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Abstract: This paper presents a general likelihood-based framework for in-
ference in panel-VAR models with cointegrating restrictions. The cointegrating
relations are restricted to each cross-section while the rest of the model is un-
restricted. The homogenous restriction of common cointegrating space is also
considered. Asymptotic distributions of parameter estimates and the test statis-
tics for the cointegrating rank and the homogenous restriction are derived. The
distribution for the cointegrating rank is shown to be the convolution of the stan-
dard distribution of the trace statistic and the x? distribution. The homogenous
restriction test statistic is x?. A Monte Carlo simulation investigates the small
sample properties of the two tests. The empirical size of the test for the coin-
tegrating rank is well above the nominal. A Bartlett corrected test statistic is
shown to have size very close to the nominal. We give an empirical example for a
consumption model including consumption, income and inflation.
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1. Introduction

Compared to most previous work on panels and unit roots/cointegration (see e.g.
Levin and Lin, 1992, 1993, and Im, Pesaran and Shin, 1997), this paper focuses
on multivariate cointegration and extends the previous work by Larsson, Lyhagen
and Lothgren (1998) and Groen and Kleibergen (1999). Consider a panel data
set that consists of a sample of cross-sections where the cross-sections are e.g.
industries, regions or countries. Economic theory may postulate that long run
equilibriums should hold for each cross-section, but it is feasible to allow the cross-
sections to depend on all the equilibriums of the cross-sections. A panel model
with such cointegrating restrictions are proposed. The asymptotic distribution of
the likelihood ratio test for the number of cointegrating relations is derived. This
distribution may be described as the convolution of two independent variates:
the first one following the well-known asymptotic distribution of the trace test (a
Dickey-Fuller type distribution) and the second one being 2. Further, a likelihood
ratio test of common cointegrating space is proposed and it is shown that the
asymptotic distribution is x2.

A Monte Carlo simulation is performed to analyze the small sample properties
of the two tests. The test for common cointegrating space has sufficiently good
size and power properties while the test for cointegrating rank does not. This
result makes us propose the use of a Bartlett corrected test statistic which is
found to have desired properties, i.e. a size very close to the nominal one.

An empirical example concerning two groups is carried out. The groups con-
sists of countries that are, in some sense, similar. The first consists of some larger
economies (Japan, UK and US) and the second of the major Nordic countries
(Denmark, Finland, Norway and Sweden). The variables are income, consump-
tion and inflation. The result is that the first group has two cointegrating vectors
while the second has only one. The test of common cointegrating space is rejected
for both groups.

The paper is as follows. In the next section, the general model and the two
special cases are presented while estimation is discussed in Section 3. Section 4
considers asymptotic results for the distribution of parameters and the likelihood
ratio tests. To evaluate the small sample properties a Monte Carlo simulation is
carried out in Section 5, and the empirical example is presented in Section 6. A
conclusion ends the paper.



2. The General Model

Consider a panel data set that consists of a sample of N cross-sections (e.g.
industries, regions or countries) observed over T' time periods. To be able to
efficiently discuss multivariate panel cointegration we need to define some nota-
tion. Let ¢ = 1,..., N index the groups, t = 1,...,T" the sample time period and
j = 1,...,p the variables in each group. Then y;;; denotes the ith group, the jth
variable at time ¢. The observed p-vector for group ¢ at time period t is given
by Yoy = (Yite, Yiots s Yipt) - Define Vi = [y, Yo - Y'ne) as the Np-vector of the
panel of observations available at time ¢ on the p variables for the N groups.
The regression that is the basis for our work is

Ay, II;; IIip -+ ILin Yit—1
Ayyy _ Il Iy Yot—1
Ay Iy I -+ Iyn Ynt—1
e Tigg - Ting Ay k €1t
m-1| [ ¢ Daog Ay _k g
)N B TR T =1, (2)
k=1 : :
PNl,Ic F22,k s FNN,Ic AyNi—k ENt

or more compactly written as

m—1

AY; = HY;,1 + Z FkAY;g,k + & (22)

k=1

where A is the first difference filter (1 — L), Y; = (yi;, Yo, -, Y) and g =
(€, by €Ny) 18 of order Np x 1, where ¢; is assumed multivariate normally
distributed as g, ~ Ny, (0,€2), with covariance matrix

Qll QlQ e QlN
921 QQQ
QNl QQQ e QNN

and II and Y; ; are of order Np x Np and Np X 1, respectively.
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As seen above, [T and I'y, K = 1, ..., m — 1, can be partitioned into submatrices,
IL;; and I';;, 4,5 = 1, ..., N, respectively, each of dimension p x p.

To continue, we impose some structure on this model. First, we consider a
reduced rank specification of the panel model where the matrix II is of rank > r;,
0 < r; < p, specified as I[1 = AB’, where the matrices A and B are both of order
Np X > r; given by

11 G2 - QN
Qo1 (2
A={oyt=1 | o (2.4)
anyp Q22 - QNN
and
By O - 0
0 Bo
0 0 - Byn

A contains the short-run coefficients and B the long-run coefficients (3, each of
rank r;.

