests
a way to build sentiment-based forecasts, and assess the rationality of the beliefs in the
presence of finite history.

Departing from this natural benchmark, numerous extensions can be pursued. For
example, specification of preferences, driving stochastic process for returns and learning
structure may be relaxed in non-trivial directions while econometric procedures can be
further refined. Dynamic asset valuation in finite history economies populated by het-
erogeneous consumers with imperfect knowledge of the economic environment can be
exceedingly hard, but it can also be very fruitful.
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A Some Preliminaries of Convergence of Stochastic
Maps (Empirical Processes)

The discussion of weak convergence and related concepts we use here can be found in texts
Hoffmann-Jergensen (1994), Hoffmann-Jergensen (1991), Pollard (1990),van der Vaart and Well-
ner (1996). We only provide necessary minimum of definitions for our and reader’s convenience.
Let L°(M) be the space of bounded functions (for k > 1) mapping M to R¥. Equip L*°(M) with
the sup norm. E denotes the expectation w.r.t P. P*, P,, E*, E, denote outer and inner probabilities
and expectations (cf. van der Vaart and Wellner (1996)). Notation of this section is independent of
the all other sections.

A sequence of arbitrary maps vr(:) : @ — L*°(M) converges weakly to a process, vo(-), if
E*vr(-) — Euvg(-) for all continuous maps g : L>(M) — R (cf. van der Vaart and Wellner (1996) ).
If P(T) is the same for all T', then denote such convergence as =. If P(') is a sequence of distinct
probabilities, then we still write =-. Using outer/inner probability measure above is a measure-
theoretic subtlety. If variables under consideration are measurable, then outer/inner probability
can be replaced by probability measure.

Process {vr(-)} is stochastically equicontinuous ({vr(-)} is P-s.e.) if Ve > 0 and n > 0,35 > 0 s.t.

lim sup P* sup |uop(m) —vp(m)| >n) <e
T—o00 p(T1,m2)<d

for some semi-metric p on M, s.t. (M, p) is totally bounded.

It is also convenient to define the Gaussian Process or generalized P-Brownian Bridge for fixed
PP, as follows (cf. van der Vaart and Wellner (1996)). The centered Gaussian process is “random”
function Gpyg, if its distribution is defined by its finite dimensional distributions:

(Gpg1,-.-Grgr) 2N (0, {CVGP% GIng} ) (A.25)
ij

and covariance operator CV:
CVGpgi, Grgj = Ep (GrgiGry;) — Ep (Grg;) Ep (Gry;)

Distribution of process Gp f (W, -) is fully characterized by (A.25) if the process is tight (cf. van der

Vaart and Wellner (1996)). In what follows, tightness of the limiting process that we obtain will
be a consequence of asymptotic tightness, a concept that is equivalent to stochastic equicontinuity (cf.
van der Vaart and Wellner (1996)).

B Fundamental conditions

Existence of the stationary measure M is assumed, in the sense given in Kurz (1994b). Further,
suppose
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(BC1) (POINTWISE LLN) Assume that for any random variables {w} = (@yy1,..., %K)
on(Q2, F, P) that

O+N
1
vn(g) = ~ > g(wf) —>ng1€1>0— E Epg(w;*) = Epg(wf*), VgeM 2 G (B.26)
t=0+1

for any fixed starting summation time O (e.g. H — T¢), given functional classes M and §. Class G
has the natural interpretation of the “reference” class to which agents coordinate their beliefs.

(BC2) STOCHASTIC EQUICONTINUITY

VNv(g) is P-s.e. on (M, p1) for some semi-metric p;

The next subsection gives a catalogue of sufficient conditions that imply (BC1) and (BC2) in
the general frameworks including the non-stationarity and long-range dependence.

Note that above conditions assert that functional classes M and G, (§ € M) are Donsker and
Glivenko-Cantelli.

