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Abstract

Sports provide a natural experiment on individual choices in games with high stakes.
We study a game-theoretic model of a soccer match and then evaluate the ability of this
model to explain actual behavior with data from 2885 matches among professional teams.
In our model, the optimal strategy of a team depends on the current state of the game.
When the game is tied, both teams attack. When losing, a team always attacks; when
winning, it may attack early in the game, but starts defending as the end of the match
nears.

We ¯nd that teams' skills, current score, and home ¯eld advantage are signi¯cant ex-
planatory variables of the probability of scoring. We also ¯nd that when losing a team
becomes relatively more likely to score. A team which is ahead, on the other hand, uses a
conservative strategy very early in the match.

These results support the main conclusions of our model. They indicate that soccer
teams behave consistently with rationality and equilibrium. However, we also ¯nd a strong
and signi¯cant interaction between home ¯eld advantage and strategic behavior. Teams
playing at home are more likely to score, unless they are already winning. This may be
evidence that psychological factors are important in determining the game's outcome.
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1 Introduction

We study a high stakes game between experienced players which occurs naturally: professional

soccer. The aim is to test the ability to predict behavior using game theory and economic

theory, much in the spirit of experimental economics. Our empirical test has three advantages

over laboratory experiments. First, subjects are familiar with the game. Professional players

and coaches have developed their knowledge of the game over many years. Second, subjects

are highly motivated. Coaches are ¯red and players lose market value when performance is not

acceptable. Third, a rich set of observations on strategic interaction is available. In a given

year, more than 300 games are played in a top professional league.

Highly motivated professional athletes and wide availability of data make soccer a natural

candidate for empirically testing predictions from a game-theoretic model in a natural environ-

ment. This paper is a ¯rst attempt in that direction.1 Our analysis yields three main results.

First, `real world' data on strategic interaction of experienced players provide support for a

game-theoretic explanation of behavior. The predictive power of rationality is good. Second,

the surrounding environment has a strong in°uence on players, possibly consistent with psy-

chological observations about behavior. Strategic behavior alone is not enough to explain what

goes on. The third and most intriguing ¯nding is that a consistent explanation of the data

must allow the environment to interact with players' strategic choices. Strategic rationality

and psychological elements are simultaneous and interacting forces in explaining behavior.

There are at least two lessons we draw from these result. The ¯rst is about method. Ob-

serving subjects in their natural environment, rather than in a laboratory setting, is possible

1In a spirit similar to ours, Walker and Wooders [1998] study the mini-max hypothesis in tennis games. Mini-
max equilibrium play, refuted in several laboratory experiments (see O'Neill [1987] and Brown and Rosenthal
[1990]), is instead supported by data from play of 10 tennis matches. Klaassen and Magnus [1998] also test
several hypotheses concerning the distribution of points in tennis. Ferral and Smith [1999] test a model of
championship series in football, basketball, and hockey. Unlike us, they focus on strategic choices across games
rather than within a game.
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and yields interesting results. In particular, the environment surrounding players choices may

provide a substantial piece of the explanation for those choices. The second lesson is about the-

ory. In the real world, behavior seems to depend on rational and psychological elements. These

two aspects, though, cannot be studied separately since they clearly interact in determining a

game's outcome. Understanding their interaction is the challenge for future theories.

What did we learn, and why is it important?

TV, radio and newspaper commentators of sports quite often mix detailed technical observa-

tions (on the choice of players, the layout of the team on the ¯eld, task assigned to di®erent

players) with observations of a psychological nature. These explanations have a common prob-

lem: they may give contradictory predictions. A team that has just allowed a goal is sometimes

described as having a \reaction of pride" that makes it more likely to score than before. Other

times, a team in exactly the same situation is described as \stunned", or \discouraged", and

hence less likely to score.

In contrast, the game-theoretic model we develop gives a unique prediction: everything else

being equal, a team that is down by a goal is, in equilibrium, more likely to score than a team

in any other competitive position. The empirical analysis supports this prediction.

We analyze a game theoretic model of a soccer match, characterize its equilibria, and test

its predictions with data from 2885 matches. Our focus is on teams' behavior at any given

moment of the game; our measure of performance is the probability that a team scores a goal

in that moment.

This model predicts that current score and time to the game's end in°uence teams' behavior.

It also speci¯es how these strategic elements a®ect the probability of scoring during the game.

We then test the predictions of the theory. The ¯rst main empirical result of the test is that

the strategic elements are signi¯cant and important factors in explaining the probability of
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scoring. This is not, however, the end of the story.

Skill, strategy and passion: a quantitative estimate and a puzzle.

Theory and data detect three forces in°uencing performance: skill, strategy, and passion.

Skill is a team's ability, the quality of players and coach. It is measured by long-run indices

of attacking and defending technology like the number of goals made and allowed. Strategy

is a team's choice to attack or defend in reaction to the game's score. It is measured by the

relation a team's probability of scoring has with current score and time left until the game's

end. Passion is the advantage a team has when playing with the support of the home fans. It

is measured by the `home ¯eld' advantage.

Table 1 illustrates in detail the impact skill, strategy, and passion have on the game. An

entry under passion is the ratio between home and away probabilities of scoring; di®erent

entries are computed for each possible strategic environment (winning, losing, or tied). An

entry under strategy is the ratio between probabilities of scoring corresponding to two strategic

environments; di®erent entries are computed for each possible state of passion (home or away).

An entry under skill is the ratio between probabilities of scoring corresponding to two di®erent

ability values; they are computed for each state of passion.

Table 1: Determinants of the probability of scoring a goal in soccer games.2

Home Away Losing Tied Winning Home Away

losing
winning 2.20 1.39

Strategy losing
tied 1.50 1.90 Passionhome

away
1.59 2.02 1.00 Skillhigh

low
2.32 2.21

winning
tied 0.68 1.37
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Skill, strategy, and passion in°uence the probability of scoring a goal as follows:

i. skill di®erentials multiply this probability by a factor between 2.2 and 2.3;

ii. di®erent strategic situations multiply it by a factor between 1.4 and 2.2;

iii. passion multiplies it by a factor between 1 and 2;

iv. strategy and passion interact in determining the probability of scoring since (a) the home-

¯eld impact varies with the current score, and (b) each current score impact changes when

a team plays at home or away.

The quantitative e®ect of skill, the ex-ante most obvious explanation of performance, gives a

benchmark to assess the importance of strategy and passion. Roughly, these three forces are

equally important to understand behavior and performance.

Our results seem to vindicate the e®ectiveness of a pure game-theoretic analysis. They might

justify the temptation of professional economists and game-theorists to dismiss explanations of

psychological nature as unsubstantial. In this view, a team is like any player in any game, or

any ¯rm in any economy. And what is good to explain behavior and performance of a ¯rm is

good to explain behavior and performance of a soccer team.

This view, when combined with our results, considers passion an aspect of soccer's tech-

nology; that is, rather than the psychological e®ects provided by the home ¯eld advantage,

there exist real, potentially quanti¯able di®erences between home and away games. There are

many ex-ante reasons to doubt this is the case. For example: noise aimed at hampering com-

munications among players is unimportant since there is little `play calling'; discomfort due to

2Losing (winning) indicates that the team is behind (ahead) by one or two goals in the score. The ratios for
skill correspond to a team 40 percent better than the opponent versus one 40 percent worse; here, we only look
at a tied game since di®erent scores produce almost identical numbers. Full results and a detailed discussion are
in section 4.
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travelling is small since the cities where teams play are, in our data, relatively close; familiarity

with the stadium is reduced since teams practice in a location di®erent from the one where they

play; the playing surface is natural grass for all games. But there are many other, more subtle,

possible technological explanations of the home ¯eld advantage: sleeping in an uncomfortable

hotel may make the visitors more tired, the referees may be in°uenced by local supporters, the

dimensions of the ¯eld di®er across stadiums, there are climatic di®erences among the cities

where games are played, and so on. All these possibilities have one characteristic in common:

they are constant throughout the game.

In our data, depending whether the team is winning, losing, or tying, the home ¯eld advan-

tage varies. Roughly, Table 1 shows that playing at home doubles the probability of scoring

when the game is tied, increases it by one and a half times when losing, and makes no di®erence

when winning. The technological aspects of home ¯eld advantage are independent of the team's

strategic situation, and thus cannot account for these di®erences.

Skill, strategy and passion: a possible interpretation.

Summarizing, our model and data show that skill and strategy, although very important,

are not su±cient to give a full explanation of what is observed. If strategy and technology

are not enough, we may be observing a psychological element of behavior. Commentators of

sporting events often talk about a psychological `extra man' e®ect the home fans may have on

particular moments of a game. Spectators may in°uence players' behavior. Psychologists have

documented a similar phenomenon: audiences modify behavior through `social facilitation'.3

When an audience is watching, the performance of very familiar actions improves. Little is

known about social facilitation in strategic environments. Since the same audience may have

3Zajonc [1965] and [1969] are the seminal contributions on this topic. For a more recent survey, see Guerin
[1993].
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contrasting e®ects on players, the situation is necessarily more complicated and deserves further

study.4

As economists and game theorists, we may be tempted to focus only on technology and

strategy as a way to organize research by taking advantage of our professional competence.

But measuring the importance of technological and rational versus psychological in°uences,

we obtain similar orders of magnitude. Reason and emotion are empirically on equal grounds.