The block matrix elements of IT are given by IT;; = S, iy = a3 due
to the restriction that §,; = 0 Vi # j. In a more compact notation, the model is

written as:
m—1

AY;: = AB/Y%,1 —|— Z FkAY;,k —|— Et. (26)
k=1

This general model allows a simultaneous modelling of the long-run relations
between several variables for a panel of groups allowing for heterogeneous long-run
cointegration relations within each group. Due to the restriction 3,; = 0 Vi # j,
cointegrating relationships are only allowed for within each of the N groups in the
panel. These cointegrating relationships are contained in the matrix B'Y; ; which
consists of the r; cointegrating relations for each individual, 8y; 1,7 =1,..., N.
However, the model allows for an important short-run dependence between the
panel groups, since «;; is not restricted to zero for ¢ # j. More specifically, the off
diagonal elements in II = AB’ which are given by II;; = aijﬁ; for ¢ # 7, represent
the short-run dependencies of the changes in the series for group ¢ that are due to
long-run equilibrium deviations in group j. As in the standard single-group model
the diagonal element of II, IT; = «;;(3;, represents the short-run adjustments in

group 7 resulting from a deviation from long-run equilibrium in group .



Larsson, Lyhagen and Lothgren (1998) consider a similar heterogeneous panel
data model under cointegrating restrictions, with the added restriction that no
dependencies are allowed between the panel groups. l.e., the off-diagonal block
elements of the matrices A, I and 2 are zero. With this additional restriction the
model is completely heterogeneous and the panel groups are modelled individually
as

m—1
Ay = ;81 + Z LikAyi—r +€a,0=1,..,N,t=1,..T. (2.7)
k=1

Groen and Kleibergen (1999) relax the assumption of block diagonality of 2
in this model.

2.1. Homogeneity restrictions/tests

Based on the general panel model we are interested in tests of homogeneity re-
strictions on the model. The first basic hypothesis we consider states that all of
the panel group-specific matrices II; ¢ = 1, ..., N, have a maximum rank r:

Hy:rank (IL;) =r; <rforalli=1,.., N, (2.8)
is tested against the alternative
Hy :rank (Il;) =p foralli=1,..., N. (2.9)

This null hypothesis states that the maximum cointegrating rank in the panel
is given by r. Larsson, Lyhagen and Lothgren (1998) develop a likelihood-based
tests for this hypothesis based on the completely heterogeneous model. In this
paper we consider an extension of this test statistic to the more general model
considered here.

Given the assumption of equal rank, the homogeneity hypothesis that the
cointegrating vectors in the panel span the same space for each of the individual
groups in the panel is natural. That is, the second homogeneity hypothesis we
consider is given by:

Hy: By =0y =..=By =0 (2.10)

against the alternative
Hy : 3; # B3, for some i, j. (2.11)

Note that the homogeneous long-run coefficient 3 is not uniquely determined. In-
stead, the homogeneity hypothesis is the hypothesis that the long-run coefficients
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0, span the same space. This is seen because if B; = ByR for some Nr x Nr
matrix R of full rank, then we may write AB] = A*B), with A* = AR'.

Under the null hypothesis of homogeneity, the matrix of long-run coefficients
B can be written as B = Iy ® (# and the general model is given by

m—1

AY; =A (IN & ﬁ/) Y;gfl + Z FkAY%,k + & (212)

k=1

3. Statistical Analysis of the Models

In this section we discuss the estimation of the model

m—1
AY; = ABY,_y + 3 ThAYi g + 24, (3.1)

k=1

with the two sets of restrictions B = Diag (8,;;) and B = (Iy ® 3) .

Observe that, for small enough 7', it may not be possible to estimate the
parameters of the model. For example, if the lag length m is one, the number of
parameters is at most N%p?. As we have Np equations each equation must have
Np observations to give an exactly identified system. Due to that the right hand
side consists of lagged left side variables one observation is lost, hence the number
of time units used must be at least T'= Np + 2.

3.1. Individual cointegrating relations

The restriction B = Diag (§,;) may be written B = (Hl(p)ﬁn,...,HJ(\zf))ﬁNN)

where Hi(p Visa N p X p matrix of zeros except in the i:th block where it is a unit
matrix, i.e.

H”=[0 .. 0L 0 ... 0]

(In the rest of this section, we will drop the superindex (p).)

Estimation of such kind of restrictions is discussed in e.g. Johansen (1995a)
and Johansen (1995b). The estimation procedure is to estimate H;3;, in a reduced
rank regression where Hsf35, ..., Hy[(yy have been concentrated out. Continue
by estimating H>(35, given Hi3,1, H3fs3, ..., HnByn. When Hy[Byy has been
estimated, restart the estimation with the new values of H13,;,..., HNOyy- Re-
peat until convergence. For starting values we propose to use the (3,; found when
doing a standard cointegrating analysis for i:th cross-section.
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3.2. Homogenous cointegrating relations

Estimating
m—1

AY, = AB'Y,_1 + Y TpAY,_j + & (3.2)
k=1

using the method proposed by Johansen (1988) we get the unrestricted estimator
of B which, with probability 1, does not satisfy the restriction B = Iy ® (3,
hence, it can not be used to estimate the model we are interested in. Instead
we propose to use the switching method of Boswijk (1995). It is possible to
numerically maximize the likelihood, but this is probably more time consuming
than the switching method when large N and p are considered, although Boswijk
(1995) discusses an example when Newton-Raphson will reach optimum in one
step and the switching converges slowly to optimum. See also Johansen (1995a)
for a discussion on optimization versus switching methods.