(BC3) CLT (FIDT?’ WEAK LIMITS)

[VNUA (@), VI (a0} B N0, {0)),

N+O N+O
Qi —A}l_{noo— > Covslgi(w(), g;(wf)) + 120 Cove(gi(wf®), g; (wi))
t=0+11=0+1

B.1 Sufficient Conditions for Fundamental Conditions

The statement of the above results requires the limit results (LLN, CLT, s.e) for triangular arrays of
random variables {wf;}. In many instances the available limit theorems are stated for non-array
settings. However, in most such instances the extensions to the arrays may be made straightfor-
wardly. In the cases of mixing, the results are extended by imposing the required conditions not
only through the array, but also uniformly in N.

Besides the mixing options above, there are many other more general or different options
that imply BC1, BC3. These include strong, absolutely regular, uniform, p-mixing, other types
of mixing, as well as more general conditions such as near-epoch dependence and approximabil-
ity conditions, m(n)-decomposability and many others (see Davidson (1994), Doukhan (1994),
Dehling, Denker, and Philipp (1986), Gallant and White (1988), Herrndorf (1984a), Herrndorf
(1984b), Herrndorf (1983b), McLeish (1974), Corollary 2.11, Berkes and Philipp (1998), Philipp
(1986) and sources therein and many others ). For sufficient conditions implying BC2, see An-
drews and Pollard (1994), Andrews (1994), and references therein.

We do not restate all of these conditions here for brevity.

2fidi = finite-dimensional.
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C Definitions of Statistics and Estimators

C.1 Estimators

0 (Estimator of Preference Parameters)

0 = arg min Q17 (0) = arg min fir1, (0) Wit f11.(0),
0cO 0co

H H

1 1
flTe(e) = i Z h(xtaa) Rz = i Z ml(wtl{a-[tae)a
t=H—-T.+1 t=H—-T.+1

2zt = m(1;), for a Borel function m,

Wir, is a matrix that converges to a positive definite matrix W7 as T — oo
MK (Parameters of the Conditional Stationarity Measure)

\E = arg min Qoy (0) = argmin for (0) Way for(6),
6co 0cO

H H

1 1

far(0) = 4 Y (9(wi) — By g(wi)) = T > ma(wi I, ),
t=1 t=1

where we abuse notation by using Mt (\K) to indicate parametric dependence of the measure
M§+K (-) on MX. Wy is a matrix that converges to a positive definite matrix W as T — oo.
COMMENT: Other Periods could be used as well.
ol (Sentiment Parameter, when N, 0 is known — in the Canonical model)

. 2
off = argmin [fl(wtK,G, 2K oz)]
acA

&k (Estimator of Sentiment Parameter — for both the Canonical and Empiricist Model)

df = arg min [fl(wf(,é, NE a)]2
acA
&k (Agent’s Sentiment)
~ . 2
af( = argglelﬁ [fl(wtK,H, /\tK, oz)]

COMMENT: & = off in the canonical model.

The sentiment parameters are assumed to be unique solutions of the above equations, i.e.
deducible form them. This may require additional restrictions in practice — see discussion in the
text. See also there the definition of notation that is not defined here.
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C.2 Rationality Score Processes

Agent’s Rationality Score Process (a functional on G) in the Canonical Model

Si(g)

H
1 1
t=H—M+1 t=1
where Q7 F(AK) = B(-, o + 15K (I;, AK)).
Agent’s Rationality Score Processes (a functional on G) in the Empiricist Model

H

H
1
K K
Z E@§+k(,\g<)g(wt ) — H § g(w*), H>M >0
t=H—-M+1 —

Sit(g) =

where QPR (AK) = B(-, X + 15 (I, \K)).

R 1 &
Sﬁ?fo’(g) = M EQ§+1€(>\K_M)Q(W{() T FH Zg(wtK),

H
S0 =17 D Egrepmol) — 2 > g(wf).
t=H—M+1 t=1
COMMENT: Under proposed progressivity of learning, the difference between the rationality
score processes will converge to zero uniformly in outer probability.
Econometrician’s Rationality Score Process (a functional on G)

H H
1 1
St@) =g Y. Bgrreg(wi) = 5 D g(wi), H>M >0
€ t=H-T.+1 t=1

QI+ is formed as B(-, & + I(I;, \K)) as defined in the text.

The score parameter take arbitrary g € § and maps it to L*°(G). The score processes serve as
bases for the formulation of rationality test statistics.

Itis important now to introduce a new piece of notation. This will latter simplify the notational
Complexity of some statements.

