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1 Introduction

Sequences of binary dependent variables arise in many contexts in analyzing economic
panel data. As an example, consider the analysis of monthly fertility histories (Heckman
and Willis, 1977). Each month, t, a woman either conceives a child (Dt = 1) or does not
(Dt = 0). The woman is observed over sample period t = 1; :::; T . Many demographers,
economists and sociologists study such strings to determine the causes of the timing and
spacing of births. As another example, consider labor force histories. In each period t,
persons either work (Dt = 1) or do not work (Dt = 0), and the goal of many studies is to
determine the temporal patterns of employment. Panel data analyses of unemployment,
welfare dependence and participation in crime have a similar character.

A common …nding in many studies of panel data is dependence in outcomes. Typi-
cally Pr(Dt = 1 j Dt¡1 = 1) > Pr(Dt = 1) whether or not we condition on observed
characteristics Xt. One common explanation for this dependence is temporally persistent
person-speci…c unobserved variables that cause persons who are more likely than average to
occupy a state in one period to occupy it in another period. The unobserved variables give
rise to temporally persistent heterogeneity in outcomes across persons. Failure to control
for this bias is often said to produce heterogeneity bias. In the literature on fertility, a
persistent unobserved component that gives rise to such bias is called fecundity (Sheps and
Menken, 1973). In studies of mortality and survival it is called frailty. The problem of
controlling for the e¤ects of temporally persistent unobserved components and estimating
their distribution is a central problem in science and social science.

Heckman (1981a) extends cross-section discrete choice theory and presents a class of
parametric, binary, discrete-time, panel data models that allow for general forms of depen-
dence and heterogeneity bias. His models generate binary discrete outcomes as a conse-
quence of latent random variables crossing thresholds. These latent variables are utility
(or value function) di¤erences between potential states, and capture the essential idea that
comparisons between alternative states generate choices. Heckman introduces a variety
of stochastic processes for the unobservables to produce a rich array of micro stochastic
processes for binary panel data that provide a framework for incorporating discrete dynamic
choice theory into the discrete-data panel data analysis. These discrete-time, discrete-data
models thus provide a convenient framework for choice theoretic models of binary panel
data. This is in contrast with continuous time duration models which are typically di¢cult
to justify using economic theory. (See the discussion in Heckman and Singer, 1984).

This paper is a …rst installment of an ongoing project that extends the models of Heck-
man to a semiparametric setting. In this paper, we consider random e¤ects models where
there exists a scalar factor representation for the unobserved random shock.1 As discussed
in Heckman (1981a) and Amemiya (1985), the factor structure allows for fairly ‡exible ser-

1 In Chen et al. (1998), we generalize the scalar factor considered here to a multi-factor model.
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ial correlation in the shocks while greatly reducing the dimensionality of the problem. The
factor structure assumption is in contrast to the rigid permanent-transitory error scheme
that is common in the literature and is critical for “…xed-e¤ects” estimation. The factor
structure model is more ‡exible than the permanent-transitory error scheme, and includes
the permanent-transitory error scheme as a special case.

We consider three speci…c models: a repeated binary choice model, a single spell dura-
tion model, and a switching regression model with binary outcomes. For each model, we
consider nonparametric identi…cation of the model following an “identi…cation in the limit”
strategy. Having shown the conditions under which they are identi…ed, we examine the
conditions under which the models can be well estimated. In particular, we examine the
semiparametric e¢ciency bounds for each model, and present conditions under which the
structural parameters of each model are

p
N estimable or not. We show that

p
N estimation

depends on the number of time periods observed and on particular features of the model.p
N estimableness is a much more fragile property then identi…cation. We then examine

the properties of the nonparametric MLE (NPMLE) estimator. We establish convergence
rate of the NPMLE estimate for the density and the

p
N¡normality and e¢ciency of the

NPMLE estimate for the
p

N¡estimable structural parameters. We present Monte Carlo
results that support our theoretical analysis.

Our results have direct implications for the literature that uses NPMLE to estimate
random e¤ects, discrete-choice, discrete-time models with a nonparametric latent factor.
Following the work of Heckman-Singer (1984), the NPMLE mixture approach has been
applied to repeated logistic regressions by Follman (1985) and Follman and Lambert (1989),
to discrete-time single spell duration model (based on Monte Carlo studies) by Baker and
Melino (1997), and to more general discrete-time discrete-choice models by Cameron and
Heckman (1987). These NPMLE discrete-time discrete-choice methods have been used in
empirical work in a wide variety of areas. Despite the use of this methodology for applied
work, there has been little theoretical research on the properties of these estimators. The
only asymptotic analysis of these estimators is Follman (1985) who shows consistency in the
case of repeated logistic regressions. There are no asymptotic distribution results known
for these models. In applications, researchers typically conduct hypothesis testing under
the assumption that the structural parameters are estimated at

p
N , despite there having

been no theoretical justi…cation for this practice. Our analysis is directly relevant for this
literature. We show that the NPMLE estimates of the structural parameters in these
discrete-choice mixture models are

p
N-normal only under very speci…c conditions, so that

great care must be taken by researchers to determine if the structural parameters of their
speci…c model will be estimated at

p
N .

The plan of this paper is as follows. In Section 2, we present the three models analyzed
in this paper, and discuss recent applications of these models. In Section 3, we present
identi…cation results for each model with general error structure. In Section 4, we present
identi…cation results for each model with scalar factor error structure. In Section 5, we con-
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sider the
p

N estimableness of the structure parameters of each model. Section 6 examines
the convergence rates of the NPMLE estimator, and establishes conditions under which the
structural parameters estimated by NPMLE will be

p
N¡ normal and e¢cient. Section

7 presents Monte Carlo analyses. Section 8 concludes the paper by a short discussion of
future research.

2 Models Considered in This Paper

2.1 Repeated Binary Choice Model

The simplest model we consider is a repeated binary choice model with serially correlated
errors but no lagged dependence. In particular we investigate the following stochastic
process. Let Dt 2 f0; 1g denote the agent’s discrete choice in period t, t = 1; :::; ¹T .2 We
specify that Dt is determined by an underlying index as follows:

Dt = 1(It ¸ 0)
It = Xt¯t ¡ ´t

(1a)

where ´t is an unobserved random shock. 1(A) is an indicator variable that takes the value
1 if the event A occurs, and takes the value 0 otherwise. Xt are regressors entering the
index for period t and are assumed to be strictly exogenous. Xt can include expectations
of future outcomes in the case of forward looking behavior. The linearity of the index in Xt
is not critical, and we relax this assumption in Chen et al. (1998). Let X = (X1; :::;X ¹T );
and let ´ = (´1; :::; ´ ¹T ). We assume that X is independent of ´:

We assume that ´t has a factor model representation:

´t = ¡®t£ + Ut ®1 = 1 (1b)

£ is an unobserved factor with unknown distribution. It is an individual-speci…c, time-
invariant e¤ect representing “unobserved heterogeneity”. Setting ®1 = 1 is an innocuous
normalization. We assume that Ut ??Ut0 , for t 6= t0, and that Ut ??£: We assume that
(£; U1; :::; U ¹T ) is jointly independent of X.

We will use the following notation. Let ¯ = (¯1; :::; ¯ ¹T ). Since there is no lagged depen-
dence by assumption for this model, there is no problem of initial conditions. However, to
maintain notational uniformity with the single-spell duration model, we let D0 be the initial
condition, which we assume that we observe. We will use Dt¡1 to denote the sequence of
choices up to period t: (D0; :::;Dt¡1), and let D denote the full sequence: D = (D0; :::;D ¹T ).
We will let F´j be the distribution of ´j , F´j ;´k be the distribution of (´j ,´k), and will let
F´ be the joint distribution of ´ ´ (´1; :::; ´ ¹T ).

2While we consider only the case of a binary decision, the extension of our results to a multinomial
decision process is straightforward.
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We note in passing that if we assume a permanent-transitory model for the error term,
´t = £+Ut for all t, then the model can be analyzed using standard …xed-e¤ect approaches
(see, e.g., Arellano and Honoré, 1999, for a review of …xed-e¤ect methodology). The …xed-
e¤ect approach allows for arbitrary dependence between the regressors and the disturbances,
and in that way is more general than the repeated binary choice model considered here.
However, a critical trade-o¤ is that the random e¤ects assumption allows us to identify and
estimate the full joint distribution of the disturbances, and we can thus identify marginal
e¤ects and make out-of-sample predictions.3

2.2 Single Spell Duration Model

Consider the following one-spell model of duration. Assume individuals start out in a state
and exit it at time T = t; so that T is a random variable representing total completed spell
length. Let Dt = 1 if the individual survives to time t and Dt = 0 otherwise. The event
Dt¡1 = 0 signi…es that an individual has dropped out of the initial state by date t. There
is no meaningful event corresponding to the outcome Dt = 1 and Dt¡1 = 0. Let Xt = xt
denote regressors determining transitions from time t¡1 to time t, let ¹T be the upper limit
on the survival time, and impose the initial condition that D0 = 1.

We represent our duration model as arising from the threshold-crossing behavior of a
sequence on underlying latent indices given by:

Dt = 1(It ¸ 0)
It = Xt¯t ¡ ´t

)
if Dt¡1 = (1; :::; 1) (2a)

where the de…nitions and assumptions are the same as in model 1. However, note here
that the Dt outcome is observed only if Dt¡1 = 1 (which is equivalent to Dt¡1 = (1; :::; 1)),
and thus all period t parameters are implicitly conditional on all past choices. Within this
model, the decision rule for Dt is not well de…ned if Dt¡1 = 0. We again assume that ´t
has a factor model representation:

´t = ¡®t£ + Ut
®1 = 1

)
if Dt¡1 = (1; :::; 1) (2b)

where we assume that (£; U1; :::; U ¹T ) is jointly independent of X.
Single-spell duration models are common in the applied literature – for example, time

till end of a spell of unemployment, time till end of a strike, and time till dropping out of
schooling. As an example, consider Cameron and Heckman’s (1998) analysis of schooling

3See Chen et al. (1998) and Honoré and Lewbel (1998) for analysis that extends the results of Lewbel
(1998) to a panel data context. These approaches allow for arbitrary dependence between the disturbances
and all but one of the regressors, while allowing for a factor-structure for the error term and while recovering
the joint distribution of the disturbances.
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transitions. In their application, Dt is an indicator for the agent completing grade t. If
Dt = 0, then the agent has dropped out of school by grade t, and is not eligible to transit
to grade t + 1. If Dt = 1, then the agent has completed at least grade t and is at risk
of completing grade t + 1. A central question for this education literature is whether the
e¤ects of family background and family resources on educational grade transitions diminish
at higher levels of education. This question was interpreted by Mare to be whether the
corresponding ¯t coe¢cients are lower for higher education levels (higher t values). Cameron
and Heckman impose a factor structure assumption with the distribution of Ut assumed to
be logistic and the distribution of £ unknown, and estimate the model using NPMLE.

We note in passing that single-spell duration models cannot be estimated using …xed
e¤ect approaches. No individuals leave and re-enter the sample in single-spell duration
models, and such behavior is required by …xed e¤ect approaches.

2.3 Switching Regression Model

The next model that we consider is a switching regression model with binary outcome
variables. We will formally view the switching regression model as a two period model
where the second period depends on the …rst period outcome. Of course, the model need
not have any intertemporal aspect and the two periods need not correspond to two points
in calendar time.