For ease of exposition, we consider the model in (2.12) without any short-run
dynamics, which is the same as assuming that these terms have been concentrated
out. Premultiply with the inverse of the square root of the covariance matrix of
g, i.e. with Q12 to get

QV2AY, = Q V2A(Iy 2 B) Y, 1 +Q Ve, (3.3)

or equivalently . .
AY; =A (IN X ﬁ/) Y;,l + e;. (34)

where we used the notation Y; and A for Q~Y/2AY, and Q 1/24 respectively, and
where E (e,e;) = I,. Using the relation vec(ABC) = (C" ® A)vec(B) we have

AY, = (YtL1 ® fl) vec (Iy @ B') + €. (3.5)
Define the matrix H of size N%rp x rp as
L2 I,
| b 6-12V ® I, 36)
Loyl

where 65\[ is a N x 1 vector of zeros except with one in the ith position. Then
vec(Iy ® ') = Hvec('). Note that the inverse of H'H exists, i.e. it is N 11,
Substitute this into (3.5),

AY, = (Y-, ® A) Hvec (8) + 1. (3.7)
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The OLS estimator is then

vee () = | (v @ A) H) ((v{, @ A) H)]_l (7 @A) H) AY, (38)

This shows that for a given value of A and €2 we may estimate 3. The problem of
estimating A and {2 for given values of 3 is much simpler, estimate A in (3.2) by
regression of AY; on B'Y; 4, corrected for (AY;_1,...,AY;_,,11). This regression
also gives an estimate of 2. The switching algorithm is that for given initial values
of 3 estimate A and 2, then for these estimated values estimate . Repeat until
the increase of the likelihood is sufficiently small. The mean of the 3,; found when
doing a standard cointegrating analysis for i:th cross-section are used as starting
values.

4. Distribution of parameters and tests

In this section we derive the distribution of the estimated parameters and the
distribution of the likelihood ratio test for the cointegrating rank under the models
where we have the restrictions B = Diag (§,;) and B = (Iy ® 3). The rank is
tested by a likelihood ratio test when the estimated model has the restriction
B = Diag (03;;).- Then, given the rank, model B = (Iy ® f3) is tested against
B = Diag (f3,;)- The proofs are in the appendix.

Consider the model given in (2.2). Having observations up to time 7', our
object is to test

Hy:rank(IL;) =r; <rforalli=1,..,N, (4.1)
against the alternative
H :rank(Il;) =pforalli=1,...,N, (4.2)

using the likelihood ratio test, Q7. Further, define A as a Np x N (p — r) matrix

(the choice of it is not unique) that fulfills the requirements A, A =0, A/A; =0

and (A, A)) has full rank (Np), and similarly for B,. Consequently, we may

choose B, =diag(B;,,..., Oy, ). Furthermore, letting I' = Iy, — Y7 ' Ty, we

need the assumption, for ruling out processes integrated of order higher than one,
Assumption A The matrix A/ I'B, has full rank.



4.1. The distribution of the parameter estimates

The asymptotics of B — B is described in the following theorem. Following Jo-
hansen (1995b), we let B — B = B, X7, where X is N (p — r) x Nr, and where

B, = B, (B, B.)"". Furthermore, we define the N2(p—r)r x N (p—r)r
matrix K through

K=(H"H "™,  HY « Hy™"), (4.3)

where the HZ-(n) are as defined in section 3.1. Moreover, G and W are shorthand
for the processes G; and W; where W; is an Np-dimensional Wiener process with
covariance matrix Q and G, = B, CW, with C = B, (A\TB,)"' A, T = Iy, —
S 'T;. Note that if 7 = 0, the block diagonal structure has no meaning. Hence,
in the following we will assume that r > 0.

Theorem 4.1. Under assumption A and if r > 0, we have that as T — oo,
TvecXy % KFK'vec < / GdW’Q—1A> ,
where
F=K (A’Q—lA @ [ GG’> K.
4.2. Likelihood ratio test statistics
We are now ready for our first main result.
Theorem 4.2. Under assumption A and if r > 0, we have that as T — oo,
—2logQr 2 U+V,

where, defining W; to be an N (p — r)-dimensional standard Wiener process (with
mean zero and unity covariance matrix),

U tr{/dWW’ (/WW'>_1/WCJW’},

and where V' is x? with N (N — 1) (p — r) r degrees of freedom, independent of U.
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In other words, the limit distribution of our test for cointegrating rank equals
the convolution of a well-known Dickey-Fuller type distribution (which arises as
the asymptotic distribution for the corresponding rank test in a model without
any restrictions on B, cf Johansen, 1995) and an independent x? variate. It is
fairly easy to simulate this distribution in the usual fashion, approximating the
Wiener process with a random walk. Moreover, considering the moments of U
as known (see e.g. the simulation results of Doornik, 1998), our representation
provides us with a simple way of calculating the asymptotic moments of our test
statistic.

4.3. Testing homogenous cointegrating relations

Our next step is to find the asymptotic distribution of the log likelihood ratio
test, given the rank, of the homogeneity hypothesis

Ho:0,=0y=..=0y=0,

against the alternative
Hy : 3; # B3, for some i, j.

In view of earlier literature on similar restriction tests (see e.g. Johansen, 1995b),
the result that this distribution is x?, given in the theorem below, should not come
as a surprise to the reader. The number of degrees of freedom, (N — 1) 7 (p — ),
is natural because as is easily seen, this is the difference of the numbers of free
parameters under the different hypotheses.

Theorem 4.3. Under assumption A and given the rank r, the log likelihood ratio
test statistic for test of Ho : 8, = ... = By = 3 against H, : 3, # [3; for some i, j
is, under Hy and as T — oo, asymptotically x* distributed with (N — 1)r (p — r)
degrees of freedom.