/g(wf()]B (dZ,aK + )‘2{( (Ita )‘)) = Mm3zg (wtl(aIta AK,G,QK)

Hence

EAivag(w)SI{) m3g (wgfa-[tvj‘K7éad£{>7

EQ?kg(w{() mag (wi, I, A<, 0,6;")
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C.3 Test Hypotheses (Asymptotic Form)

Hy: (Rationality):
S%(g) , 0, as T, H — oo, uniformly in §

H 4: (Non-Rationality):
S%(g) Hi)c;é 0, asT,H — oo, forsome g € §

The test hypotheses are in the asymptotic form.

COMMENT: Under proposed progressivity of learning, the difference between the agent’s
rationality score processes will converge to zero uniformly in outer probability, making the null
equivalent for all ¢, as well as the alternative.

C.4 Rationality Test Statistics

Take a continuous functional I : L*°(G) — R, and form a test statistics:
Ry, =1U(57.(9)) (C27)

Therefore the test statistics are “random” composition maps from  to R;. They map the “ran-
dom” score functionals to R .
In particular, two forms are considered:

Ur, =sup |57, (9)| G, finite or infinite

g€$

Wr, = <S%a(g)> War <S%e(g)>, g € G, Gis finite

where W3 is positive definite matrix that converges to W3, also positive definite, P-a.s, S, (g) =
{57, (91),---, 57, (a)}.

C.5 Test Decision

The statistical test decision of the econometrician is of the binary form:
d= 1R§~e >T

where c is the critical value. 1 classifies the beliefs as non-rational, and 0 classifies the beliefs as
rational.
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C.6 Consistency of Econometric Test
Decision d = 1ge-, is asymptotically consistent if
P.(d=1/H4) — 1, as T, H — o0

P.(d=0/Hp) — 1, as Te, H — 0.

In finite sample the above statement holds only approximately, if sample size is large enough.

D Assumptions

D.1 Basic Assumptions

(BA1) PROGRESSIVITY OF AGENT’S LEARNING (LONG-RUN)
ot =] = 0m-[Jr-as - o2

uniformlyint € [M +1,...,H]as H — oo, T, — 0.
(BA2) ALLOWING HISTORY TO “KICK-IN"
T.=0(H - T¢)
M = O(H — M) (empiricist model only)

(BA3) ALLOWING ECONOMETRICIAN TO VIEW HISTORY AS FORMED
T. = o(H) (D.29)

COMMENT: (D.29) is not always employed.
(BA4) {%A)h(-, )} CM, Vi=0,1,2
COMMENT: h and its derivatives are thus Glivenko-Cantelli and Donsker.
(BA5) geSCM
COMMENT: g is thus Glivenko-Cantelli and Donsker.
(BA®6)
{ngl(-, .0),0 ¢ e} CM, i=0,1

{ f\m2(-,-,)\),/\eA} CM,i=0,1
{ imag(-, 0,0, a), A € A0 € @,aeA} CM, i=0,1

{Vé,A,a(fl(w,G,A),a)j,w EW,AeA0c0,a eA} CM,i=0,1,j=1,-1

Assumptions (BA4)—(BA6) are of more technical nature.
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D.2 Technical Assumptions

(TAT1) Vi fi(w,0,\, @) Varfi(w, 8, A, ) are bounded and continuous in all parameters. Eigenval-
ues of V, fi(w, 6, A, o) are bounded away form zero, uniformly in all parameters.

(TA2) Given (w, 0, A), fi(w,0, A, a) = 0 has unique solution for . This statement is uniform:
3 e-ball N.(w, 8, \, a) around « such that:

i )2
: m(w,0,4,6))" = D.30
G’A’wegXAX‘}&{dgN(f,wﬁ,)\,a) (fl (w a)) € ( )

(TA3) (M, &k, off,af,0) € A x A% x © - a compact, convex subset of a Euclidean space.
(TA4) There exists positive definite matrix A such that:

EyAmy(wh, 1,,0) # 0, V0 # 6

EnAma(wk I, X) # 0, YA £ AE
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E Main Theorems

E.1 The Key Results on Asymptotic Limits

Proposition 1 (Consistency Theorems) Under assumptions BC, BA, TA, the following hold true:
050,
N\