Let D1 2 f0; 1g denote the agent’s discrete choice in period 1, D1 is determined by an
underlying index as before:

D1 = 1(I1 ¸ 0)
I1 = X1¯1 ¡ ´1

(3a.1)

For the second period, D2 2 f0; 1g is determined by:

D2 = (1 ¡ D1)D20 + D1D21 (3a.2)

where
D2j = 1(I2j ¸ 0)
I2j = X2¯2j ¡ ´2j

)
j = 0; 1 (3a.3)

Note that we could equivalently de…ne the model for D2 as follows, which is more symmetric
with the notation of model (1):

D2 = 1(I2 ¸ 0)
I2 = X2¯20 + D1 [X2(¯21 ¡ ¯20) + (´20 ¡ ´21)] ¡ ´20

(3a.4)

We will again assume a factor model representation for the shocks:

´1 = ¡£ + U1
´2j = ¡®2j£ + U2j j = 0; 1 (3b)
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where we assume that (£; U1; U21; U20) is jointly independent of X. D20 is the outcome
the individual would have had if he or she had chosen D1 = 0 in period 1, and D21 is the
outcome the individual would have had if he or she had chosen D1 = 1 in period 1. D20 and
D21 are thus sometimes called “potential outcomes.” Which outcome is observed depends
on the choice actually made in the …rst period. As is made clear by expression (3a.4), the
model can be viewed as a random coe¢cient model. In addition, the model can be viewed
as a two period, heterogeneous, time inhomogeneous Markov chain model.

We will use the following notation. Let ¯ = (¯1; ¯2) where ¯2 = (¯20; ¯21). Since there
is no lagged dependence for the D1 choice, there is no problem of initial conditions for this
model. However, to maintain notational uniformity with the single-spell duration model,
we let D0 be the initial condition, which we assume that we observe.

Switching regression models are common in the applied literature. As an example,
consider Aakvik, Heckman and Vytlacil (1998) who apply this model to study the e¤ects
of job training on employment outcomes.. For them, D1 is an indicator for whether the
person enters the training program, and D2 is an indicator for whether the individual is
employed three years later. Aakvik et al. assume that the distribution of the U terms is
known, but that the distribution of £ is unknown. This framework allows for heterogeneous
training e¤ects, and allows for program participation to be based in part on the individual’s
idiosyncratic training e¤ect. Note that for this model it is critical that ¯ be allowed to vary
with time, since it is a fundamentally di¤erent choice in the second period than in the …rst
period. The full ¯ vector being allowed to vary with past outcomes (¯00 6= ¯01) allows
the e¤ect of treatment to vary with the agent’s observable characteristics. Using the factor
structure with the factor loadings dependant on the treatment decision (®00 6= ®01) allows
the e¤ect of training to vary with the agent’s unobservable characteristics. Aakvik et al.
apply their model to evaluate the e¤ectiveness of the Norwegian Vocational Rehabilitation
Program. They impose the scalar factor assumption, and use NPMLE to estimate the
structural model. Given the estimation of the structural model, they derive estimates
of various treatment parameters such as the e¤ect of treatment on the treated, average
treatment e¤ect, and local average treatment e¤ect. They …nd that the treatment e¤ect
varies substantially with both the observable and unobservable characteristics, and that
ignoring this heterogeneity in treatment e¤ects results in vastly overstating the program’s
e¤ectiveness.

We note in passing that this model cannot be estimated using …xed e¤ect approaches.
Fixed e¤ect approaches can be used if we assume multiple (D1; D2) observations for each
individual and stationarity conditions are imposed.4

4See the discussions in Honorè and Kyriazidou (1998b) and Arellano and Honorè (1999).
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3 Identi…cation of the Models with General Error Structures

We now consider identi…cation of each model without imposing the factor structure, i.e., we
work with the models de…ned by equations (1a), (2a), and (3a) without imposing the factor
structure assumption of (1b), (2b), and (3b). Given identi…cation of the distribution of
the shocks, we will then discuss conditions under which these distributions imply a unique
factor model representation for the shocks5.

We assume that we observe a large sample of i.i.d (D;X) observations. Thus, for any
dt¡1 s.t. Pr(Dt¡1 = dt¡1) > 0, we can nonparametrically identify Pr(Dt = dtjX;Dt¡1 =
dt¡1) a.e. FXjDt¡1=dt¡1 where FXjDt¡1=dt¡1 is the distribution of X conditional on previous
choices. We assume that we know that (¯; F´) 2 B£H, where B£H is the parameter space.
Our goal is to establish conditions under which knowledge of Pr(Dt = dtjX; Dt¡1 = dt¡1)
a.e. FXjDt¡1=dt¡1 allows us to identify a unique element of B £ H. We de…ne identi…cation
of the parameters as follows.

De…nition 1 Let P¯;F´(Dt = 1jX = x;Dt¡1 = dt¡1) be the probability of observing the
choice Dt = 1 conditional on observables X = x and past choices Dt¡1 = dt¡1 under
the particular model (1a, 2a or 3a) when the parameter values are given by (¯;F´): Let
B £ H be the space of permissible parameter values. We will say that (¯;F´) 2 B £ H is
identi…ed i¤ for all (¯¤; F ¤

´ ) 2 B £ Hn(¯;F´); there exists a sequence of past choices, dt¡1,
Pr(Dt¡1 = dt¡1) > 0; s.t.

PrXjDt¡1=dt¡1
n
P¯;F´(Dt = 1jX;Dt¡1 = dt¡1) 6= P¯¤;F ¤́(Dt = 1jX;Dt¡1 = dt¡1)

o
> 0

Theorem 1 shows conditions for identi…cation of the …rst model, the repeated binary
choice model without lagged dependence. This is the easiest model of the three to identify.
Identi…cation follows from applying Manski to identify the ¯t and F´t parameters for each
t, and then using an assumption that we can independently vary each index to trace out
the full joint distribution of F´.

Theorem 1 (repeated binary): For the model de…ned by equation (1a), provided that:

(i) ´ ´ (´1; :::; ´T ) is statistically independent of X ´ (X1; :::;XT ).

(ii) F´ is absolutely continuous with respect to Lebesgue measure on RT with support
¹TQ
t=1

(Lt; Ut), where ¡1 · Lt < Ut · +1 for all t = 1; :::; T does not depend on ¯.

5We do not here pursue the alternative identi…cation strategy of identifying the factor structure directly.
Cameron and Heckman (1998) and Chen et al. (1998) show that if su¢cient distributional assumptions are
imposed on £ and (U1; :::; U ¹T ), then it is possible to identify the factor structure and thus identify F´ even
when the distribution of F~́ is nonparametrically unidenti…ed.
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(iii) For all t = 1; : : : ; ¹T , Xt is a Kt¡dimensional random variable and there exists no
proper linear subspace of RKt having probability 1 under FXt :

(iv) Supp
¡
Xt¯tjX1¯1 = g1; :::; Xt¡1¯t¡1 = gt¡1

¢ ¶ (Lt; Ut) for almost every (gt¡1; : : : ; g1) 2
t¡1Q
i=1

(Li; Ui), for t = 1; : : : ; ¹T; where the boundary points
©
Lt; Ut : t = 1; :::; ¹T

ª
are not

functions of ¯t for t = 1; :::; ¹T :

Then: F´ and (¯1; :::; ¯T ) are identi…ed given location and scale normalizations. (e.g.,
either if Xt is constrained not to contain an intercept and k¯tk = 1 for t = 1; :::; ¹T ,
or if F´t (¢) has median zero and variance one for t = 1; :::; ¹T , then F´ and (¯1; :::; ¯T )
are identi…ed).

Proof. We observe (Dt;Xt) for each individual for each t = 1; :::; ¹T , and can thus identify
the left hand sides of:

Pr (Dt = 1jXt = xt) = F´t (xt¯t)

for each t = 1; :::; ¹T . Each equation is a standard binary discrete choice model. Using
the results of Manski (1988, Proposition 2, Corollary 5), under conditions (i), (ii), (iii)
and the support condition on Xt¯t in (iv) of Theorem 1, we have that we identify ¯t
and the distribution of ´t up to scale and location for each t = 1; :::; ¹T . For example,
we may normalize the location and scale by constraining Xt not to have an intercept and
constraining jj¯1jj = 1. We thus recover xt¯t; t = 1; : : : ; ¹T :

We also identify the left hand side of the following equation:

Pr (D1 = 1;D2 = 1; : : : ; D ¹T = 1jX1 = x1; : : : ;X ¹T = x ¹T )
= F´ (x1¯1; : : : ; x ¹T¯ ¹T )) :

where F´ = F´1;:::;´ ¹T . Since we identify xt¯t for each t, and using (iv), we can vary the
components of (x1¯1; :::; x ¹T¯ ¹T ) to trace out the joint distribution F´:

The …rst three assumptions in Theorem 1 are very standard – the …rst two are indepen-
dence assumptions typical for discrete choice models, and the third assumption is simply a
full rank condition. We can trivially relax the …rst two conditions (i) and (ii) to a weaker
index su¢ciency assumption and still identify the ¯ parameters, though we would no longer
be able to identify F´. If condition (iii) is weakened so that Xt lies in a proper subspace of
RKt w.p. 1, we can only identify linear combinations of the ¯t.

Assumption (iv) is the least standard assumption in Theorem 1. As in Manski (1988),
we require that the support of Xt¯t is at least as large as that for ´t. There is an important
distinction here between components of Xt that are continuous and those that are discrete.
If all components of Xt are discrete, condition (iv) cannot possibly be satis…ed because
there are no intervals in the support of Xt¯t: However, (iv) is stronger than was required
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by Manski – it imposes not only that the support of Xt¯t is at least as large as that for
´t, but also that the support of Xt¯t is at least as large as that for ´t given levels of the
preceding indices. It is this stronger support condition which allows us to independently
vary the indices to trace out F´. If we relax this assumption by assuming that the support
of Xt¯t is at least as large as that for ´t but not conditional on the preceding indexes, then
we will still identify ¯ and (F´1; :::; F´T ), but will no longer be able to identify F´.

We now consider identi…cation of the single-spell duration model. Identi…cation of this
model is harder than for identi…cation of the repeated binary model. We no longer directly
identify Pr (Dt = 1jXt = xt) for t ¸ 2, but instead directly identify Pr (Dt = 1jDt¡1 = 1; X = x).
We therefore follow an identi…cation in the limit strategy that allows us to recover Pr(Dt =
1jXt = xt) by conditioning on large values of the proceeding indices. The full support con-
dition (iv) of Theorem 1 allows us to do this. We then need to augment the assumptions of
Theorem 1 to have that Xt has full rank when conditioning on the values of the previous
indices.

Theorem 2 (single spell): For the model de…ned by equation (2a), assume conditions
(i), (ii), and (iv) of Theorem 1, and strengthen condition (iii) of Theorem 1 to the
following condition:

(iii0) For all t = 1; : : : ; ¹T , Xt is a Kt¡dimensional random variable. There exists no proper
linear subspace of RK1 having probability 1 under FX1 : The exists a ·g = ( ·g1; :::; ·gt¡1)

s.t. for almost every g = (g1; : : : ; gt¡1) 2
t¡1Q
j=1

(Lj ; Uj) with g ¸ ·g, there exists no

proper linear subspace of RKt having probability 1 under FXtjX1¯1¸g1;:::;Xt¡1¯t¡1¸gt¡1 .