Table 1 above also shows that they interact. The relative e®ect of di®erent strategic situations

changes when a team plays at home or away; the relative e®ect of playing at home or away

varies with the current score.5

We conclude that psychology and rationality act as simultaneous determinants of the game's

outcome. They interact in explaining behavior. For example, fans' support increases the

probability of scoring when an additional goal is very important; that is, when the game is tied

or the home team is losing. It has no e®ect when the home team is winning. These results, we

think, point to the next challenge for economists and game theorists: build a theoretical model

capable to explicitly take into account the interactions between emotion and reason these data

highlight. Reversing the argument given above, one may now argue that what is necessary to

explain behavior and performance of a soccer team is also necessary to explain behavior and

performance of a ¯rm. Therefore, a complete theory of the behavior of organizations, like a

soccer team, cannot ignore any of them.

4In the case of zero sum games, for example, an audience friendly to one player is necessarily unfriendly to
her opponent.

5E±cient division of labor may suggest to keep the study of reason and emotion separate if they do not
interact. Only under such a strong separation assumption, the combined e®ect is determined by the algebraic
sum of the parts. But if emotions in°uence behavior in a game `additively', strategy must have the same e®ect
wherever a team plays and passion must the same e®ect whatever the score. This additivity assumption is clearly
falsi¯ed by the data.
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Organization of the paper

The paper is divided as follows. Section 2 describes soccer, and models a match as a game.

Section 3 characterizes the equilibria of this game. Section 4 contains the econometric results.

Section 5 concludes. Proofs and extensions of the basic model are presented in section 6.

2 The Game of Soccer

In this section, we model soccer as a dynamic game between two teams. Each team chooses

its strategy from a set of possible actions we call attacking intensities. They can be thought of

as players' positions on the ¯eld as well as their mindset in playing the game; high attacking

intensity means that a team focuses on o®ense more than defense. Strategies in°uence the

probability that each team scores in any moment of the match. The state of the game is the

current score and the time to the end. In any given moment, a team's strategy maps the state

of the game into an attacking intensity. Equilibrium is, as usual, de¯ned by optimal choices of

strategies. We start with a brief description of the actual game.

ABC of soccer

The basic rules of a match are quite simple: eleven players on each side attempt to put the ball

in the net of the opposing side; if they succeed, they score a `goal'. The team with the highest

number of goals at the end of the game wins; ties are possible.

Soccer is a low scoring sport. A single goal can change radically, and for a considerable

amount of time, the strategic environment in which teams interact.

In domestic competitions, teams are rewarded with three points for a win, zero for a loss,

and one point for a tie. Every match counts equally because national awards go to teams

according to the sum of points collected on all a season's matches.6 Therefore, we have repeated

6At the end of the year, points accumulated in each domestic league determine the national champion,
participants in European tournaments in the following year, and teams relegated to a lower league.
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observations of the same basic game.

Players' and coaches' incentives to perform well are strong since many soccer teams pay

bonuses depending on match and/or season results. In addition, there is a very active and

lucrative market for players and coaches, and the compensation depends strongly on past

performance.

Players and strategies

There are two players, the teams, labelled i = 1; 2. The game is played in discrete time, with an

instant denoted t 2 f0; : : : ; Tg, T being the ¯nal time. At each point in time, a team chooses

the intensity by which it attacks from the strategy set fd; ag, where a is attack and d is defense.

¢(fd; ag) is the set of mixed strategy. The choice of a pure strategy is perfectly observable by

the other team. In keeping with the interpretation of \intensity of attack", we give the order

a Â d to this set, and the natural (componentwise) partial order to the set of strategy pro¯les,

denoted s ´ (s1; s2) 2 fd; ag2. This order will be useful to discuss the technology of scoring.

The strategy set can be interpreted in two ways. It may measure the positioning of players

on the ¯eld or it may indicate the mindset of players. Examples of the latter are deciding what

to do when your team has the ball, or deciding how to react to ball possession of the opposing

team. The assumption that the strategy set consists of two points is made for simplicity. In

section (6.3), we consider the case of three actions.

Technology of scoring

Any team at any point in time can score a goal. Scoring is random, but the strategy choice

of the teams a®ect the probability of a team scoring. These probabilities may be a®ected by

factors other than strategies, like the home-¯eld advantage or the skill of the two teams, which

we introduce in the notation only at a later stage. Formally, for each pair of chosen strategies
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there is corresponding probability pi(s) that team i scores, and we write

p(s) ´ (p1(s); p2(s)) 2 [0; 1]2:

Because scoring is a rare event in soccer, both probabilities are typically very small (we will

see that they are usually less than ¯ve per cent a minute).

We introduce now a natural assumption: increasing the intensity of attack of a team in-

creases the probability of that team scoring, as well as the probability that the same team is

scored against:

Assumption 2.1 (Monotonicity) For i = 1; 2, pi is increasing (that is, if s º s0, then
p(s) ¸ p(s0)).

Note that this assumption de¯nes an order over the quantities p1(s), except the relationship

between p1(a; d) and p1(d; a), which is going to be determined later by the assumption 3.2. The

di®erent component parts of the monotonicity assumption seem all reasonable: for instance

p1(a; d) > p1(d; d) seems beyond doubt. The inequality p1(d; a) > p1(d; d) seems reasonable,

in light of the fact that team 2, by attacking, is making its own defense weaker. The third

inequality, p1(a; a) > p1(a; d) simply says that scoring against a defending team is harder than

against an attacking team.

Payo®s

For each t, an integer nit describes the total number of goals scored by team i until that instant.

The game begins with a zero score, (n10; n
2
0) = (0; 0). The payo® to each team depends on the

¯nal score according to the two functions G1 and G2 which depend only on the di®erence of

the two scores:

(G1(n1T ¡ n2T );G2(n1T ¡ n2T )): (2.1)

Let nt denote the goal advantage of team 1: nt ´ n1t ¡ n2t . In this paper we consider the
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game as a zero-sum game, with payo®s

G1(n) = 1; if n > 0; G1(n) = 0; if n = 0; and G1(n) = ¡1; if n < 0 (2.2)

and G(n) ´ G1(n) = ¡G2(n). The case of payo®s G1(n) = 2; if n > 0, G1(n) = 0; if n = 0,

and G1(n) = ¡1; if n < 0, which corresponds more closely to the system used after the mid

90s, complicates the analysis but leaves the main result unchanged. For instance, since the

payo® to victory is higher, the winning team will attack for a longer period.

The value function

A history at time t is the history of goals scored until that time. A strategy at time t is a

function from the history in that period into the strategy set. For every period t and every

pair (n1; n2) of goals scored until that time, there is a subgame beginning at t with that score,

denoted by ¡(t; n1; n2).

As usual, strategies may entail mixing over pure strategies. The mixed strategies of the two

players in the subgame ¡(t; n1; n2) are denoted (¾1(t; n); ¾2(t; n)). Associated with ¡(t; n1; n2),

there is a value to the two teams of the score di®erence being n with only T ¡ t remaining

to play. As the only determinant of payo®s is the ¯nal di®erence in the score this value only

depends on n and t. We denote the value of the score being n at time t for team 1 and 2

respectively as (v1(t; n); v2(t; n)): Of course, (v1(T; n); v2(T; n)) = (G1(n);G2(n)):

The symmetric game

We begin with the case of teams of equal ability, i.e., which have identical probabilities of

scoring. Formally we assume:

Assumption 2.2 (Symmetry) p1(s1; s2) = p2(s2; s1) for every (s1; s2).
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The case of non-symmetric games is considered in section 6.4. For convenience of exposition,

we denote

® ´ p1(a; d) = p2(d; a); ± ´ p1(d; a) = p2(a; d); (2.3)

A ´ p1(a; a) = p2(a; a);D ´ p1(d; d) = p2(d; d):

3 The equilibrium of the game

As the game is zero-sum, for any score di®erence n the value for team 1 of ¡(t; n) is given by

v1(t; n) ´ max
¾1
min
¾2
E(¾1;¾2)v

1(T;N); (3.4)

the two strategies a®ect the probability distribution over a ¯nal di®erence in score N . The

corresponding value for team 2 is v2(n; t). Since the game is zero-sum,

for every t and every n; v(t; n) ´ v1(t; n) = ¡v2(t; n): (3.5)

Some properties of the value function are easy to derive, and useful to characterize the equilibria

of the game. An immediate consequence of the fact that v(T; ¢) is increasing is that:

for every t; v(t; ¢) is increasing. (3.6)

The equal skill assumption 2.2 has implications for the value function. Let ¼ be the permutation

¼(1) = 2; ¼(2) = 1, and f the permutation on the strategy space:

f(¾) ´ f(¾1; ¾2) = (¾2; ¾1): (3.7)

pi(s) = p¼(i)(f(s)); for every i; s: (3.8)

In addition, let ¾̂(t; n) ´ (¾̂1(t; n); ¾̂2(t; n)) denote the equilibrium of the subgame beginning

at (t; n). Then from the symmetry assumption 2.2:

¾̂(t;¡n) = f(¾̂(t; n)): (3.9)
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Denote by N the random variable taking values in the integers which describes the additional

goals scored by the ¯rst team in the periods from t to T . It follows from (3.9) that

v(t;¡n) = E¾̂(t;¡n)G(¡n+N)

= Ef(¾̂(t;n))G(¡n+N)

= E¾̂(t;n)G(¡n¡N)

= ¡E¾̂(t;n)G(n+N)

= ¡v(t; n); (3.10)

and in conclusion

for every t and every n; v(t; n) = ¡v(t;¡n): (3.11)

Note that in particular:

for every t; v(t; 0) = 0: (3.12)

From the equations de¯ning the ¯nal payo® we get:

v(T; n) = 1 if n > 0; v(T; n) = 0 if n = 0; v(T; n) = ¡1 if n < 0: (3.13)

Finally the value satis¯es the value function equation:

for every t and every n; v(t¡ 1; n) = (3.14)

max
¾12¢(fd;ag)

min
¾22¢(fd;ag)

E(¾1;¾2)[p
1v(t; n+ 1) + p2v(t; n¡ 1) + (1¡ p1 ¡ p2)v(t; n)]:

Equilibrium with tied teams

To characterize equilibria, one needs to look at the possible score di®erences. We start from

the case in which the game is tied.