5. A Simulation Study

It is of practical interest to evaluate how well the asymptotic distribution of the
likelihood ratio test for the cointegrating rank mimics the small sample distribu-
tion. To this end, a Monte Carlo simulation is a suitable tool to use. The length
of the random walk approximating the Brownian motion is 800 and the number
of replicates is 100000. For the analysis of small sample properties, the sample
sizes we consider are T = 100, 200, 500 and 1000. Due to time considerations, the
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Model Case 1 Case 3 Case b

r 1 2 1 2 1 2
0.406 0.040 0.306 0.130 0.668 0.730
0.406 0.562 0.323 0.414 0.839 0.746
0.840 0.663 0.900 0.414 0.897 0.746

1 0.663 1 0.601 1 0.849
1 0.797 1 0.759 1 0.867
1 0.797 1 0871 1 0.896
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Table 5.1: Absolute value of the eigenvalues of some data generating pocesses
used in the simulation study. In Case 5 only the largest one is in the table.

number of replicates is limited to 10000. The data generating process is gained
by estimating the models of interest on data. The variables used are (log of)
consumption, income and inflation for Japan, UK and US, i.e. n = p = 3, see the
next section. The largest (absolute value of the) eigenvalues of the data gener-
ating processes named Case 1, Case 3 and Case 5 are shown in Table (5.1). All
of them are relatively far from one, hence, the process for rank one and rank two
are sufficiently separated.

The simulations are carried out in Gauss 3.2. Below are the different cases
simulated for ranks one and two:

1. B = (Iy ® ) with A and €2 unrestricted.

2. Asin 1 but with block diagonal 2.

3. B = Diag (f,;) with A and  unrestricted.
4. As 3 but with both A and €2 block diagonal.
5. As 4 but with m = 2.

Cases 1, 3 and 5 are estimated from data. Case 2 is gained from restricting
case 1 and case 4 is obtained from restricting case 5. Unfortunately, and contrary
to the ordinary case, the convergence to the asymptotic distribution is slow. This
is especially valid for Case 5 where m = 2. This makes it plausible to use some
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Case T=100 T=200 T=500 T=1000
0.293 0.149 0.089  0.072
0.295 0.152  0.089  0.069
0.314  0.173  0.091  0.076
0.251  0.124  0.077  0.067
0.846 0408 0.156  0.097

Ui W N~

Table 5.2: Size for small samples, 5% test and rank=1. The critical value is 97.20.

Case T=100 T=200 T=500 T=1000
0.253  0.135 0.082  0.063
0.238 0.126 0.073  0.063
0.226 0.124  0.081  0.068
0.316  0.151  0.086  0.070
0.734  0.343 0.133  0.086

Ui W N~

Table 5.3: Size for small samples, 5% test and rank=2. The critical value is 39.43.

kind of small sample asymptotics such as the Bartlett correction. Moreover, it
seems that the size properties for the two different ranks considered are quite
similar.

For the test of B = (Iy ® (3) versus B = Diag (f3;;), the size of the test is much
better, see Table (5.4) and Table (5.5). Further the power is extremely good, the
power is 1 even for the smallest sample size (7 = 100).

Case T=100 T=200 T=500 T=1000

1 0.110  0.049  0.055  0.051
2 0.094 0.073  0.059  0.054
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1

Table 5.4: Size and power for small samples of test for common cointegrating
space, four degrees of freedom, 5% test and rank=1.
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Case T=100 T=200 T=500 T=1000

1 0.120 0.074  0.055  0.055
2 0.104 0.074  0.059  0.052
3 1 1 1 1
4 1 1 1 1
) 1 1 1 1

Table 5.5: Size and power for small samples of test for common cointegrating
space, 5% test and rank=2.

5.1. Bartlett correction

The Bartlett correction was introduced by Bartlett (1937), see Cribaro-Neto and
Cordeiro (1996) for a nice treatment of the subject. In cointegration, it has been
used by e.g. Jacobson and Larsson (1999) with only a small improvement of the
asymptotic distribution. This is probably due to the good performance of the
asymptotic distribution. In our case, where the size of the test is far away from
the nominal for sample sizes up to T = 500, the use of a Bartlett corrected statistic
may be useful. Consider the statistic C for sample size T and let C,, denote
the asymptotic one and F the expectation operator. Then the Bartlett corrected

statistic is
Coo

EC

and has been found useful in practise (given that a good estimator of ECr could be
found). Jacobson and Larsson (1999) have demonstrated the difficulties to achieve
a closed form expression for the likelihood ratio test for even such a simple system
as one with only two variables and one cointegrating vector. In our simulations
the mean of the small sample statistics are used, an approach that could be used
in practise if conditioning on the estimated model. The result is that the Bartlett
corrected statistic works extremely well for all sample sizes and cases considered,
the size is very close to the nominal 5%, see Table (5.6) for rank one. The result
for rank two is very similar, hence, not reported.

Ci = ECr (5.1)

6. An Empirical Example: The Consumption Function

In this section, we estimate a standard consumption function of the type consid-
ered by Davidson et al. (1978) for two homogenous groups of OECD countries
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Case T=100 T=200 T=500 T=1000
0.045 0.049 0.047  0.050
0.045 0.048 0.047  0.048
0.045 0.048 0.046  0.049
0.049  0.050  0.047  0.051
0.038  0.047 0.048 0.049

Ui W N~

Table 5.6: Size for small samples, 5% Bartlett corrected test and rank=1.

over the 35 year period 1960 — 1994. The two groups are 1) Japan, UK and US, 2)
Denmark, Finland, Norway and Sweden'. We consider the heterogeneous panel
error correction model with variable vector for each country given by