Then: F´ and (¯1; :::; ¯T ) are identi…ed given location and scale normalizations.

Proof. See Appendix A.
The proof of Theorem 2 is much longer than the other proofs in this sections, and we

therefore place it in the appendix. The theorem is an adaptation and re…nement of Theorem
2 in Cameron and Heckman (1998).

The assumptions of Theorem 2 can clearly be satis…ed if X contains some kind of
exclusion restriction or some component of X that varies across transitions. However, the
following corollary tells us that the assumptions can be satis…ed even when Xt are the same
across all time periods if su¢cient structure is placed on how the ¯t vary with t:

Corollary 1: For the model de…ned by equation (2a), suppose

(v) The …rst ¹T coordinates of X are continuous random variables
¡ ¹T · K

¢
. The support

of
¹TQ
i=1

Xi is
¹TQ
i=1

(¡1;1) where Xi is the ith coordinate of X
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(vi) ¯1; : : : ; ¯ ¹T are linearly independent, and ¯it ,( i = 1; :::; ¹T ), the …rst ¹T coordinates of
¯t, are non-zero for all t = 1; :::; ¹T .

Then assumptions (iii0) and (iv) of Theorem 2 are satis…ed with Li = ¡1; Ui = 1. Thus,
under assumptions (i) and (ii) of Theorem 1 and assumptions (v)-(vi) above, F´ and
f¯t : t = 1; : : : ; ¹Tg are identi…ed up to scale and location normalizations.

Finally, we turn to identi…cation of the switching regression model.

Theorem 3 (switching regression): For the model de…ned by equations (3a.1-3a.4),
assume that for j = 0; 1:

(i)
³
´1; ´2j

´
is statistically independent of (X1; X2).

(ii) F´1;´2j is absolutely continuous with respect to Lebesgue measure on R2 with support
(L1; U1) £ (L2j; U2j), where ¡1 · L1 < U1 · +1, and ¡1 · L2j < U2j · +1
does not depend on ¯.

(iii) X1 2
=
X1µ RK1 is a K1¡ dimensional random variable. There exists no proper linear

subspace of RK1 having probability 1 under FX1 : X2 2
=
X2 µ RK2 is a K2¡ dimen-

sional random variable. For almost every g1 2 (L1; U1), there exists no proper linear
subspace of RK2 having probability 1 under FX2jX1¯1=g1:

(iv) Supp(X1¯1) ¶ (L1; U1), Supp
³
X2¯2j jX1¯1 = g1

´
¶ (L2j; U2j); for almost every g1 2

(L1; U1) where the boundary points f(L1; U1); (L2j; U2j)g are not functions of ¯.

Then: (F´1;´20 ; F´1;´21) and (¯1; ¯2) are identi…ed given scale and location normalizations.

Proof. By hypothesis, we know the left hand sides of the following 3 equations:

Pr (D1 = 1jX1 = x1) = F´1 (x1¯1)

Pr (D1 = 1;D2 = 1jX1 = x1; X2 = x2) = F´1;´21 (x1¯1; x2¯21)

Pr (D1 = 0; D2 = 1jX1 = x1;X2 = x2) = F¡´1;´20 (¡x1¯1; x2¯20)

Using the …rst and second equations, we can follow the same argument as for Theorem
2 to show that (F´1;´21 , (¯1; ¯21)) parameters are identi…ed given location and scale nor-
malizations. Proceeding in the same fashion by using the …rst and third equations we
can show that the (F´1;´20, (¯1; ¯20)) parameters are identi…ed given location and scale
normalizations.

The theorem informs us that we can nonparametrically identify the joint distribution
of (´1; ´20), the joint distribution of (´1; ´21), and the ¯ parameters up to scale. However,
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for each individual, we observe either D20 or D21 but never both. Thus, we do not identify
Pr(D20 = 1;D21 = 1jX), and cannot nonparametrically identify F´20;´21 . All we can say
about F´20;´21 is that it belongs to the set of all distributions consistent with F´1;´20 and
F´1;´21 . Identi…cation of F´20;´21 may be of substantive interest.6 One can identify F´1;´0;´D
given additional identifying assumptions.7

Theorem 3 suggests a general identi…cation strategy. Any sequence of choices can be
mapped into the form of a single-spell duration model, and thus conditions for identi…-
cation of the parameters of any sequence of choices can be found through the conditions
required for identi…cation of the single-spell duration model. Parameters of a particular
form of dependence, such as a lagged dependent variable, can then be identi…ed through
the di¤erence of the parameters of two sequences. Chen et al. (1998) use this approach
to formulate identi…cation conditions for binary choice models with very general forms of
state dependence. However, as illustrated by the switching regression results, identi…cation
of the joint distribution of the shocks of two di¤erent sequences of choices is not identi…ed
unless more structure is imposed.

4 Identi…cation of Models with Scalar Latent Factor

In the last section, we presented su¢cient conditions to identify ¯ and the joint distribution
F´ up to scale and location normalizations without imposing structure on F´. As Heckman
(1981) and Amemiya (1985) pointed out, it is computationally too intensive to estimate
the T -dimensional joint distribution F´ nonparametrically for T ¸ 3. In practice, people
impose a permanent-transitory error scheme or the more general factor structure (e.g., (1b),
(2b) and (3b)) to reduce dimensionality.8 In this section, we consider identi…cation when
imposing the factor structure.

Identi…cation and estimation of the factor structure is fundamentally connected to the
identi…cation of the scale, so we …rst discuss scale and location normalizations. Here, and
throughout the rest of the paper, we will make the following location normalization:

Xt =
³
1;X(¡1)

t

´
, median(ét) = 0 for t = 1; ::; ¹T : (LN)

6For example, in Aakvik et al. (1998), the treatment e¤ect is D21¡D20, and the distribution of treatment
e¤ects is identi…ed only if F´20;´21 is identi…ed. The distribution of treatment e¤ects and not just the average
treatment e¤ect may be the parameter of interest – see Heckman and Smith (1998), and Heckman, Smith
and Clements (1997).

7One source of identifying information is to impose additional information on the …rst period decision
rule. In particular, identi…es F´20;´21 under the Roy model assumption that the participation is based only
on the gains from participation (Heckman and Honoré, 1990, and Heckman and Smith, 1998). Additional
structure on F´20;´21 will also allow identi…cation. For example, a common e¤ects assumption or a scalar
factor structure assumption are su¢cient for identi…cation of F´20;´21 . See Aakvik et al. (1998).

8The permanent-transitory error scheme is ´t = £+Ut, which is the special case of the factor structure
with ®t = 1 for all t.
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where the notation Xt =
³
1; X(¡1)

t

´
means that the …rst element of Xt is one, and the rest

of elements of Xt are real-valued continuous or discrete-valued non-degenerate randome
variables. Correspondingly, ¯(1)

t denotes the intercept parameter and ¯(¡1)
t denotes the

vector of slope parameters.
For the scale normalizations, a common scale normalization when not imposing a factor

structure is:

jj¯tjj = 1 for t = 1; :::; ¹T : (SN1)

For the rest of the paper, we will use F~́ and ~̄ to denote the parameter values de…ned
through normalizations (LN) and (SN1). (LN) and (SN1) are always su¢cient to tie down
the location and scale of the model, and thus ~̄ and F~́ are immediately identi…ed under
the conditions of Theorems 1 to 3. Let ~®, F~£ and F ~Ut denote the parameters of the factor
structure consistent with (SN1) and (LN). Identi…cation of these parameters is discussed
below.

The normalization (SN1) is not a typical normalization when imposing a factor struc-
ture. The standard normalization when imposing a factor structure is

V ar(Ut) is known. (SN2)

Normalization (SN2) is not always su¢cient to tie down the scale of ´t and ¯t. For example,
consider the case of ¹T = 1, £ » N(0; ¾2

£), and U1 » N(0; 1). Then choices determined by
decision rule

Dt = 1 (Xt¯t ¸ Ut)

are observationally equivalent to choices determined by the decision rule

Dt = 1
³
Xt(¾2

£ + 1)¯t ¸ ¡£ + Ut
´

for any ¾2
£ ¸ 0, and thus a model with parameters

¡
(¾2

£ + 1)¯; ¾2
£

¢
is not identi…ed versus

parameters
¡
(¾20

£ + 1)¯; ¾20
£

¢
for any ¾2

£; ¾20
£ ¸ 0. An important question is thus under what

conditions is (SN2) su¢cient to tie down the scale.
For the rest of the paper, we will use F´ and ¯ to be the parameter values de…ned

through normalizations (LN) and (SN2). Note that there is a simple relationship between
the parameters de…ned by (SN1) and (SN2). Let

°t = 1= k¯tk :

Then we immediately have that
~£ = °1£
~®t = °t

°1
®t

(1)
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0
B@

~̄
t

~́t
~Ut

1
CA = °t

0
B@

¯t
´t
Ut

1
CA (2)

°t determines the relationship between (SN1) and (SN2). If we impose ¾2
Ut = 1, then °2t is

just the variance of ~Ut, it is the variance of the shock that is consistent with (SN1). Given
(SN1) and the conditions of one of Theorems 1 to 3, V ar(~́t) is immediately identi…ed.
Thus, if (°1; :::; ° ¹T ) is identi…ed, then using the above equalities one can trivially show that
all scale parameters of the factor structure are identi…ed (¾2

£ and (®2; :::; ® ¹T ), as well as
¾2
~£
, ¾2

~Ut
and (~®2; :::; ~® ¹T )).

In this section, we present two kinds of identi…cation results for the scalar factor struc-
ture: the …rst kind nonparametrically identi…es the distributions of £ and of Ut; t = 1; :::; T
from F~́; the second kind nonparametrically identi…es the distribution of £ while assuming
the distributions of Ut; t = 1; :::; T are completely known. Notice that the second kind is
widely applied in practice for the ease of computation. For both sets of results, the iden-
ti…cation analysis will proceed as follows. We start by taking F~́ and ~̄ as identi…ed from
the analysis of section 3 and normalizations (LN) and (SN1). We then show identi…cation
of the model with the factor structure and normalizations (LN) and (SN2) by …rst showing
identi…cation of (°1; :::; ° ¹T ) and thus identi…cation of the scale terms of the factor structure,
and by second showing identi…cation of the distribution parameters of the factor structure.

4.1 Repeated Binary Choice and Single Spell Duration Models

We now consider the identi…cation of factor structure for the repeated binary choice and
the single spell duration models. We will assume that F~́ is identi…ed, as would be the case
under the assumptions of Theorem 1 (for the repeated binary choice model) or Theorem 2
(for single spell duration model) while imposing normalizations (LN) and (SN1).

Theorem 4 (nonparametric): Assume:

(i) F~́ is identi…ed.

(ii) (U1; :::; U ¹T ) are mutually independent with zero medians, …nite known variances, and
the unknown distribution (Gt) of Ut has non-vanishing characteristic function for
t = 1; : : : ; ¹T .

(iii) £i is independent of (U1; :::; U ¹T ) with zero median, …nite unknown variance, and its
unknown distribution (H) has non-vanishing characteristic function.

Then:

(a) (®2; :::; ® ¹T ; °1; :::; ° ¹T ; V ar(£)) and the distributions (G1; :::;GT ; H) are identi…ed
when ¹T ¸ 3 and 0 < j®tj; °t < 1 for all t = 1; :::; T .