A ~ P*
sup Ha{(—af{H — 0,
H>t>H T,
A P*
sup Haf(faf(H — 0.
H>t>H-Te.
a

Lemma 1 (Convergence in Outer Probability of Agent’s Rationality Score Process) The following
statement is true under Hp and H 4:

sup |7 (g) — lim Ex(S$(9))| = 0, i =1,2,3,4. (E.31)
g€e$

COMMENT: limps,H—so00 E]p(Sj‘{/} (9)) = . 7270, 3232 Zj . The lemma shows that first
order asymptotics is the same for all score processes, i.e. the difference between all of them con-
verges to zero (by triangle inequality). This means that null hypothesis of rationality is the same
for all score processes, and therefore no ambiguity arises.

a

Lemma 2 (Convergence in Outer Probability of Econometrician’s Rationality Score Process)

sup S (g) — lim Ep(S3%(g))| > 0.
geg T

0, under Hp
c# 0, under Hy
cian’s approximation of the rationality score process is valid for all agent’s score processes by the
virtue of the previous lemma.

COMMENT: limr, 700 Ep (Sj'\b/} (9)) = . The above shows that the econometr-

a

Proposition 2 (Rationality Test Consistency) Under assumptions BC, BA, TA, the decision d = 1(R® >
T) is asymptotically consistent, for T fixed and small enough.
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a
Before we state and prove the next theorem the following notation must be defined:

J1(0)

e

H
Z Veml(wf(,ft,e)a
—Te+

E

m |

H
Z ama(wfS, I, M),

J1(0) = EyVemy(wf, I, 0)
Jo(0) = EyVema(wf, I;, \).

H
1
0= i =~ Y E K I,,0 K I,0)
! Te,l}m—m{ € t=H-T.+1 e B Om ot 1 07

H H
1
T Z [ Z EPml(wg(aItag)ml(wlé(vIkao)/

t=H—-Te+1 Lk=H-Te+1
k#t

+ E]P’ml (wli(a Ika H)ml(wg(ﬁ It) 0)/] }

H
t=1
1 H H
EZ ZE]P’m2(wt 7It7A )mQ(wfalka)‘K)/
=7

+ Eme (wi(a Ik, )‘K)mQ (w{(’ Ita )‘K)/] }

Consistency of estimators 2K , 6 has been established in Theorem 1. The following theorem 2
derives the asymptotic distributions of the estimators, only using the pointwise convergence and
stochastic equicontinuity results. Surely, this is not a “novel” result. However, we need it exactly
in the form given, since it is referred too and used numerously in the subsequent proof. Since the
proofs for specialized cases are widely available in the books, we only give a sketch. We shall be
glad to cite the result if its available somewhere else precisely in the form stated below.

Proposition 3 (Asymptotic Representation of MK 0) Under assumptions BC, BA, TA

1 Z my (wf(, I, 9) + 0]p(1))

VI.(6-6) == [n@Wine)y] J<0>W1( T
t=H—Te+1
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\/ﬁ(ﬁ - A) . [JQ(A)WQJQ(A)/} ) ( (wk, I, M) + OP(1))

||Mm

and the weak limits are given by:

VT (0-0) = N (0, [ @)W (0)] T O (0) @)Wy _1),
VE(5=2) = N (0, [B0)Wan(V)] ()220 [Bwan0Y] )
O

Proposition 4 (Weak Convergence of the Econometrician’s Rationality Score Processes ) The fol-
lowing weak limit results are true for convergence in L*°(G), under Hop:

\/_ St.(9) = Gp(g)
and under H 4,
VT.(S5, - Plim S5.(9)) = G(9)

where G§(g) a centered P-Brownian Bridge, whose distribution is defined by the sample covariance opera-
tor:

CV(Gp(91), Gp(g2)) = CV1(91, 92)
where operator CV1(g1, g2) is defined in the proof.

A dramatic simplification of the covariance operator is obtained under assumption BA3, i.e.
by allowing the history be formed relative to the econometrician’s sample.

Corollary 1 (Simplification of the Covariance Operator under Assumption BA3)

CV (Gp(91), Gp(g2)) = CVi(g1,92)

where operator CV(g1, g2) is defined in the proof.