Yie = (Cit7 ygt?Apz't)/a

where ¢;; is the logarithm of real consumption per capita, y% is the logarithm
of real disposable income per capita and Ap;; is the rate of inflation. We follow
Pesaran, Shin and Smith (1999) in the definition of the variables: Consumption is
measured by the logarithm of total private consumption per-capita, inflation by
the change in the logarithm of the consumption deflator and national disposable
income deflated by the consumption deflator is used as measure of income. Fur-
ther, the variables are demeaned and only m = 1 is considered. The results of the
likelihood ratio tests are in Table (6.1). The Bartlett corrected critical values are
gained by using the estimated model as data generating process when calculating
the sample mean. A bootstrap approach like the one proposed by Gredenhoff and
Jacobsson (1998) could be used but with the good size properties of the Bartlett
critical values we do not think that a bootstrap is necessary. For the groups that
consists of Japan, UK and US the number of cointegrating vectors is 2 when using
the Bartlett corrected critical values while for the group that consists of Denmark,
Finland, Norway and Sweden the number is 1. Note that if the asymptotic crit-
ical values would be used the estimated rank would be 3 for both groups. The
Bartlett corrected critical value for the Denmark group and rank 2 could not be
calculated due to the fact that the estimated model have roots larger than one,
hence, numerical (and theoretical) problems erased. The tests of common coin-
tegrating space gives test statistics of 40.72 and 35.19 respectively and should be

I The data are obtained from the OECD CD-ROM Statistical Compendium, edition 02#1997.
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Japan... Denmark...
H As. crit. B.crit. —2logQr As. crit. B. crit. —2logQr
r=0 17737 218.61  295.06 306.54 425.65  468.78
r<1 97.12 142.24  155.74 168.91 292.32  259.91
r<2 39.59 68.43  49.84 68.85 - 96.12

Table 6.1: Test for cointegraing rank using asymptotic and Bartrlett corrected
corrected critical values for the group Japan, UK and US and the group Denmark,
Finland, Norway and Sweden.

compared t0 X3 g5 =4 = 9-49 and X g5 4—¢ = 12.59. Hence, both groups reject
the null of common cointegrating space.

7. Summary and Concluding Remarks

In this paper we have proposed a panel-VAR with cointegrating restrictions where
the cointegrating relations matrix is block diagonal, each block corresponds to a
cross-section, while the rest of the model is unrestricted. This model is a gener-
alization of the models proposed by Larsson, Lyhagen and Lothgren (1998) and
Groen and Kleibergen (1999). The asymptotic distribution of the estimated pa-
rameters and the two test statistics considered are derived. The first test statistic
tests for the cointegrating rank while the second test the homogeneity restrictions
of common cointegrating space. A Monte Carlo simulation is carried out with
the purpose of analyzing the small sample properties of the two test statistics.
The homogeneity test has satisfying size properties while the test for cointegrat-
ing rank has not. However, when Bartlett correcting the rank test, a size very
close to the nominal is gained. An empirical example using income, consumption
and inflation and two groups of countries shows that Japan, UK and US have
two cointegrating relations while Denmark, Norway, Finland and Sweden have
only one. It should be noted that if the asymptotic critical values instead of the
Bartlett corrected ones would be used, a cointegrating rank of three would have
emerged for both groups, showing that using a test with correct size is crucial for
empirical work.

The present work may be extended in many interesting directions. For exam-
ple, dummy variables could be included in the model. This would probably give
the same type of asymptotic results. Another important issue for applications
would be to investigate asymptotics as the number of individuals, or in our case
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countries, tends to infinity. Under suitable assumptions, we should in this case
get asymptotic normality as in Larsson, Lyhagen and Lothgren (1998).
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8. Appendix: omitted proofs

Let us start by giving the definitions (cf Johansen, 1995b)

AY,; _ ([ Yoo XoB
Var( B/Y;g_l ’AY%fla "'7AY;5m+1> = < EBO ZBB )

G,=B,CW,,C=B, (A\I'B,)"" A, I =1Iy,—¥"'T';, B, =B, (B,B,)™"

and B = B(B'B)"'. Moreover, following Johansen (1995b), p. 91, we may
concentrate out high order lag terms from (2.6) to obtain the auxiliary regression

Ry = AB'Ry, + &, (8.1)

and define -
Sy =Ty RuR),, i,j=0,L1.
t=1

We then have the following lemma :

Lemma 8.1. Under assumption A, we have that as T — oo,

P

Soo — Z007 (8 2)

B'SuB L Y55, (8.3)

B'Syy 5 5 5o, (8.4)

T8, 5B, % / eled (8.5)

B S.. =B, (S — SuBA) % / GdW", (8.6)
B,SuB = 0p(1), (8.7)

Proof. The lemma follows by a simple modification of the proof of Lemma 10.3
of Johansen (1995b). This proof builds upon the representation

t
1/;5 = CZ€i+Ut;

i=1

where U, is an I(0) process. H
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Before going on, we list some useful identities, to be found in e.g. Magnus and
Neudecker (1988). For arbitrary matrices P, ), R and S of dimensions such that
the products below are defined, it holds that

tr(P) = tr(P), (8.8)

tr (PQ) tr (QP), (8.9)
(PRQ)(R®S) = PR®QS, (8.10)
tr (P'Q) = (vecP) vecQ, (8.11)

vec (PQR) = (R ® P)vecQ, (8.12)

tr (PQRS) = (vecS)' (P ® R')vecQ', (8.13)
(P2Q) " = PloQ. (8.14)

We will also make use of the identity
=T, T, +YY =0T,Y +77, (8.15)

where [ is an identity matrix. The first equality of (8.15) follows from the fact
that left-hand multiplication of both sides by T’ or by Y’, yield the same results
on both sides of the equality sign. The second equality is a simple consequence of
the definitions.