Proposition 3.1 Assume symmetry (assumption 2.2). If scoring when attacking while the
other team defends is more likely than scoring when defending while the other team attacks, the
equilibrium of a tied game has both team attacking; otherwise, they both defend. Formally,

if ® > ±; then ¾̂(t; 0) = (a; a); if ® < ±; then ¾̂(t; 0) = (d; d): (3.15)
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Proof. For every (t; n) = (t; 0) the equilibrium solves the following.

v(t; 0) = max
¾1

min
¾2
p1v(t+ 1; 1) + p2v(t+ 1;¡1)

= v(t+ 1; 1)max
¾1
min
¾2
(p1 ¡ p2) (3.16)

since v(t+ 1; 1) > 0. To solve the minimax problem in (3.16) one has to consider the matrix

a d

a 0 p1(a; d)¡ p2(a; d)

d p1(d; a)¡ p2(d; a) 0

(3.17)

By the symmetry assumption 2.1, this matrix is equal to

a d

a 0 ®¡ ±

d ± ¡ ® 0

(3.18)

Now, one can easily conclude that ¾̂(t; 0) = (a; a) if P 1(a; d) = p2(d; a) > p2(a; d) = p1(d; a),

but ¾̂(t; 0) = (d; d) if p1(a; d) = p2(d; a) < p2(a; d) = p1(d; a).

An equilibrium where neither team tries to win seems unreasonable, or at least uninterest-

ing, particularly under the equal skill assumption. In the following we assume ® > ±.

Assumption 3.2 (Attack is e®ective) If symmetry (assumption 2.2) holds, then a team that
attacks against a defending team is more likely to score than if it defends against an attacking
team:

p1(a; d) > p1(d; a):

Equilibrium with a winning team

We now consider the case in which the game is not tied.
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Proposition 3.3 If symmetry (assumption 2.2) and monotonicity (assumption 2.1) hold, then
at equilibrium

¾̂(T ¡ 1; 1) = (d; a) (3.19)

Proof. Consider the period before the end with team 1 leading by one goal. We have:

v(T ¡ 1; 1) = max
¾1
min
¾2
p1v(T; 2) + p2v(T; 0) + (1¡ p1 ¡ p2)v(T; 1)

= max
¾1
min
¾2
(1¡ p2)

= 1¡min
¾1
max
¾2

p2 (3.20)

If A > ® and ± > D then defense is dominant for the ¯rst team, and the second attacks.

The switch between strategies

We have seen that in the late stages of the game a winning team chooses at equilibrium to

defend. This does not mean, of course, that defending as soon as the team leads in the score

is optimal. We prove now that in equilibrium a winning team continues to attack, until the

end of the game is close enough. The time to switch depends on the score. This is the main

implication of proposition 3.4.

Note ¯rst that

v(i; T ¡ i+ 1) = 1 for every i · T; (3.21)

from the restriction that no team can score more than one goal in each period. Of course, any

pair of strategies is an equilibrium at (i; n) if n ¸ T ¡ i+1, but we ¯nd it convenient to focus

on

¾̂(i; n) = (d; a); for every n ¸ T ¡ i+ 1: (3.22)

Now note that at (t¡ 1; n), with n > 0, the di®erence between the expected value of attacking

and the expected value of defending against a team which is attacking is

(A¡ ®)v(t; n¡ 1) + (A¡ ±)v(t; n+ 1)¡ (2A¡ ®¡ ±)v(t; n) > 0:
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Let µ ´ A¡®
A¡®¡± , and note that µ < 1=2. It follows that attack gives a higher value if and only

if:

µv(t; n¡ 1) + (1¡ µ)v(t; n+ 1)¡ v(t; n) > 0: (3.23)

At the point (T ¡ i; i) the opposite of the inequality (3.23) is true, because of (3.21), so

¾̂(i; T ¡ i+ 1) = (d; a): (3.24)

At (T ¡ 2; 1) attack is better than defense if and only if

®(A¡ ±)¡ (A¡ ®)(1¡ ®) > 0;

but this term is positive at ± = 0; A = ®, and is negative at ± = 0 = ® < A. Therefore, for

parameters values not excluded by our assumptions so far, both equilibria are possible in the

interval between (T ¡ i; 1) and (T ¡ i; i¡1). So an equilibrium where the winning team attacks

after getting the lead, and then switches to defense is possible. We now show that after the

winning team switches to defense, it keeps defending until the end or until the advantage is

lost.

Denote by C(t; n) the set of optimal strategies at (t; n) for the ¯rst team; d 2 C(t; n) means

that defense is an optimal strategy at (t; n). We have the following lemma.

Proposition 3.4 Suppose that for some t and some n,

d 2 C(t; n) implies d 2 C(t0; n) for every t0 ¸ t;

then
d 2 C(t; n) implies d 2 C(t;m) for every m ¸ n:

The proof is in the appendix, section 6. There we also show how to compute a precise

value for the time of switch in a continuous time version of the game. The value is reported in

equation (6.36), and discussed in detail after (6.40).
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A summary of the properties of the equilibrium

The equilibrium of this game has the following features. When the two teams are tied, the best

response against an attacking team is attack. At this state of the score, the relevant probability

is the di®erence between the probability of the two teams scoring. A team (say, the ¯rst) might

choose to defend, but this choice would

i. reduce the probability of the other team scoring, since p2(d; a) < p2(a; a),

ii. reduce the probability of the team itself scoring (this is the condition p1(d; a) < p1(a; a)),

The condition p1(d; a) < p1(a; d) = p2(d; a) implies that the second reduction more than

compensates the ¯rst; hence, attack is a best reply to attack.

When the ¯rst team has one goal advantage the relevant probability is p2, which the ¯rst

team wants to minimize. This is clear in the last period: one additional goal of the winning

team is useless. Hence, against an attacking team the best response is to defend, because this

minimizes the probability p2(¢; a). The other team has to attack, because its objective is now

to maximize the probability of scoring; an additional goal received does not make things much

worse, and p2(d; d) < p2(d; a). The key inequality in this argument is the assumption 3.2:

p1(a; d) > p1(d; a);

a possibly controversial statement among soccer fans, that we ¯nd reasonable. The opposite

inequality might have been reasonable in the 60's, when defensive minded teams were very

e®ective against attacking teams (Italian contropiede, or counterattack). To summarize, the

main predictions of the equilibrium, if assumption 3.2 holds, are:

i. teams with equal score attack;
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ii. when one of the teams has an advantage, the equilibrium has both teams attacking in the

early stages of the game, and then the winning team defending and the other attacking

in the later stages.

iii. a team which is losing is more likely to score, when the two teams are of equal ability;

4 Econometric Results

In this section, we present estimates of the probability of scoring a goal in any minute of a

soccer match. This is a relatively novel idea. Most previous statistical studies on soccer have

focused on the number of goals scored in a match.7 The only similar example is Dixon and

Robinson [1998], where a Poisson model is used to predict time of goals. As a matter of fact,

most previous research on soccer has disregarded events during a game. The notable exception

is Ridder, Cramer and Hopstaken [1994]; they study how the loss of a player a®ects a match's

¯nal outcome.8 None of these papers attempts a connection between strategies and events

during the game, therefore we are in a previously unexplored area.

Our objective is to test the main predictions of the model of the previous section. These

are:

i. The probability of scoring is in°uenced by the current state of the game, measured by

the di®erence between goals scored and the time left until the end.

ii. Losing teams adopt more aggressive strategies; losing has a positive in°uence on the

probability of scoring.

7Among these, Reed, Pollard and Benjamin [1971], Maher [1982], Dixon and Coles [1997], and Palacios-
Huertas [1998].

8When the referee shows someone a red card he is permanently expelled: his team plays the remainder of the
match with one less player.
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iii. Winning teams adopt more defensive strategies; winning has a negative in°uence of the

probability of scoring.

As already noted, the model of the previous section makes predictions about optimal strategies.

Under some assumptions about the linkage between probabilities and strategies, we derive the

implications for the likelihood of observing a goal. Therefore, we also test restrictions on the

scoring technology. The main of these is assumption 3.2, \Attack is e®ective"; it says the

probability of scoring if a team attacks and the opponent defends is higher than the probability

of scoring when it defends and the opponent attacks. Attack is e®ective is necessary to avoid

the equilibrium of the symmetric game where teams defend if the score is tied. Although the

low frequency of scoreless games in our sample, approximately 9%, seems incompatible with

this equilibrium, a test of our model hinges on assumption (3.2) being con¯rmed by the data.

The main results of the empirical analysis are in section 4.4, where we describe in detail

the probability of scoring a goal in a soccer game implied by our data. Here is a summary of

the most important ¯ndings:

i. the probability of scoring depends on current score and time remaining;

ii. losing teams are more likely to score than winning teams;

iii. the magnitude of the previous e®ects depends on the home ¯eld advantage;

iv. teams' skills in°uence the probability of scoring;

v. country di®erences are sometimes relevant, but do not alter the previous picture;

These conclusions are consistent with our theoretical model and its underlying assumptions.