14



(b) When ¹T = 2 and 0 < j®2j; °1; °2 < 1, if any one of ®2; °1; °2; V ar(£) is assumed
to be known, then the rest of ®2; °1; °2; V ar(£), and the distributions (G1;G2; H)
are identi…ed

Proof.
The factor structure ét = °t(¡®t£i + Ut) , ®1 = 1 for t = 1; : : : ; ¹T gives us ¹T ( ¹T + 1)=2

variance-covariance equations

V ar(ét) = °2t [®
2
tV ar(£) + V ar(Ut)] , t = 1; : : : ; ¹T

Cov(ét; ét0) = °t°t0®
2
tV ar(£) , t = 1; : : : ; ¹T ¡ 1 , t < t0

and 2 ¹T unknowns (®2; :::; ® ¹T ; °1; :::; ° ¹T ; V ar(£)) for (a) and 2 ¹T ¡1 unknowns for (b), which
implies the identi…cation of (®2; :::; ® ¹T ; °1; :::; ° ¹T ; V ar(£)) for (a) when ¹T ¸ 3 and for (b)
when ¹T = 2.

Since 0 < j®tj; °t < 1 for all t = 1; :::; T , and each element of (G1; :::;GT ;H) has a non-
vanishing characteristic function, we have that Fé1;:::;é¹T

has a non-vanishing characteristic
function. The identi…cation of the distributions (G1; :::;GT ; H) follows by applying the
result of Rao (1971) (cf. Kagan et al. (1973))9 to the linear combination ét = °t(®t£i¡Ut)
for t = 1; : : : ; ¹T with ¹T ¸ 2.

Remark 1: In Theorem 4 and the similar results in the rest of this section, the assumption
that each element of (G1; :::; GT ; H) has a non-vanishing characteristic function can be
replaced by the assumption that Fé1;:::;é¹T

has a non-vanishing characteristic function.

Following the same proof, it is easy to obtain the following result:

Corollary 2: Assuming all the conditions of Theorem 4 except that V ar(Ut) is now un-
known, if V ar(Ut) = V ar(Ut0) for all t; t0, then (®2; :::; ® ¹T ; °1; :::; ° ¹T ; V ar(£); V ar(Ut))
and the distributions (G1; :::;GT ;H) are identi…ed when ¹T ¸ 4 and 0 < j®tj; °t < 1
for all t = 1; :::; T .

Theorem 4 di¤ers from the alternative factor identi…cation results in Heckman-Taber (1994),
and Cameron-Taber (1994). They do not require the existence of variances V ar(Ut) nor
that the characteristic function for £ is non-vanishing, but assume that the distributions of
Ui;t, t = 1; : : : ; ¹T , are known. They then rely on deconvolution to identify the distribution
of £. The following theorem summarizes their results:

Theorem 5 (semiparametric): Assume

(i) F~́ is identi…ed.
9Also see the theorem 2.1.4 (page 12) and the remark 2.1.8 (page 16) in Prakasa Rao (1992).
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(ii) (U1; :::; U ¹T ) are mutually independent and have zero medians. Ut has completely known
distribution (Gt) with non-vanishing characteristic function for t = 1; : : : ; ¹T .

(iii) £ is independent of (U1; :::; U ¹T ); has median zero, and its unknown distribution (H)
has …nite unknown variance.

Then:

(a) (®2; :::; ® ¹T ; °1; :::; ° ¹T ; V ar(£)) and the distribution H are identi…ed when ¹T ¸ 3
and 0 < j®tj; °t < 1 for all t = 1; :::; T .

(b) If any one of ®2; °1; °2; V ar(£) is assumed to be known, then the rest of ®2; °1; °2; V ar(£),
and the distribution H are identi…ed when ¹T = 2 and 0 < j®2j; °1; °2 < 1.

(c) If U1 and X1¯1 both have full support R1, and H has thinner tail than G1, then
°1 and the distribution H are identi…ed when ¹T = 1 and 0 < °1 < 1

Proof. See Heckman-Taber (1994), Cameron-Taber (1994)

Remark 2: When ¹T = 1, Theorem 5 relies on the support condition to identify scale term
°1, then uses deconvolution (since Gt is known) to identify the distribution H. Since
Theorem 4 relies on the existence of variances to identify all the …nite-dimensional pa-
rameters, and then applies Rao’s (1971) identi…cation results for linear combinations
of independent random variables to recover the distributions (G1; :::;GT ;H) jointly,
one needs at least ¹T ¸ 2 to apply Theorem 4.

4.2 Switching Regression Model

Now consider the identi…cation of the factor structure for the switching regression model.

Corollary 3 (nonparametric): For the model de…ned by equations (3a) and (3b),
assume that for j = 0; 1:

(i) F~́1;~́2j is identi…ed.

(ii) (U1; U2j) are mutually independent with zero medians, …nite known variances, and the
unknown distributions (G1;G2j) have non-vanishing characteristic functions.

(iii) £ is independent of (U1; U2j) with zero median, …nite unknown variance, and its
unknown distribution (H) has non-vanishing characteristic function.

Then: if any one of ®2j; °1; °2j ; V ar(£) is known, then the rest of ®2j ; °1; °2j ; V ar(£), and
the distributions (G1;G2j; H) are identi…ed when 0 < j®2jj; °1; °2j < 1 for j = 0; 1.

Similarly, we can obtain the following
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Corollary 4 (semiparametric): For the model de…ned by equations (3a) and (3b),
assume that for j = 0; 1,

(i) F~́1;~́2j is identi…ed.

(ii) (U1; U2j) are mutually independent with zero medians, known distributions with non-
vanishing characteristic functions.

(iii) £ is independent of (U1; U2j); and its unknown distribution (H) has zero median and
…nite unknown variance.

Then: if any one of ®2j ; °1; °2j ; V ar(£) is known, then the rest of ®2j ; °1; °2j; V ar(£),
and the distribution H are identi…ed when 0 < j®2jj; °1; °2j < 1 for j = 0; 1.

Proof. The proofs for Corollaries 3 and 4 follow from the same strategies as those for
Theorems 4 and 5.

5
p
N Estimableness of Structure Parameters for Models

with Scalar Latent Factor

>From the last two sections and under some su¢cient conditions, we know that the distribu-
tions Fé1;:::;é¹T

, G1; :::; GT ; and H are nonparametrically identi…ed. Thus, one could estimate
(¯1; :::; ¯T ; ®2; :::; ®T ;G1; :::;GT ;H) by NPMLE and investigate the

p
N estimableness of

(¯1; :::; ¯T ; ®2; :::; ®T ) by treating (G1; :::; GT ; H) as the in…nite-dimensional nuisance pa-
rameters. However, this is computationally too complicated and unstable when T is large
(say T ¸ 3). In practice, people assume that the distributions (G1; :::;GT ) are known (typ-
ically standard normal or logistic), and estimate (¯1; :::; ¯T ; ®2; :::; ®T ; H) by NPMLE. In
this section, we study the

p
N estimableness of (¯1; :::; ¯T ; ®2; :::; ®T ) by treating H as the

only in…nite-dimensional nuisance parameter for the three models with di¤erent T .

5.1 Semiparametric E¢cient Scores for Mixture Models

Let P¯;®;h denote the probability associated with individual i’s data (Di; Xi) ´ fDi;t;Xi;t :
t = 1; :::; ¹Tg if it were generated by parameter (¯; ®; H). Po is the probability associated
with individual i’s data fDi;t;Xi;t : t = 1; :::; ¹Tg when it is generated by the true parameter
(¯o; ®o; Ho), and ¹ is a dominating measure (e.g., a product of counting measures and
Lebesgue measures). For the above three discrete-choice models with a nonparametric
latent facor, we assume that Xi = (Xi;1; :::; Xi;T ) has the same distribution as that of X;
denoted as FX with density fX , which is not a function of (¯;®;H). Then we have the
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following probability density structures:

dP¯;®;h
d¹

(Di;Xi) =
Z

}(¯; ®;Di;Xij£i = µ)dH(µ);

where the latent facor distribution H is called “mixing distribution” which is unknown, and
(d; x) ! }(¯; ®; Di;Xij£i = µ) is called “kernel or mixture density” which is known up to
…nite-dimentional parameters (¯;®) and the unknown marginal density fX of Xi. Under
our asssumptions on Xi, we have

}(¯;®; Di; Xij£i = µ) ´ fX(Xi)}(¯;®;DijXi; £i = µ)

where }(¯;®;DijXi; £i = µ) is the conditional density of DijXi;£i, which has known
functional forms up to unknown parameters (¯; ®) in our three semiparametric mixture
discrete-choice panel models with a latent factor.
The unconditional log-likelihood for person i is denoted as:

l(¯; ®; H;Di; Xi) ´ log
µZ

}(¯; ®; Di;Xij£i = µ)dH(µ)
¶

:

The ordinary score functions are:

l0¯(¯o; ®o;Ho; Di;Xi)

=

R
}(¯o; ®o;Di;Xijµ) @@¯ [log(}(¯o; ®o; Di; Xijµ))]dHo(µ)R

}(¯o; ®o; Di; Xijµ)dHo(µ)

l0®(¯o; ®o;Ho; Di; Xi)

=
R

}(¯o; ®o;Di;Xijµ) @@® [log(}(¯o; ®o;Di; Xijµ))]dHo(µ)R
}(¯o; ®o; Di; Xijµ)dHo(µ)

l0H(¯o; ®o; Ho;Di; Xi)f =
R

}(¯o; ®o; Di; Xijµ)f(µ)dHo(µ)R
}(¯o; ®o;Di; Xijµ)dHo(µ)

:

Here l0H is the score for the in…nite-dimensional nuisance parameter H. It transforms
scores for the unknown probability measure (H) into scores for the model of observations
(fDi;Xig). Denote l0Ho(Di;Xi) ´ l0H(¯o; ®o;Ho;Di;Xi), l0¯o(Di; Xi) ´ l0¯(¯o; ®o;Ho; Di;Xi),
l0®o(Di; Xi) ´ l0®(¯o; ®o; Ho;Di;Xi).

The e¢cient score function for (¯o; ®o) is de…ned as the ordinary score function for
(¯o; ®o) minus its L2¡orthogonal projection onto the closed linear span (clsp) of the score
functions for the nuisance parameter H:

"
S¯o(Di;Xi)
S®o(Di; Xi)

#
´

"
l0¯o(Di; Xi)
l0®o(Di;Xi)

#
¡ Eo

("
l0¯o(Di;Xi)
l0®o(Di; Xi)

#
jclsp ©

l0Ho(Di; Xi)
ª
)

:
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Here Eo

("
l0¯o(Di;Xi)
l0®o(Di;Xi)

#
jclsp

n
l0Ho(Di;Xi)

o)
solves the in…nite-dimensional optimization

problem (the ¤ notation means the transpose):

inf
M2clspfl0Ho (Di;Xi)f :f2Fog

Eo

(Ã"
l0¯o(Di; Xi)
l0®o(Di;Xi)

#
¡ M

!¤Ã"
l0¯o(Di;Xi)
l0®o(Di; Xi)

#
¡ M

!)
;

where Fo denotes a Hilbert space of bounded functions (with respect to L2(dHo)) withR
fdHo = 0 and Eo(¢) denotes the expectation under true parameter (¯o; ®o; Ho). The

e¢cient information matrix (evaluated at (¯o; ®o; Ho)) is simply the expectation of the
outer product of the e¢cient score matrix,

I = Eo

("
S¯o(Di;Xi)
S®o(Di;Xi)

# h
S¤¯o(Di;Xi) S¤®o(Di;Xi)

i)
:

(¯o; ®o) is
p

N-e¢ciently estimable if and only if I is non-singular, i.e., if S¯o, S®o are
linearly independent (see Van der Vaart, 1991).