Before we proceed it is useful to define the following test statistics. These are extremely useful
when we later use the bootstrap to obtain the asymptotic approximations of the null distribution
(and hence p-values) regardless of whether the null is true or not.

wE = { 85, () ~ Plim 85, (9) } War{ 55, (&) — Pl 55, (s) |

where boldfacing denotes the usual vectorized notation. This statistics is formed when § is finite,
it is a “centered” counterpart to W,. The following statistic, U, CC , is formed when § is infinite, and
is a “centered” counterpart to U..

UeC =sup | S7.(g) — Plim S%, (9) ‘
g€$

44



Proposition 5 (Weak Convergence of the Econometrician’s Test Statistics ) (i) The following weak
limit results are true under Hp

T, U, = sup ‘Gf&(g) ‘
g€e§

and under both Hp and H 4,

\/TeUeC = sup G]f»(g)‘
g€e$

(i) The following weak limit results are true under Ho
/!
T.W. = {Gs(g) |Ws{ G () |

and under H 4,
T.wE = {Ge(e) Wi {Gi(en) |
O

COMMENT: The above limit results could be restated in terms of generalized Bessel processes
and their finite dimensional projections.

E.2 On Inference with the Sup Statistic U,

A closed form asymptotic distribution for the test statistic is not known. However, the simulation
and resampling methods can be used to construct valid approximations of its asymptotic distri-
bution. An important question is how to approximate the distribution of continuous functionals
of the coefficient and test processes. Of course, the finite dimensional distribution for any finite
collection of g is already obtained in the statement of the theorems. Description of how to estimate
the relevant quantities, needed for inference, is given in a next section. As a consequence of tight-
ness (s.e.) of the process, its distribution can be approximated easily by considering, for example,
the approximation of the processes by piecewise constants. Indeed, we can always choose a fine
enough partition § = U;c39;, so that to make the distance between the true and the approximate
statistic, which is constant on each §;, sufficiently small. Indeed take § as the size of largest cell in
the partition. By definitions of s.e. there is T large enough so that for T > T°:

Ze>§€

for any e small. Denote the piecewise approximation by Zr(-). This therefore implies that

P* (sup > e) <e
i€J

P* (sup sup (Z7(g9) — Z7(9:)

i€d ge§;

Zr — Zr
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Exactly the same reasoning applies to the limit process Z. Denote its piecewise approximation by
Z, so that for a fine enough partition § = U;¢59;:

P* (sup

i€J
From this we can validate the usage of distribution of sup, Z (g9), which is finite-dimensional, for
asymptotic inference about sup, Zr(g). This enables a variety of inference techniques: bootstrap,

sub-sampling, inference using the limit distributions (substituting for estimated quantities). That
is, any inference method applies as long as it can provide valid inference for finite-dimensional

Z—Z}>e><e.

distribution. This also means that to obtain a desired precision, we can partition G in sufficiently
small subsets and then approximate the distribution of the functional by a functional of the ap-
proximation.

Another important question is how to make the qualitative assessment of approximation. In
practice, one may design a formal decision rule that considers successive approximations and
measures the difference in improvements, stopping when the difference is small. When designing
the stopping criteria, it helps to know the rate of convergence of successive approximation. The
measures of rate depend both on the speed of convergence of the processes to the limit and on
the "quality” of stochastic equicontinuity, both of which could be assessed under given scenarios.
There is a wealth of fairly recent but growing literature on the approximations. To cite only few,
see Dehling, Denker, and Philipp (1986), Herrndorf (1983a), Philipp (1994), Koltchinskii (1994),
Ledoux and Talagrand (1991), sources cited in there, and others. The settings that we consider
here could be adopted by using the asymptotic representation obtained in metric space L*°(M)
and noting that these could also be treated as processes in various Banach, particularly Hilbert
spaces, and so much of the above literature applies *°. The test statistic would have to be redefined
then and will be consistent only against a particular class of alternatives.

F Proofs

F1 Proof of Theorem 1

Unless otherwise stated the limits here are taken as as T, — oo, H — 0.