On the other hand, size and direction of the home ¯eld advantage may be troublesome for a

purely rational explanation of soccer teams behavior.
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4.1 Match statistics

We use data on matches played in the Italian, English, and Spanish top professional leagues.9

For each match, we know the names of the playing teams, their end of season statistics, and

the minute in which they score a goal. The periods covered are 1995 to 1998 for Italy and

England, and 1996 to 1998 for Spain. Overall, the data set includes 2885 matches

Table 2: scoring averages

Italy: 1044 games England: 999 games Spain: 842 games

Goals per match 2.681 2.615 2.715

Home 1.620 1.539 1.629

Away 1.061 1.076 1.086

Goals per minute 0.0296 0.0294 0.0305

Home 0.0179 0.0173 0.0183

Away 0.0117 0.0121 0.0122

Table 2 presents some statistics on average number of goals per match and per minute. The

home ¯eld advantage appears strong; home teams score about 0.5 more goals per game than

away teams. Numbers are similar across countries.

The pattern of goals scored is illustrated by Figure 1.10 It displays a well known regularity

of soccer statistics: the frequency of goals scored increases with time, in an approximately

linear fashion. Our theory and estimate provide a simple explanation of this regularity. As

time goes by, the number of games that are tied decreases, and the sum of the probability

of a goal being scored in a tied game is smaller than the total probability when one team is

leading.11

9Match details were downloaded from internet sites of di®erent news organizations. Although they are public,
there is no unique source we could use to obtain them.
10Figure 1 displays a peak in the average number of goals scored at the end of each half. It happens because

some extra time, called `injury time', is added by the referee at the end of each 45 minutes half. For England
and Spain, the data we obtained assign all goals scored in injury time to the 45th minute. For Italy, they register
the actual time of the score, but not how long each match is played. To avoid measurement issues, we dropped
the last minute of each half from the sample.
11This is made clear by the model with three strategy choices of section 6.3. There, the probability of

observing a goal in a tied game, 2p1(m;m), is smaller than the total probability when one team is leading, equal
to p1(a; d) + p1(d; a).
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Figure 1: Frequency of goals in each minute of a soccer match.

Table 3: ¯nal score distribution

Number of Games Percentage

Tied 800 0.2773

One goal 1046 0.3626

Home 667 0.6377

Away 379 0.3623

Two goals 591 0.2049

Home 372 0.6294

Away 219 0.3706

Three or more goals 448 0.1553

Home 348 0.7768

Away 100 0.2232

Table 3 presents the most common ¯nal scores. The di®erence between goals scored and

goals allowed is less than three in more than 80 percent of the matches. Di®erences of more

than three goals are extremely rare.
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4.2 Estimation Procedure

In this section, we describe our estimation of the probability of scoring. Let yitg be a Bernoulli

random variable equal to one if team i scores in minute t of match g and zero otherwise. Assume

that the probability of observing a goal, denoted Pitg, is a function of a vector of explanatory

variables xitg and some unknown parameters ¯. In particular:

P [yitg = 1jxitg] = E [yitgjxitg] = F (¯xitg) + "itg (4.25)

where F (¢) is the cumulative normal distribution function. If "itg is i.i.d. across teams, matches,

and time, this is a standard probit random e®ects model. It can be estimated with maximum

likelihood.

We make the following assumptions: team characteristics are constant during a season, and

they are measured by overall performance in that season; match characteristics are represented

by the opponent, and they are measured by opponent overall performance in the season and

by a performance di®erential between team and opponent; time characteristics are given by

current score and time left to be played.

We split the sample between teams playing home or away matches. Estimation over the

entire sample may produce unreliable results. It assumes, unrealistically, independence among

observations of the two teams playing a match.12

Regressors include a constant and 51 variables. These are divided in four groups: teams'

skills, time elapsed, state of the match, and league (country) in which the match is played.

The skill variables are: O®ense, measuring team i o®ensive strength, de¯ned as goals scored

in a season divided by matches played in that season;13;14 Defense, measuring team i defensive

weakness, de¯ned as goals allowed in a season divided by matches played; Opponent o®ense and

12For completeness, we report estimation results over the entire sample in the appendix, section 6
13Season statistics are divided by games played because the number of teams di®ers across leagues.
14There is a mild endogeneity problem in using season averages because they include the goals of the current

match. In a di®erent version, we subtracted the outcome of current match without much e®ect on the estimates.
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Opponent defense, measuring the opposition skills, de¯ned as O®ense and Defense for team i

opponent; Ability di®erential, measuring how close the match is, de¯ned as the absolute value

of (O®ense-Defense-Opponent o®ense+Opponent defense).

The time variables are Time, a linear time trend, and nn minutes left, a dummy equal to

one during the last nn minutes of the match and zero otherwise; nn is set equal to 75, 60, 45,

30, and 15. These dummies overlap, therefore the overall e®ect in the last 15 minutes is the

sum of the ¯ve individual coe±cients.

The state of the match is described by a set of dummy variables for the di®erence between

goals scored and goals allowed. Losing equals one if team i is behind in the score by 1 or 2

goals at the beginning of minute t and zero otherwise. Winning equals one if team i is ahead in

the score by 1 or 2 goals at the beginning of minute t and zero otherwise. These are interacted

with all the time variables de¯ned previously. Losing by 3 goals and Winning by 3 goals equal

one if the score di®erence is not smaller than ¡3 or +3 respectively and zero otherwise.15

The country variables are England and Spain, and they equal one if the match is part of

league in the corresponding country. These are also interacted with skills, time, and state of

the match variables.

Given the set of dummies employed, the reference case is given by the ¯rst 15 minutes of a

tied match played in Italy. Therefore, each dummy variable coe±cient measures the marginal

e®ect relative to this situation.

Finally, note that probit random e®ects estimation is appropriate only if the explanatory

variables are not correlated with the error. Unobserved heterogeneity may thus be a problem.16

Unobserved team, match, and time characteristics may a®ect the estimates' precision.17 To

15In only 4 games, out of 2885, a lead of 3 goals did not end up in a win. Therefore, we think losing or winning
by this margin implies the match is virtually over.
16One way to account for this is represented by conditional logit estimation. In our case, some independent

variables (the current score ones) are a function of lagged values of the dependent variable (a team previous
goals); hence, this method is not appropriate.
17Some examples are: ability variables beyond our performance measures, the particular conditions of the two
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mitigate these e®ects, we compute robust standard errors and further allow clustering of obser-

vations for each team (in a season), for each match, or for each minute.18 Therefore, we have

four di®erent standard errors for our estimate.

4.3 Estimation Results

First, we report a test that all the coe±cients of the relevant current score variables (Winning,

Losing, and their interactions with the time variables) are equal to zero. If this hypothesis

is accepted, the data are not compatible with the theoretical model since the probability of

scoring a goal does not depend on the current score. Table 4 below summarizes the results of

the corresponding Chi-squared test. The null hypothesis is rejected; in all speci¯cations, the

probability the 18 variables are jointly equal to zero is smaller than 0.0015. Therefore, the

probability of scoring in a soccer game does depend on the current score.

Table 4: joint signi¯cance of 18 current score variables.

Â2 tests with 18 degrees of freedom
Robust st. err. Team clustering Match clustering Time clustering

Home matches 51.03 64.99 49.25 124.71

Away matches 43.89 53.12 41.32 52.52

Because the set of explanatory variables is large, an analysis of the results is somewhat

cumbersome. We proceed as follows. First, we report estimates of the individual coe±cients.

Then, we describe in detail the probability of scoring a goal implied by these estimates. Re-

sults are divided in three blocks: skill and country variables ¯rst, time variables second, and

current score variables last. We focus on marginal e®ects rather than coe±cients and, to ease

presentation, we only report p-values for robust standard errors with time clustering.19 The

full set of results is in the appendix.

teams on the day of the match, and players' fatigue.
18Additionally, we used a model where a common correlation structure across minutes of all matches is also

estimated. Results are not substantially di®erent, and are available upon request.
19Marginal e®ects are computed for 0 to 1 changes of the dummies. p-values refer to the underlying coe±cient

being zero.
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Skill and country regressors.

Table 5 presents the estimates for skill and country variables. Only some of the skill regressors

are signi¯cant. As expected, a team's o®ensive skills and its opponent defensive weakness

in°uence positively the probability of scoring. The size of these e®ects is larger at home.

Opponent o®ense and own defense do not matter. The ability di®erential has a signi¯cant

impact only at home; more goals are scored in `close' games in Italy and England, less in

Spain. As for country e®ects, they are not signi¯cant in away matches, while at home teams

are more like to score in England and Spain.

Table 5: regression results for skill and country variables.

Home matches Away matches

Variable @prob(goal)
@V ariable p-value @prob(goal)

@V ariable p-value

O®ense 0.01346 0.000 0.00772 0.000

England -0.00155 0.287 -0.00189 0.158

Spain -0.00365 0.029 0.00007 0.947

Defense 0.00025 0.785 0.00015 0.824

Opponent o®ense -0.00093 0.223 0.00018 0.810

Opponent defense 0.01242 0.000 0.00729 0.000

England -0.00401 0.021 0.00075 0.598

Spain -0.00477 0.004 -0.00079 0.649

Ability di®erential -0.00226 0.001 -0.00055 0.399

England 0.00130 0.186 0.00031 0.768

Spain 0.00340 0.001 0.00098 0.338

England 0.00638 0.076 0.00352 0.249

Spain 0.00862 0.016 0.00031 0.914

Time regressors.

Time regressors have mixed result, as displayed in Table 6. Time elapsed does not in°uence

the probability of scoring in away matches. At home, on the other hand, the linear time trend

has a positive e®ect, partially mitigated by the time left in the game dummies. This trend is

smallest in Italy and largest in Spain. These results indicate teams playing at home are more
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aggressive as time goes by.

Table 6: regression results for time variables.