It is generally di¢cult to …nd explicit expressions for S¯o and S®o . We next focus on
an important class of mixture models by assuming that there exists a “quasi-statistics”
Ã(D;X;¯; ®) which is su¢cient for £ (i.e. H) given a …xed value of (¯;®). Now by Van
der Vaart (1996, page 868), we have the following expressions for e¢cient scores:

S¯o =

R
}o(D; Xjµ)

n
@
@¯ [log(}o(D;Xjµ))] ¡ E

³
@
@¯ [log(}o(D; Xjµ))]jÃ(D;X; ¯;®)

´o
dHo(µ)

R
}(¯o; ®o;Di;Xijµ)dHo(µ)

(3)

S®o =

R
}o(D; Xjµ)

n
@
@® [log(}o(D; Xjµ))] ¡ E

³
@
@® [log(}o(D; Xjµ))]jÃ(D; X; ¯;®)

´o
dHo(µ)

R
}(¯o; ®o; Di; Xijµ)dHo(µ)

(4)
Since Ã(D; X;¯;®) depends on unknown parameters of interest (¯; ®), it is not the

conventional su¢cient statistics for the nuicance parameter H. Nevertheless, the above
expressions will allows us to present simple su¢cient conditions to ensure positive de…nite-
ness of the Fisher information matrix I for widely applied econometrics models. As an
illustration, we consider the three models with Ut being logistic Gt(y) = exp(y)

1+exp(y) for all
t = 1; :::; T . The more general case may be found in Chen et al. (1998).

5.2 Repeated Binary Choice Model

The mixture density associated with the repeated binary choice model (1a) and (1b) is:

}(¯; ®; Di;Xij£i = µ) ´ fX(Xi)
¹TY

t=1

³
[Gt(Xi;t¯t + ®tµ)]Di;t [1 ¡ Gt(Xi;t¯t + ®tµ)]1¡Di;t

´
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In the following we denote Gt(Xi;t¯t + ®tµ) = Gt and }o(DjX; µ) = }(¯o; ®o; DjX;£ = µ),
where

}(¯;®;DijXi; £i = µ) ´
¹TY

t=1

³
[Gt(Xi;t¯t + ®tµ)]Di;t [1 ¡ Gt(Xi;t¯t + ®tµ)]1¡Di;t

´

Lemma 1 (repeated binary): For the model de…ned by equations (1a) and (1b) under
the normalization (LN) and (SN2), let all the conditions of Theorem 5 be satis…ed
with Gt(y) = exp(y)

1+exp(y) for t = 1; :::; T . For simplicity we assume that ē
t 6= ē

t0 ,

°t 6= °t0 for t 6= t0 . Then the e¢cient scores for (ē1; :::; ē
T ; °1; :::; °T ; ®2; :::; ® ¹T ) are:

Sē(1)t;o
(Di;Xi) =

1
°t;o

0
@Dt ¡ E[Dt j

TX

j=1
®jDj; X1 ē

1; :::;XT
ē
T ]

1
A

Sē(¡1)t;o
(Di; Xi) =

1
°t;o

0
@DtX

(¡1)
t ¡ E[DtX

(¡1)
t j

TX

j=1
®jDj ; X1 ē

1; :::;XT
ē
T ]

1
A

¡ 1
°t;o

R
Gt}o(DjX; µ)dHo(µ)R
}o(DjX; µ)dHo(µ)

0
@X(¡1)

t ¡ E[X(¡1)
t j

TX

j=1
®jDj ; X1 ē

1; :::;XT
ē
T ]

1
A

S°t;o(Di; Xi) = ¡ 1
°2t;o

Xt ēt;o

8
<
:Dt ¡ E[Dt j

TX

j=1
®jDj; X1 ē

1; :::; XT
ē
T ]

9
=
; :

S®t;o(D;X) =
R

µ}o(DjX; µ)dHo(µ)R
}o(DjX; µ)dHo(µ)

8
<
:Dt ¡ E[Dt j

TX

j=1
®jDj ; X1 ē

1; :::;XT
ē
T ]

9
=
; :

Proof. Since

}(¯;®;D;Xj£)

= exp

8
<
:
TX

t=1
DtXt ēt°¡1t + £

TX

t=1
Dt®t ¡

TX

t=1
log[1 + exp(Xt ēt°¡1t + ®t£)]

9
=
; fX(X)

then
nPT

t=1 Dt®t; [X1 ē
1; :::;XT

ē
T ]

o
may be chosen as the “quasi su¢cient statistics

Ã(D;X;¯; ®) for £. Now the result follows from (3) and (4)

Theorem 6 (repeated binary, T = 1): Assume all the conditions for Lemma 1 hold
for model (1a)-(1b) when T = 1. Then:
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(a) ē(¡1)
1 is

p
N estimable if and only if E[X(¡1)

1 jX1 ē
1;o;D1] 6= X(¡1)

1 , which is satis…ed if
dim(X(¡1)

1 ) ¸ 2.

(b) ē(1)
1 and °1 are not

p
N estimable.

Remark 3. When T = 1, although the intercept (ē(1)
1 ) is identi…ed, the scale (°1) is not

identi…ed in general but is identi…ed if H has bounded support or has thinner tails than
G1 (see Theorem 5 part(c)). Nevertheless, neither intercept nor scale are

p
N estimable

according to Theorem 6, and we need to impose exactly the same set of conditions (i.e.,
normalizing scale (°1) and intercept (ē(1)1 )) as those in Chamberlain (1986) or Cosslett
(1987) to ensure

p
N consistent rates for all the slope coe¢cients.

Theorem 7 (repeated binary, T = 2): Assume all the conditions for Lemma 1 hold
for model (1a)-(1b) when T = 2. Then:

(a) when j®2j = 1, (ē(¡1)1 ; ē(¡1)
2 ) are

p
N estimable.

(b) when j®2j 6= 1, ē(¡1)
t are

p
N estimable if and only if E[X(¡1)

t jX1 ē
1;o;X2 ē

2;o; D1 +
®2D2] 6= X(¡1)

t for t = 1; 2, which is satis…ed if dim(X(¡1)
t ) ¸ 2.

(c) if ē(1)
1 (or ē(1)

2 ) is known, then ē(1)
2 (or ē(1)

1 ) is
p

N estimable if and only if j®2j = 1.

(d) (°1; °2) are
p

N estimable if and only if j®2j = 1.

(e) assuming E[£jD; X] 6= 0 almost surely, then ®2 is
p

N estimable if and only if j®2j = 1.

Remark 4. When T = 2, by Theorem 5 part (b), we need to assume one of °1, °2, ®2 is
known or to assume H has thinner tails than G1 for the sake of identi…cation. By Theorem
7, the most commonly used normalization ®2 = 1 also implies

p
N convergence rates for

all the slope coe¢cients without scale normalization.

Theorem 8 (repeated binary, T ¸ 3): Assume all the conditions for Lemma 1 hold
for model (1a)-(1b) when T ¸ 3. Then:

(a) (ē(¡1)1 ; :::; ē(¡1)
T ) are

p
N estimable.

(b) if one of ē(1)
t is known, then all the other ē(1)

t0 , t0 6= t, are
p

N estimable for all
t; t0 = 1; :::; T

(c) (°1; :::; ° ¹T ) are
p

N estimable.
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(e) assuming E[£jD; X] 6= 0 almost surely, then (®2; :::; ® ¹T ) are
p

N estimable.

Remark 5. By well-known existing results such as Chamberlain (1986) or Cosslett (1987)
on cross-sectional binary choice models, one can easily guess that all the normalized slope
coe¢cients (ē(¡1)t ) at each time periods can be estimated at root-N rates. However what
is surprising from Theorems 6, 7 and 8 is that the scale parameters, the factor loading
parameters can also be estimated at root-N rates when T ¸ 3, and all the other time
periods intercept parameters can be estimated at root-N rates after normalizing the …rst
period intercept.
Proof. First consider T = 1. Recall that ®1 = 1. From the expression for the e¢cient
scores, we have Sē(1)1

= 0 and S°1;o = 0, hence ē(1)
1 and °1 are not

p
N estimable. Since

Sē(¡1)1
=

1
°1;o

·
D1 ¡

R
G1}o(DjX; µ)dHo(µ)R
}o(DjX; µ)dHo(µ)

¸ n
X(¡1)

1 ¡ E[X(¡1)
1 j X1 ē

1;o; D1]
o

;

we have that Eo[Sē(¡1)1
S¤ē(¡1)1

] is positive de…nite when dim(X(¡1)
1 ) ¸ 2, hence ē(¡1)

1 is
p

N

estimable.
Now for any T ¸ 2 we notice that

Sē(1)t;o
(Di;Xi) =

1
°t;o

0
@Dt ¡ E[Dt j

TX

j=1
®jDj ; X1 ē

1; :::;XT
ē
T ]

1
A

hence
TX

j=1
°j;o®jSē(1)j;o

= 0

thus we need to assume that at least one of ē(1)
t , t = 1; 2; :::; T is known to get rid of the

linearly dependence.
Now when T = 2, Dt ¡ E[Dt j Xt ēt;o;D1 + ®2D2] 6= 0 if and only if j®2j = 1. Under

the assumed conditions and j®2j = 1, we have that Sē(¡1)1
;Sē(¡1)2

;S°1;o;S°2;o;S®2;o; Sē(1)2
are

linearly independent, hence (ē(¡1)1 ; ē(¡1)
2 ; °1; °2; ®2; ē(1)

2 ) are
p

N estimable when j®2j = 1.
Now when j®2j 6= 1, S°1;o; S°2;o; S®2;o;Sē(1)2

= 0, and thus (°1; °2; ®2; ē(1)
2 ) are not

p
N

estimable when j®2j 6= 1. However in this case, for t = 1; 2,

Sē(¡1)t
=

1
°t;o

·
Dt ¡

R
Gt}o(DjX; µ)dHo(µ)R
}o(DjX; µ)dHo(µ)

¸ n
X(¡1)
t ¡ E[X(¡1)

t j X1 ē
1;o; X2 ē

2;o;D1 + ®2D2]
o

:
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Thus Sē(¡1)1
;Sē(¡1)2

are still linearly independent, hence (ē(¡1)1 ; ē(¡1)
2 ) are still

p
N estimable

when j®2j 6= 1.
When T ¸ 3, in general we have Sē(¡1)1

; :::;Sē(¡1)
T

;S°1;o; :::;S°T ;o; S®2;o; :::;S®T ;o;Sē(1)2
; :::; ;Sē(1)

T

are linearly independent, hence (ē(¡1)1 ; :::; ē(¡1)
T ; °1; :::; °T ; ®2; :::; ®T ;

ē(1)
2 ; :::; ē(1)

T ) are allp
N estimable.

5.3 Single Spell Duration Model

Denote Ti =
PT
t=1 Di;t as total completed spell length for individual i. Let P¯;®;h denote the

probability associated with individual i’s data fTi;Xi;1; :::;Xi; ¹Tg if it were generated by pa-
rameter (¯;®;H). Po is the probability associated with individual i’s data fTi; Xi;1; :::; Xi; ¹Tg
when it is generated by the true parameter (¯o; ®o; Ho), and ¹ is a dominating measure (i.e.,
a product of counting measures and Lebesgue measures). Recall that Xi has distribution
FX (and density fX ) which is not a function of (¯;®; h).