Proof of Theorem 4.1: As in Johansen (1995b), p. 91, concentrating out
the I'; terms leads us to the auxiliary regression

Ry, = AB'Ry, + &, (8.16)

where the &; are independent normals, each with mean zero and covariance matrix
Q). For a moment, let us assume that A and €2 are both fixed, the following
arguments being applicable also when they are not, due to consistency. Then,
apart from a constant, the log likelihood may be expressed as

1 T
log L = —=tr (Ql Zag;) :
2 t=1
and because d2, = —AH"dB3,H"' Ry, it follows by (8.9) and (8.16) that
T
T 'dlogL = —T 'tr ( = Zd@&) =T 'tr (H?’)’ ZthégQ‘lAHZ.(”dﬂ;)
t=1
= w{H"'5.07 AH{"dp]} ,
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where

Sie = S1o— SuBA' =S\, — Sy (B— B) A"

Hence, putting the derivative w.r.t. 3, equal to zero, it follows that
HY'$1.0 'AH"” = H"'$), (B - B) AQ ' AH"”, (8.17)

for all .. Now, because

B H = (0,..,0,5,,,0,..,0) = H" "B, (8.18)
left-multiplication of (8.17) by 3,, and insertion of B — B =B, Xy yields

HP "B 8.0 "AH" = H" "B 5,,B, X7 A *AH" .

To find vecXr, we apply (8.12) to get

(H" @ H"™") vee (B, 107" A)
= ( " @ HP~ T>’) (AQ'A® B SuB. ) vecXy (8.19)

(2

for all i. Then, putting the (8.19) equations for each i “on top” of each other
yields

K'vec (B $1:.0 'A) = K' (AQ 'A® B SiB_ ) vecXr. (8.20)
Now, we may take
Ky =(H o5, HY) 2 HE) (8.21)
with
]T(Z 1) (i—1)xr(N
HZ(I) == OTXT(ifl) 7“><T
Or(N—i)xr(i-1)
Further, observe that because X is block dlagonal, (8.12) implies
Y @ HE vec (H<p V' XrH{Y)
K vecXp =] : vec Xy = =0,
HY © H&™ vec (H<p VXrHY))
(8.22)
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so by (8.20) and (8.15),
K'vee (B $1.07'A) = K' (AQ'A® T7'B' $1/B. ) KTK vecXr.
Hence, using the lemma we find
K'vec < / GdW’Q—1A> — TR K vecXy + op (1),
with F} as defined above, upon which, by (8.15) and (8.22),
TvecXr = KTR vecXy = K F  K'vec ( / GdW’QlA> +op (1),

as was to be proved. W
We now need an algebraic lemma.

Lemma 8.2. Letting ® = Ypp — EBOE(}OIEOB, we have

o = AOTTA+ YL, (8.23)
A¥pp — Yo = 0, (8.24)
YopA = g —Q, (8.25)
YopXps = A, (8.26)
Yop®! = Ze2A, (8.27)

Proof. The identities (8.23)-(8.25) are given in Lemma 10.1 of Johansen (1995b).
Further,
Yop¥pp = — (A¥ps — Xop) Xpp + A = 4,
proving (8.26), and (8.27) is a simple consequence of (8.23), (8.25) and (8.26). W
Proof of Theorem 4.2: Consider the three hypotheses Hj : rank(Il) < Np,
H, : 11 = AB’ where A, B are Np x Nr, of full rank and H; : as Hy but where B is

block-diagonal with p x r-dimensional blocks. Denoting the maximum likelihood
ratio between Hz and Hj (HZ C H]) by Qija we then have ng = Q12Q23, l.e.

—2log Q13 = —2log Q12 — 210g Qa3.

Johansen (1995b) has showed that the asymptotic distribution of —2 log ()23 equals
the distribution of U as defined in the theorem. (The fact that B has the specific
block diagonal form under our hypothesis under test does not affect this result.)
Now, to prove our theorem, our plan is
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1) To show the convergence of —2log Q15 to the x? distribution.

2) To show the asymptotic independence between —2log Q12 and —21log Qo3.

1) It follows as in Johansen (1995b), p. 92 that, apart from a constant, the
maximum likelihood under Hy, L, say, fulfills

MB
LIQ/T = ’800’ Aié), M=5) — 8105601501, (828)

where B is the ML estimate of B under H;. Below, we will use the identity
B=B+(B-B)=B+B.Xr, (8.29)

together with the convergence result for X7 of theorem 4.1. Similarly, for Lo, the
maximum likelihood under H,, it holds that

§ E— (8.30)

where B is the ML estimate of B under Hy. As in Johansen (1995b), p. 183, Ur
defined through B — B = B, Uy fulfills

TUr = (T'BSuB.) B0 ' A(AQ7A) +op(1)
1 _
_ ( / GG') [eawata(aota)  vop(1).  (831)

Observe that this shows that B is consistent for B also under H;. Further, as

above we have B B o
B=B+(B-B)=B+B.Ur, (8.32)

so that from (8.29),

D=B-B=B.(Xr—Ur)=0p(T"). (8.33)
Now, from (8.28) and (8.30)

—2/T

12 (8.34)

 [BMB| (|BsaBl\
~ |BmB (]BSHB)) ’
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where, because B=B+ D,
|B'MB|
|B'MB|

_ ' 1+ (BM B)‘l (B'MD + D'MB + D’MD)‘ (8.35)

and similarly with Sj; in place of M. Here, because Ur is Op (T™!) (cf (8.31)),
we have by (8.32) and lemma 8.1 that