Uniform convergence of objective functions Q17(6), Q27 (\) follows form pointwise conver-
gence ( by BA4, BC1, ) combined with s.e. (BA4, BC2). The textbook argument, Amemiya (1985),
applies along with (TC4) implying the consistency of 0, \.

3Note, however, that we may get weaker notion of convergence — e.g. by switching to Hilbert space L?,
the set of continuous functionals on the processes will exclude many functionals that are continuous with
respect the sup norm but not L? norm.
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Assumption BA1 implies along with TA1 that
Al 0,0 @) = Ai(wf 0,05, a)
<[t oot ot -4
< Op+(1)op+(1), uniformlyinacA,§c©,tc[H—-T.+1,...,H]

asT, — oo, H - ¢

Next we claim Assumption TA2 implies:

‘df(—oth‘ = op+(1), uniformlyint € [H - T, +1,...,H], asT, — 00, H — o0

Indeed, we have limP,(A) = 1, where
= {#2 (wl, 0.3 o) +-e > £7 (wf, 6, af) |

by construction and since limP,(B) = 1 (by above uniform convergence) , where

{ (wt,H)\t,at)+Z>f1(wt,0/\ ak),
2 (wfs, 0, )+fl>f1(wt,0/\K &y,
12 (wtK,e,AtK,af() + <> £ (wf 0,05, &) |
Next assumption TA2 yields that for v small, there are balls B(v, ay), Vt as H — 00, T, — 0

. . 2( K K N\ 2 (K K K
te[H—Jlil—{l,...,H] (aelifr(llf/',at) fi (wi, 0,07, @) = f1 (W35, 0, X7, o )> 2e>0

Then it follows that A ¢ C where
c={ il ( inf 20,05 ) fF(wf,0,\,6F) ) >

te[H—Te+1,....H] \ aeB(v,ak)

and thus limP, (& € B(v, at f,vte[H—-T.+1,...,H]) =1, for any v fixed and small. Or equiv-
alently, imP* (& ¢ B(v,of*,Vt € [H —T. +1,...,H|) = 0, for any v fixed and small, confirming
the claim.

The same when reaplcing )\f{ , K , hence

&y —a{(‘ = op+(1), uniformlyint € [H — T, +1,...,H|, asT, — oo, H = o0
Minkowski yields:
&y —07{(‘ = op+(1), uniformlyint € [H - T, +1,...,H], asT, — 00, H — o0

This completes the proof of the last two statements.
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F2 Proof of Lemma1l

In this proof it is useful to write
ar(I, M) = af

stressing its definition as an implicit function.

M

1
A(g) = M Z ms3g (wtl(aItaeaAtl{aat()‘tI()>
t=H—M+1
M
-1 Z m (wK I,,0,\K a ()\K))
M 3g t syttt Uy AH M1 Gt\ Nt
t=H—-M+1
M
1 K * K K
+ M Z V/\7n3‘q (wt aItaev)‘t 7at()‘t ))
t=H—M+1

* * * -1 * *
+ v047n39 (wf(a Ita 07 Af(a at(AtK)) [vafl(WtKv 07 )‘tKa at()‘tK))] V)\fl(WtKa 0a )‘tKa at()‘tK)))

X (>‘tK - A§7M+1)

where stars denote intermediate values, as in standard expansion,

M
1
=— Y may (W, 1,0, M5 ap (A1) +op (HAK - Ag—M-’rlH)
t=H—M+1
, M
- M Z m3g (wg(aItaea)‘K,af() + op (1)
t=H—M+1

which uses BA1, TA, uniformly in g € G. Therefore, applying BC1 and BC2, we have uniformly in
ge§

M

Z E[P’m3g (wtl(a Ita 97 )‘Ka O‘tI() - EMg(wg{)
t=H—M+1
= EMm3g (th(, Ita 07 )‘Ka O‘{{) - EMg(th{)

. ]ID* 1
Sir(g) — li —
M (g) M—)oé%—)oo M

Under H the right hand side is zero. The proof for $%(g), i = 1,2, 4 is similar and easier.
[ |

E3 Proof of Lemma 2

It is very similar to the proof of lemma 1, and hence has been dropped for brevity.
[ |

F4 Proof of Theorem 2

Follows immediately from lemma 1 and 2, using definition of outer probability.
|
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E5 Proof of Theorem 4

Consider the proof for Hp case.