Let ±k(t) = 1 if t = k; ±k(t) = 0 if t 6= k. Then for k 2 ©
0; 1; ::; ¹T

ª
, x 2 supp(fX);

dP¯;®;h
d¹

(k; x) =
¹TY

t=0
[Pr(T = tjX · x)]±k(t)fX(x):

Person i ’s probability of surviving Ti = t periods conditional on Xi is:

Pr(Ti = tjXi) =
Z

Pr(Ti = tjXi; µ)dH(µ):

We adopt the convention that all individuals are in the sample at time 0,

0Y

j=1
Gj(xi;j¯j + ®jµ) ´ 1;

so that

Pr(Ti = 0jXi;£i) ´ Pr(Di;1 = 0jDi;0 = 1; Xi;1; £i) ´ 1 ¡ G1(Xi;1¯1 + ®1£i):

We also adopt the convention

GT+1(xi;T+1¯T+1 + ®T+1µ) ´ 0;

since
Pr(Di;T+1 = 0jDi;T = 1; Xi;T+1;£i) ´ 1:
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Person i ’s probability of surviving Ti = t periods conditional on (Xi = xi ; £i = µ) is then

Pr(Ti = tjXi = xi; £i = µ)

=

"
tQ
j=1

Pr(Di;j = 1jDi;j¡1 = 1; xi;j; µ)

#
Pr(Di;t+1 = 0jDi;t = 1; xi;t+1; µ)

=
"
tQ
j=1

Gj(xi;j¯j + ®jµ)
#

(1 ¡ Gt+1(xi;t+1¯t+1 + ®t+1µ)):

The probability (or density) of Ti conditional on fXi; £i = µg is denoted as:

}(¯; ®; TijXi; £i = µ) =
¹TY

t=0
[Pr(Ti = tjXi; £i = µ)]±Ti(t)

=
¹TY

t=0

2
4
tY

j=1
Gj(Xi;j¯j + ®jµ)[1 ¡ Gt+1(Xi;t+1¯t+1 + ®t+1µ)]

3
5
±Ti (t)

:

When Gt(y) = exp(y)
1+exp(y) for t = 1; :::; T , we can again write down the e¢cient score functions

explicitly. Since the formula is complicated, we put it as Lemma 2 in the Appendix. We
can obtain the following results as an immediate application of Lemma 2:

Theorem 7 (single spell): For the model de…ned by equations (2a) and (2b), let the
conditions for Theorem 5 be satis…ed with Gt(y) = exp(y)

1+exp(y) for t = 1; :::; T . For
simplicity we assume that all ¯t are distinct and that Xt is independent across time
or …rst-order Markov process. Then:

(a) when T ¸ 1, (ē1; :::; ē
T ) are root-N estimable.

(b) when T = 1, °1 is not root-N estimable.

(c) when T = 2, (°1; °2) are root-N estimable if and only if ®2 = ¡1

(d) when T = 3, (°1; °2; °3; ®2; ®3) are root-N estimable if any one of the following is
satis…ed:

1 + ®2 = 0 or 1 + ®2 + ®3 = 0 or ®2 + ®3 = 0:

Proof. Similar proof as that for Theorem 6 except using Lemma 2 in the Appendix.

5.4 Switching Binary Regression Model

Let P¯;®;h denote the probability associated with individual i’s data (Di; Xi) ´ fDi;t;Xi;t :
t = 1; 2g if it were generated by parameter (¯; ®; H). Po is the probability associated
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with individual i’s data fDi;t; Xi;t : t = 1; 2g when it is generated by the true parameter
(¯o; ®o; Ho), and ¹ is a dominating measure (e.g., a product of counting measures and
Lebesgue measures). We have for any d 2 Q2

t=1 f0; 1g, x 2 supp(fX),

dP¯;®;h
d¹

(d; x) = fX(x)
Z

f}(¯;®;DijXi = x;£i = µ)gdH(µ);

where }(¯;®; DijXi = x;£i = µ) is the probability (or density) of Di conditional on
fXi; £ig and is given by:

}(¯;®;DijXi = xi; £i = µ)

´
h
G1(xi;1¯1 + µ)G21(xi;2¯2;1 + ®2;1µ)

iDi;1Di;2

£
h
G1(xi;1¯1 + µ)

³
1 ¡ G21(xi;2¯2;1 + ®2;1µ)

´iDi;1(1¡Di;2)

£
h
(1 ¡ G1(xi;1¯1 + µ))G20(xi;2¯2;0 + ®2;0µ)

i(1¡Di;1)Di;2

£
h
(1 ¡ G1(xi;1¯1 + µ))

³
1 ¡ G20(xi;2¯2;0 + ®2;0µ)

´i(1¡Di;1)(1¡Di;2)
:

Again when G1(y);G21(y);G20(y) = exp(y)
1+exp(y) , we can write down the e¢cient score functions

explicitly. We again collect the formula as Lemma 3 into the Appendix, and obtain the
following results as a consequence of Lemma 3:

Theorem 8 (switching regression): For the model de…ned by equations (3a) and (3b),
let the conditions for Corollary 4 be satis…ed with G1(y);G21(y);G20(y) = exp(y)

1+exp(y) .
For simplicity we assume that Xt is independent across time or …rst-order Markov
process. Then:

(a) (ē1; ē
21; ē

20) are root-N estimable.

(b) (°1; °21; °20; ®21; ®20) are root-N estimable if any one of the following is satis…ed:

®21 = ¡1 or ®20 = 1 or ®20 = 1 + ®21:

Proof. Similar proof as that for Theorem 6 except using Lemma 3 in the Appendix.

6 Properties of NPMLE for Models with Scalar Factor

We now consider estimation of the true parameters (¯o; ®o;Ho) 2 B £ A £ H for the three
models with scalar latent factor, where B and A are …nite-dimensional Euclidean spaces,
and H is the space of distributions with zero mean and …nite variances. We will …rst
consider the following distance on the parameter spaces B £ A £ H:
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k(¯; ®; H) ¡ (¯o; ®o;Ho)k2 =
1
2

Z ³q
dP¯;®;h ¡

p
dPo

´2
=

1
2

Z Ãs
dP¯;®;h

d¹
¡

s
dPo
d¹

!2

d¹

= 1 ¡ Eo

s
dP¯;®;h

dPo
;

which is the Hellinger distance directly on the observed probabilities. Denote the L1-norm
between P¯;®;h and Po as

kP¯;®;h ¡ Pok1 = sup
g:jgj·1

¯̄
¯̄
Z

g(dP¯;®;h ¡ dPo)
¯̄
¯̄ :

Then (see e.g., Le Cam and Yang 1990, page 25):

k(¯;®; H) ¡ (¯o; ®o; Ho)k2 · 1
2

kP¯;®;h ¡ Pok1 · k(¯;®; H) ¡ (¯o; ®o; Ho)k
p

2:

Denote the Kullback-Leibler distance as

KL((¯o; ®o;Ho); (¯; ®; H)) = Eo [l(¯o; ®o;Ho;Di;Xi) ¡ l(¯;®;H;Di;Xi)]

= Eo

"
log

Ã
dPo

dP¯;®;h

!#
:

Since log(1 + y) · y for all y ¸ ¡1, we have by taking y =
q
dP¯;®;h
dPo ¡ 1,

KL((¯o; ®o;Ho); (¯; ®; H)) ¸ 2 k(¯;®;H) ¡ (¯o; ®o;Ho)k2 :

6.1 Convergence Rate of NPMLE

Recall that the nonparametric MLE (NPMLE) optimizes the sample likelihood over the
entire parameter space without any smoothing, i.e., the NPMLE (b̄N ; b®N ; bHN) solves

max
¯2B;®2A;H2H

1
N

NX

i=1
l(¯; ®; H;DijXi):

NPMLE is known to be consistent and has optimal rate if the observed density is bounded
away from zero and if the H space is not too large.

Theorem 9: Suppose that conditions for Theorems 6, 7 and 8 are satis…ed. Let B and A
be …nite-dimensional compact sets, and H be the space of probability distributions
with bounded supports. Then:

°°°(b̄N ; b®N ; bHN) ¡ (¯o; ®o;Ho)
°°° = Op(N¡1=3).

Proof. See Appendix C.
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6.2
p
N¡Asymptotic Normality

Under the conditions for Theorems 6, 7 and 8, we know that the …nite-dimensional para-
meter (¯o; ®o) is

p
N¡estimable. We now present su¢cient conditions to establish that

the NPMLE estimator (b̄N ; b®N) is
p

N¡ asymptotic normal centered around (¯o; ®o) with
asymptotic variance I¡1, where I is the expectation of outer-product of e¢cient scores for
each of the models, (see Section 4), hence it is e¢cient estimator also.

There are many ways to establish such results. Here we follow the approaches taken
by Shen (1997) and Chen and Shen (1998). We …rst de…ne the following norm at the
neighborhood of (¯o; ®o;Ho):

k(¯; ®; H) ¡ (¯o; ®o;Ho)k2e
= Eo

h
l0¯;o(D; X)(¯ ¡ ¯o) + l0®;o(D;X)(® ¡ ®o) + l0H;o(D; X)[H ¡ Ho]

i2
:

Let [H ¡ Ho] = ¡
"

W¯(¯ ¡ ¯o)
W®(® ¡ ®o)

#
, then

k(¯; ®;H) ¡ (¯o; ®o;Ho)k2e

=

"
¯ ¡ ¯o
® ¡ ®o

#¤
Eo

Ã"
l0¯o(D; X) ¡ l0Ho(D;X)W¯
l0®o(D; X) ¡ l0Ho(D;X)W®

# "
l0¯o(D;X) ¡ l0Ho(D;X)W¯
l0®o(D;X) ¡ l0Ho(D; X)W®

#¤! "
¯ ¡ ¯o
® ¡ ®o

#
:

Consider the smooth functional S(¯; ®; H) ´ ¸¯¯ + ¸®® for any …xed ¸¯ ; ¸® such that
j¸¯j + j¸®j = 1. Then

S(¯;®;H) ¡ S(¯o; ®o; Ho) = ¸¯(¯ ¡ ¯o) + ¸®(® ¡ ®o)
´ S0(¯o;®o;Ho)[¯ ¡ ¯o; ® ¡ ®o]

°°°S0(¯o;®o;Ho)
°°°
2

´ sup
f(¯;®;H)2B£A£Hg

¯̄
¯S0(¯o;®o;Ho)[¯ ¡ ¯o; ® ¡ ®o]