Home matches Away matches

Variable @prob(goal)
@V ariable p-value @prob(goal)

@V ariable p-value

Time 0.00024 0.001 0.00007 0.253

England 0.00003 0.154 -0.00002 0.457

Spain 0.00005 0.031 0.00002 0.241

15 minutes left -0.00338 0.048 -0.00157 0.299

30 minutes left -0.00097 0.591 -0.00091 0.491

45 minutes left -0.00534 0.001 0.00045 0.761

60 minutes left -0.00395 0.012 -0.00095 0.448

75 minutes left -0.00182 0.180 -0.00119 0.395

Score regressors.

Table 7 presents the results for the more relevant scoring variables. Losing in°uences positively

the probability of scoring, even though the interaction with time tends to mitigate the overall

impact. This is true both at home and away. Teams behind in the score seem to adopt

more aggressive strategies exactly as our models suggests. These strategies become even more

extreme toward the game's end. Winning in°uences negatively the probability of scoring.

Interestingly, this e®ect appears smaller for away matches.20 Both results do not appear to

depend on the country the match is played in. Overall, current score has the predicted e®ect

on strategies, but the impact is di®erent for home and away teams.

For completeness, we report the estimate on score di®erences of 3 or more goals in Table

8. In most cases, they are not signi¯cant; the exception being losing by 3 goals which has a

positive impact on the probability of scoring.

20This seems incompatible with a model where more aggressive play is chosen at home to entertain one's fans.
That would imply the probability of scoring while winning should be larger at home than away.
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Table 7: regression results for current score variables.

Home matches Away matches

Variable @prob(goal)
@V ariable p-value @prob(goal)

@V ariable p-value

Losing 0.01286 0.000 -0.00116 0.593

* Time -0.00039 0.003 0.00031 0.004

15 minutes left 0.00896 0.002 -0.00207 0.337

30 minutes left 0.00448 0.148 -0.00437 0.019

45 minutes left 0.00484 0.112 -0.00398 0.036

60 minutes left 0.00957 0.007 -0.00333 0.116

75 minutes left 0.00156 0.674 -0.00396 0.093

England -0.00178 0.258 -0.00143 0.173

Spain 0.00058 0.941 0.00076 0.828

Winning -0.00829 0.013 -0.00635 0.000

* Time 0.00005 0.732 0.00031 0.006

15 minutes left -0.00012 0.967 -0.00253 0.229

30 minutes left -0.00232 0.300 -0.00238 0.263

45 minutes left 0.00379 0.167 -0.00358 0.118

60 minutes left -0.00018 0.949 -0.00444 0.031

75 minutes left 0.00553 0.152 -0.00035 0.903

England 0.00015 0.923 0.00196 0.176

Spain 0.00031 0.866 0.00005 0.970

Table 8: regression results for score di®erence of 3 or more goals variables.

Home matches Away matches

Variable @prob(goal)
@V ariable p-value @prob(goal)

@V ariable p-value

Losing by 3 goals 0.02008 0.061 -0.00248 0.584

15 minutes left -0.00079 0.914 0.00906 0.025

30 minutes left -0.00589 0.460 -0.00202 0.558

45 minutes left -0.00399 0.640 0.00428 0.492

England -0.00527 0.372 0.00114 0.761

Spain 0.00058 0.941 0.00076 0.828

Winning by 3 goals 0.00066 0.900 -0.00596 0.370

15 minutes left 0.00321 0.420 0.00093 0.864

30 minutes left -0.00639 0.027 0.00680 0.405

45 minutes left 0.00427 0.473 0.01024 0.458

England 0.00178 0.588 -0.00193 0.685

Spain -0.00019 0.958 -0.00145 0.768

4.4 The Probability of Scoring in Soccer Matches

The estimation results enable us to recover the probability of scoring implied by the signi¯cant

coe±cients. We can then analyze how this probability changes with the state of the game, the

home ¯eld advantage, or the teams' skills. Formally, the probability of scoring is given by the
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where a dependent variable enters the formula only if the corresponding parameter estimate

is signi¯cant at least at the 80 percent level. Dummy variables are included when the corre-

sponding value is not zero. Table 9 presents the results of these calculations evaluating the

skill variables at their means. Therefore, the numbers correspond to a game between teams of

average skills.21

Table 9: probability of scoring a goal in each minute of an average skills game.

Quarter of play Game average

Score First Second Third Fourth Fifth Sixth

Tied 0.0146 0.0147 0.0184 0.0166 0.0165 0.0185 0.0166
Home Winning 0.0080 0.0080 0.0103 0.0116 0.0115 0.0180 0.0112

Losing 0.0231 0.0254 0.0283 0.0237 0.0268 0.0212 0.0248

Tied 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082
Away Winning 0.0049 0.0078 0.0120 0.0126 0.0120 0.0182 0.0112

Losing 0.0105 0.0161 0.0156 0.0159 0.0175 0.0182 0.0156

A goal is a rare event; the average probabilities of scoring are quite low (last column in

Table 9). The highest, teams losing at home, is around 0.025. The lowest, teams tied away,

is around 0.008. The average probability of scoring when losing is larger than the one when

winning. This supports our attack is e®ective assumption, 3.2; scoring when attacking is more

likely than scoring when defending. As time goes by, these numbers have an interesting pattern.

Scoring is more likely late in the game. The increase over time is particularly signi¯cant when

winning. Interestingly, winning teams switch to more defending strategies very early in the

match. In the last quarter of play, their probability of scoring increases markedly. This could

be due to reckless attacking by losing teams. As predicted by our theoretical model, at the end

21These numbers do not exactly correspond to a game between teams of equal (average) skills because the
average skill di®erential, whose coe±cient is negative and signi¯cant for home matches, is equal to 0.67. Setting
this variable equal to zero would slightly increase the probability of scoring at home.
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of the game a losing team must attack.

From Table 9, one can also deduce the size of home ¯eld advantage and the e®ect of changes

in current score. To facilitate this task, Table 10 and Table 11 display the ratio between home

and away probabilities and the ratio between probabilities corresponding to di®erent scores.

Passion and strategy have a large impact on the game's outcome. Unless a team is winning,

playing at home increases the probability of scoring; it doubles in tied games, while it increases

by more than 50 percent if a team is losing. Changes in the current score also imply large

changes in the probability of scoring. These are more pronounced early in the game.

Table 10: e®ect of home ¯eld advantage.

Quarter of play Game average

Score First Second Third Fourth Fifth Sixth

Tied 1.78 1.79 2.24 2.02 2.01 2.26 2.02

Winning 1.63 1.03 0.86 0.92 0.96 0.99 1.00

Losing 2.20 1.58 1.81 1.49 1.53 1.16 1.59

Table 11: e®ect of current score.

Quarter of play Game average

First Second Third Fourth Fifth Sixth
losing
winning 2.89 3.17 2.76 2.03 2.33 1.18 2.20

Home losing
tied 1.58 1.73 1.54 1.42 1.63 1.15 1.49
winning
tied 0.55 0.55 0.56 0.70 0.70 0.97 0.68
losing
winning 2.15 2.08 1.30 1.26 1.46 1.00 1.39

Away losing
tied 1.28 1.96 1.89 1.93 2.13 2.21 1.90
winning
tied 0.60 0.94 1.46 1.54 1.46 2.21 1.37

Gauging the e®ect of the skill variables is less straightforward. One would like to assess

how a global di®erence in skills between teams might a®ect the outcome of the match. To this

end, we perform a comparative static exercise on all skill variables, taking average skills as

reference point. First, we compute the probability of scoring if a team 20 percent better than

average plays against a team 20 percent worse. Then, we compute the probability of scoring

if a team 20 percent worse than average plays against a team 20 percent better. Finally, we

compute the ratio between the ¯rst probability and the second; it measures the e®ect of being
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40 percent better than the opposition versus being 40 percent worse.22 The outcome of this

procedure is displayed in Table 12. The e®ect of skills is large, since the probability of scoring

more than doubles. It is not a®ected much by current score, and it slightly increases with home

¯eld advantage.

Table 12: e®ect of skills.

Quarter of play Game average

Score First Second Third Fourth Fifth Sixth

Tied 2.35 2.35 2.29 2.32 2.32 2.29 2.32

Home Winning 2.52 2.52 2.45 2.42 2.42 2.29 2.41

Losing 2.22 2.20 2.17 2.22 2.18 2.25 2.20

Tied 2.21 2.21 2.21 2.21 2.21 2.21 2.21

Away Winning 2.32 2.22 2.13 2.12 2.13 2.04 2.12

Losing 2.16 2.06 2.07 2.07 2.05 2.04 2.07

4.5 Summary of the empirical results.

The most interesting feature of tables 9 to 12 is that they enable a comparison among the e®ects

of skill, strategy, and home ¯eld advantage. Overall, these three factors are simultaneous

determinants of the behavior and performance in a soccer match. The magnitude of their

contributions is roughly similar. The most intriguing message regards the interaction between

home ¯eld advantage and strategic considerations.

Our theoretical model does not seem rejected by teams' actual behavior. They react to

changes in the strategic environment along the lines predicted. More aggressive strategies are

chosen when losing and more defensive ones when winning. The choice to defend when ahead

seems to happen very early in the game. At home, the lowest scoring probability corresponds

to being ahead in the score. Away, the lowest scoring probability corresponds to tied games.

This suggests away teams are somewhat more conservative.

The e®ect of playing at home is very hard to reconcile with rational behavior. It in°uences

22In our sample, 1794 games (62%) have a skill di®erential at least this large.
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positively the probability of scoring when losing or in a tied game. On one hand, there seem

to be no `technological' reasons for teams to do better on the home ¯eld. In our sample, geo-

graphical distances are relatively small; an away game involves very little travelling. Spectators

do not directly in°uence the °ow of play.23 All matches are played on natural grass, and the

¯eld is of standard dimensions. On the other hand, the absence of a positive home ¯eld ad-

vantage when a team is winning rules out explanations based on keeping happy the home fans

by playing more aggressively. In a sense, teams get extra aggressiveness from their supporters,

but only if and when they need it to achieve success. That is, strategy and passion interact.