B'MB = B'MB+BMB,Up+U,B,MB+U,B,MB, Uy

B'MB +o0p(1)=®+op (1), (8.36)
and similarly, B ~
B'S;1B =Ygk +op(1). (8.37)
Moreover, (8.33) yields
BMD = (B +U;B|)MBy (Xy—Uy), (8.38)
DMD = (Xp—Up) B . MB, (Xy—Uy), (8.39)

and similarly with Sj; in place of M. Now, X7 (cf theorem 4.1) and Up are
Op (T71), and furthermore, via lemma 8.1, BM B, and B'S;; B, are Op (1) and
B MB, and B S11B, are Op (T) . Hence, via (8.35)-(8.39), we see that the r.h.s.
of (8.34) is of the form

|I + T7101|

|I -+ T_102| ’
where C1 and C5 are Op (1), and using the Taylor expansions (cf Johansen (1995b),
p. 224)

V+T4Q

=1+ T %C; + Op (T‘Q) . i=1,2

and log (1 + ) = z + O (2?) , in conjunction with (8.8) and (8.9), we arrive at
—2log Q12 = T'tr (201 + 205 + O3) +op (1), (8.40)

where

©, = Dy (XT - UT) )

O, Dy (Xy — Ur),

O3 = (B/]WB)i1 (Xr — Ur)' B.MB, (X7 — Ur)
—(B'S1,B)" (Xr — Ur) B, SuB. (Xr — Uy).
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with

D, (BMB)"'B'MB, — (B'SB)”" B'S;B.,
D, = (BMB)'U,B,MB, —(B'S;,B)"'U,B5,1B,.

We will now show that D; and D, cancel out each other asymptotically. To this
end, lemma 8.1 yields

Dy =® ! (B'Siy — SpoSog Son ) B — LB SuBL +op (1).
Moreover, by lemma 8.2,

P = AQTA+ Y5,
PN g, = AQT

so that

D1 = —@‘12302501301§L + AIQ_IAB/SMEL + op (1)
= —Algil (SOI - AB/SH) EJ_ + op (1)
= _A/Q_I)S:;lFL + op (1)

/
— Ao < / GdW’> +op (1), (8.41)
where the last equality follows from lemma 8.1. Furthermore, because by lemma

8.1, FlME L and FlSHF 1 asymptotically both behave like T [ GG, it follows
as above and from (8.31) that

_ / -1
D, = (¥ —x) (40 a) o ( / GdW’) ( / GG’> [ 66 +or ()
_ a0 (/ GdW’> +op (1),
which behaves like — D, as asserted. Hence, (8.40) simplifies into

—2 log Q12 = Ttr@3 + op (1) .

As for O3, we at first find in a similar manner as above that
70, = (AQ7A) T (X — Up) ( / GG’> T (Xr — Ur) + op (1),

25



and (8.13) implies
—2log Q19 = T {vec (X7 — Ur)} JTvec (X — Ur) + op (1), (8.42)

where

J=40 s [ 66
Further, we get via (8.12), (8.14) and (8.31) that
TvecUy = J-lvec < / GdW’Q—1A> +op (1), (8.43)
which, combined with theorem 4.1, yields
Tvec (Xr — Ur) = — Pvec ( / GdW’QlA) +op (1), (8.44)

where
P = J'-KF'K'=J'-K(K'JK)"K'
= JUEL (KK KL (8.45)

(The last equality holds because left-hand multiplication by K'.J or K| yields the
same result on both sides.) Hence, because P'JP = P, (8.42) becomes

—2log Q12

= vec (/ GdW’QlA>/ Pvec (/ GdW'QlA) +op (1)

~ vec ( / GdW’Q‘1A>/ JUEL (KT EL) T R T e < / GdW’Q—1A>
+op (1) . (8.46)

Now, let us for a while condition on G. Then, vec([ GdW'2~ A) has covariance
matrix J. This is seen because Q=2 is a process with unit covariance matrix,
and so (8.12) and (8.10) imply

E Hvec ( / GdW’Q—1A>} {Vec ( / GdW’Q—1A> H

- / (42 206) (@A) =
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Hence, conditional on G, K’ J tvec([ GdW’'2 1 A) is normal with expectation 0
and covariance matrix K| J 'K ;. Therefore, the leading term of (8.46) is x?, and
since this distribution is independent of GG, this property holds also uncondition-
ally. Thus, convergence to a x? distribution is shown. Moreover, the number of
degrees of freedom equals the dimension of K, J 1K, i.e. the number of columns
of K, which via (8.21) is seen to be N (N — 1) (p — 7).

2) From Johansen (1995b), p. 158-160, we deduce the representation

—2log Qs = tr { ( / GG’>_1 [Gawa, (,04,)7 4 ( / GdW’)l} +op (1),

(8.47)
where W and G are as above. We need to show that the main terms of (8.46) and
(8.47), My and M, say, are independent. Now, by (8.9), (8.13) and (8.14), (8.47)

may be re-written as

—21og Qa3
- {(A;QAL)—1 A (/ GdW’)l (/ GG’>1 /GdW’AL} +op (1)
- < / GdW’AL>/ <A;QAL @ / GG’> e ( / GdW’AQ +op(1).