Write
1 H
V TeA(g) = \/T Z m3g (wtl(a Ita 97 )‘Kv Oét()\{())
€ t=H-T.+1
1 & . A
+ ? Z (V)\m?)g (wg(a Ita 07 )\*Ka O‘t(AK)>
€ 4=H-To+1
1 & -
+ T Z {Vamgg (wf{,It,H,)\K,at()\*K)>
€ t=H-T.+1

[Tt (0,07, 07)) |7 Vs (6,0, e071)) }]
x /Te (XK — /\K)

H
1 L
g S nggg(wtK,It,Q,)\,at()\K))]
t=H—-Te+1

x@(é—&)

Employing conditions BC, BA, and TA, the following representation is uniformin g € G:

ﬁ

1
VIS0 = (3 0 ) = Yot

t=1

Jsg(0, N5) + T4y (0, X) + op+(1 ]x\/’(AK )\K>

Jsg(0, M) + 05+ (1 ]x\/’(e 0)

where J3, Jy, Js are the uniform probability limits of the corresponding quantities enclosed in
square brackets in the previous equation . These limits are defined in the next subsection, along
with the covariance kernel.

Let 2= — 7. € [0,1), where 7 is the asymptotic proportion of the sample the econometrician
uses.
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Further employing the representation stated in theorem 3, Slutsky implies:

_ (1 = K K K 1 & K
VT.Se(g) = <\/—T—€t=HZTe+1mgg (w1, 0, X% oy (N)) — \/T—e\/—ﬁ tzzlg(wt )

- [Jg(e, A) + J4(0,)\)]

x{[Jl(G)lel(H)’} J(9)W1<\/1T om (wtK,It,0)>}
€ t=H -T.+1
- [J5(9, )\)]

x { [BWa R (0| 1%)%(% Ef:ma (w1, A) )}
+ op+ (1)

Further, the fidi convergence in distribution is given by BC3 (under Hy):

{\/Tese(gl)r ) \/ise(gK)} 2) N(OvM)

where M;; = CV*(g;, gj). The operator CV is stated in the next section.
Employing BC2, conclude by Theorems 1.5.4 and 1.5.7 in van der Vaart and Wellner (1996):

VT.5%(g) = G- (9)

with covariance kernel given by CV, which is stated next and incorporates both Hp and H4
cases.
Note that the H 4 case follows similarly, by additional centering around the asymptotic mean
of the first term in the above representation.
|
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FE6 Covariance Operators CV;, CV,
Let

H

J3(6,\) = lim EPTi 3 (vkmgg (WK, 1,0, M, 0, (AF)) )
€ t=H-To+1
H

1
J4(9,)\) ElimEPT Z {Vamgg (w{(,ft,g,)\K,at(AK))
€ t=H-T.+1

[vafl (wtf(a 07 )‘Kv O‘t(AK))] - v)\fl (wtl(a 97 )‘Ka O‘t(AK)) }

H

. 1
J5(0,A) = lim EPT Z {nggg (wtK,It,H,)\,at()\K)) }

€ t=H-T.+1

Let

H

1 1
= ( T Z m3g (U}?,IHG,AK,OQ()\{{)) o \/T—e

t:H Te+1 H

H
> g(wf) — /T.Plim Se(g))
t=1

=

[Jge ) + Ju(6, A)]

—

{ 0)W1.J1 (6 ]_1J(0)W1<\/T ZH: ml(wtK,It,H)>}

€ t=H-Te+1
- o]
~ { [ B2 T2 (V)] AL (% i ma (w1, ) ) }

Then under BA2,

CVilgr,02) = | lm Covlulon), u(92))

—00

Consider then BA3, and let
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P(g) = (\/1— EH; mag (i I, 0, A, ae(\)) — V/Te(Plim 5°(g) —Em(g(wtK))>
- [y aie)
1 1 H
X {[Jl(e)lel(a)'] J(G)Wl( \/Tet_H;eHml (wk ,It,0)>}
Then under BA2,

CVa(g1,92)

Il
g
Q
Q
<
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<
—
Q
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<
—
Q
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