5 Conclusions

This paper has presented a game-theoretic model of a soccer match, characterized the equilib-

rium of the game, and tested it on a large sample of matches. The model predicts that teams'

strategies in each moment, and therefore the probability of scoring a goal, depend on the score

in that moment. It also describes how strategy and probabilities are a®ected by current score.

For example, a losing team is more likely to score, and the probability that a winning team

scores is smaller than when it is tied.

Overall, the model performs well in explaining observed data. Its qualitative predictions

are con¯rmed (see for instance table 9 in the text). We can even explain a robust regularity of

soccer statistics (the frequency of goals scored increases with the time elapsed in the match),

which was so far a minor puzzle. The ¯rst conclusion, therefore, is that young and exuberant

athletes are e±cient professionals. They act according to economic reason when they play as

well as when they bargain contracts with a team's owner or a sponsor.

A second conclusion, however, points out this is not the whole truth. The environment

23This is di®erent from, say, American football and basketball, where many plays are `called' by coaches, and
the roar of the crowd can a®ect communications.
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surrounding the game explains a large component of the data. Its e®ect appears consistent

with emotional and psychological elements of behavior. Furthermore, these factors clearly

interact with strategy and rationality.

This result has potentially wide implications. Soccer teams are examples of economic

organizations who face each other in a very standardized, repeated, situation (a soccer match),

which is therefore easy to study. Their behavior can provide insights on the way an economic

organization works and in particular on the way strategic and emotional factors interact in its

life.

In particular, we think there is a lot to be learned from a direct study of the interaction

between passions and strategies, emotions and rationality. Since the three elements in the

title of this paper coexist as important factors in explaining behavior, the challenge for future

theoretical analyses is to explain their interaction.
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6 Appendix

6.1 Proof of proposition 3.4.

The proof is by induction on t, going downwards from T to 0. The statement is clear for t = T .

Suppose that d 2 C(t; n); by our assumption,

d 2 C(t+ 1; n); (6.26)

and therefore by the induction hypothesis,

d 2 C(t+ 1; n+ i); i = 1; 2: (6.27)

Now equations (6.26) and (6.27) imply that

v(t+ 2; n+ i) ¸ µv(t+ 2; n¡ 1 + i) + (1¡ µ)v(t+ 2; n+ 1 + i); i = 0; 1; 2: (6.28)

Also equations (6.26) and (6.27) imply that

v(t+ 1; n+ i) = Edv(t+ 2; n+ i+ ¢)i = 0; 1; 2; (6.29)

where Ed denotes the expectation with respect to the probability induced by the strategy d.

But if we use the inequalities (6.28) we get:

Edv(t+ 2; n+ 1 + ¢) ¸ µEdv(t+ 2; n+ ¢) + (1¡ µ)Edv(t+ 2; n+ 2 + ¢) (6.30)

which, given the equalities (6.29), implies:

v(t+ 1; n+ 1) ¸ µv(t+ 1; n) + (1¡ µ)v(t+ 1; n+ 2): (6.31)

This gives d 2 C(t; n+ 1) as claimed.

6.2 The Continuous-Time Game

In this section, we generalize the model described above to continuous time. This makes some

of the arguments easier. Also, it allows a more precise study of the time of switching from
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attack to defense for the winning team, and some qualitative prediction on the way this time

depends on parameters.

The game is de¯ned as in section 2, but time t is the interval [0; T ]. The process on the

goals scored is now de¯ned as a purely discontinuous Markov process. In each small time

interval h, if the strategies are (s1; s2), the probability of scoring for team i is pi = pi(s1; s2).

So the score changes from n to n+ 1 with probability p1h(1¡ p2h), to n¡ 1 with probability

p2h(1¡ p1h), and remains unchanged with probability p1p2h2+(1¡ p1h)(1¡ p2h). We denote

by ¢nv(t) ´ v(t; n+ 1)¡ v(t; n), the right hand side \spatial" partial derivative.

Proposition 6.1 The value function (v(¢; n))n2N is the solution of the system of ordinary
di®erential equations:

¡@v
@t
(t; n) = max

¾1
min
¾2
E¾1;¾2 [p

1¢nv(t)¡ p2¢n¡1v(t)]; (6.32)

v(t; 0) = 0; v(T; n) = 1; for all n ¸ 1: (6.33)

The term in the maximization problem can be interpreted as the expectation of the inner

product of the \spatial" derivative and the change in the state n.

Proof. Consider the discrete time problem, with time unit h, and write the functional

equation for the value. Rearranging, dividing by h and taking limits yields the result.

An approximate game

A closed form solution of the continuous-time game is di±cult. In this section we discuss

brie°y an approximate game, for which a closed form solution is possible. The game is de¯ned

as the original game: in particular, players and transition probabilities are the same. The only

di®erence is that a team which, in any moment, reaches a two goals advantage wins the game.24

It is clear that the value function for this game is the solution of the di®erential equation (6.32)

24In our sample of 2885 matches, there are only 96 cases in which a team leading by two goals ends up not
winning at the end.
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and the boundary conditions

v(t; 0) = 0; v(t; 2) = 1 for all t; v(T; 1) = 1: (6.34)

This value function can now be explicitly determined. The solution for the interesting case

(in which one of the two teams is leading by one goal) is presented in the following proposition.

Proposition 6.2 In the game where the team with two goals advantage wins the value function
is:

v(t; 1) =
®

®+ ±
e(®+±)(t¡T ) +

±

®+ ±
; if T ¸ t ¸ t¤

v(t; 1) = (1=2¡ µ)e2A(t¡T ) + 1=2; if t¤ ¸ t ¸ 0:
(6.35)

where
t¤ = maxfT ¡ (®+ ±)¡1[log®¡ log ((1¡ µ)(®+ ±)¡ ±)]; 0g: (6.36)

The equilibrium is ¾̂(t; 0) = (a; a), ¾̂(t; 2) = (d; a), and

¾̂(t; 1) = (a; a) if t · t¤; ¾̂(t; 1) = (d; a) if t ¸ t¤

and symmetrically for n · 0.

Proof. We ¯rst construct the value function, and then prove that it satis¯es the di®eren-

tial equation (6.34). To construct the value function, consider separately the two di®erential

equations

@v

@t
(t; 1) = (®+ ±)v(t; 1)¡ ± (6.37)

with boundary value v(T; 1) = 1; and

@v

@t
(t; 1) = 2Av(t; 1)¡A (6.38)

with boundary value v(t¤; 1) = v¤ where v¤ is a parameter determined in (6.39) below. The

equality

¡®v(t¤; 1) + ±(1¡ v(t¤; 1)) = ¡Av(t¤; 1) +A(1¡ v(t¤; 1))

determines the value at the switch point t¤ between a and d; this equality is equivalent to:

v(t¤; 1) = 1¡ µ: (6.39)
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This implies the value function has continuous ¯rst derivative in the time variable.

Paste the two solutions together, and obtain the value function as described in the statement

of the proposition, and the value of t¤. Then one can immediately check that, since 2A > ®+±,

the value function we have de¯ned satis¯es the equation (6.34).

Let us discuss some comparative analysis of the solution which may be useful to understand

the equilibrium. A key step in characterizing the equilibrium is the determination of the time

where the winning team switches from attack to defense. This is done in the proof by solving

separately two equations: one that gives the value of choosing defense, and the other the value

of choosing attack (these are equations (6.37) and (6.38), respectively). Once this is done, one

notes that the derivative of the solution of the ¯rst at (T; 1) is ®, and of the second is A; so

the second value is, for t close to ¯nal time, smaller than the ¯rst. So for times close to the

end clearly the winning team defends.

The winning team may attack in the initial times. However, as the solution for t¤ indicates,

there may be equilibria where the team with one goal advantage always defends. This may

happen for instance if the values of ® and ± are small.

The value of t¤ is a good test for the predictive ability of the model. Note that

t¤ = T +
1

®+ ±
log(1¡ µ®+ ±

®
): (6.40)

Let us start considering what makes t¤ large, i.e., what makes attack appealing. When A

and ® are close (so µ is small), attack is very appealing: in the extreme case, if µ = 0, then

t¤ = T . This happens because there is very little gain in reducing the probability of getting a

goal scored against. In fact when A is very close to ®, then t¤ is very high, irrespective of the

absolute values of A;®; ±.

Now consider what makes t¤ small, that is, what makes the winning team willing to defend
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early. Defense becomes appealing when:

i. ® (which is the probability of getting a goal scored against while defending) is small

relative to A, so there is gain from defending and keeping the advantage. Now µ is larger;

recall that it cannot be larger than 1=2. But also

ii. the term ®+±
® (which lies between 1 and 2) is large, that is ± is close to ®. Namely, the

probability of scoring a goal while defending is not too low;

iii. the term ®+ ± itself is not large.

To illustrate these results, consider the following numerical example. For A = 3%; ® =

2:5%; ± = 1%, so µ = 1=5, the team which is winning attacks until 4 minutes from the end.

This seems too close to the end. With A = 2® = 4±, which gives a µ = 2=5 and the log term

approximately ¡:4 we get that the team defends :4
®+± minutes from the end. One needs a term

®+ ± small to get a switch not too close to the end. For instance a value of ®+ ± = 1%, which

is probably too small, gives a switch to defense 40 minutes from the end. Although the order of

magnitude is right, the model seems to predict that the winning team should switch to defense

much later in the game than the evidence seems to indicate. This is in part consequence of the

simplifying assumption that two goals give ¯nal victory, which makes attack more appealing.