¯̄
¯
2

k(¯;®;H) ¡ (¯o; ®o;Ho)k2e

= sup
f(b;a;W )2B£A£Fog

"
b
a

#¤ "
¸¯
¸®

# "
¸¯
¸®

#¤ "
b
a

#

"
b
a

#¤
Eo

Ã"
l0¯o ¡ l0HoW¯
l0®o ¡ l0HoW®

# "
l0¯o ¡ l0HoW¯
l0®o ¡ l0HoW®

#¤! "
b
a

#

=

"
¸¯
¸®

#¤ (
inf
W2Fo

Eo

""
l0¯o(D;X) ¡ l0Ho(D;X)W¯
l0®o(D;X) ¡ l0Ho(D; X)W®

# "
l0¯o(D;X) ¡ l0Ho(D; X)W¯
l0®o(D; X) ¡ l0Ho(D;X)W®

#¤#)¡1 "
¸¯
¸®

#
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=

"
¸¯
¸®

#¤
I¡1

"
¸¯
¸®

#
´ kvok2 < 1 i¤ I is positive de…nite.

Thus, we may choose the Riesz representor vo = (vo¯; vo®; voh)¤ as
"

vo¯
vo®

#
= I¡1

"
¸¯
¸®

#
; voh = ¡

"
Wo¯I¡1¸¯
Wo®I¡1¸®

#
:

Assumption B

In the following we denote °o ´ (¯o; ®o;Ho) and ° ´ (¯;®;H).

r[° ¡ °o;Di; Xi]
= l(°;Di; Xi) ¡ l(°o; Di; Xi)

¡
h
l0¯(°o; Di; Xi)[¯ ¡ ¯o] + l0®(°o; Di;Xi)[® ¡ ®o] + l0H(°o; Di; Xi)[H ¡ Ho]

i

(i) sup
f°:k°¡°oke·"Ng

NX

i=1
(r[° ¡ °o; Di; Xi] ¡ E(r[° ¡ °o;Di; Xi])) = oP (1)

(ii) sup
f°:k°¡°oke·"Ng

µ
KL(°o; °) ¡ 1

2
k° ¡ °ok2e

¶
= o(

1
N

)

(i) sup
f°:k°¡°oke·"Ng

1p
N

NX

i=1

³
l0°o[° ¡ °o; Di; Xi] ¡ E(l0°o[° ¡ °o; Di;Xi])

´
= oP (1)

Theorem 10: Assume that I is non-singular, Assumption B is satis…ed. Then the
NPMLE estimators b̄

N and b®N are
p

N¡e¢cient, that is,

p
N

" b̄
N ¡ ¯o

b®N ¡ ®o

#
=) N (0;I¡1)

7 Monte Carlo

8 Conclusion

In this paper, we have discussed the identi…cation, root-N estimableness, convergence rate
and asymptotic normality of three typical panel data models with binary dependent vari-
ables. All three models allow for unobserved heterogeneity, and two of them in addition

28



allow for true state-dependence. We show that the latent scalar factor structure is not only
to reduce dimensionality to easy computational burden, but also impose much more restric-
tion onto the models. It is thus important to test for such a factor structure. Our models
do not depend on the factor model assumption for identi…cation, and the factor model does
restrict the joint dependence in the shocks. The factor model thus does impose testable
restrictions in these models, and we will consider testing for the factor representation in
subsequent research.
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Appendix A: Identi…cation Proofs.

Proof. (Theorem 2): By hypothesis, we know the left hand sides of the following ¹T
equations:

Pr (D1 = 1jX1 = x1) = F´1 (x1¯1) (A-1)

Pr (D1 = 1;D2 = 1jX1 = x1; X2 = x2) = F´1;´2 (x1¯1; x2¯2) (A-2)

: : :

Pr (D1 = 1;D2 = 1; : : : ; D ¹T = 1jX1 = x1; : : : ;X ¹T = x ¹T ) (A-3)
= F´1;:::;´ ¹T (x1¯1; : : : ; x ¹T¯ ¹T )) :

We may treat (A-1) as a binary discrete choice model and again following the analysis of
Manski (1988, Proposition 2, Corollary 5) attain that we identify ¯1 and F´1 up to scale
and location. For example, we may normalize the location and scale by constraining X1
not to have an intercept and constraining jj¯1jj = 1.

However, unlike the case for model one, we cannot directly apply Manski for T ¸ 2. We
do not directly observe Pr(D2 = 1jX2), since the D2 outcome is not observed for individuals
with D1 = 0. We therefore proceed with a recursive “identi…cation at the limit” arguement.

If the true parameter values are (F´02 , ¯0
2); then given the identi…cation of the …rst

period parameters from the …rst step, the second period parameters are identi…ed, i¤ for
any alternative parameter values (F´¤2 , ¯¤2) 2 H2 £ B2 with (F´¤2 ; ¯

¤
2) 6= (F´02 ; ¯

0
2); there

exists some ² > 0 s.t.

Pr(jF´01;´02
³
X1¯0

1;X2¯0
2

´
¡ F´01;´¤2

³
X1¯0

1;Xt¯
¤
2

´
j > ²) > 0: (A-4)

Pick any (F´¤2 , ¯¤2) 2 H2 £ B2=(F´02 , ¯0
2): We will show (A-4) holds for some ² > 0. By

continuity of F´01 ; we have that for any " > 0 we can pick ~g1 2 (L1; U1) such that

1 ¡ F´01 (g1) · "=2 for all g1 ¸ ~g1 =) sup
g2

jF´01;´02 (g1; g2) ¡ F´02 (g2) j · "=2

and
sup
g2

jF´01;´¤2 (g1; g2) ¡ F´¤2 (g2) j · "=2

for all g1 ¸ ~g: For any ² > 0; we have

Pr(jF´01;´02
³
X1¯1;X2¯0

2

´
¡ F´01;´¤2 (X1¯1; X2¯¤2) j > ²jX1¯1 ¸ max(~g1; ·g1)

¸ Pr(jF´02
³
X2¯0

2

´
¡ F´¤2 (X2¯¤2) j > ² + "jX1¯1 ¸ max(~g1; ·g1):

33



Using (iii0) and (iv), we have that Pr
³
F´02(X2¯0

2) = F´¤2(X2¯¤2)jX1¯1 ¸ max(~g1; ·g1
´

= 1 i¤
(F´¤2 , ¯¤2) =(F´02 , ¯0

2): Since (F´¤2 , ¯¤2) 6=(F´02, ¯0
2); and since we can set " arbitrarily small,

we have that there exists ² values such that the last probability is strictly positive so that,
for such ² values,

Pr
³
jF´01;´02

³
X1¯1; x2¯

0
2

´
¡ F´01;´¤2 (X1¯1; x2¯

¤
2) j > ²jX1¯1 ¸ max(~g1; ·g1)

´
> 0

Using (iv), we have
Pr(X1¯1 ¸ max(~g1; ·g1)) > 0;

so that (A-4) holds. We have shown that (F´¤2 , ¯¤2) 6=(F´02, ¯0
2) implies (A-4), and thus

the (F´02 , ¯0
2) parameters are identi…ed. Proceeding in this fashion, we can recover xt¯t;

t = 1; : : : ; ¹T: Since we identify xt¯t and using (iv), we can recover the joint distribution of
(´1; : : : ; ´ ¹T ) varying the components of (x1¯1; :::; xT¯ ¹T ) to trace out the joint distribution
F´1;:::;´ ¹T :

Proof. (Corollary 1). Let
x¯1 = g1

recalling that °t = 0 for t = 1; :::; ¹T , as a normalization and that the …rst ¹T coordinates of
x correspond to continuous regressors. By assumption (iv), ¯11 6= 0, and we can write

x1 =
g1
¯11

¡ x2
¯12
¯11

¡ ¢ ¢ ¢ ¡ xK
¯1K
¯11

where in this expression lower case xi is the ith coordinate of x.
In the index x¯2, use standard Gaussian elimination and substitute for x1, from the

preceding equation and obtain
µ g1

¯11
¡ x2

¯12
¯11

¡ ¢ ¢ ¢ ¡ xK
¯1K
¯11

¶
¯21 + ¯22x2 + ¢ ¢ ¢ + ¯2KxK :

These variables can be freely varied given x¯1 = g1. Proceeding recursively, in the (j +1)th

argument, (j < ¹T ), we obtain an expression that substitutes out for (x1; :::; xj) leaving at
least ¹T ¡ j free continuous variables.

Array the ¯j into a matrix B with the jth row of B being ¯j . B is an ¹T £K matrix.
Let B(r; n) be the r £ n submatrix of B consisting of the …rst r rows and n columns, and
let B(r;K ¡ n) be the matrix consisting of the …rst r rows and the last K ¡ n columns of
B. Partition ¯j into the …rst e elements

³
¯j (e)

´
and the last K ¡ e elements ¯j(K ¡ e).

In this notation, successive Gaussian elimination produces

¹̄
j+1 = ¯j (K ¡ j) ¡ ¯j+1 (j) [B (j; j)]¡1 B (j;K ¡ j)
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a K ¡ j dimensional vector. In order for [B(j; j)]¡1 to exist, it is necessary that ¯1; : : : ; ¯j
be linearly independent vectors. Condition (v) assures us that this requirement is satis…ed
for j · m. De…ne ē

j+1
¡ ¹T ¡ j

¢
as the …rst ( ¹T ¡ j) elements of ē

j+1 associated with the
continuous regressors. In order to satisfy (vi), at least one component of ē

j+1( ¹T ¡ j) must
be non-zero.

Again consider
g1 = x¯1

g2=~°2(g1) + x̂2 ē
j+1

where ~°2(g1) =
³
g1
¯11

¯21

´
is obtained via the same linear transformation that is used to

obtain ē
j+1 : Since ~°2(g1) is a function of g1; the second period index is a function of g1

and for …xed x̂2 we have that g1 ! 1 =) g2 ! 1: However, note that using assumptions
(iii)-(v), we can send g1 ! 1 while varying x̂2 to keep g2 …xed. In particular, we can use
x1 to send g1 ! 1 and set x2 to compensate for x1 in the second period index so as to
hold g2 …xed. Thus, supp(X¯2jX¯1 = g1) = R and X such that X¯1 = g1 will have rank
K ¡ 1 for a.e. g1 2 R: Moreover, we have, for a.e. g1 2 R; supp(X¯2jX¯1 ¸ g1) = R and
X such that X¯1 ¸ g1 has full rank (there exists no proper linear subspace of RK having
probability 1 under FXjX¯1¸g1): We can repeat this argument sequentially, using sequential
Gaussian elimination as described above, to show

Supp
¡
X¯tjX¯1 = g1; :::; X¯t¡1 = gt¡1

¢
= R

and there exists no proper linear subspace of RK having probability 1 under FXjX¯1¸g1;:::;X¯t¸gt
for almost every (gt¡1; : : : ; g1) 2 Rt¡1 for t = 2; :::; ¹T .

Appendix B:
p

N Estimableness Proofs.