Let us again condition on G. Then, [ GdW'Q2 *A and [ GdW'A, are both nor-
mals, each with expectation zero, and the covariance between them is

E { / GAW'Q 1A < / GdW’AL>/} —0,

showing that [ GdW'Q) 1A and [ GdAW'A, are conditionally independent given G.
Hence, M; and M> must also be conditionally independent given GG. Furthermore,
as we saw earlier, M is independent of G. Hence we get, denoting the densities
for M, and M, by f1 and f,, their simultaneous density by fi 2, the density of G
by fe and the corresponding conditional densities by fi|¢ etcetera,

Ji2= /f1,2|GfG = /f1|sz|GfG = fl/f2|GfG = f1f2,

where the integrals are over the support of the G density. This shows the inde-
pendency between M; and M, and we are done. W
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Proof of Theorem 4.3: Denote by B* the ML estimate of B under the
present Hy. Under this Hy, we find as in the proof of Theorem 4.1 that

N
T 'dlog L = tr {Z Hf”’s;;(zlAH}”dﬁ’} ,

i=1

where S}. = Sip — S11B*A’. But via (8.8), (8.9), (8.11) and (8.12), we get

T-'dlog L — tr{(Hi(p)’SIEQ_lAHi(T))/dﬂ}

M= 1M

.
Il
o

{Vec (HZ-(p)/S{‘EQ_lAHZ-(T)) }/ vec (df3)

{(HZ.(T)’ ® Hz-(p)/) vec (STEQ’IA) }/ vec (df3)

I
.MZ

.
Il
e

= {vec (STEQ_lA) }/ K vec (dp),

where the N?pr x pr matrix K is defined through

K, = i (H" 2 HT) .

i=1

Hence, because S;. = Si. — S11 (B* — B) A, we get the equality

Kvee ($1:0 1 A) = Kvec {Siy (B* — B) AQ 1A},
or, writing B* — B = B, X} and using (8.12),

K:,;VGC (81597114) = K:,lp (A’QflA X Sllgj_) vecX;F. (848)
But applying (8.18) with [ in place of 3,, it follows via (8.10) that

= N (Y o) .
(LoB.) K, =Y (B « 0" V'B,) = K7, , (L © B.).
i=1

and so, left-multiplying (8.48) by I, ® 3, and using (8.10) and (8.12), we find
(from now on, we put K* = K, )

K*,VGC (ElleQ_IA) = K*/ (A/Q_IA X FlSHEJ_) vecX}. (849)
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Now, note that by construction,

K=K (Iy & L) , (8.50)
where 1y denotes an N-dimensional vector with elements 1. Hence, we may define
Kl =K, <1N(N—1) & Ir(p—r‘)) )
so that via (8.22) with X} in place of X7, K%'vec X5 = 0, and (8.15) and (8.49)

yield
Kvec (B $1:0'A) = K (AQ 'A® T "B $1yB.) K'TK "vecXj,
and consequently, by Lemma 8.1,
TveeXs = K* TR vecXs = K*Fy K *'vec ( / GdW’QlA> top(l), (851)
where
F=K"JK* J=AQ'A /GG’.

Now, let H; be the alternative hypothesis, i.e. the hypothesis that II = AB’
with B block diagonal. (This is the same H; as in the proof of the previous
theorem.) Our idea is to relate the maximum likelihood ratio between H, and
Hy, Qo1 say, to Qp2 and ()12, which are defined accordingly with Hs being I1 = AB’
with B unrestricted with rank N7 as in the previous proof, via Qo1 = Qo2/Q12,
ie.

-2 IOg QOl = —210g QOQ — (—2 log ng) . (852)

We already know —2log (1o from the previous proof. Moreover, —2log Qo2 may
be derived in a similar fashion as —2log ()12 was found there. The analogy takes
us as far as to the representation (cf (8.42))

—2log Qoo = T {vec (X;. — Ur)} JTvec (X5 — Ur) +op (1). (8.53)
Here, (8.43) and (8.51) yield

Tvec (X5 — Uy) = — P'vec ( / GdW’QlA) +op (1), (8.54)

where
P =J"'~ K'F K.
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Now, in analogy with P'JP = P (cf (8.45)), we also have P¥JP* = P*, so from
(8.44), (8.42), (8.54), (8.53) and (8.52) we find

!/
—2log Qo = vec ( / GdW’QlA> Zvec ( / GdW’QlA> +op(1),  (855)
where
Z=P"JP*—PJP=P" - P=KF 'K — K*F;'K*”.

Furthermore, putting * = 1y ® I, we have by (8.50) that K* = Kz, Fy =
' Fiz, and so
Z=K{F'—z(@ ) 2} K

Now, similar to (8.45), we have
Fil—z(d/Fiz) 2 = F ey (a:lFfla:L)il o P
and so, we find
-1
Z=KF oy (o Fley) o FK
Hence, letting
Y = K'vec ( / GdW’QlA) ,
we may re-write (8.55) as
—2log Qo = Y'F 'z, (x’LFfle)_l o F7Y +op(1).

The result that —2log Qo is x? follows in the same way as in part 2) of the proof
of the previous theorem, if we can prove that, conditioning on G, Y is normal
with expectation 0 and covariance matrix F;. To this end, note that from the
definition of K we have Y’ = (Y{, YJ’V) with

Y, = (HZ(T)/ ® Hz'(pj)/) vec (/ GdW’Q_1A> .
But, as we saw in part 2) of the proof of the previous theorem, conditioned on G,
vec([ GdAW'QY 1 A) has covariance matrix J. Hence,
E(vY)) = (H" 2™ J(H « H),
ie.
E(YY')=K'JK = Fy,
as was to be shown.
Finally, we note that the number of degrees of freedom of our x? distribution
equals the dimension of z/, Fy 'z, which is (N —1)r(p—7). W
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