Another reason is that the strategy space consists only of two points.

In a more detailed version of this paper (Palomino, Rigotti and Rustichini (1998)) we

present an extension that deals with the ¯rst problem. In the next section we present a model

with larger set (three) of actions. In the extended version of the paper mentioned above, we

also present a model with a continuum of actions.
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6.3 Three actions

Suppose that each team can to choose an intensity of attack in the set

s ´ (s1; s1) 2 fd;m; ag2:

where m now stands for \intermediate level of attack". This set is ordered in the natural way:

a Â m Â d. We assume, as in the case of two strategies, that the probabilities are monotonic

in this order, assumption 2.1. The analysis of the equilibrium is not signi¯cantly di®erent.

Consider ¯rst the case of the two teams at a tied score. The matrix 3.17 is now replaced by

a m d

a 0 p1(a;m)¡ p2(a;m) p1(a; d)¡ p2(a; d)
m p1(m;a)¡ p2(m;a) 0 p1(m;d)¡ p2(m; d)
d p1(d; a)¡ p2(d; a) p1(d;m)¡ p2(d;m) 0

The equilibrium depends of course on the ordering of the elements in the matrix. If we

assume

Assumption 6.3 (Attack is e®ective and risky) A team that attacks against a defending
team of equal skill is more likely to score than it is when defending against an attacking team;
but the opposite holds when the other team is attacking with medium intensity. Formally:

p1(a; d) > p1(d; a); p1(a;m) < p1(m;a); p1(m;d) > p1(d;m):

then

Proposition 6.4 If symmetry (assumption 2.2), attack is e®ective and risky (assumption 6.3)
and monotonicity (assumption 2.1) hold, the equilibrium of a tied game has both team attacking
at the medium intensity m; formally,

¾̂(t; 0) = (m;m):

In the case of a team leading at a time close to the end, the equilibrium pair of strategies

is again determined by

min
¾1
max
¾2

p2:
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The assumptions of proposition 6.4 imply that

maxfp1(m; d); p1(d; d)g < p1(a; d) < minfp1(a;m); p1(a; a)g

and therefore

Proposition 6.5 If symmetry (assumption 2.2), attack is e®ective and risky (assumption 6.3)
and monotonicity (assumption 2.1) hold, then at equilibrium

¾̂(T ¡ 1; 1) = (d; a) (6.41)

Our analysis of the data implies that the probability of scoring when tied is smaller than

the probability of scoring when behind. These are the probabilities at equilibrium if

p1(a; d) > p1(m;m) > p1(d; a): (6.42)

6.4 The non-symmetric game

We consider the case where the probabilities of scoring a goal may be di®erent, but we assume

that the probability of scoring for the ¯rst team are higher for all strategy combinations. We

denote

p1(d; a) ´ ±1; p1(a; d) ´ ®1; p2(d; a) ´ ®1; p2(a; d) ´ ±2;

pi(d; d) ´ Di; pi(a; a) ´ Ai; for i = 1; 2; (6.43)

so that in particular

Ai > ®i > Di; i = 1; 2:

We make the following assumption:

Assumption 6.6 There exists a c > 0 such that:

for every s; p1(s) = p2(¼(s)) + c: (6.44)

This means that the probability of the more skillful team is a parallel shift of each probability

by the same magnitude. We denote vc the value function when the probabilities satisfy (6.44).
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Clearly, from the fact that v(T; ¢) is increasing,

vc ¸ v:

We denote by ¡c(t; n) the subgame with probabilities as in (6.44), at (t; n).

The equilibrium

First we prove that at (i; T ¡ i) the equilibrium is, as in the case of the ¡ game,

¾̂(i; T ¡ i) = (d; a): (6.45)

This follows from the fact the choice of a against a gives to the ¯rst player a value of 1 with

probability 1 ¡ A2, and a value of vc(i + 1; T ¡ i ¡ 1) with probability A2, while the choice

of d gives the same values with probability 1¡ ®2 and ®2, respectively. Hence, the di®erence

between the values from the ¯rst and the second choice is

(A2 ¡ ®2)(vc(i+ 1; T ¡ i¡ 1)¡ 1) < 0:

Also,

vc(T ¡ 1; 0) = c; ¾̂(T ¡ 1; 0) = (a; a): (6.46)

The argument is: compute the value to be

max
s1
min
s2
(p1(s)¡ p2(s));

then use (6.44). Similarly,

vc(T ¡ 1; 1) = 1¡ ®2; ¾̂(T ¡ 1; 1) = (d; a): (6.47)

The argument is again an explicit computation and the equilibrium has already been found in

(6.45).
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6.5 Complete econometric results

In addition to the regressors listed in section 4, in the regression where all matches are con-

sidered we include Home, a dummy variable equal to one if the team plays home and zero

otherwise; this is interacted with, current score, country, and time dummies.

Table A2: Regression results for home matches
Number of obs 253880
Log Likelihood -21529.562 Pseudo R2 0.0141
Observed probability of a goal 0.01697
Predicted probability of a goal 0.01596
Overall signi¯cance: chi2(51) 606.8 1376.9 605.5 2889.6

Variable dF/dx Estimate Robust Team Match Time
O®ense 0.01346 0.3370 0.000 0.000 0.000 0.000

England -0.00155 -0.0388 0.387 0.335 0.383 0.287
Spain -0.00365 -0.0913 0.027 0.005 0.023 0.029

Defense 0.00025 0.0062 0.768 0.711 0.767 0.785
Opponent o®ense -0.00093 -0.0233 0.238 0.215 0.230 0.223
Opponent defense 0.01242 0.3108 0.000 0.000 0.000 0.000

England -0.00401 -0.1005 0.023 0.020 0.026 0.021
Spain -0.00477 -0.1195 0.009 0.005 0.007 0.004

Ability di®erential -0.00226 -0.0565 0.004 0.001 0.003 0.001
England 0.00130 0.0325 0.300 0.270 0.312 0.186
Spain 0.00340 0.0852 0.004 0.002 0.005 0.001

Losing by 3 goals 0.02008 0.3481 0.132 0.096 0.089 0.061
15 minutes left -0.00079 -0.0201 0.913 0.908 0.913 0.914
30 minutes left -0.00589 -0.1781 0.421 0.439 0.422 0.460
45 minutes left -0.00399 -0.1124 0.645 0.623 0.659 0.640
England -0.00527 -0.1554 0.380 0.361 0.363 0.372
Spain 0.00058 0.0142 0.937 0.937 0.935 0.941

Winning by 3 goals 0.00066 0.0164 0.899 0.897 0.894 0.900
15 minutes left 0.00321 0.0743 0.424 0.406 0.407 0.420
30 minutes left -0.00639 -0.1954 0.074 0.056 0.071 0.027
45 minutes left 0.00427 0.0967 0.504 0.467 0.481 0.473
England 0.00178 0.0425 0.642 0.641 0.637 0.588
Spain -0.00019 -0.0047 0.960 0.957 0.958 0.958

Losing 0.01286 0.2652 0.001 0.001 0.001 0.000
* Time -0.00039 -0.0098 0.016 0.020 0.017 0.003
15 minutes left 0.00896 0.1862 0.023 0.025 0.022 0.002
30 minutes left 0.00448 0.1021 0.221 0.212 0.217 0.148
45 minutes left 0.00484 0.1104 0.205 0.212 0.214 0.112
60 minutes left 0.00957 0.2038 0.015 0.015 0.014 0.007
75 minutes left 0.00156 0.0379 0.690 0.678 0.686 0.674
England -0.00178 -0.0465 0.273 0.296 0.281 0.258
Spain 0.00058 0.0142 0.937 0.937 0.935 0.941

Winning -0.00829 -0.2292 0.003 0.002 0.004 0.013
* Time 0.00005 0.0011 0.736 0.714 0.741 0.732
15 minutes left -0.00012 -0.0029 0.965 0.967 0.966 0.967
30 minutes left -0.00232 -0.0610 0.382 0.372 0.394 0.300
45 minutes left 0.00379 0.0892 0.219 0.174 0.220 0.167
60 minutes left -0.00018 -0.0044 0.950 0.944 0.950 0.949
75 minutes left 0.00553 0.1295 0.149 0.128 0.152 0.152
England 0.00015 0.0037 0.919 0.915 0.920 0.923
Spain 0.00031 0.0077 0.836 0.823 0.837 0.866

Time 0.00024 0.0061 0.003 0.004 0.003 0.001
England 0.00003 0.0008 0.190 0.173 0.199 0.154
Spain 0.00005 0.0013 0.036 0.025 0.031 0.031

15 minutes left -0.00338 -0.0902 0.050 0.059 0.052 0.048
30 minutes left -0.00097 -0.0245 0.593 0.594 0.596 0.591
45 minutes left -0.00534 -0.1333 0.004 0.003 0.003 0.001
60 minutes left -0.00395 -0.0956 0.019 0.016 0.018 0.012
75 minutes left -0.00182 -0.0441 0.273 0.307 0.278 0.180
England 0.00638 0.1515 0.104 0.072 0.108 0.076
Spain 0.00862 0.1968 0.034 0.016 0.034 0.016
Constant -3.0738 0.000 0.000 0.000 0.000
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Table A3: Regression results for away matches
Number of obs 253880
Log Likelihood -15611.301 Pseudo R2 0.0138
Observed probability of a goal 0.01140
Predicted probability of a goal 0.01069
Overall signi¯cance: chi2(51) 456.6 627.6 460.3 1160.6

Variable dF/dx Estimate Robust Team Match Time
O®ense 0.00772 0.2734 0.000 0.000 0.000 0.000