Lemma 2 (Single Spell): For model (2a) or (2b), let all the conditions for Theorem 5
be satis…ed with Gt(y) = exp(y)

1+exp(y) for t = 1; :::; T . For simplicity we assume that all
¯t are distinct and that Xt is independent across time or …rst-order Markov process.
Then:

}(¯;®; T jX;£)

= exp

8
<
:
TX

k=1
±T (k)

· kX

j=1
Xj¯j + £

kX

j=1
®j ¡

k+1X

j=1
log[1 + exp(Xj¯j + ®j£)]

¸9
=
;

The su¢cient statistics is
nPT

k=1 ±T (k)
Pk
j=1 ®k; [X1 ē

1; :::;XT
ē
T ]

o
:
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Let [logGt]0 denote @ log(Gt(y))@y . Thus,

S¯o =

R
}(¯o; ®o; T jX; µ)

³
@
@¯ [log(}(¯o; ®o; T jX; µ))] ¡ f¯o(µ)

´
dHo(µ)

R
}(¯o; ®o; T jX; µ)dHo(µ)

S®o =

R
}(¯o; ®o; T jX; µ)

³
@
@® [log(}(¯o; ®o; T jX; µ))] ¡ f®o(µ)

´
dHo(µ)

R
}(¯o; ®o; T jX; µ)dHo(µ)

;

where for t = 1; 2; :::; T ,

f¯t;o(µ) = [log Gt]0E

2
41(Ti ¸ t)Xt j [X1 ē

1; :::;XT
ē
T ];

TX

k=1
±Ti(k)

kX

j=1
®j

3
5

+[log(1 ¡ Gt)]0E

2
41(Ti + 1 = t)Xt j [X1 ē

1; :::;XT
ē
T ];

TX

k=1
±Ti(k)

kX

j=1
®j

3
5 ;

and for t = 2; :::; T ,

f®t;o(µ) = µ[log Gt]0E

2
41(Ti ¸ t) j [X1 ē

1; :::;XT
ē
T ];

TX

k=1
±Ti(k)

kX

j=1
®j

3
5

+µ[log(1 ¡ Gt)]0E

2
41(Ti + 1 = t) j [X1 ē

1; :::;XT
ē
T ];

TX

k=1
±Ti(k)

kX

j=1
®j

3
5 :

Proof. (Theorem 7, Single Spell): Similar proof as that for Theorem 6 except applying
Lemma 2. For example, when T = 2, we have

PT
k=1 ±Ti(k)

Pk
j=1 ®j = ±Ti(1) + ±Ti(2) +

±Ti(2)®2. Thus,

@ log }o(µ)
@¯1

¡ f¯1;o(µ)

= [log G1]0 (1(Ti ¸ 1)X1 ¡ E [1(Ti ¸ 1)X1 j X1¯1;X2¯2; ±Ti(1) + ±Ti(2) + ±Ti(2)®2]) +
[log(1 ¡ G1)]0 (1(Ti = 0)X1 ¡ E [1(Ti = 0)X1 j X1¯1;X2¯2; ±Ti(1) + ±Ti(2) + ±Ti(2)®2]) ;

@ log }o(µ)
@¯2

¡ f¯2;o(µ)

= [log G2]0 (1(Ti ¸ 2)X2 ¡ E [1(Ti ¸ 2)X2 j X1¯1;X2¯2; ±Ti(1) + ±Ti(2) + ±Ti(2)®2]) +
[log(1 ¡ G2)]0 (1(Ti = 1)X2 ¡ E [1(Ti = 1)X2 j X1¯1;X2¯2; ±Ti(1) + ±Ti(2) + ±Ti(2)®2]) ;
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and

@ log }o(µ)
@®2

¡ f®2;o(µ)

= µ[log G2]0 (1(Ti ¸ 2) ¡ E [1(Ti ¸ 2) j X1¯1; X2¯2; ±Ti(1) + ±Ti(2) + ±Ti(2)®2]) +
µ[log(1 ¡ G2)]0 (1(Ti = 1) ¡ E [1(Ti = 1) j X1¯1; X2¯2; ±Ti(1) + ±Ti(2) + ±Ti(2)®2]) :

Since

E [1(Ti = 0) j X1¯1;X2¯2; ±Ti(1) + ±Ti(2) + ±Ti(2)®2] 6= 1(Ti = 0) if and only if ®2 = ¡1;

and

E [1(Ti = 2) j X1¯1;X2¯2; ±Ti(1) + ±Ti(2) + ±Ti(2)®2] 6= 1(Ti = 2) if and only if ®2 = ¡1;

we therefore have that ¯1; ¯2 and ®2 may be root-N estimable if and only if ®2 = ¡1.
Of course, when ®2 6= ¡1, ē is still root-N estimable under conditions on X similar to

the case when T = 1:

Lemma 3 (switching regression): For the model de…ned by equations (3a) and (3b),
let the conditions for Corollary 4 be satis…ed with G1(y);G21(y);G20(y) = exp(y)

1+exp(y) .
For simplicity we assume that Xt is independent across time or …rst-order Markov
process. We have that:

log (}(¯; ®;DijXi;£i = µ))

= µ
·
D1 + D1D2(®21 ¡ ®20) + D2®20

¸

+
·
D1X1¯1 + D1D2X2(¯21 ¡ ¯20) + D2X2¯20

¸

¡ log (1 + exp(X1¯1 + µ))
¡D1 log (1 + exp(X2¯21 + ®21µ))
¡(1 ¡ D1) log (1 + exp(X2¯20 + ®20µ))

and
@ log }o(µ)

@¯1
= X1[D1 ¡ G1(X1¯1 + µ)]

@ log }o(µ)
@¯21

= X2D1[D2 ¡ G21(X2¯21 + ®21µ)]
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@ log }o(µ)
@¯20

= X2(1 ¡ D1)[D2 ¡ G20(X2¯20 + ®20µ)]

@ log }o(µ)
@®21

= µD1[D2 ¡ G21(X2¯21 + ®21µ)]

@ log}o(µ)
@®20

= µ(1 ¡ D1)[D2 ¡ G20(X2¯20 + ®20µ)]

and the su¢cient statistics is: f[D1 + D1D2(®21 ¡ ®20) + D2®20];X1¯1; X2¯21; X2¯20g :
Let T = f[D1 + D1D2(®21 ¡ ®20) + D2®20];X1¯1;X2¯21;X2¯20g :

Then the e¢cient scores for (¯1; ¯21; ¯20; ®21; ®20) are

S¯1;o(Di;Xi) = (D1X1 ¡ E[D1X1jT ])

¡
R

G1}o(DijXi; µ)dHo(µ)R
}o(DijXi; µ)dHo(µ)

n
X1 ¡ E[X1jX1¯1;o]

o

S¯21;o(Di;Xi) = (D1D2X2 ¡ E[D1D2X2jT ])

¡
R

G21}o(DijXi; µ)dHo(µ)R
}o(DijXi; µ)dHo(µ)

n
X2 ¡ E[X2jX2¯21;o]

o

Appendix C: Estimation Proofs

Denote M[](²;FN) as the minimum number of pairs of functions which are ²¡apart in
Hellinger distance needed to bracket any functions in FN , and M(²;FN ; j¢j) as the minimum
number of balls with ²¡radius in j ¢ j distance needed to cover any functions in FN .

Before we prove Theorem 9, we present a more general convergence rate result.

Theorem 11: Suppose conditions for Theorem 5 and Corollary 4 are satis…ed. Let B
and A be …nite-dimensional compact sets, and let H be the space of probability

distributions with known bounded support [µ; µ] such that
R
}(¯;®;DjX;µ)dH(µ)R
}(¯o;®o;DjX;µ)dHo(µ)

is

bounded below and above by constants. Then:
°°°(b̄N ; b®N ; bHN) ¡ (¯o; ®o; Ho)

°°° =

Op(N¡1=3):
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Proof. (Theorem 11). We prove this by verifying that conditions C1-C3 for theorem 1
in Shen and Wong (1994) are satis…ed. First, condition C1 is satis…ed since

KL((¯o; ®o;Ho); (¯; ®; H)) ¸ 2 k(¯;®;H) ¡ (¯o; ®o;Ho)k2 :

Second, the boundedness of the likelihood ratio assumption implies condition C2 of
Shen and Wong since

V aro [l(¯o; ®o; Ho; Di; Xi) ¡ l(¯;®;H; Di; Xi)]

· Eo
·
log

µdP¯;®;h
dPo

¶¸2
= 4Eo

"
log

Ã
1 + [

s
dP¯;®;h

dPo
¡ 1]

!#2

· 4Eo

"s
dP¯;®;h

dPo
¡ 1

#2
· 8 k(¯;®;H) ¡ (¯o; ®o;Ho)k2

For condition C3, we need to compute the metric entropy for

F = fl(¯; ®; H; Di; Xi) ¡ l(¯o; ®o;Ho;Di;Xi) : (¯; ®; H) 2 B £ A £ Hg :

Denote B±(¤) = f(¯; ®; H) 2 B £ A £ H : j¯ ¡ ¯¤j + j® ¡ ®¤j + jH ¡ H¤jsup · ±g : Notice
that the boundedness of likelihood ratio also implies

Eo sup
B±(¤)

[l(¯¤; ®¤;H¤; Di; Xi) ¡ l(¯;®;H; Di;Xi)]2

· 4Eo sup
B±(¤)

hq
dP¯;®;h ¡

q
dP¯¤;®¤;h¤

i2

· const:
Z

sup
B±(¤)

h³R µ
µ }(¯;®; DjX; µ)dH(µ) ¡ R µ

µ }(¯¤; ®¤; DjX; µ)dH¤(µ)
´

fX
i2

hp
dP¯;®;h +

q
dP¯¤;®¤;h¤

i2 dPo

· const
Z

sup
B±(¤)

"ÃZ µ

µ
}(¯; ®; DjX; µ)dH(µ) ¡

Z µ

µ
}(¯¤; ®¤;DjX; µ)dH¤(µ)

!
fX

#2
d¹:

Notice that
Z µ
µ

}(¯;®;DjX; µ)dH(µ) = ¡
Z µ
µ

H(µ)
@}(¯;®; DjX; µ)

@µ
dµ + }(¯; ®; DjX; µ);

and thus
Z µ
µ

}(¯; ®;DjX; µ)dH(µ) ¡
Z µ
µ

}(¯¤; ®¤;DjX; µ)dH¤(µ)
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= [}(¯; ®; DjX; µ) ¡ }(¯¤; ®¤; DjX; µ)]

+
Z µ
µ

[H¤(µ) ¡ H(µ)]
@}(¯;®; DjX; µ)

@µ
dµ

+
Z µ

µ
H¤(µ)[

@}(¯¤; ®¤; DjX; µ)
@µ

¡ @}(¯;®;DjX; µ)
@µ

]dµ

where

@}(¯;®;DjX; µ)
@µ

= }(¯;®;DjX; µ)
TX

t=1
®t

·
Dt

[Gt(Xt¯t + ®tµ)]0

Gt(Xt¯t + ®tµ)
¡ (1 ¡ Dt)

[Gt(Xt¯t + ®tµ)]0

1 ¡ Gt(Xt¯t + ®tµ)

¸

Since B and A are …nite-dimentional compact sets, the corresponding sup-norm metric en-
tropy satis…es log(M(u;B; j¢j))+log(M(u; A; j¢j)) · C1 log( 1u). Since H consists of monotone
increasing uniform bounded functions, by Birman and Solomjak (1967), log(M(u;H; j ¢
jsup)) · C2

u . Therefore, the bracketing Hellinger metric entropy log(M[](u;F)) is bounded
by:

log(M[](u;F)) · log(M(u; B; j ¢ j)) + log(M(u;A; j ¢ j)) + log(M(u;H; j ¢ jsup))

· C log(
1
u

) +
C0

u

Now the convergence rate is simply
°°°(b̄N ; b®N ; bHN) ¡ (¯o; ®o;Ho)

°°° = Op("N), where

"N = inf
½

" :
1
"2

Z "
"2

q
log(M[](u;F))du · const:

p
N

¾

which is satis…ed by "N = const:N¡1=3.
Proof. (Theorem 9): When all Gt(y) = exp(y)

1+exp(y) , the boundedness of the likelihood ratio
is automatically satis…ed as long as B and A are …nite-dimensional compact sets, and H
is the space of probability distributions with bounded known supports. Hence the above
convergence rate holds.
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