England -0.00189 -0.0670 0.187 0.157 0.193 0.158
Spain 0.00007 0.0026 0.956 0.953 0.957 0.947

Defense 0.00015 0.0053 0.823 0.772 0.819 0.824
Opponent o®ense 0.00018 0.0062 0.784 0.809 0.791 0.810
Opponent defense 0.00729 0.2581 0.000 0.000 0.000 0.000

England 0.00075 0.0265 0.597 0.643 0.588 0.598
Spain -0.00079 -0.0278 0.615 0.600 0.600 0.649

Ability di®erential -0.00055 -0.0193 0.401 0.444 0.388 0.399
England 0.00031 0.0109 0.760 0.789 0.763 0.768
Spain 0.00098 0.0347 0.323 0.325 0.322 0.338

Losing by 3 goals -0.00248 -0.0978 0.618 0.609 0.623 0.584
15 minutes left 0.00906 0.2432 0.033 0.037 0.034 0.025
30 minutes left -0.00202 -0.0780 0.590 0.604 0.612 0.558
45 minutes left 0.00428 0.1312 0.538 0.526 0.543 0.492
England 0.00114 0.0385 0.740 0.735 0.753 0.761
Spain 0.00076 0.0260 0.825 0.835 0.836 0.828

Winning by 3 goals -0.00596 -0.2918 0.399 0.379 0.382 0.370
15 minutes left 0.00093 0.0317 0.851 0.826 0.849 0.864
30 minutes left 0.00680 0.1930 0.404 0.409 0.399 0.405
45 minutes left 0.01024 0.2671 0.500 0.477 0.472 0.458
England -0.00193 -0.0742 0.669 0.671 0.668 0.685
Spain -0.00145 -0.0544 0.774 0.797 0.785 0.768

Losing -0.00116 -0.0420 0.612 0.618 0.611 0.593
Losing * Time 0.00031 0.0111 0.005 0.006 0.006 0.004

15 minutes left -0.00207 -0.0793 0.322 0.330 0.328 0.337
30 minutes left -0.00437 -0.1803 0.028 0.032 0.030 0.019
45 minutes left -0.00398 -0.1576 0.059 0.058 0.063 0.036
60 minutes left -0.00333 -0.1273 0.125 0.100 0.132 0.116
75 minutes left -0.00396 -0.1513 0.113 0.094 0.119 0.093
England -0.00143 -0.0533 0.207 0.196 0.208 0.173
Spain 0.00076 0.0260 0.825 0.835 0.836 0.828

Winning -0.00635 -0.2742 0.006 0.007 0.008 0.000
Winning * Time 0.00031 0.0109 0.016 0.011 0.016 0.006

15 minutes left -0.00253 -0.0997 0.270 0.246 0.273 0.229
30 minutes left -0.00238 -0.0921 0.320 0.280 0.313 0.263
45 minutes left -0.00358 -0.1441 0.146 0.140 0.143 0.118
60 minutes left -0.00444 -0.1827 0.059 0.061 0.060 0.031
75 minutes left -0.00035 -0.0124 0.916 0.916 0.917 0.903
England 0.00196 0.0648 0.187 0.155 0.192 0.176
Spain 0.00005 0.0018 0.973 0.970 0.973 0.970

Time 0.00007 0.0025 0.301 0.303 0.309 0.253
England -0.00002 -0.0005 0.447 0.430 0.458 0.457
Spain 0.00002 0.0008 0.295 0.247 0.294 0.241

15 minutes left -0.00157 -0.0580 0.290 0.281 0.293 0.299
30 minutes left -0.00091 -0.0326 0.551 0.531 0.548 0.491
45 minutes left 0.00045 0.0160 0.761 0.749 0.761 0.761
60 minutes left -0.00095 -0.0331 0.492 0.493 0.497 0.448
75 minutes left -0.00119 -0.0409 0.384 0.373 0.392 0.395
England 0.00352 0.1191 0.252 0.273 0.256 0.249
Spain 0.00031 0.0111 0.920 0.911 0.918 0.914
Constant -3.1248 0.000 0.000 0.000 0.000
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Table A1: Regression results for all matches
Number of obs 507760
Log Likelihood -37165 Pseudo R2 0.017
Observed probability of a goal 0.01419
Predicted probability of a goal 0.01314
Overall signi¯cance: chi2(68) 1290.05 4581.32 1293.97 5454.59
Variable dF/dx Estimate Robust Team Match Time
O®ense 0.00980 0.2901 0.000 0.000 0.000 0.000

Spain -0.00173 -0.0513 0.882 0.896 0.885 0.896
England -0.00173 -0.0511 0.232 0.253 0.223 0.226
home 0.00117 0.0346 0.408 0.412 0.408 0.421

Defense 0.00029 0.0087 0.100 0.014 0.102 0.077
home -0.00017 -0.0051 0.128 0.007 0.129 0.062

Opponent o®ense 0.00011 0.0034 0.712 0.632 0.706 0.711
home -0.00083 -0.0247 0.000 0.000 0.000 0.000

Opponent defense 0.00982 0.2906 0.872 0.869 0.872 0.880
Spain -0.00278 -0.0824 0.894 0.896 0.895 0.886
England -0.00154 -0.0456 0.020 0.019 0.014 0.018
home -0.00014 -0.0041 0.168 0.161 0.167 0.160

Ability di®erential -0.00113 -0.0333 0.516 0.518 0.525 0.450
Spain 0.00217 0.0642 0.041 0.037 0.039 0.033
England 0.00077 0.0228 0.986 0.986 0.986 0.986
home -0.00041 -0.0122 0.662 0.686 0.668 0.627

Losing by 3 goals 0.00349 0.0934 0.018 0.013 0.018 0.034
15 minutes left 0.00698 0.1711 0.079 0.077 0.080 0.062
30 minutes left -0.00385 -0.1314 0.960 0.963 0.961 0.963
45 minutes left 0.00095 0.0272 0.684 0.674 0.692 0.711
Spain -0.00017 -0.0050 0.598 0.579 0.602 0.578
England -0.00127 -0.0393 0.240 0.241 0.240 0.252
home -0.00005 -0.0015 0.545 0.533 0.553 0.528

Winning by 3 goals 0.00043 0.0124 0.377 0.340 0.365 0.420
15 minutes left 0.00261 0.0714 0.287 0.245 0.283 0.244
30 minutes left -0.00314 -0.1040 0.454 0.382 0.423 0.404
45 minutes left 0.00375 0.0997 0.003 0.003 0.003 0.001
Spain -0.00058 -0.0174 0.030 0.036 0.029 0.017
England 0.00082 0.0237 0.422 0.410 0.424 0.406
home -0.00134 -0.0414 0.045 0.042 0.041 0.042

Losing 0.00442 0.1215 0.073 0.062 0.073 0.053
* Time 0.00004 0.0012 0.273 0.283 0.295 0.282
15 minutes left 0.00151 0.0429 0.859 0.859 0.866 0.850
30 minutes left -0.00179 -0.0557 0.448 0.434 0.448 0.373
45 minutes left -0.00065 -0.0194 0.334 0.358 0.348 0.273
60 minutes left 0.00094 0.0273 0.745 0.744 0.748 0.727
75 minutes left -0.00224 -0.0691 0.640 0.645 0.643 0.592
Spain -0.00303 -0.0984 0.301 0.308 0.305 0.263
England -0.00223 -0.0706 0.000 0.000 0.001 0.000
home -0.00071 -0.0215 0.925 0.923 0.922 0.924
Spain 0.00252 0.0694 0.620 0.634 0.619 0.635
England 0.00120 0.0342 0.080 0.061 0.084 0.079

Winning -0.00706 -0.2399 0.924 0.919 0.923 0.915
* Time 0.00016 0.0047 0.255 0.210 0.258 0.247
15 minutes left -0.00121 -0.0373 0.835 0.823 0.832 0.815
30 minutes left -0.00222 -0.0701 0.770 0.780 0.765 0.740
45 minutes left -0.00005 -0.0015 0.826 0.821 0.829 0.822
60 minutes left -0.00214 -0.0663 0.991 0.991 0.991 0.991
75 minutes left 0.00281 0.0791 0.456 0.422 0.460 0.445
Spain 0.00016 0.0048 0.487 0.486 0.494 0.520
England 0.00191 0.0539 0.207 0.162 0.212 0.143
home -0.00031 -0.0092 0.980 0.978 0.980 0.978

Spain 0.00002 0.0007 0.241 0.238 0.244 0.189
England -0.00138 -0.0427 0.267 0.240 0.273 0.259

Time 0.00016 0.0047 0.026 0.024 0.025 0.020
15 minutes left -0.00243 -0.0762 0.163 0.208 0.166 0.120
30 minutes left -0.00094 -0.0282 0.528 0.484 0.534 0.488
45 minutes left -0.00234 -0.0692 0.606 0.597 0.613 0.582
60 minutes left -0.00240 -0.0692 0.022 0.023 0.019 0.007
75 minutes left -0.00148 -0.0426 0.046 0.034 0.047 0.046

Spain 0.00004 0.0011 0.457 0.454 0.450 0.453
England 0.00001 0.0002 0.205 0.224 0.209 0.218
home -0.00001 -0.0003 0.026 0.006 0.028 0.020

Spain 0.00486 0.1348 0.069 0.033 0.065 0.028
England 0.00577 0.1610 0.000 0.000 0.000 0.000
Home 0.00712 0.2093 0.000 0.000 0.000 0.000

Spain -0.00131 -0.0400 0.000 0.000 0.000 0.000
England -0.00082 -0.0246 0.000 0.000 0.000 0.000

Constant -3.2154 0.000 0.000 0.000 0.000
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